JP2003156294A - Duplex tube heat exchanger, its manufacturing method and secondary refrigerant type air conditioner using duplex tube heat exchanger - Google Patents

Duplex tube heat exchanger, its manufacturing method and secondary refrigerant type air conditioner using duplex tube heat exchanger

Info

Publication number
JP2003156294A
JP2003156294A JP2001352485A JP2001352485A JP2003156294A JP 2003156294 A JP2003156294 A JP 2003156294A JP 2001352485 A JP2001352485 A JP 2001352485A JP 2001352485 A JP2001352485 A JP 2001352485A JP 2003156294 A JP2003156294 A JP 2003156294A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
tube
double
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001352485A
Other languages
Japanese (ja)
Other versions
JP3803282B2 (en
JP2003156294A5 (en
Inventor
Yoshikazu Kawabe
義和 川邉
Tomoaki Ando
智朗 安藤
Shigeto Yamaguchi
成人 山口
Yukio Watanabe
幸男 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001352485A priority Critical patent/JP3803282B2/en
Publication of JP2003156294A publication Critical patent/JP2003156294A/en
Publication of JP2003156294A5 publication Critical patent/JP2003156294A5/ja
Application granted granted Critical
Publication of JP3803282B2 publication Critical patent/JP3803282B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/022Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of two or more media in heat-exchange relationship being helically coiled, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2240/00Spacing means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve performance of a duplex tube heat exchanger. SOLUTION: A secondary refrigerant passage 4 in a clearance between positions of inner pipes 3A-3D and an outer pipe 1 is maintained constant by spacers 7 mounted with specified intervals by arranging a plurality of inner pipes 3A-3D twisted in a spiral shape respectively around an shaft center of the outer pipe 1 inside the outer pipe 1. A heat exchanging area is increased by making the inner pipes in a spiral shape of a plurality of numbers, and the heat transfer performance is increased by promoting turbulence of water flowing in the secondary refrigerant passage of the outer pipe and the inner pipes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、一次側冷媒と二次
側冷媒の熱交換を行う二重管熱交換器、およびその製造
方法、ならびに二重管熱交換器により熱交換された二次
側冷媒を使用して空気調和を行なう二次冷媒式空気調和
機に関するものである。
TECHNICAL FIELD The present invention relates to a double-tube heat exchanger for exchanging heat between a primary-side refrigerant and a secondary-side refrigerant, a method for producing the same, and a secondary tube heat-exchanged by the double-tube heat exchanger. The present invention relates to a secondary refrigerant type air conditioner that performs air conditioning using a side refrigerant.

【0002】[0002]

【従来の技術】従来の二重管熱交換器は、外管に遊嵌さ
れた内管を具備し、外管と内管との間の隙間に一次側冷
媒(または二次側冷媒)を流すとともに、内管に二次側
冷媒(または一次側冷媒)を流して熱交換するものであ
り、構造が簡素で安価に製造することができるため、た
とえば二次冷媒式空気調和機の中間熱交換器として採用
されている。
2. Description of the Related Art A conventional double tube heat exchanger has an inner tube loosely fitted in an outer tube, and a primary side refrigerant (or a secondary side refrigerant) is placed in a gap between the outer tube and the inner tube. In addition to flowing, the secondary side refrigerant (or primary side refrigerant) is caused to flow through the inner pipe for heat exchange. Since it has a simple structure and can be manufactured at low cost, for example, the intermediate heat of the secondary refrigerant type air conditioner. It is used as an exchange.

【0003】図5は二重管熱交換器の従来例を示し、外
管101の内部に熱交換性能を高めるための複数のフィ
ン102aが外周部一定間隔(角度)ごとに軸心方向に
沿って突設された内管102を挿入し、外管101と内
管102の隙間103に一次側冷媒であるフロンを、内
管102の内部104に二次側冷媒であるブラインを流
して熱交換を行なっている。
FIG. 5 shows a conventional example of a double-tube heat exchanger. A plurality of fins 102a for enhancing heat exchange performance are provided inside the outer tube 101 along the axial direction at regular intervals (angles) on the outer peripheral portion. The inner pipe 102 protruding from the inner pipe 102 is inserted into the gap 103 between the outer pipe 101 and the inner pipe 102, and CFC as the primary-side refrigerant is flowed in the gap 104 between the outer pipe 101 and the inner pipe 102. Are doing.

