JPS58176880A - Operation control method of redox-flow type battery - Google Patents

Operation control method of redox-flow type battery

Info

Publication number
JPS58176880A
JPS58176880A JP57059715A JP5971582A JPS58176880A JP S58176880 A JPS58176880 A JP S58176880A JP 57059715 A JP57059715 A JP 57059715A JP 5971582 A JP5971582 A JP 5971582A JP S58176880 A JPS58176880 A JP S58176880A
Authority
JP
Japan
Prior art keywords
electrolyte
liquid
tank
battery
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57059715A
Other languages
Japanese (ja)
Other versions
JPS6229866B2 (en
Inventor
Takeshi Nozaki
健 野崎
Takeo Ozawa
小沢 丈夫
Hidetaka Omichi
大道 秀邁
Yoshinori Takada
高田 義憲
Osamu Hamamoto
修 浜本
Hidetaka Izawa
伊沢 英孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Mitsui Zosen KK
Original Assignee
Agency of Industrial Science and Technology
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Agency of Industrial Science and Technology
Priority to JP57059715A priority Critical patent/JPS58176880A/en
Publication of JPS58176880A publication Critical patent/JPS58176880A/en
Publication of JPS6229866B2 publication Critical patent/JPS6229866B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To make an electrolytic reaction perform, by separating a charging solution from a discharge solution as in two layer parts inside a tank and feeding both solutions in accordance with the case in times of charging and discharging when letting an electrolyte flow into a battery body from both anode and cathode solution tanks. CONSTITUTION:After an electrolyte extracted from tanks 1 and 2 is reacted inside an electrolyte-flow type battery, the electrolyte is returned to these tanks by pumps 3A and 3B, and charging or discharging is carried out. At this time, these tanks 1 and 2 are set down to an electrolyte tank 10 installing valves 13A, 13B for inflow and outflow of the electrolyte at its upper part as well as valves 14A, 14B for inflow and outflow of the electrolyte at its lower part respectively and, by reason that specific gravity in the electrolyte varies with charging and discharging conditions, such an electrolyte as being separated into two layer parts, upper and lower layers, inside the tank is extracted and fed to a battery body 4. Therefore, an electrolytic reaction can be achieved in high voltage efficiency in an easy manner by making full use of a phenomenon of what is known as an electrolyte two-layer separation.

Description

【発明の詳細な説明】 本発明はレドックス・フロー型電池の運転方法に関し、
さらに詳しくは電解液流通型電池の効率的な二次電池の
運転方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of operating a redox flow battery,
More specifically, the present invention relates to an efficient method of operating a secondary battery of an electrolyte flow type battery.

電解液流通型電池とは、電解液が電池に流入し、流出す
る間に充電1&は放電の電池反応が行)われる電池であ
り、電解液はよりアノ−ディックな電池反応を起こす正
極液と、よりカソーディックな電池反応を起こす負極液
とに分けられる。この正、負極液に酸化、還元性、すな
わち酸化反応と還元反応とが可逆的に起こり得る物質を
用いると、この電池は二次電池として用いることが可能
になる。
An electrolyte flow type battery is a battery in which the electrolyte flows into the battery and the battery reactions of charging and discharging occur while the electrolyte flows out.The electrolyte is a catholyte that causes a more anodic battery reaction. , and negative electrode liquid, which causes a more cathodic battery reaction. If the positive and negative electrode liquids are made of oxidizing and reducing substances, that is, substances in which oxidation and reduction reactions can occur reversibly, this battery can be used as a secondary battery.

従来から提案されている電解液流通型の二次電池システ
ムには、正極液に塩酸酸性塩化鉄水溶液、負極液に塩酸
酸性塩化クロム水溶液が用いられている。この場合、電
解液流通型電池の電極には、主に炭素等の不活性電極が
使用され、その理論充電電圧、理論放電電圧は、次のネ
ルンス) (Nern 8t)式で表わされる。
Conventionally proposed electrolyte flow type secondary battery systems use a hydrochloric acid acidic iron chloride aqueous solution as the positive electrode liquid, and a hydrochloric acid acidic chromium chloride aqueous solution as the negative electrode liquid. In this case, an inert electrode such as carbon is mainly used as the electrode of the electrolyte flow type battery, and its theoretical charging voltage and theoretical discharging voltage are expressed by the following Nern equation.

