JP3025076B2 - Acid gas measuring device - Google Patents

Acid gas measuring device

Info

Publication number
JP3025076B2
JP3025076B2 JP3273427A JP27342791A JP3025076B2 JP 3025076 B2 JP3025076 B2 JP 3025076B2 JP 3273427 A JP3273427 A JP 3273427A JP 27342791 A JP27342791 A JP 27342791A JP 3025076 B2 JP3025076 B2 JP 3025076B2
Authority
JP
Japan
Prior art keywords
working electrode
potential
gas
metal
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3273427A
Other languages
Japanese (ja)
Other versions
JPH0587774A (en
Inventor
徹 石地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Keiki KK
Original Assignee
Riken Keiki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Keiki KK filed Critical Riken Keiki KK
Priority to JP3273427A priority Critical patent/JP3025076B2/en
Publication of JPH0587774A publication Critical patent/JPH0587774A/en
Application granted granted Critical
Publication of JP3025076B2 publication Critical patent/JP3025076B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は気体中に存在する酸性ガ
スを電気化学的に検出する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for electrochemically detecting an acidic gas present in a gas.

【0002】[0002]

【従来の技術】電気化学的ガス検出器は、硫酸等の多量
のイオンを生じる強酸物質の電解液を収容した容器に、
窓を形成し、この窓に多孔質テフロン等のガス透過性膜
により液封するとともに、これの電解液側に白金黒から
なる作用極を形成し、この作用極に水が電解酸化される
電位よりも低く、かつ水が電解還元される電位よりも高
い、例えば0.5及至1ボルト(水素電極基準)程度の
電位を常時印加するように構成されている。この構成に
よれば電解液が電気分解しない電位で酸化、もしくは還
元される一酸化炭素や硫化水素(H2S)等のガスは、
検出することが可能となるが、弗化水素(HF)や硝酸
(HNO3)等のように酸化、還元のために必要とする
電位として水の電気分解が始る電位よりも貴側に大きな
電位、例えば1.2ボルト程度の電位を必要とする酸性
ガスにあっては、被検ガス濃度に比例して発生する電流
に、電気分解の電流が重畳されるてしまうため、使用が
不可能であったり、測定誤差が極めて大きくなるという
問題がある。
2. Description of the Related Art An electrochemical gas detector is provided in a container containing an electrolyte of a strong acid substance which generates a large amount of ions such as sulfuric acid.
A window is formed, the window is sealed with a gas-permeable membrane such as porous Teflon, and a working electrode made of platinum black is formed on the electrolyte side of the window. It is configured to always apply a potential lower than the potential at which water is electrolytically reduced, for example, about 0.5 to 1 volt (based on the hydrogen electrode). According to this configuration, gases such as carbon monoxide and hydrogen sulfide (H 2 S) that are oxidized or reduced at a potential at which the electrolytic solution does not undergo electrolysis are
Although it can be detected, the potential required for oxidation and reduction, such as hydrogen fluoride (HF) or nitric acid (HNO 3 ), is higher on the noble side than the potential at which water electrolysis starts. It is not possible to use an acidic gas that requires a potential, for example, a potential of about 1.2 volts, because the electrolysis current is superimposed on the current generated in proportion to the test gas concentration. Or the measurement error becomes extremely large.

【0003】このような問題を解消するために、弗化水
素(HF)、硝酸(HNO3)のような酸性ガスを電気
化学的に検出する場合には、電解液にヨウ素イオン(I
-)とヨウ素酸イオン(IO3 -)を含む水溶液を用い、
ガス透過性膜を通過して電解液中に溶け込んだ酸性ガス
による水素イオンと電解液とを 6H++5I-+IO3 -→3I2+3H2O なる反応により、水の電気分解が始る電位よりも卑側の
電位で還元可能なヨウ素(I2)を遊離させ、このヨウ
素の還元に要する電流値を検出するようにしたガス検出
装置が用いられている。
In order to solve such a problem, when an acidic gas such as hydrogen fluoride (HF) and nitric acid (HNO 3 ) is electrochemically detected, iodine ions (I
-) and iodate (IO 3 - using an aqueous solution containing a)
The hydrogen ions and the electrolytic solution caused by the acidic gas dissolved in the electrolytic solution through the gas permeable membrane are converted from the potential at which the electrolysis of water starts by the reaction of 6H + + 5I + IO 3 → 3I 2 + 3H 2 O. Also, a gas detector is used which releases iodine (I 2 ) which can be reduced at a base potential and detects a current value required for the reduction of iodine.