【0004】図5では、高性能化のためにフィン102
a付の内管102を用いたが、内管102の形状にも様
々な形状があり、断面が花びら形状の内管や、螺旋状に
ねじりを与えたような特殊なフィン付の内管を用いたり
する例もある。
In FIG. 5, the fins 102 are provided for high performance.
Although the inner pipe 102 with a is used, there are various shapes of the inner pipe 102, and an inner pipe with a petal-shaped cross section or an inner pipe with a special fin that is twisted in a spiral shape is used. There are also examples of using it.

【0005】また、内管,外管は通常の管を用い、外管
と内管の隙間を流れる冷媒の流れが内管の周りを螺旋状
に流れるように、外管と内管の隙間に糸あるいは板状の
部材を挿入した例もある。
Further, normal pipes are used as the inner pipe and the outer pipe, and in the gap between the outer pipe and the inner pipe, the refrigerant flowing through the gap between the outer pipe and the inner pipe spirally flows around the inner pipe. There is also an example in which a thread or a plate-shaped member is inserted.

【0006】ところで、上記二重管熱交換器を採用した
中間熱交換器により、一次側冷媒と二次側冷媒の熱交換
を行ない、二次側冷媒を使用して空気調和を行なう従来
の二次冷媒式空気調和機は、中間熱交換器を室外機に設
置するために、図6に示す形態が採用されている。
By the way, an intermediate heat exchanger adopting the double-tube heat exchanger performs heat exchange between the primary side refrigerant and the secondary side refrigerant, and uses the secondary side refrigerant for air conditioning. The sub-refrigerant air conditioner adopts the configuration shown in FIG. 6 in order to install the intermediate heat exchanger in the outdoor unit.

【0007】すなわち、図6に示す二次冷媒式空気調和
機は、外気と熱交換するための室外熱交換器や圧縮機、
その関連部品を収めた室外機本体110の上部に、中間
熱交換器である二重管熱交換器120やポンプ125、
水タンク126などの部品を収めた中間熱交換ユニット
ボックス117を配置する構成を採用している。
That is, the secondary refrigerant type air conditioner shown in FIG. 6 is an outdoor heat exchanger for exchanging heat with the outside air, a compressor,
At the upper part of the outdoor unit main body 110 that stores the related parts, a double-tube heat exchanger 120 that is an intermediate heat exchanger, a pump 125,
An intermediate heat exchange unit box 117, in which parts such as the water tank 126 are housed, is arranged.

【0008】そして、室外機110と熱交換ユニットボ
ックス117の各部品とは、接続管111、112によ
り接続されてフロンが循環される。また二重管熱交換器
120では、フロンと水が熱交換して温水が作られ、水
接続管115により室内機へ送られて室内に放熱した
後、水接続管116を介して二重管熱交換器120に戻
される。
The outdoor unit 110 and each component of the heat exchange unit box 117 are connected by connecting pipes 111 and 112 to circulate CFCs. Further, in the double tube heat exchanger 120, hot water is produced by exchanging heat between CFCs and water, and is sent to the indoor unit by the water connecting tube 115 to radiate heat indoors, and then the double tube through the water connecting tube 116. It is returned to the heat exchanger 120.

【0009】冷媒接続管113、114は一次冷媒を供
給するために別に設けられた冷媒回路で、他の室内機に
接続され暖房あるいは冷房を行なうことができる。
Refrigerant connecting tubes 113 and 114 are refrigerant circuits separately provided for supplying the primary refrigerant, and can be connected to other indoor units for heating or cooling.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記従
来の二重管熱交換器およびこれを用いた二次冷媒式空気
調和機においては、下記のような問題があった。
However, the above-mentioned conventional double-tube heat exchanger and the secondary refrigerant type air conditioner using the same have the following problems.