ここでEは理論電圧を示し%  (Cr”)は三価クロ
ム、(Fe2”)は二価鉄、(Cr”)は二価クロム、
(Fe33)は三価鉄の濃度をそれぞれ示す、充電時は
三価クロムと二価鉄の濃度が大きいほど、小さな充電電
圧で電池を充電することができ、逆に放電時は二価クロ
ムと三価鉄の濃度が大きいほど、大きな放電電圧をとシ
出すことができ、電池の充放電における電圧効率は高く
なる。
Here, E indicates the theoretical voltage, % (Cr”) is trivalent chromium, (Fe2”) is divalent iron, (Cr”) is divalent chromium,
(Fe33) indicates the concentration of trivalent iron.The higher the concentration of trivalent chromium and divalent iron, the lower the charging voltage can charge the battery, and conversely, the higher the concentration of trivalent chromium and divalent iron, the lower the charging voltage. The higher the concentration of trivalent iron, the greater the discharge voltage that can be generated, and the higher the voltage efficiency in charging and discharging the battery.

第1図は、充放電時の電圧効率の最も高い、理想的な電
池システムを示したもので、充電後および放電後の電解
液を分離してタンクに貯蔵するため四タンク法とよばれ
ている。図において、装筺系統は、正極液タンクIA、
IBと、負極液タンク2A、2Bと、循環ポンプ3A、
3Bと、電池本体番と、電解液の切換バルブ5A、!5
Bと、直交インバータ6と、変電設備7とからなり、変
電所7は発電所8および需要側9に接続されている。
Figure 1 shows an ideal battery system with the highest voltage efficiency during charging and discharging.It is called the four-tank method because the electrolyte after charging and discharging is separated and stored in tanks. There is. In the figure, the packaging system includes a cathode liquid tank IA,
IB, negative electrode liquid tanks 2A, 2B, circulation pump 3A,
3B, battery number, and electrolyte switching valve 5A! 5
The substation 7 is connected to a power plant 8 and a demand side 9.

上記系統において、四タンク法を効率よ〈実施するため
には、充電後の電解液を貯蔵する夕/り1人および2人
には、100チ近く充電された電解液(上述の場合、正
極液のタンクIAではほぼ三価鉄、負極液のタンク2A
ではほぼ二価クロムとなっている)を、また放電後の電
解液を貯蔵するタンクIBおよび2Bには、1oO%近
く放電されたい1 電解液(タンク1Bでは二価鉄、タンク2Bでは三価ク
ロム)を貯えることが望まし7い。そのためには電池本
体において反応物質(上述の例の充電時では三価クロム
および二価鉄)の100%近くを電極通過の際に反応さ
せなければならない、すなわち、電池の反応物質捕捉率
を100%近くにしようとするものであるが、電極の形
状(長さなどのサイズ)および電極内の電解液透過時の
圧力損失を実用上、好ましい範囲内に抑えるためには、
反応物質捕捉率を多くても数十パーセントにまで下げな
ければならない。したがって、電池に対して電解液−過
大で充放電反応を行うことは好ましくなく、四タンク法
は、原理的に充放電の電圧効率が大きいという利点があ
るKかかわらず、上記例の電池システムには向いていな
いという問題がある。
In the above system, in order to carry out the four-tank method efficiently, one and two people must have nearly 100 tanks of charged electrolyte (in the above case, the positive electrode In the liquid tank IA, it is almost trivalent iron, and in the negative electrode liquid tank 2A
The tanks IB and 2B, which store the electrolyte after discharge (which is almost divalent chromium), and the electrolyte that should be discharged at nearly 1oO% (divalent iron in tank 1B and trivalent chromium in tank 2B) It is desirable to store chromium). To do this, nearly 100% of the reactants (trivalent chromium and divalent iron during charging in the above example) must be reacted when passing through the electrodes, which means that the reactant capture rate of the battery must be reduced to 100%. %, but in order to keep the shape of the electrode (size such as length) and pressure loss during electrolyte permeation within the electrode within a practically preferable range,
The reactant capture rate must be reduced to a few tens of percent at most. Therefore, it is not preferable to perform a charge/discharge reaction on a battery with an excessive amount of electrolyte, and although the four-tank method has the advantage of high charging/discharging voltage efficiency in principle, it is not suitable for the battery system of the above example. The problem is that it is not suitable.

