JPS58103660A - Gas sensor for carbon monoxide - Google Patents
Gas sensor for carbon monoxideInfo
- Publication number
- JPS58103660A JPS58103660A JP56201659A JP20165981A JPS58103660A JP S58103660 A JPS58103660 A JP S58103660A JP 56201659 A JP56201659 A JP 56201659A JP 20165981 A JP20165981 A JP 20165981A JP S58103660 A JPS58103660 A JP S58103660A
- Authority
- JP
- Japan
- Prior art keywords
- working electrode
- carbon monoxide
- gas sensor
- gas
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/404—Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors
- G01N27/4045—Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors for gases other than oxygen
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Measuring Oxygen Concentration In Cells (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明はガス検知器に係り、特に大気中の一酸化炭素ガ
スを電気化学的に検出するに適する一酸化炭素用ガスキ
ンサに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas detector, and more particularly to a carbon monoxide gas sensor suitable for electrochemically detecting carbon monoxide gas in the atmosphere.
定電位電解法を用いて大気中の一酸化炭素を検出するガ
スセンサは公知である。このセンナにおいては電解電流
がガス濃度に比例するためにガスの定量性がすぐれてい
るという利点のある反面、センサが他の還元ガス、特に
水素などの雑ガスにも感度を持ち、一般家鮭用一酸化炭
素センサとして用いる場合これらの雑ガスによって誤動
作しやすい欠点があった。例えばCO/H,の感度比は
最大でも20〜50程健であり、充分な大きさとは言え
なかった。Gas sensors that detect carbon monoxide in the atmosphere using constant potential electrolysis are known. This Senna has the advantage of excellent gas quantitativeness because the electrolytic current is proportional to the gas concentration, but on the other hand, the sensor is sensitive to other reducing gases, especially miscellaneous gases such as hydrogen. When used as a commercial carbon monoxide sensor, these miscellaneous gases tend to cause malfunctions. For example, the maximum sensitivity ratio of CO/H was about 20 to 50, which could not be said to be sufficiently large.
本発明の目的は、上述した梃米の−酸化炭素センサの欠
点を除き、雑ガスによる誤動作の少い、高信頼性の一酸
化炭素用ガスセンサを提供するにある。An object of the present invention is to provide a highly reliable carbon monoxide gas sensor that eliminates the drawbacks of the above-mentioned carbon monoxide sensor and is less likely to malfunction due to miscellaneous gases.
本発明は定電位電解法を用いた一酸化炭素用ガスセンサ
において、電解質溶液として1〜6規定の水溶液を用い
ることを特徴としている。また、−酸化炭素の電解反応
に関与する作用電極としては白金黒またはパラジウム黒
を用いることが望ましい。特に本発明の望ましい実施態
様としては、上記作用電極として白金黒またはパラジウ
ム黒をポリフッ化炭素と混練して得たペーストを、白金
黒ま九はパラジウム黒に換算してそれぞれ5〜40mg
/cm”または3〜20mg/cm”塗布されて得られ
た電極が用いられる。さらに、作用電極の電位としては
大気中の酸素の酸化還元電位を基準として0.2〜0.
5■の範囲にあることが望ましい。The present invention is a carbon monoxide gas sensor using a constant potential electrolysis method, and is characterized in that a 1 to 6 normal aqueous solution is used as the electrolyte solution. Furthermore, it is desirable to use platinum black or palladium black as the working electrode involved in the electrolytic reaction of -carbon oxide. In particular, in a preferred embodiment of the present invention, as the working electrode, a paste obtained by kneading platinum black or palladium black with polyfluorocarbon is used.
/cm" or 3 to 20 mg/cm" is used. Further, the potential of the working electrode is between 0.2 and 0.2 with reference to the oxidation-reduction potential of oxygen in the atmosphere.
It is desirable that it be in the range of 5■.