【0004】[0004]

【発明が解決しようとする課題】このようなヨウ素反応
を利用したガス検出器は、弗化水素(HF)、硝酸(H
NO3)のような強い酸性ガスに対しては、高い感度を
示すものの、被検ガスにより生じた水素イオンと電解液
とを反応させてヨウ素を生成させ、このヨウ素を還元す
るに必要な電流を測定値とするという2段階の反応工程
を利用する関係上、発生した水素イオンの充分な拡散を
待たねばならないから、応答速度が低く、またヨウ素を
生じるまでの過程で水素イオンが中和されてしまうた
め、二酸化炭素(CO2)等の弱酸性のガスに対する検
出感度が低いという問題がある。本発明はこのような問
題に鑑みてなされたものであって、その目的とするとこ
ろは被検出酸性ガスを作用極で還元、または酸化しよう
とすると、水の電気分解が発生してしまう以上に貴側、
もしくは卑側にシフトした電位を必要とする酸性ガスを
高い応答速度と高い感度で検出することができる新規な
電気化学的ガス検出器を提供することである。
Gas detectors utilizing such an iodine reaction are known as hydrogen fluoride (HF), nitric acid (H
Although it exhibits high sensitivity to strong acidic gases such as NO 3 ), it reacts hydrogen ions generated by the test gas with the electrolyte to generate iodine, and the current required to reduce the iodine Because of the use of a two-step reaction process in which the measured value is used as a measured value, it is necessary to wait for sufficient diffusion of the generated hydrogen ions. Therefore, the response speed is low, and the hydrogen ions are neutralized in the process until iodine is generated. Therefore, there is a problem that the detection sensitivity to a weakly acidic gas such as carbon dioxide (CO 2 ) is low. The present invention has been made in view of such a problem, and its purpose is to reduce or oxidize an acid gas to be detected at a working electrode. Your side,
Another object of the present invention is to provide a novel electrochemical gas detector capable of detecting an acidic gas requiring a base-shifted potential with a high response speed and a high sensitivity.

【0005】[0005]

【課題を解決するための手段】このような問題を解消す
るために本発明においては、水素イオン濃度10のマイ
ナス10乗及至マイナス7乗モル/リットル程度の電解
液を収容する容器に窓を設けてガス透過性膜により液封
し、前記ガス透過性膜の電解液側に金属電極を設けて作
用極を形成するとともに、対極を電解液に浸漬し、前記
作用極にこれを構成している金属を酸化する電位と、酸
化された金属を還元する電位を交互に印加しつつ還元電
流を検出するようにした。
According to the present invention, a window is provided in a container for accommodating an electrolytic solution having a hydrogen ion concentration of about -10 to -7 to about -7 mol / L. The liquid electrode is sealed with a gas permeable membrane, a metal electrode is provided on the electrolyte side of the gas permeable membrane to form a working electrode, and a counter electrode is immersed in the electrolyte to form the working electrode. The reduction current is detected while alternately applying a potential for oxidizing the metal and a potential for reducing the oxidized metal.

【0006】[0006]

【作用】作用極を構成している金属電極に対して酸化電
位を印加すると、作用極が電気化学的に酸化されて金属
酸化物となる。ついで金属酸化物が金属に還元される電
位を印加すると、隔膜を透過して作用極と電解液の界面
に侵入した酸性ガスの濃度が高くなった時点で金属に戻
るという、 PtO+2H++2e- → Pt+H2O なる反応が生じて酸性ガスの濃度に比例した還元電流が
流れるから、この電流を測定することにより酸性ガスの
濃度を知ることができる。
When an oxidation potential is applied to a metal electrode constituting a working electrode, the working electrode is electrochemically oxidized to a metal oxide. Then, when a potential at which the metal oxide is reduced to the metal is applied, the metal gas returns to the metal when the concentration of the acidic gas that has permeated the diaphragm and entered the interface between the working electrode and the electrolyte has increased. PtO + 2H + + 2e → Since the reaction of Pt + H 2 O occurs and a reduction current flows in proportion to the concentration of the acidic gas, the concentration of the acidic gas can be known by measuring this current.