一方、ニタンク法と称される電池活物質貯蔵方法がある
が、これは第2図に示すように、タンク1.2から抜き
出した電解液を電池4内で反応させた後、ポンプ3によ
り再びもとのタンクに戻すものである。このとき、電池
反応前後の電解液は混合され、電解液内の充電または放
電反応物質の濃度は低下するが、電池への電解液送液量
を太きくシ、必要な電流密度を維持するとともに、電池
に対し電解液リザイクル方式をとって反応物質捕捉率を
好ま【7い程度Km持することができる。
On the other hand, there is a battery active material storage method called the Nitank method, as shown in Figure 2, in which the electrolyte extracted from the tank 1.2 is reacted in the battery 4, and then pumped again using the pump 3. It is returned to the original tank. At this time, the electrolyte before and after the battery reaction is mixed, and the concentration of charge or discharge reactants in the electrolyte decreases, but the amount of electrolyte sent to the battery is increased to maintain the necessary current density. By adopting an electrolyte recycle method for the battery, the reaction material capture rate can be maintained for about 7 km.

し力・し、このニタンク法の電池システムにも以下に述
べる欠点がある。すなわち、充電後の電解液と放電後の
電解液との比重に差があるとき、三者はタンク内で通常
混合せずに、二層に分離してしまう。このとき、タンク
からの電解液抜出し孔が1箇所しかない場合、この二層
に分離した液の一方のみを抜き出すことになり、充電時
または放電時のいずれかにおいて電池の反応物質の濃度
に著しい不足をきたすことに表る。この現象を上記例の
正極液について説明すれば、塩酸酸性塩化鉄水溶液は三
価鉄の方が二価鉄よりも比重が大きく、ニタンク法にお
いて、充電後の電解液は放電後の電解液から分離し、タ
ンク1の底部に貯る。タンク1の電解液抜出し孔はタン
ク1底面にあるため、電池4の放電反応は好ましく進行
するものの、充電反応の場合は著しい二価鉄の不足にょ
シ、極めて進行しにくくなる。従来、このような問題は
However, the Nitank method battery system also has the following drawbacks. That is, when there is a difference in specific gravity between the electrolytic solution after charging and the electrolytic solution after discharging, the three usually do not mix in the tank and separate into two layers. At this time, if there is only one electrolyte extraction hole from the tank, only one of the two layers of liquid will be extracted, and the concentration of reactants in the battery will significantly increase during either charging or discharging. It manifests itself in causing shortages. To explain this phenomenon for the positive electrode solution in the above example, trivalent iron has a higher specific gravity than divalent iron in the hydrochloric acid acidic iron chloride aqueous solution, and in the Nitank method, the electrolyte after charging is separated from the electrolyte after discharging. It is separated and stored at the bottom of tank 1. Since the electrolyte extraction hole of the tank 1 is located at the bottom of the tank 1, the discharging reaction of the battery 4 progresses favorably, but the charging reaction becomes extremely difficult to proceed due to a significant lack of divalent iron. Traditionally, problems like this.

タンク内の電解液攪拌という方法で対処されてきだが、
充電液と放電液との混合による電圧効率の低下、攪拌の
ための動力源を必要とすることなどの欠点がある。特に
電池というエネルギー貯蔵設備において、余分な動力源
を必要とすることはエネルギー貯蔵効率の低下に直結し
てし壕う。
This problem has been dealt with by stirring the electrolyte in the tank, but
There are disadvantages such as a decrease in voltage efficiency due to mixing of the charging liquid and the discharging liquid, and the need for a power source for stirring. Especially in energy storage equipment such as batteries, the need for an extra power source directly leads to a decrease in energy storage efficiency.

本発明の目的は、前述したニタンク法の問題を解決し、
しかも電解液二層分離という現象を逆に利用し、高い電
圧効率で電解反応を行なうことができる電池の運転方法
を提供することにある。
The purpose of the present invention is to solve the problems of the Nitank method mentioned above,
Moreover, it is an object of the present invention to provide a method of operating a battery that can perform an electrolytic reaction with high voltage efficiency by making use of the phenomenon of electrolyte two-layer separation.