このように、本発明においては電解質溶液の種類とその
濃度、作用電極材料とその量および作用電極電位の徨々
の組合せについて検討した結果、特定の範囲で一酸化炭
素と雑ガスとの感度比が高まることを新たに見出し、こ
れによって雑ガスによる誤動作の防止を図ったものであ
る。なお、作用電極表面でのガスの電解反応は複雑で、
一般に過電圧の発生や反応の進行に伴う不活性化過程な
どを伴うが、これらの影響の大きさがガスの種類、電解
質溶液の種類と濃度、作用電極の材料や量と電位などに
よって変化するため、本発明の範囲で一酸化炭素と雑ガ
スとの感度比が高まるものと思われる。As described above, in the present invention, as a result of studying various combinations of the type of electrolyte solution and its concentration, the working electrode material and its amount, and the working electrode potential, the sensitivity ratio between carbon monoxide and miscellaneous gases can be determined within a specific range. It was newly discovered that the temperature increases, and this is an attempt to prevent malfunctions caused by miscellaneous gases. Note that the electrolytic reaction of gas on the surface of the working electrode is complex;
Generally, it involves the generation of overvoltage and the inactivation process accompanying the progress of the reaction, but the magnitude of these effects varies depending on the type of gas, the type and concentration of the electrolyte solution, the material, amount, and potential of the working electrode, etc. It is believed that the sensitivity ratio between carbon monoxide and miscellaneous gases will increase within the scope of the present invention.
以下、本発明の一実施例を第1図によシ説明する。第1
図において、ポリカーボネート製容器1の中には硫酸ま
たはリン酸溶液2が入れられており、溶液2と大気とは
作用電極11を設けた多孔質テフロン(米デュポン社の
商品名)膜1’Oおよび対極210、参照電極22を設
けた多孔質テフロン膜20でさえぎられている。多孔質
テフロン膜10の外側にはガス室3が取付けられており
、試料ガスは入口30から導入され、出口40から排気
される。一方、多孔質テフロン膜20の外側にもガス室
4が取付けられており、多孔質テフロン膜20は入口5
0を通して外気と接触している。An embodiment of the present invention will be explained below with reference to FIG. 1st
In the figure, a sulfuric acid or phosphoric acid solution 2 is placed in a polycarbonate container 1, and the solution 2 and the atmosphere are made of a porous Teflon (trade name of DuPont, USA) membrane 1'O provided with a working electrode 11. and is blocked by a porous Teflon membrane 20 provided with a counter electrode 210 and a reference electrode 22. A gas chamber 3 is attached to the outside of the porous Teflon membrane 10, and a sample gas is introduced through an inlet 30 and exhausted through an outlet 40. On the other hand, a gas chamber 4 is also attached to the outside of the porous Teflon membrane 20, and the porous Teflon membrane 20 has an inlet 5.
It is in contact with the outside air through 0.
作用電極11としては白金黒またはパラジウム黒に10
〜30重量%のテフロン粉末を混合して株合わせたペー
ストを多孔質テフロン膜10に塗布した後、そのまtま
九は50〜1000Kg/cm”の圧力で加圧成形し、
200〜300Cで熱処理したものを用いた。対極21
.参照電極22も同様な方法で作製した。The working electrode 11 is made of platinum black or palladium black.
After applying a paste made by mixing ~30% by weight of Teflon powder to the porous Teflon membrane 10, it is then pressure-molded at a pressure of 50~1000 kg/cm''.
The one heat-treated at 200 to 300C was used. Counterpoint 21
.. Reference electrode 22 was also produced in the same manner.
また第2図は用いた電気゛回路を示している。端子10
1に基準電位(負電位)を与え、アース端子102を作
用電極11に、端子103および104をそれぞれ対極
21および参照電極22に接続することによシ、作用電
極−参照電極間に一定電圧を印加することができる。こ
の状態で入口30からCOまたはH3を送ると作用電極
では、CO+H*o−+cot↑+2H”+26−また
はHl −+2H” +2e一
対極では、
0、+4H,”+4e−→2H,Q。FIG. 2 also shows the electrical circuit used. terminal 10
By applying a reference potential (negative potential) to 1 and connecting the ground terminal 102 to the working electrode 11 and the terminals 103 and 104 to the counter electrode 21 and the reference electrode 22, a constant voltage can be applied between the working electrode and the reference electrode. can be applied. In this state, when CO or H3 is sent from the inlet 30, at the working electrode, CO+H*o-+cot↑+2H"+26- or Hl-+2H"+2eAt the counter electrode, 0, +4H,"+4e-→2H,Q.