【0011】従来の二重管熱交換器は、内管102にフ
ィン付管や花柄断面の管などを使用しても、通常のベア
管を使用するのに比較して数十パーセントの性能向上に
しかならない。またフィン付内管や花びら断面内管の管
自体のコストが高く、また曲げ加工も困難であるためそ
の配置に自由度が低く、二重管熱交換器全体の製造コス
トが高くなるという問題があった。
In the conventional double-tube heat exchanger, even if a finned tube or a tube having a flower pattern cross section is used for the inner tube 102, the performance is several tens of percent as compared with the case of using a normal bare tube. Only improvement. In addition, the cost of the inner tube with fins and the inner tube of the petal cross section is high, and the bending process is difficult, so the degree of freedom in the arrangement is low, and the manufacturing cost of the entire double-tube heat exchanger increases. there were.

【0012】また二次冷媒式空気調和機では、二重管熱
交換器120が一次冷媒を直接室内機へ送る方式の室外
機と同一の室外機本体110の上に、熱交換ユニットボ
ックス117を設置した形態となり、室外機本体が大型
化してしまうという問題があった。
Further, in the secondary refrigerant type air conditioner, the heat exchange unit box 117 is mounted on the same outdoor unit body 110 as the outdoor unit in which the double pipe heat exchanger 120 directly sends the primary refrigerant to the indoor unit. There is a problem that the outdoor unit body becomes large in size because it is installed.

【0013】本発明は上記問題点を解決して、高性能の
二重管熱交換器およびその製造方法と、効率良く収納し
て室外機を小型できる二重管熱交換器を用いた二次冷媒
式空気調和機とを提供することを目的とする。
The present invention solves the above problems, a high-performance double-tube heat exchanger and a method for manufacturing the same, and a secondary tube using the double-tube heat exchanger that can be efficiently housed to reduce the size of the outdoor unit. A refrigerant type air conditioner is provided.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に請求項1記載の二重管熱交換器は、一次側冷媒および
二次側冷媒の一方の冷媒が流送される外管と、該外管内
で外管の軸心周りに螺旋状に捻られて配置され他方の冷
媒が流送される複数の内管とを具備し、前記外管に流送
される一方の冷媒と内管に流送され他方の冷媒との間で
熱交換するように構成したものである。
In order to achieve the above object, a double pipe heat exchanger according to a first aspect of the present invention is an outer pipe to which one of a primary side refrigerant and a secondary side refrigerant is sent, A plurality of inner pipes arranged in the outer pipe spirally twisted around the axis of the outer pipe to send the other refrigerant, and one refrigerant and the inner pipe sent to the outer pipe And is heat-exchanged with the other refrigerant.

【0015】上記構成によれば、螺旋形状に捻られた複
数の内管を使用することにより熱交換面積を拡大すると
共に、外管と内管の間を流れる一方の冷媒の乱流化を促
進させ、二重管熱交換器の熱交換性能を大幅に向上させ
ることができる。
According to the above structure, the heat exchange area is expanded by using the plurality of spirally twisted inner tubes, and the turbulent flow of one of the refrigerant flowing between the outer tube and the inner tube is promoted. Thus, the heat exchange performance of the double tube heat exchanger can be significantly improved.

【0016】請求項2記載の二重管熱交換器は、請求項
1記載の構成において、外管内で各内管の位置を保持す
るとともに他方の冷媒を乱流化する位置決め部材を所定
の間隔ごとに配置したものである。
According to a second aspect of the present invention, in the double-tube heat exchanger according to the first aspect, a positioning member for holding the position of each inner tube in the outer tube and turbulently flowing the other refrigerant is provided at predetermined intervals. It is arranged for each.