本発明は、電解液流通型電池本体に正極液タンクおよび
負極液タンクからそれぞれ電解液を流通させて充電また
は放電反応を行なう電池の運転方法において、電解液と
して、充電状態の液(充電液)と放電状態の液(放電液
)の比重が異々るものを用い、前記タンク内で充電液お
よび放電液を二層分離させ、電池の充電時ま□たは放電
時にそれぞれ放電液まだは充電液を抜き出l〜で前記電
池本体に送液することを特徴とする。
The present invention relates to a method of operating a battery in which charging or discharging reactions are carried out by flowing electrolyte from a positive electrode tank and a negative electrode tank through an electrolyte flow type battery body. The charging liquid and the discharging liquid are separated into two layers in the tank, and when the battery is being charged or discharged, the discharging liquid and the discharging liquid have different specific gravities. It is characterized in that the liquid is extracted and sent to the battery main body at l~.

本発明において、二層に分離した電解液のいずれか一方
を電池本体く送液するには、(1)前記タンクの底部付
近および核タンク内の液面直下にそれぞれ電解液流人出
孔を配置し、充電時と放電時とで該電解液流人出孔への
電解液の流れの方向を切換えるか、(2)前記タンク内
の液面直下およびタンク底部付近にそれぞれ電解液の流
出専用孔を配置し、充電時と放電時に皺流出専用孔のい
ずれ一方から電解液を抜き出して電池本体に送液するが
、または(3)二層に分離した放電液または充電液を、
浮子を有するフレキシブルパイプを介して抜き出し、電
池本体に送液すればよい。
In the present invention, in order to send one of the electrolytes separated into two layers to the battery body, (1) provide an electrolyte flow hole near the bottom of the tank and just below the liquid level in the nuclear tank. (2) Directly below the liquid level in the tank and near the bottom of the tank, respectively, and switch the flow direction of the electrolyte to the electrolyte flow hole during charging and discharging. (3) The electrolytic solution is extracted from one of the holes dedicated to wrinkle flow and sent to the battery body during charging and discharging.
It is sufficient to extract the liquid through a flexible pipe having a float and send it to the battery body.

以下、本発明を図面によりさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第3図は、本発明を原曹的に説明するための電解液タン
クの断面図である0図において、タンク10内では電解
液が上層液11と下層液12の二層に分離している。こ
れは前述したように、充電状態の電解液と放電状態の電
解液との間で比重が異なるためであり、従来のようにタ
ンク内で両者を均一に混合して使用するには攪拌操作が
必要である。本発明では、この分離した電解液を逆に利
用するために、タンクの上下にそれぞれ液抜き出し孔1
3および14を設け、上下に分離した放電状態の液(放
電液)と、充電状態の液(充電液)をそれぞれ抜き出し
て電池本体に送り、高濃度の充電または放電反応物質と
して利用するものである。
FIG. 3 is a cross-sectional view of an electrolyte tank for explaining the present invention in detail. In FIG. . As mentioned above, this is due to the difference in specific gravity between the electrolyte in a charged state and the electrolyte in a discharged state, and in order to mix them uniformly in a tank as in the past, a stirring operation is required. is necessary. In the present invention, in order to reversely utilize this separated electrolyte, there are two liquid extraction holes at the top and bottom of the tank.
3 and 14 are provided, and the liquid in the discharged state (discharge liquid) and the liquid in the charged state (charged liquid) separated into the upper and lower parts are extracted and sent to the battery body, and used as a highly concentrated charge or discharge reaction material. be.

次に第4図は、充電状態および放電状態の電解液の分離
を助けるだめ、タンク内で上下運動が可能な半浮遊式の
仕切板15を用いた場合を示す。
Next, FIG. 4 shows a case where a semi-floating type partition plate 15 that can be moved up and down in the tank is used to help separate the electrolyte in the charged state and the discharged state.

この仕切板は、充電状態の電解液と放電状態の電解液の
中間の比重を持つように作られている。
This partition plate is made to have a specific gravity intermediate between that of the electrolytic solution in a charged state and that in a discharged state.

第5図は、本発明を実施するための装置系統の一例を示
したもので、電解液タンク10側壁の上下にそれぞれ電
解液の流入専用孔(バルブ)13Aと流出専用孔(バル
ブ)13Bとを設け、同じくタンク下部に4b流入と流
出の専用孔14A、14Bを設けた本のである。なお、
この図では、電解液タンク10と電池本体4とを結ぶ正
極側の電解液ライン16.17のみを表わしており、−
極側はこれと同様に表示されるものとして省略されてい
る。
FIG. 5 shows an example of an apparatus system for carrying out the present invention, in which holes (valve) 13A and 13B exclusively for electrolyte inflow and outflow, respectively, are provided on the upper and lower side walls of the electrolyte tank 10. , and dedicated holes 14A and 14B for inflow and outflow 4b are also provided at the bottom of the tank. In addition,
In this figure, only the electrolyte lines 16 and 17 on the positive electrode side connecting the electrolyte tank 10 and the battery body 4 are shown, and -
The polar side is omitted as it is displayed in the same way.