【0007】[0007]

【実施例】次に本発明の詳細を図示した実施例に基づい
て説明する。図1は、本発明の一実施例を示すものであ
って、図中符号1は、対向する壁面に開口を穿設して窓
2が形成されたセルで、窓2を後述する隔膜4により封
止して電解液6を収容するように構成されている。4
は、窓2に液密に設けられた隔膜で、図2に示したよう
に多孔質弗素樹脂などガス透過性膜7を基体とし、その
電解液6に接する側には白金等の金属を蒸着、スパッタ
リング、焼成などの手法により金属層9が形成されてい
る。金属層9は、白金(Pt)、金(Au)やイリジウ
ム(Ir)、ロジウム(Rh)、ルテニウム(Ru)、
オスミウム(Os)、パラジウム(Pd)、チタン(T
i)等のように水素イオン濃度−電位曲線が単調に変化
するものの内の1つが使用されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the illustrated embodiments. FIG. 1 shows an embodiment of the present invention. In the drawing, reference numeral 1 denotes a cell in which an opening is formed in an opposing wall surface to form a window 2, and the window 2 is formed by a diaphragm 4 described later. It is configured so as to house the electrolytic solution 6 in a sealed state. 4
Is a diaphragm provided in the window 2 in a liquid-tight manner. As shown in FIG. 2, a gas-permeable membrane 7 such as a porous fluororesin is used as a base, and a metal such as platinum is deposited on the side in contact with the electrolyte 6. The metal layer 9 is formed by a technique such as sputtering, baking, or the like. The metal layer 9 is made of platinum (Pt), gold (Au), iridium (Ir), rhodium (Rh), ruthenium (Ru),
Osmium (Os), palladium (Pd), titanium (T
One of those in which the hydrogen ion concentration-potential curve changes monotonously as in i) and the like is used.

【0008】電解液6は、0.1ミリモルの硫酸ナトリ
ウム等の水溶液からなり、その水素イオン濃度が10の
マイナス10乗及至マイナス7乗モル/リットル程度の
ほぼ中性領域となるものが使用されている。
The electrolytic solution 6 is composed of an aqueous solution of 0.1 mmol of sodium sulfate or the like, and has a hydrogen ion concentration of about -10 to -10 to about -7 mol / L, which is almost in a neutral region. ing.

【0009】15は測定回路で、図3に示したように作
用極となる金属層9と基準極11との間に0.9及至
1.2ボルトの酸化電位を所定時間、例えば3分間印加
し、次いで0.4ボルト程度の酸化白金が還元される程
度の電位に低下させ、この還元電位が印加されている状
態で作用極となる金属層9と対極5との間に流れる還元
電流を測定するように構成されている。なお、図中符号
12は、隔膜取り付け枠を示す。
Reference numeral 15 denotes a measuring circuit which applies an oxidation potential of 0.9 to 1.2 volts for a predetermined time, for example, 3 minutes, between the metal layer 9 serving as a working electrode and the reference electrode 11 as shown in FIG. Then, the potential is reduced to a potential of about 0.4 volts at which platinum oxide is reduced, and a reduction current flowing between the metal layer 9 serving as a working electrode and the counter electrode 5 while the reduction potential is applied is reduced. It is configured to measure. In addition, the code | symbol 12 in a figure shows a diaphragm mounting frame.

【0010】この実施例において、第1の工程T1にお
いて作用極を構成している白金の金属層9が酸化される
ように、金属層9と基準極11に酸化電位を所定時間、
この実施例では3分間印加すると、金属層9は電解液6
と電位の作用の下で酸化されてその表面に酸化白金(P
tO)の膜が形成される。この工程では、電解液の電気
分解が発生することにはなるが、このときの電流値を測
定する必要がないので、ガス濃度の測定に何等影響はな
い。
In this embodiment, an oxidation potential is applied to the metal layer 9 and the reference electrode 11 for a predetermined time so that the platinum metal layer 9 constituting the working electrode is oxidized in the first step T1.
In this embodiment, when the voltage is applied for 3 minutes, the metal layer 9
Is oxidized under the action of potential and platinum oxide (P
tO) is formed. In this step, electrolysis of the electrolytic solution occurs, but since there is no need to measure the current value at this time, there is no influence on the measurement of the gas concentration.