【0017】上記構成によれば、位置決め手段により、
螺旋状に捻られた複数の内管の位置関係を一定に保持す
ることにより、内管同士の接触による熱交換面積の低下
を防止するとともに、外管内での内管の偏りをなくして
熱交換能力の低下を防止し、さらに外管と内管の間を流
れる冷媒を乱流化して熱交換が効果的に行なわれるよう
補助することができる。これにより、二重管熱交換器の
熱交換性能を向上させ、部位により熱交換性能がばらつ
くことなく均一に行うことができる。
According to the above structure, the positioning means allows
By keeping the positional relationship of multiple spirally twisted inner tubes constant, it is possible to prevent the heat exchange area from decreasing due to the contact between inner tubes, and to eliminate the unevenness of the inner tubes in the outer tubes and perform heat exchange. It is possible to prevent the deterioration of the capacity, and to make the refrigerant flowing between the outer pipe and the inner pipe turbulent to assist the effective heat exchange. As a result, the heat exchange performance of the double-tube heat exchanger can be improved, and the heat exchange performance can be uniformly performed without variation depending on the parts.

【0018】請求項3記載の二重管熱交換器は、請求項
2記載の構成において、位置決め部材を、各内管の周囲
に外嵌された線状の部材により構成したものである。上
記構成によれば、線状の部材を整形することで位置決め
部材を安価に提供することができ、二重管熱交換器のコ
ストの低減に寄与できる。
According to a third aspect of the present invention, there is provided the double-tube heat exchanger according to the second aspect, wherein the positioning member is a linear member fitted around the inner tubes. According to the above configuration, the positioning member can be provided at low cost by shaping the linear member, which can contribute to the cost reduction of the double-pipe heat exchanger.

【0019】請求項4記載の二重管熱交換器の製造方法
は、一次側冷媒および二次側冷媒の一方の冷媒が流送さ
れる外管内に、該外管の軸心周りに螺旋状に捻られて他
方の冷媒が流送される複数の内管を配置した二重管熱交
換器を製造するに際して、前記外管内に、複数の直管状
内管を束ねた内管群を挿入し、前記内管群の両端部を外
管の軸心周りに捻って、前記内管をそれぞれ螺旋形状に
形成するものである。
According to a fourth aspect of the present invention, there is provided a method of manufacturing a double-tube heat exchanger, wherein a helical shape around an axis of the outer pipe is provided in an outer pipe to which one of the primary side refrigerant and the secondary side refrigerant is sent. When manufacturing a double-pipe heat exchanger in which a plurality of inner pipes in which the other refrigerant is twisted and sent to the other refrigerant are arranged, an inner pipe group in which a plurality of straight tubular inner pipes are bundled is inserted into the outer pipe. By twisting both ends of the inner tube group around the axis of the outer tube, the inner tubes are formed in a spiral shape.

【0020】上記構成によれば、外管をガイドとして、
一度の加工で内管群にまとめて各内管に螺旋形状を与え
ることができるので、内管の加工が容易となり、二重管
熱交換器を安価に供給することができる。
According to the above structure, the outer tube is used as a guide.
Since it is possible to give a spiral shape to each of the inner tubes by collectively processing them into the inner tube group at one time, the inner tubes can be easily processed and the double tube heat exchanger can be supplied at a low cost.

【0021】請求項5記載の二重管熱交換器の製造方法
は、一次側冷媒および二次側冷媒の一方の冷媒が流送さ
れる外管内に、該外管の軸心周りに螺旋状に捻られて他
方の冷媒が流送される複数の内管を配置した二重管熱交
換器を製造するに際して、複数の直管状内管を束ねて内
管群を形成し、前記内管群の両端部を保持して内管群を
軸心周りに捻り各内管を螺旋形状に形成して螺旋形状の
内管群を形成し、前記内管群を外管内に挿入するもので
ある。
According to a fifth aspect of the present invention, there is provided a method of manufacturing a double-tube heat exchanger, wherein a helical shape around an axis of the outer pipe is provided in an outer pipe to which one of the primary side refrigerant and the secondary side refrigerant is sent. When manufacturing a double-tube heat exchanger in which a plurality of inner tubes in which the other refrigerant is twisted and sent to the other refrigerant is arranged, a plurality of straight tubular inner tubes are bundled to form an inner tube group, and the inner tube group is formed. While holding both ends of the inner tube group, the inner tube group is twisted around the axis to form each inner tube in a spiral shape to form a spiral inner tube group, and the inner tube group is inserted into the outer tube.