上記装置系統において、電池本体番の電解液はラインT
6からバルブ13A114Aを通って正極液タンク10
に導入され、ここで上下二層に分離する。正極液として
塩化鉄水溶液を用いた場合は下層に三価鉄、上層に二価
鉄の液が分離し、電池本体の充電時には上層の放電状態
の液(二価鉄)が、および放電時には下層の充電状態の
液(三価鉄)がそれぞれバルブ13Bまたは14’Bを
介して抜き出さね、電池本体番に供給される。なお、タ
ンクに接続する二つの電解液流入専用孔13A114A
は一つにまとめても電解液の二層分離はb〒能であり、
実際には流入孔を一つにまとめだ方が装置を簡略化する
ことができるので好ましい。
In the above equipment system, the electrolyte of the battery body number is line T.
6 to the positive electrode liquid tank 10 through the valve 13A114A.
where it separates into two layers, upper and lower. When an aqueous iron chloride solution is used as the positive electrode liquid, trivalent iron is separated into the lower layer and divalent iron is separated into the upper layer.When the battery is being charged, the liquid in the upper layer is in a discharged state (divalent iron), and when discharging, the lower layer is the divalent iron. The charged liquid (trivalent iron) is extracted through the valve 13B or 14'B, respectively, and supplied to the battery body. In addition, there are two dedicated electrolyte inflow holes 13A and 114A connected to the tank.
Even if they are combined into one, it is possible to separate the electrolyte into two layers,
In reality, it is preferable to combine the inflow holes into one because the device can be simplified.

また第6図は、本発明のさらに他の実施例を示すもので
、タンク10の上下に電解液の流入用と排出用を兼ねた
流入出孔13および14を設け、流入出の切換を四方バ
ルブ18で行なうようにしたものである。図のバルブ位
MVi下層部の液(三価鉄)をタンクから抜き出し、ポ
ンプ3Aにより電池本体4に供給する放電時の状態を示
しているが、四方コックの切換によりタンク10の上層
部の液(二価銖)をタンクから抜き出し、電池本体4に
供給し、充電用に使用することができる。
FIG. 6 shows still another embodiment of the present invention, in which inflow and outflow holes 13 and 14 are provided at the top and bottom of the tank 10 for both inflow and outflow of the electrolyte, and the inflow and outflow can be switched from all directions. This is done by the valve 18. The figure shows the state during discharge when the liquid (trivalent iron) in the lower layer of the MVi is extracted from the tank and supplied to the battery body 4 by the pump 3A. (bivalent iron) can be extracted from the tank, supplied to the battery main body 4, and used for charging.

本発明において、電解液流人出孔のタンク取付位置は、
上層および下層の電解液を分離して抜き出すことができ
れば、特に限定されず、例えば、第7図に示すように、
浮子19とフレキシブル管2oを用いて第5図および第
6図に示したタンク上部の電解液流人出孔13の機能を
もたせることができる。上記の構成によれば、タンク内
の全電解液面レベルが変動してもそれに追随して、充電
時および放電時の電解液を充分な分離性をもって電池本
体に供給することができる。
In the present invention, the tank mounting position of the electrolyte flow hole is
There is no particular limitation as long as the upper and lower electrolytes can be separated and extracted, for example, as shown in FIG.
Using the float 19 and the flexible tube 2o, it is possible to provide the function of the electrolyte flow hole 13 in the upper part of the tank shown in FIGS. 5 and 6. According to the above configuration, even if the total electrolyte level in the tank fluctuates, the electrolyte during charging and discharging can be supplied to the battery main body with sufficient separability.

以上、本発明によれば、攪拌のために新たな動力源を必
要にしたり、電池システムを複線化すること々く、電解
液二層分離という現象を利用し、充電時には高濃度の充
電反応物質を、および放電時には高濃度の放電反応物質
を電池本体に送り−1高い電圧効率で電解反応を行なう
ことができる。
As described above, the present invention utilizes the phenomenon of electrolyte two-layer separation, which eliminates the need for a new power source for agitation or double-tracking of the battery system, and eliminates the need for a new power source for stirring, and by utilizing the phenomenon of electrolyte two-layer separation, a high concentration of charging reactants is generated during charging. and during discharge, a high concentration of discharge reactant can be sent to the battery main body to carry out an electrolytic reaction with -1 high voltage efficiency.