の反応がおこり、外部回路に電解電流が流れる。reaction occurs, and an electrolytic current flows in the external circuit.
この電解電流の大きさは普通〃ス濃度に比例しており、
端子105に現れる出力電圧として検出される。The magnitude of this electrolytic current is normally proportional to the concentration of
It is detected as the output voltage appearing at terminal 105.
第3図は作用電極として白金風とテフロン粉末を混合し
たペーストを白金黒に換算して15mg/ c m ”
塗布した時の硫t1iL濃度(a)またはりン識濃度(
b)とCo/H*の感度比の関係である。Figure 3 shows a paste of a mixture of platinum black and Teflon powder used as a working electrode, with a concentration of 15 mg/cm in terms of platinum black.
Sulfur t1iL concentration (a) or phosphorus concentration (a) when applied
b) and the relationship between Co/H* sensitivity ratio.
作用電極の電位(参照電極を基準)は0.2vとした。The potential of the working electrode (based on the reference electrode) was 0.2v.
図のように、硫酸濃贋、リン酸濃度共に1〜6規定の範
囲でCo/H1の感度比が太き(1,,100以上であ
ることがわかる。なお、Co/CH4の感度比はすべて
1000以上であった。As shown in the figure, the sensitivity ratio of Co/H1 is large (more than 1,100) in the range of 1 to 6 normal for both sulfuric acid concentration and phosphoric acid concentration.The sensitivity ratio of Co/CH4 is All were over 1000.
COセンサを家庭用に用いる場合、CC0200pp以
上で有害であるためCOの検出下限は150ppm程度
にする必要があること、1〜1.5%程度のHlやCH
4による誤作動を防止する必要があること(これ以上高
濃度の可燃性ガスは爆発の危険があり、警報を出しても
良い)からCO/ H! 、 CO/ CH4の感度比
は100以上必要であると言われているが、1〜6規定
の酸濃度の時この規準を満足することがわかる。When using a CO sensor for home use, the lower detection limit for CO needs to be around 150 ppm because CC0200pp or more is harmful, and Hl and CH at around 1 to 1.5% are harmful.
CO/H! due to the need to prevent malfunctions due to CO/H! It is said that the sensitivity ratio of CO/CH4 is required to be 100 or more, and it can be seen that this criterion is satisfied when the acid concentration is 1 to 6 normal.
なお、第3図と同様な傾向は白金黒ペーストの塗布量を
5〜40mg/Cm”の範囲で変化したり、白金黒の代
りにパラジウム黒を用いたり、作用1を極電位を0.2
〜0.5vの範囲で変化した場合にも認められ、酸濃度
1〜6規定の範囲で大きなCO/H!感度比が得られた
。Incidentally, the same tendency as shown in Fig. 3 can be observed by changing the coating amount of platinum black paste in the range of 5 to 40 mg/Cm'', by using palladium black instead of platinum black, and by changing the electrode potential of Effect 1 to 0.2.
It was also observed when the acid concentration changed in the range of ~0.5v, and large CO/H was observed in the acid concentration range of 1 to 6N! Sensitivity ratios were obtained.
第4図および第5図はそれぞれ作用電極に用いた白金黒
含有ペースト塗布量(白金黒量で換算)またはパラジウ
ム黒含有ペースト塗布量(パラジウム黒量で換算)とC
O/H,感度比との関係である。なお、作用電極電位は
0.2V、硫酸濃度は4規定とした。Figures 4 and 5 show the amount of platinum black-containing paste applied (converted to platinum black amount) or palladium black-containing paste application amount (converted to palladium black amount) used for the working electrode, respectively, and C.
This is the relationship between O/H and sensitivity ratio. Note that the working electrode potential was 0.2 V, and the sulfuric acid concentration was 4N.