【0022】上記構成によれば、内管群を捻って螺旋形
状を与えた後、外管に挿入するので、加工の管理が容易
となり、内管を精度良く螺旋状に形成することができ、
二重管熱交換器を精度良く製造することができる。
According to the above construction, since the inner tube group is twisted to give a spiral shape and then inserted into the outer tube, it becomes easy to manage the processing and the inner tube can be formed into a spiral shape with high accuracy.
The double tube heat exchanger can be manufactured with high accuracy.

【0023】請求項6記載の二次冷媒式空気調和機は、
冷凍ヒートポンプサイクルを用いて一次側冷媒の冷却あ
るいは加熱を行なう室外機と、該室外機に設けられて一
次側冷媒と二次側冷媒の間で熱交換を行う中間熱交換器
と、前記二次側冷媒により冷却あるいは加熱して空気調
和を行なう室内機とを具備し、前記中間熱交換器を二重
管熱交換器により構成して前記室外機の送風ファンのオ
リフィス部周囲に配置したものである。
A secondary refrigerant type air conditioner according to claim 6 is
An outdoor unit that cools or heats the primary side refrigerant using a refrigeration heat pump cycle, an intermediate heat exchanger that is provided in the outdoor unit and that performs heat exchange between the primary side refrigerant and the secondary side refrigerant, and the secondary unit. An indoor unit that performs air conditioning by cooling or heating with a side refrigerant, wherein the intermediate heat exchanger is configured by a double-tube heat exchanger and is arranged around the orifice portion of the blower fan of the outdoor unit. is there.

【0024】上記構成によれば、二重管熱交換器を前記
室外機送風ファンのオリフィス部周囲の空き空間に効率
良く配置することができ、二次冷媒式空気調和機の小型
化を実現することができる。
According to the above construction, the double-tube heat exchanger can be efficiently arranged in the empty space around the orifice portion of the outdoor unit blowing fan, and the secondary refrigerant type air conditioner can be miniaturized. be able to.

【0025】請求項7記載の二次冷媒式空気調和機は、
請求項6記載の構成において、中間熱交換器を請求項1
乃至3のいずれかに記載の二重管熱交換器により構成し
たものである。
A secondary refrigerant type air conditioner according to claim 7 is
In the configuration according to claim 6, the intermediate heat exchanger is defined by claim 1.
It is configured by the double-tube heat exchanger according to any one of 1 to 3.

【0026】上記構成によれば、単位あたりの熱交換性
能が高い二重管熱交換器を使用することにより、オリフ
ィス部周囲の空間が狭い場合でも十分に収納することが
でき、小型化を促進することができる。
According to the above construction, by using the double-tube heat exchanger having a high heat exchange performance per unit, even if the space around the orifice portion is small, it can be sufficiently accommodated and the miniaturization is promoted. can do.

【0027】請求項8記載の二次冷媒式空気調和機は、
請求項6または7記載の構成において、単一管と複数の
内管との間で冷媒を分岐または合流する二重管熱交換器
の冷媒入口および冷媒出口のうち、少なくとも冷媒入口
を、冷媒の分岐部分の流れが鉛直方向となるよう配置し
たものである。
The secondary refrigerant type air conditioner according to claim 8 is
The structure according to claim 6 or 7, wherein at least the refrigerant inlet of the refrigerant inlet and the refrigerant outlet of the double-pipe heat exchanger that branches or joins the refrigerant between the single pipe and the plurality of inner pipes is It is arranged so that the flow at the branch portion is in the vertical direction.