実施例 正極液に塩酸酸性塩化鉄水溶液、負極液に塩酸酸性塩化
クロム水溶液を使用し、正極液側を第5図に示す電解液
フローラインとし、負極液側を負極液タンクにそれぞれ
一個づつの電解液流入孔と流出孔とを設けたラインとし
た。負極液タンク内には窒素ガスを導入して電解液を攪
拌するとともに、タンク内を窒素ガスで充てんし、充電
状態の負極液、すなわち、塩化第一クロムの空気による
酸化を防止した。タンク10内の正極液は、三価鉄が下
層および二価鉄が上層と、二層に分離したので、充電時
には上層の液を抜き出し、逆に放電時には下層の液を抜
き出した。多孔質炭素を電極とし、隔膜に陽イオン交換
膜を使用する電池本体番に電解液を導き、20mAcm
 ”、40mAcm ”sおよび60mAcm−2の電
流密度で定電流充放電実験を行った。比較のために、タ
ンク内の正極液に窒素ガスを導入し、正極液を攪拌した
条件での定を流充放電実験も行なった。
Example A hydrochloric acid acidic iron chloride aqueous solution was used as the positive electrode liquid, and a hydrochloric acid acidic chromium chloride aqueous solution was used as the negative electrode liquid.The positive electrode liquid side was an electrolyte flow line as shown in Fig. 5, and the negative electrode liquid side was placed in a negative electrode tank. The line was provided with an electrolyte inflow hole and an electrolyte outflow hole. Nitrogen gas was introduced into the negative electrode liquid tank to stir the electrolytic solution, and the tank was also filled with nitrogen gas to prevent the charged negative electrode liquid, that is, chromium chloride, from being oxidized by air. The positive electrode solution in the tank 10 was separated into two layers, a lower layer of trivalent iron and an upper layer of divalent iron, so the upper layer liquid was extracted during charging, and conversely, the lower layer liquid was extracted during discharging. The electrolyte was introduced into the battery body using porous carbon as an electrode and a cation exchange membrane as a diaphragm, and the electrolyte was heated to 20 mAcm.
Galvanostatic charging and discharging experiments were conducted at current densities of 1.5", 40 mAcm"s and 60 mAcm. For comparison, we also conducted a constant flow charge/discharge experiment under conditions where nitrogen gas was introduced into the cathode solution in the tank and the cathode solution was stirred.

上記実験結果(充電深度50チの場合の充放電特性曲線
)を第8図に示す。図中、21は本発明(実施例)の場
合、22は比較例の場合を示す。
The above experimental results (charging/discharging characteristic curve in the case of a charging depth of 50 inches) are shown in FIG. In the figure, 21 shows the case of the present invention (example), and 22 shows the case of the comparative example.

図から明らかなように、本発明の方が二次電池の充放電
時の電圧効率の改善に大きく寄与することが分る。
As is clear from the figure, it can be seen that the present invention greatly contributes to improving the voltage efficiency during charging and discharging of the secondary battery.