第4図および第5図に見られるように、白金黒塗布量1
5〜40mg/cm”、パラジウム黒塗布量3〜20m
g/cm”でc O/ H!感度比が特に大きく、10
0以上になることがわかった。As seen in Figures 4 and 5, platinum black coating amount 1
5-40mg/cm", palladium black coating amount 3-20m
g/cm” and c O/H! Sensitivity ratio is particularly large, 10
It was found that the value was greater than 0.
また、塗布量が上述の範囲内ではCOに対する出力はほ
ぼ一定であったが、この範囲外では出力は低下した。こ
れは塗布量が少なすぎると電極の触媒性能が低下して、
上述の反応が進行しにくくなること、塗布量が多すぎる
と電極内のCOの拡散速度が遅くなって、COが三相界
面に達しにくくなること、の理由によるものと考えられ
る。Moreover, the output with respect to CO was almost constant when the coating amount was within the above range, but the output decreased outside this range. This is because if the coating amount is too small, the catalytic performance of the electrode will decrease,
This is thought to be due to the fact that the above-mentioned reaction becomes difficult to proceed, and that if the coating amount is too large, the diffusion rate of CO within the electrode becomes slow, making it difficult for CO to reach the three-phase interface.
また、電源を投入した直後は太き表分極電流が流れるが
、この分極電流がおさまるまでの時間(起動時間)も電
極塗布量に関係しており、白金黒またはパラジウム塗布
量それぞれ20 mg/cm”または10mg/cm”
以下で、起動時間は30秒以下と実用上問題ない程度ま
で短くなることがわかつ九。したがって、白金黒または
パラジウム黒塗布量の特に望ましい範囲は5〜20 m
g/cm”または3〜10mg/cm”である。In addition, a thick surface polarization current flows immediately after the power is turned on, but the time it takes for this polarization current to subside (start-up time) is also related to the amount of electrode coating. "or 10mg/cm"
Below, you can see that the startup time is 30 seconds or less, which is short enough to pose no practical problem.9. Therefore, a particularly desirable range of platinum black or palladium black coating amount is 5 to 20 m
g/cm" or 3 to 10 mg/cm".
なお、硫酸の代しにリン酸を用いた時、酸濃度を1〜6
規定の範囲で変化し走時および作用電極電位を0.2〜
0.5■の範囲で変化した時に4第4図または第5図と
同様な傾向が認められ九。In addition, when phosphoric acid is used instead of sulfuric acid, the acid concentration is 1 to 6.
Change the running time and working electrode potential within a specified range from 0.2 to
A similar trend to that shown in Figure 4 or Figure 5 was observed when changing within the range of 0.5 ■.
第6図は作用電極電位とcO/H,の感度比およびリー
ク電流(還元ガスを流さない時に流れるパックグラウン
ドの電流)の関係である。作用電極としては白金黒く塗
布量15mg/cm”)、電解液としては1規定の硫酸
を用いた。第6図のように、作用電極電位と共にcO/
H,の感度比は増加し、0.2V以上で感度比が100
以上になることがわかる。これは作用電極でのH3の反
応に電圧による不活性化の機構が関与していることを示
すものと考えられる。一方、作用電極電位が0.5V以
上ではリーク電流が増加し、出力の測定が困難になると
同時に電極の寿命が短くなる。FIG. 6 shows the relationship between the working electrode potential, the sensitivity ratio of cO/H, and the leakage current (background current that flows when no reducing gas is flowing). The working electrode was platinum black coated at a coating amount of 15 mg/cm"), and the electrolyte was 1N sulfuric acid. As shown in Figure 6, the working electrode potential and cO/
The sensitivity ratio of H increases, and the sensitivity ratio becomes 100 at 0.2V or more.
It turns out that the above is the case. This is considered to indicate that a voltage-induced inactivation mechanism is involved in the H3 reaction at the working electrode. On the other hand, when the working electrode potential is 0.5 V or more, leakage current increases, making it difficult to measure the output and shortening the life of the electrode.