【0011】次いで第2の工程T2において作用極とな
る金属層9と基準極11との間の電位を還元電位まで低
下させると、隔膜4を透過した酸性ガスが金属層9と電
解液6との界面で水素イオンを発生し、この水素イオン
が金属層9の表面に形成された酸化白金を、 PtO+2H++2e- → Pt+H2O なる反応により還元するから、作用極となる金属層9と
対極5との間に電流が発生することになる。言うまでも
なく、この還元工程では、作用極となる金属層9に印加
される電位は、0.5ボルトと水の電解酸化が始る電位
1.2ボルトよりも卑側で、かつ水の電解還元が始る電
位、マイナス1.2ボルトよりも貴側で、しかも電流の
大きさは水素イオンの濃度に比例し、また水素イオンは
隔膜7を透過した酸性ガスの濃度に比例するから、還元
電流を測定することにより酸性ガスの濃度を正確に知る
ことができる。この反応は、作用極を構成している金属
層9の表面で生じるため、被検ガスにより生じた水素イ
オンが電解液中6に拡散することがなく、したがって侵
入した被検ガスによる水素イオン数が測定電流の値に有
効に反映されることになる。また被検ガスにより発生し
た水素イオンを消費しながら測定を行うから、電解液中
への被検ガスの残留がなく、極めて高い応答特性を示す
ことになる。以下、第1の工程T1と第2の工程T2を
交互に繰り返すことにより連続的に酸性ガスの濃度を測
定することができる。
Next, in the second step T2, when the potential between the metal layer 9 serving as the working electrode and the reference electrode 11 is reduced to the reduction potential, the acidic gas that has passed through the diaphragm 4 is removed from the metal layer 9 and the electrolyte 6 by the acidic gas. Hydrogen ions are generated at the interface of the metal layer 9, and the hydrogen ions reduce the platinum oxide formed on the surface of the metal layer 9 by a reaction of PtO + 2H + + 2e → Pt + H 2 O. 5 will generate a current. Needless to say, in this reduction step, the potential applied to the metal layer 9 serving as the working electrode is 0.5 volt, which is lower than the potential 1.2 volt at which electrolytic oxidation of water starts, and the electrolytic reduction of water is performed. Is smaller than -1.2 volts, and the magnitude of the current is proportional to the concentration of hydrogen ions, and the hydrogen ions are proportional to the concentration of the acidic gas permeating the diaphragm 7, so that the reduction current By measuring, the concentration of the acid gas can be accurately known. Since this reaction occurs on the surface of the metal layer 9 constituting the working electrode, the hydrogen ions generated by the test gas do not diffuse into the electrolytic solution 6, and therefore the number of hydrogen ions by the test gas that has entered Is effectively reflected on the value of the measured current. Further, since the measurement is performed while consuming the hydrogen ions generated by the test gas, the test gas does not remain in the electrolytic solution, and exhibits extremely high response characteristics. Hereinafter, the concentration of the acid gas can be continuously measured by repeating the first step T1 and the second step T2 alternately.

【0012】図4は、上述した装置を用いて酸化電位V
2を1.2ボルトとして3分間印加し、また還元電位V1
を0.4ボルトに設定して二酸化炭素を試料としたとき
の電流変化を示すものであって、図中Iは二酸化炭素が
存在しないときを、IIは二酸化炭素の濃度が1000
ppmのときを、IIIは2000ppmのときを、I
Vは3000ppmのときをそれぞれ示しており、図か
ら明らかなように還元電圧0.4ボルト時における還元
電流I1、I2、I3、I4の大きさが二酸化炭素の濃度に
比例している。この実施例によれば常に作用極となる金
属層9に一定量の酸化白金膜を形成してから測定動作に
移るので、活性度が一定した酸化白金によりガス濃度を
測定できて信頼性の高い測定結果を得ることができる。
FIG. 4 shows the oxidation potential V using the apparatus described above.
2 at 1.2 volts for 3 minutes, and the reduction potential V 1
Is set to 0.4 volts, and shows a current change when carbon dioxide is used as a sample. In the figure, I represents the case where carbon dioxide does not exist, and II represents the concentration of carbon dioxide of 1000.
ppm, III is 2000 ppm, I
V indicates 3000 ppm, and as is apparent from the figure, the magnitudes of the reduction currents I 1 , I 2 , I 3 , and I 4 at the reduction voltage of 0.4 V are proportional to the concentration of carbon dioxide. I have. According to this embodiment, the measurement operation is started after a certain amount of platinum oxide film is always formed on the metal layer 9 serving as the working electrode. Therefore, the gas concentration can be measured with platinum oxide having a constant activity, and the reliability is high. Measurement results can be obtained.