なお、正極夕/り、およびフローラインの構成を第6図
および第7図に示すようにしだ充放1!実験も、第8図
の場合と同様の結果を示しだ。
In addition, the configuration of the positive pole/return and flow line is as shown in Figures 6 and 7. The experiment also showed results similar to those shown in Figure 8.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、それぞれ従来の二次電池の運転
方法を示す装置系統図、第3図および第4図は、本発明
の詳細な説明する電解液タンクの二層分離の状態を示す
概念図、第5図、第6図および第7図は、それぞれ本発
明の詳細な説明するための装置系統図、第8図社、本発
明の実施例の結果を示す図である。 1、lO・・・・・電解液タンク、3A・・・・・循環
ポンプ、11・・・・上層液、12・・・・・下層液、
13・・上層流抜出し孔、13A、13B・・・・・同
バルブ、14−・・下層液抜出し孔% 14A114B
・・−・同バルブ、1日・・・ 四方パルプ、19・・
・・・浮子、20・・・・ フレキ/プルパイプ。 代理人 弁理士  川 北 武 長 第1図 第2図
Figures 1 and 2 are system diagrams showing a conventional method of operating a secondary battery, respectively, and Figures 3 and 4 show the state of two-layer separation of an electrolyte tank, which is a detailed explanation of the present invention. The conceptual diagram shown in FIG. 5, FIG. 6, and FIG. 7 are a system diagram of an apparatus for explaining the present invention in detail, and FIG. 8 is a diagram showing the results of an embodiment of the present invention. 1, 1O... Electrolyte tank, 3A... Circulation pump, 11... Upper layer liquid, 12... Lower layer liquid,
13... Upper layer flow extraction hole, 13A, 13B... Same valve, 14-... Lower layer liquid extraction hole % 14A114B
...Same valve, 1st day... Four-way pulp, 19...
...Float, 20... Flexible/pull pipe. Agent Patent Attorney Takenaga Kawakita Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 (1)電解液流通型電池本体く正極液タンクおよび負極
液タンクからそれぞれ電解液を流通させて充電または放
電反応を行なう電池の運転方法において、電解液として
、充電状態の液(充電液)と放電状態の液(放電液)の
比重が異なるものを用い、前記タンク内で充電液および
放電液を二層分離させ、電池本体の充電時または放電時
にそれぞれ放電液または充電液を抜き出して前記電池本
体に送液することを特徴とするレドックス・フロー型電
池の運転方法。 (2、特許請求の範囲第1項において、前記タンクの底
部付近および該タンク内の液面直下にそれぞれ電解液流
人出孔を配置し、充電時と放電時とで該電解液流人出孔
への電解液の流れの方向を切換えることを特徴とするレ
ドックス・フロー型電池の運転方法。 (3)特許請求の範囲第1項において、前記タンク内の
液面直下およびタンク底部付近にそれぞれ電解液の流出
専用孔を配置し、充電時と放電時に該流出専用孔のいず
れか一方から電解液を抜き出して電池本体に送液するこ
とを特徴とするレドックス・フロー型電池の運転方法。 (4’)l!fFF請求の範囲第1項において、二層に
分離した放電液または充電液を、浮子を有するフレキシ
ブルパイプを介して抜き出し、電池本体に送液すること
を特徴とするレドックス・フロー型電池の運転方法。
[Scope of Claims] (1) In a method of operating a battery in which a charging or discharging reaction is carried out by flowing electrolyte from a positive electrode tank and a negative electrode tank through an electrolyte flowing type battery body, The liquid (charging liquid) and the liquid in the discharge state (discharging liquid) have different specific gravity, and the charging liquid and the discharging liquid are separated into two layers in the tank. A method of operating a redox flow type battery, characterized in that a liquid is extracted and sent to the battery main body. (2. In claim 1, an electrolytic solution flow hole is arranged near the bottom of the tank and directly below the liquid level in the tank, and the electrolyte solution drains during charging and discharging. A method for operating a redox flow battery, characterized in that the direction of flow of electrolyte into the holes is switched. A method of operating a redox flow battery, characterized by arranging a hole exclusively for the outflow of electrolyte solution, and drawing out the electrolyte solution from either of the holes exclusively for the outflow during charging and discharging, and sending the liquid to the battery body. ( 4')l!fFF In Claim 1, the redox flow is characterized in that the discharge liquid or charging liquid separated into two layers is extracted through a flexible pipe having a float and is sent to the battery body. How to operate a type battery.
JP57059715A 1982-04-12 1982-04-12 Operation control method of redox-flow type battery Granted JPS58176880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57059715A JPS58176880A (en) 1982-04-12 1982-04-12 Operation control method of redox-flow type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57059715A JPS58176880A (en) 1982-04-12 1982-04-12 Operation control method of redox-flow type battery

Publications (2)

Publication Number Publication Date
JPS58176880A true JPS58176880A (en) 1983-10-17
JPS6229866B2 JPS6229866B2 (en) 1987-06-29

Family

ID=13121175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57059715A Granted JPS58176880A (en) 1982-04-12 1982-04-12 Operation control method of redox-flow type battery

Country Status (1)