同様な傾向は白金黒の塗布量を変化した時、白金黒の代
りにパラジウム黒を用いた時、硫酸濃度を1〜6規定の
範囲で変化した時、硫酸の代シにリン酸を用いた時にも
認められ、作用電極0.2〜0.5■の範囲でCO/
Hlの感度比が大きく、かつ、リーク電流の少い結果が
得られた。Similar trends were observed when the amount of platinum black applied was changed, when palladium black was used instead of platinum black, when the sulfuric acid concentration was changed within the range of 1 to 6N, and when phosphoric acid was used instead of sulfuric acid. CO/
A result was obtained in which the H1 sensitivity ratio was large and the leakage current was small.
以上説明してきたように、本発明によればc。As explained above, according to the present invention, c.
/H,の感度比を従来の2〜5倍以上に向上でき、雑ガ
スによる誤動作のない高信頼性のcOセンサを得ること
ができる。/H, can be improved to 2 to 5 times or more compared to the conventional one, and a highly reliable cO sensor that does not malfunction due to miscellaneous gases can be obtained.
第1図は本発明の一実施例に用いた定電位電解セルの構
造図、第2図は本発明の実施例で用いた電気回路図、第
3図〜第6図は本発明の実施例で得られたセンサの特性
を示す特性曲線図である。
2・・・電解質溶液、11・・・作用電極、21・・・
対極、鍼壇j1(現定〕
第4 固
バ2ジクム、II、tl量(へ外ユリFigure 1 is a structural diagram of a constant potential electrolysis cell used in an embodiment of the present invention, Figure 2 is an electric circuit diagram used in an embodiment of the present invention, and Figures 3 to 6 are examples of the present invention. FIG. 3 is a characteristic curve diagram showing the characteristics of the sensor obtained in FIG. 2... Electrolyte solution, 11... Working electrode, 21...
Opposite, acupuncture platform j1 (currently established) 4th fixed bar 2 dicum, II, tl amount (hegai lily
Claims (1)
作用電極と、上記電極と電解質溶液を介して離れた対極
とからなるガス検知部と、これらの電悌間に一定電圧を
印加する手段と、これらの電極間に流れる電流値を測定
する手段とを備えたガスセンサにおいて、上記電解質溶
液として1〜6規定濃度の水溶液を用いることを特徴と
する一酸化炭素用ガスセンサ。 2、特許請求の範囲第1項において、上記作用電極とし
て白金黒またはパラジウム黒を用いることを特徴とする
一酸化炭素用ガスセンサ。 3、箸許請求の範囲第2項において、上記作用電極とし
て白金黒またはパラジウム黒をポリフッ化炭素と混練し
て得たペーストを塗布したもqを用い、かつ、上記ペー
ストの塗布量が白金黒またはパラジウム黒に換算してそ
れぞれ5〜40mg/CrrFまたは3〜20 m g
/c m”の範囲にあることを特徴とする一酸化炭素用
ガスセンサ。 4、%許請求の範囲第1項、第2項または第3項におい
て、大気中の酸素の酸化還元電位を基準とした時の作用
電極の電位が0.2〜0,5vの範囲にあることを特徴
とする一酸化炭素用ガスセンサ。[Scope of Claims] 1. A gas detection unit consisting of a wastewater-based working electrode with one side in contact with an electrolyte and the other side in contact with a gas, and a counter electrode separated from the electrode via an electrolyte solution; A gas sensor equipped with means for applying a constant voltage between these electrodes and means for measuring the value of current flowing between these electrodes, characterized in that an aqueous solution with a concentration of 1 to 6 normal is used as the electrolyte solution. A gas sensor for carbon monoxide. 2. A gas sensor for carbon monoxide according to claim 1, characterized in that platinum black or palladium black is used as the working electrode. 3. Chopsticks In claim 2, the working electrode is prepared by applying a paste obtained by kneading platinum black or palladium black with polyfluorocarbon, and the amount of the paste applied is platinum black. or 5 to 40 mg/CrrF or 3 to 20 mg in terms of palladium black, respectively.