【0013】図5は、本発明の他の実施例を示すもので
あって、図中符号21は、壁面に窓22が形成されたセ
ルで、窓22が後述する隔膜24により封止され、0.
1ミリモルの硫酸ナトリウム等の水素イオン濃度が10
のマイナス10乗及至マイナス7乗モル/リットル程度
のほぼ中性領域となる電解液を収容するように構成され
ている。24は、窓22に液密に設けられた隔膜で、図
6に示したように多孔質弗素樹脂などガス透過性膜27
を基体とし、電解液に接する側には酸化白金等の金属酸
化物を蒸着したり、スパッタリングしたり、さらには酸
化白金の粉末を粘結剤により塗布した後、焼成する等の
手法により金属酸化物層29が形成されている。35は
測定回路で、作用極となる金属酸化物層29と基準極3
1との間に0.2及至0.5ボルト程度の水素イオン存
在下で金属酸化物を還元できる電圧を印加しながら、金
属酸化物層29と対極30との間に発生する還元電流を
測定できるように構成されている。
FIG. 5 shows another embodiment of the present invention. In the drawing, reference numeral 21 denotes a cell having a window 22 formed on a wall surface, and the window 22 is sealed with a diaphragm 24 described later. 0.
When the concentration of hydrogen ions such as 1 mmol sodium sulfate is 10
It is configured to contain an electrolyte which is in a substantially neutral region of about -10 to -7 mol / L. Numeral 24 denotes a liquid membrane provided in the window 22 in a liquid-tight manner. As shown in FIG.
A metal oxide such as platinum oxide on the side in contact with the electrolytic solution by vapor deposition, sputtering, or further applying a platinum oxide powder with a binder, followed by baking. The material layer 29 is formed. Reference numeral 35 denotes a measurement circuit, which includes a metal oxide layer 29 serving as a working electrode and a reference electrode 3
The reduction current generated between the metal oxide layer 29 and the counter electrode 30 is measured while applying a voltage capable of reducing the metal oxide in the presence of about 0.2 to 0.5 volts of hydrogen ions between the metal oxide layer 29 and the counter electrode 30. It is configured to be able to.

【0014】この実施例において、金属酸化物層29と
基準極31との間に作用極となる金属酸化物、この実施
例では酸化白金が還元される電位を印加した状態で、隔
膜24に酸性ガスを供給すると、酸性ガスはガス透過性
膜27を透過して作用極となる金属酸化物層29と電解
液26との界面で水素イオンを発生する。この水素イオ
ンは、作用極を構成している金属酸化物層29に作用し
て PtO+2H++2e- → Pt+H2O なる反応により金属酸化物層29を金属に還元させ、こ
れにともなって対極30との間に酸性ガスの濃度に比例
した電流を発生させる。この反応は、作用極を構成して
いる金属酸化物層29の表面で生じるため、被検ガスに
より生じた水素イオンが電解液中26に拡散することが
なく、したがって侵入した被検ガスによる水素イオン数
が測定電流の値に有効に反映されることになる。
In this embodiment, a metal oxide serving as a working electrode between the metal oxide layer 29 and the reference electrode 31, in this embodiment, an acidic potential is applied to the diaphragm 24 while applying a potential for reducing platinum oxide. When the gas is supplied, the acidic gas permeates the gas permeable membrane 27 and generates hydrogen ions at the interface between the metal oxide layer 29 serving as a working electrode and the electrolyte 26. The hydrogen ions act on the metal oxide layer 29 constituting the working electrode, and reduce the metal oxide layer 29 to metal by the reaction of PtO + 2H + + 2e → Pt + H 2 O. During this time, a current proportional to the concentration of the acid gas is generated. Since this reaction occurs on the surface of the metal oxide layer 29 constituting the working electrode, hydrogen ions generated by the test gas do not diffuse into the electrolytic solution 26, and therefore, hydrogen ions generated by the penetrated test gas do not. The number of ions will be effectively reflected in the value of the measured current.