Country Link
JP (1) JPS58176880A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797566A (en) * 1986-02-27 1989-01-10 Agency Of Industrial Science And Technology Energy storing apparatus
WO1994009524A1 (en) * 1992-10-14 1994-04-28 National Power Plc Electrochemical apparatus for power delivery utilizing an air electrode
WO1994009525A1 (en) * 1992-10-14 1994-04-28 National Power Plc Electrochemical energy storage and power delivery process utilizing iron-sulfur couple
WO2013002137A1 (en) * 2011-06-27 2013-01-03 住友電気工業株式会社 Redox flow battery
JP2013008641A (en) * 2011-06-27 2013-01-10 Sumitomo Electric Ind Ltd Redox flow cell
JP2013008640A (en) * 2011-06-27 2013-01-10 Sumitomo Electric Ind Ltd Redox flow cell
JP2019508866A (en) * 2016-03-17 2019-03-28 サウジ アラビアン オイル カンパニーSaudi Arabian Oil Company In-situ gravity separation of electrolyte solution in flow redox battery system
JP2020514968A (en) * 2017-01-04 2020-05-21 サウジ アラビアン オイル カンパニーSaudi Arabian Oil Company Mechanical energy storage in a flow battery to enhance energy storage

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797566A (en) * 1986-02-27 1989-01-10 Agency Of Industrial Science And Technology Energy storing apparatus
WO1994009524A1 (en) * 1992-10-14 1994-04-28 National Power Plc Electrochemical apparatus for power delivery utilizing an air electrode
WO1994009525A1 (en) * 1992-10-14 1994-04-28 National Power Plc Electrochemical energy storage and power delivery process utilizing iron-sulfur couple
WO2013002137A1 (en) * 2011-06-27 2013-01-03 住友電気工業株式会社 Redox flow battery
JP2013008641A (en) * 2011-06-27 2013-01-10 Sumitomo Electric Ind Ltd Redox flow cell
JP2013008640A (en) * 2011-06-27 2013-01-10 Sumitomo Electric Ind Ltd Redox flow cell
CN103620845A (en) * 2011-06-27 2014-03-05 住友电气工业株式会社 Redox flow battery
EP2725648A4 (en) * 2011-06-27 2015-03-11 Sumitomo Electric Industries Redox flow battery
US9531028B2 (en) 2011-06-27 2016-12-27 Sumitomo Electric Industries, Ltd. Redox flow battery
JP2019508866A (en) * 2016-03-17 2019-03-28 サウジ アラビアン オイル カンパニーSaudi Arabian Oil Company In-situ gravity separation of electrolyte solution in flow redox battery system
JP2020514968A (en) * 2017-01-04 2020-05-21 サウジ アラビアン オイル カンパニーSaudi Arabian Oil Company Mechanical energy storage in a flow battery to enhance energy storage

Also Published As

Publication number Publication date
JPS6229866B2 (en) 1987-06-29

Similar Documents

Publication Publication Date Title
US9680172B2 (en) Flow-type electrochemical cell
CN110574200B (en) Methods and systems for rebalancing electrolytes of redox flow battery systems
EP3121928B1 (en) Zinc-air cell
US6228527B1 (en) Magnesium solution phase catholyte seawater electrochemical system
JP6450636B2 (en) Electrolysis method
US7241521B2 (en) Hydrogen/hydrogen peroxide fuel cell
CN104781981B (en) With the electro-chemical systems of metal storage electric energy
US3322574A (en) Process and apparatus for removing reaction water from galvanic fuel cells
US20100003586A1 (en) Redox flow cell
US6849356B2 (en) Separated flow liquid catholyte aluminum hydrogen peroxide seawater semi fuel cell
MXPA03001330A (en) Vanadium electrolyte preparation using asymmetric vanadium reduction cells and use of an asymmetric vanadium reduction cell for rebalancing the state of charge of the electrolytes of an operating vanadium redox battery.
US9461298B2 (en) Spiral-wound convection battery and methods of operation
US20030198862A1 (en) Liquid gallium alkaline electrolyte fuel cell
KR20020062717A (en) Electrolyte rebalancing system
JPS58176880A (en) Operation control method of redox-flow type battery
JPH0227667A (en) Redox flow battery with electrolyte regenerator and its battery capacity maintaining method
CN113314733A (en) Rebalanceable system of iron-chromium flow battery
CN109075367A (en) Redox flow batteries
JP2023525875A (en) Electrode assembly for redox flow battery
WO2017106215A1 (en) Electrochemical cells and batteries
JPS6235461A (en) Electrolyte circulation type secondary cell
JP2001216995A (en) Electrolyte tank for redox flow battery
JPH10334938A (en) Power storage secondary battery
JPS61211960A (en) Secondary cell
EP0186204B1 (en) Zinc-bromine battery