A gas sensor for carbon monoxide, characterized in that it is in the range of 4.% permissible range. A gas sensor for carbon monoxide, characterized in that the potential of the working electrode is in the range of 0.2 to 0.5V.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP56201659A JPS58103660A (en) | 1981-12-16 | 1981-12-16 | Gas sensor for carbon monoxide |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP56201659A JPS58103660A (en) | 1981-12-16 | 1981-12-16 | Gas sensor for carbon monoxide |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPS58103660A true JPS58103660A (en) | 1983-06-20 |
Family
ID=16444758
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP56201659A Pending JPS58103660A (en) | 1981-12-16 | 1981-12-16 | Gas sensor for carbon monoxide |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS58103660A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3718549A1 (en) * | 1987-06-03 | 1988-12-22 | Gyulai Maria Dobosne | Arrangement and method for detecting carbon monoxide |
| CN103926277A (en) * | 2013-01-11 | 2014-07-16 | 深圳市深安旭传感技术有限公司 | Carbon monoxide sensor and carbon monoxide sensor electrode production method |
| JP2021056244A (en) * | 2015-11-13 | 2021-04-08 | 新コスモス電機株式会社 | Catalyst conversion type sensor |
| JP2021076610A (en) * | 2021-01-13 | 2021-05-20 | 新コスモス電機株式会社 | Catalytic-conversion-type sensor |
-
1981
- 1981-12-16 JP JP56201659A patent/JPS58103660A/en active Pending
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3718549A1 (en) * | 1987-06-03 | 1988-12-22 | Gyulai Maria Dobosne | Arrangement and method for detecting carbon monoxide |
| CN103926277A (en) * | 2013-01-11 | 2014-07-16 | 深圳市深安旭传感技术有限公司 | Carbon monoxide sensor and carbon monoxide sensor electrode production method |
| CN103926277B (en) * | 2013-01-11 | 2017-02-15 | 深圳市深安旭传感技术有限公司 | Carbon monoxide sensor and carbon monoxide sensor electrode production method |
| JP2021056244A (en) * | 2015-11-13 | 2021-04-08 | 新コスモス電機株式会社 | Catalyst conversion type sensor |
| JP2021076610A (en) * | 2021-01-13 | 2021-05-20 | 新コスモス電機株式会社 | Catalytic-conversion-type sensor |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3868419B2 (en) | Gas sensor | |
| JPH0374468B2 (en) | ||
| JPS58118956A (en) | Method and apparatus for gas detection | |
| US6423209B1 (en) | Acid gas measuring sensors and method of using same | |
| JPS58103660A (en) | Gas sensor for carbon monoxide | |
| US4235689A (en) | Apparatus for detecting traces of a gas | |
| JPH10311815A (en) | Method for judging deterioration of electrochemical carbon monoxide gas sensor and calibrating method | |
| Weisz et al. | The mechanism of the reduction of oxygen at the air electrode | |
| JPH0239740B2 (en) | ||
| JPS58143263A (en) | gas sensor | |
| Hoare | Kinetic study of the rest potential on a platinum| oxygen diaphragm electrode | |
| US4364810A (en) | Electrochemical gas detection system | |
| JPS63231258A (en) | Sensor | |
| JP4308223B2 (en) | Gas sensor for ammonia, ammonia detection method | |
| US20040222107A1 (en) | Sensor for analysing oxidising gas, method for producing said gas and method for determining the concentration of the oxidising gas | |
| JP3025076B2 (en) | Acid gas measuring device | |
| JPH0334824B2 (en) | ||
| JP2549666B2 (en) | Oxygen analyzer | |
| CN109813780A (en) | A kind of electrochemistry nitric oxide gas sensor | |
| JPH03186754A (en) | Galvanic cell type combustible gas sensor | |
| JPS5937455A (en) | Gas sensor | |
| JPH06308075A (en) | Electrochemical gas sensor | |
| SU1762214A1 (en) | Transducer of chlorine condensation in air | |
| Lai et al. | Cathodic Action of the Uranyl‐Malate Complexes at the Dropping Mercury Electrode | |
| JPH0634595A (en) | Galvanic battery type combustible gas sensor |