【0015】言うまでもなく、作用極となる金属酸化物
層29に印加される電位は、水の電気分解が始る電位
1.2ボルトよりも卑側の0.5ボルトであり、しかも
発生する水素イオンの個数が酸性ガスの濃度に比例する
ので、水の電気分解による影響を受けることが無く、従
って還元電流の大きさを測定することにより酸性ガスの
濃度を知ることができる。また被検ガスにより発生した
水素イオンを消費しながら測定を行うから、電解液中へ
の被検ガスの残留がなく、極めて高い応答特性を示すこ
とになる。このとき、作用極を構成している金属酸化物
が金属に還元されるが、金属酸化物は大量に存在するか
ら、長期間の測定に対しても充分に対応することが可能
であるし、また休止時には前述の実施例と同様に酸化電
位を印加することにより、還元された金属を再酸化させ
ることにより半永久的な使用が可能となる。この実施例
によれば酸化電位を印加する必要がないので、酸性ガス
を連続測定することができるばかりでなく、測定回路の
簡素化を図ることができる。
Needless to say, the potential applied to the metal oxide layer 29 serving as the working electrode is 0.5 volt, which is more negative than the 1.2 volt potential at which electrolysis of water starts, and the generated hydrogen Since the number of ions is proportional to the concentration of the acidic gas, the concentration of the acidic gas is not affected by the electrolysis of water. Therefore, the concentration of the acidic gas can be known by measuring the magnitude of the reduction current. Further, since the measurement is performed while consuming the hydrogen ions generated by the test gas, the test gas does not remain in the electrolytic solution, and exhibits extremely high response characteristics. At this time, the metal oxide constituting the working electrode is reduced to metal, but since the metal oxide is present in a large amount, it is possible to sufficiently cope with long-term measurement, Further, at the time of rest, by applying an oxidation potential in the same manner as in the above-described embodiment, the reduced metal is re-oxidized, thereby enabling semi-permanent use. According to this embodiment, since it is not necessary to apply an oxidation potential, not only can the acid gas be continuously measured, but also the measurement circuit can be simplified.

【0016】なお、上述の実施例においては作用極を酸
化白金により構成した場合について説明したが、水素イ
オン濃度とともにほぼ直線的に変化するルテニウム(R
u)、金(Au)、オスミウム(Os)、イリジウム
(Ir)、パラジウム(Pd)、ロジウム(Rh)、チ
タン(Ti)などのように水素イオン濃度−電位曲線が
単調に変化する金属の酸化物を用いても同様の作用を奏
することを確認した。
In the above-described embodiment, the case where the working electrode is made of platinum oxide has been described. However, ruthenium (R) which changes almost linearly with the hydrogen ion concentration is described.
u), oxidation of metal such as gold (Au), osmium (Os), iridium (Ir), palladium (Pd), rhodium (Rh), titanium (Ti), etc., whose hydrogen ion concentration-potential curve changes monotonously It was confirmed that the same action was exerted even when using the product.

【0017】また上述の実施例においては、基準極を備
えた3極式のものに例を採って説明したが、対極と基準
極とを一体とした2極式に構成しても基本的には同様の
作用を奏することは明らかである。さらに上述の実施例
においては、作用極を構成する金属層、及び金属酸化物
をガス透過性膜に一体的に形成しているが、図7に示し
たように容器の窓40を封止するガス透過性膜41に対
向させて作用極となる金属42や、金属酸化物43をこ
れら両者間に電解液が浸透可能な間隙を持たせて配置す
るようにしても同様の作用を奏することは明らかであ
る。この実施例によれば、ガス透過性膜と作用極とを別
体として構成できるので、ガス透過性膜に金属層や、金
属酸化物層を形成する工程が不要となって製造工程の簡
素化を図ることができる。
Further, in the above-described embodiment, the description has been given by taking an example of a three-pole type having a reference pole. Has a similar effect. Further, in the above-described embodiment, the metal layer and the metal oxide constituting the working electrode are formed integrally with the gas permeable membrane, but the window 40 of the container is sealed as shown in FIG. The same effect can be obtained even if the metal 42 and the metal oxide 43 which are working electrodes facing the gas permeable membrane 41 are arranged with a gap through which the electrolyte can penetrate. it is obvious. According to this embodiment, since the gas permeable membrane and the working electrode can be configured separately, the step of forming a metal layer or a metal oxide layer on the gas permeable membrane becomes unnecessary, and the manufacturing process is simplified. Can be achieved.

【0018】[0018]

【発明の効果】以上説明したように本発明においては、
水素イオン濃度10のマイナス10乗及至マイナス7乗
モル/リットル程度の電解液を収容する容器に窓を設け
てガス透過性膜により液封し、ガス透過性膜の電解液側
に金属電極を配置して作用極を形成するとともに、対極
を電解液に浸漬し、作用極の金属酸化物を還元する電位
を印加しつつ還元電流を検出するようにしたので、ガス
透過性膜を通過した酸性ガスに起因して発生した水素イ
オンの存在下で金属酸化物を還元することができて水の
電気分解開始電位の絶対値よりも小さな電位を印加する
だけで被検ガスの濃度に比例した電気信号を得ることが
可能となり、しかも作用極上での直接反応を利用するか
ら、被検ガスの電解液中への拡散による感度の低下がな
く、したがって還元電位が水の電気分解よりも高く、し
かも酸性度の小さな二酸化炭素をも高い感度で検出する
ことができるばかりでなく、電解液に強酸を必要としな
いため取扱の簡素化を図ることができる。
As described above, in the present invention,
A window is provided in a container containing an electrolyte having a hydrogen ion concentration of about -10 to -7 to the seventh power mol / liter, and a window is provided and sealed with a gas permeable membrane, and a metal electrode is arranged on the electrolyte side of the gas permeable membrane. As the working electrode is formed, the counter electrode is immersed in the electrolytic solution, and the reduction current is detected while applying a potential for reducing the metal oxide of the working electrode. Can reduce metal oxides in the presence of hydrogen ions generated due to water, and apply an electric potential smaller than the absolute value of the electrolysis onset potential of water. And the direct reaction on the working electrode is used, so that there is no reduction in sensitivity due to the diffusion of the test gas into the electrolytic solution. Small degree Carbon dioxide not only can be detected with high sensitivity also can be simplified handling because it does not require a strong acid to the electrolytic solution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す装置の構成図である。FIG. 1 is a configuration diagram of an apparatus showing one embodiment of the present invention.

【図2】同上装置における隔膜の構造を示す断面図であ
る。
FIG. 2 is a sectional view showing a structure of a diaphragm in the device.

【図3】同上装置の作用極と対極に印加する電位の変化
を示す線図である。
FIG. 3 is a diagram showing changes in potential applied to a working electrode and a counter electrode of the above device.

【図4】同上装置により酸性ガスを測定した結果を示す
線図である。
FIG. 4 is a diagram showing a result of measuring an acid gas by the same apparatus.

【図5】本発明の他の実施例を示す構成図である。FIG. 5 is a configuration diagram showing another embodiment of the present invention.

【図6】同上装置における隔膜の構造を示す断面図であ
る。
FIG. 6 is a cross-sectional view showing a structure of a diaphragm in the device.

【図7】本発明における他の実施例を示す構成図であ
る。
FIG. 7 is a configuration diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 セル 2 窓 4 隔膜 5 対極 6 電解液 7 ガス透過性膜 9 作用極となる金属層 11 基準極 DESCRIPTION OF SYMBOLS 1 Cell 2 Window 4 Diaphragm 5 Counter electrode 6 Electrolyte 7 Gas permeable membrane 9 Metal layer used as working electrode 11 Reference electrode

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 27/416 G01N 27/404 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01N 27/416 G01N 27/404

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素イオン濃度10のマイナス10乗及
至マイナス7乗モル/リットル程度の電解液を収容する
容器に窓を設けてガス透過性膜により液封し、前記ガス
透過性膜の電解液側に金属電極を設けて作用極を形成す
るとともに、対極を電解液に浸漬し、前記作用極にこれ
を構成している金属を酸化する電位と、酸化された金属
を還元する電位を交互に印加しつつ還元電流を検出する
酸性ガス測定装置。
1. A container for containing an electrolyte having a hydrogen ion concentration of about -10 to -7 to about -7 mol / l is provided with a window and sealed with a gas-permeable membrane, and the electrolyte of the gas-permeable membrane is provided. A metal electrode is provided on the side to form a working electrode, and a counter electrode is immersed in an electrolytic solution, and a potential for oxidizing a metal constituting the working electrode and a potential for reducing the oxidized metal are alternately applied to the working electrode. Acid gas measuring device that detects reduction current while applying.
【請求項2】 前記作用極を構成する金属層は、白金
(Pt)、ルテニウム(Ru)、金(Au)、オスミウ
ム(Os)、イリジウム(Ir)、パラジウム(P
d)、ロジウム(Rh)、及びチタン(Ti)の内の1
つである請求項1の酸性ガス測定装置。
2. The metal layer constituting the working electrode is made of platinum (Pt), ruthenium (Ru), gold (Au), osmium (Os), iridium (Ir), palladium (P
d), one of rhodium (Rh) and titanium (Ti)
The acid gas measuring device according to claim 1, wherein:
【請求項3】 水素イオン濃度10のマイナス10乗及
至マイナス7乗モル/リットル程度の電解液を収容する
容器に窓を設けてガス透過性膜により液封し、前記ガス
透過性膜の電解液側に金属酸化物電極を設けて作用極を
形成するとともに、対極を前記電解液に浸漬し、前記作
用極にこれを構成している金属酸化物を還元する電位を
印加しつつ還元電流を検出する酸性ガス測定装置。
3. A container containing an electrolytic solution having a hydrogen ion concentration of about -10 to -7 to about -7 mol / L is provided with a window, and is sealed with a gas-permeable membrane. A metal oxide electrode is provided on the side to form a working electrode, a counter electrode is immersed in the electrolytic solution, and a reduction current is detected while applying a potential to reduce the metal oxide constituting the working electrode to the working electrode. Acid gas measuring device.
【請求項4】 前記作用極を構成する金属酸化物層は、
白金(Pt)、ルテニウム(Ru)、金(Au)、オス
ミウム(Os)、イリジウム(Ir)、パラジウム(P
d)、ロジウム(Rh)、及びチタン(Ti)の酸化物
の内の1つである請求項3の酸性ガス測定装置。
4. The metal oxide layer constituting the working electrode,
Platinum (Pt), ruthenium (Ru), gold (Au), osmium (Os), iridium (Ir), palladium (P
4. The acidic gas measuring device according to claim 3, wherein the acidic gas measuring device is one of oxides of d), rhodium (Rh), and titanium (Ti).
JP3273427A 1991-09-25 1991-09-25 Acid gas measuring device Expired - Lifetime JP3025076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3273427A JP3025076B2 (en) 1991-09-25 1991-09-25 Acid gas measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3273427A JP3025076B2 (en) 1991-09-25 1991-09-25 Acid gas measuring device

Publications (2)

Publication Number Publication Date
JPH0587774A JPH0587774A (en) 1993-04-06
JP3025076B2 true JP3025076B2 (en) 2000-03-27

Family

ID=17527752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3273427A Expired - Lifetime JP3025076B2 (en) 1991-09-25 1991-09-25 Acid gas measuring device

Country Status (1)

Country Link
JP (1) JP3025076B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975545A (en) * 2010-09-14 2011-02-16 华南理工大学 Method and electrolytic oxidation device for detecting film layer on surface of metal

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4166104B2 (en) * 2003-03-05 2008-10-15 理研計器株式会社 Constant potential electrolytic acid gas detector
JP2004317395A (en) * 2003-04-18 2004-11-11 Riken Keiki Co Ltd Electrochemical chloride sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975545A (en) * 2010-09-14 2011-02-16 华南理工大学 Method and electrolytic oxidation device for detecting film layer on surface of metal
CN101975545B (en) * 2010-09-14 2012-08-08 华南理工大学 Method and electrolytic oxidation device for detecting film layer on surface of metal

Also Published As

Publication number Publication date
JPH0587774A (en) 1993-04-06

Similar Documents

Publication Publication Date Title
JPS59211853A (en) Electroanalytic method for measuring hydrogen and sensor
Schiavon et al. Amperometric monitoring of ozone in gaseous media by gold electrodes supported on ion exchange membranes (solid polymer electrolytes)
JPS60149960A (en) Method and system of detecting gas
US6090268A (en) CO gas sensor and CO gas concentration measuring method
CA2872236C (en) Methods and apparatus for measuring the total organic content of aqueous streams
EP0432840B1 (en) Solid-state sensor for the determination of the concentration of gases which can react with hydrogen
US6423209B1 (en) Acid gas measuring sensors and method of using same
EP0929804B1 (en) Analytic cell
JPH0715450B2 (en) Electrochemical measuring cell for measuring ammonia or hydrazine in gaseous or liquid measuring samples
JP3025076B2 (en) Acid gas measuring device
US5250171A (en) Sensor for carbon monoxide
US10197525B2 (en) Pulsed potential gas sensors
JP3106247B2 (en) Electrolytic cell
JPH10311815A (en) Method for judging deterioration of electrochemical carbon monoxide gas sensor and calibrating method
Guilbault et al. Glass-metal composite electrodes
JP3307827B2 (en) Potentiometric electrolytic ammonia gas detector
JPH0334824B2 (en)
JPH0334690Y2 (en)
JPS6243134B2 (en)
Do et al. Anodic oxidation of nitric oxide on Au/Nafion®: Kinetics and mass transfer
JPS58143263A (en) Gas sensor
JPH0625746B2 (en) Electrochemical acid gas detector
JPH029305B2 (en)
JPS58143262A (en) Gas sensor
JPS623898B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 12