【0028】上記構成によれば、単管から複数の内管に
分流して冷媒を供給するための、冷媒入口の分岐部分を
鉛直方向に配置することにより、各内管にそれぞれ冷媒
を均等に分配して良好に供給することができる。これに
より、二重管熱交換器の性能を十分に引き出し、二次冷
媒式空気調和機の性能を向上させることができる。
According to the above construction, by arranging the branch portion of the refrigerant inlet for dividing the single pipe into a plurality of inner pipes to supply the refrigerant in the vertical direction, the refrigerant is evenly distributed to each inner pipe. It can be distributed and supplied well. Thereby, the performance of the double-tube heat exchanger can be sufficiently brought out, and the performance of the secondary refrigerant type air conditioner can be improved.

【0029】[0029]

【発明の実施の形態】以下、本発明に係る二重管熱交換
器の実施の形態を図1および図2を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a double-tube heat exchanger according to the present invention will be described below with reference to FIGS. 1 and 2.

【0030】図1に示すように、円形断面の外管1に
は、両側に接続継手2A,2Bが取り付けられ、これら
接続継手2A,2B間の外管1内に、外管1の軸心周り
にそれぞれ螺旋状に捻られて一次側冷媒であるフロンF
を流送する複数(図では4本)の内管3A〜3Dが配置
されている。そして、外管1内には、外管1と内管3A
〜3Dの間および内管3A〜3Dとの隙間に二次側冷媒
である水Wを流送する二次側冷媒通路4が形成されてい
る。
As shown in FIG. 1, the outer pipe 1 having a circular cross section is provided with connection joints 2A and 2B on both sides, and the axial center of the outer pipe 1 is placed in the outer pipe 1 between these connection joints 2A and 2B. Freon F, which is the primary side refrigerant, twisted around each other in a spiral shape
A plurality of (4 in the figure) inner pipes 3A to 3D for delivering the are arranged. And, in the outer pipe 1, the outer pipe 1 and the inner pipe 3A
3D to 3D and gaps between the inner pipes 3A to 3D, secondary side refrigerant passages 4 for sending water W as the secondary side refrigerant are formed.

【0031】外管1の両端側には、内管3A〜3Dを接
続継手2A,2Bからそれぞれ真っ直ぐに取り出して取
り出し口を1つにまとめた入口分岐継手5および出口分
岐継手6とがそれぞれ設けられており、入口分岐継手5
に冷媒入口3aが形成されるとともに出口分岐継手6に
冷媒出口3bが形成されている。また冷媒入口5a側の
接続継手2Aに二次側冷媒通路4から水Wを排出する水
出口4bが形成され、また冷媒出口3b側の接続継手2
Bに二次側冷媒通路4に水Wを供給する水入口4aが形
成されている。
At both ends of the outer pipe 1, there are provided an inlet branch joint 5 and an outlet branch joint 6 in which the inner pipes 3A to 3D are straightly taken out from the connection joints 2A and 2B, respectively, and the takeout ports are integrated. The inlet branch joint 5
A refrigerant inlet 3a is formed in the outlet branch joint 6 and a refrigerant outlet 3b is formed in the outlet branch joint 6. Further, a water outlet 4b for discharging the water W from the secondary side refrigerant passage 4 is formed in the connection joint 2A on the refrigerant inlet 5a side, and the connection joint 2 on the refrigerant outlet 3b side is formed.
A water inlet 4a for supplying water W to the secondary side refrigerant passage 4 is formed in B.

【0032】また外管1内には、内管3A〜3Dは、長
さ方向に所定の間隔ごとに取り付けられた位置決め部材
であるスペーサ7が配置されており、これらスペーサ7
はたとえば正面視が星形に形成されて各凹部に内管3A
〜3Dが保持され、これにより、内管3A〜3D同士の
隙間および内管3A〜3Dと外管1の内面の隙間を全長
にわたって一定に保持するとともに、二次側冷媒通路4
に流送される水Wに乱流を形成するように構成されてい
る。したがって、前記スペーサ7により内管3A〜3D
同士の接触による熱交換面積の低下や、外管1内におけ
る内管3A〜3Dの偏りによる熱交換能力の低下を防ぐ
ことができる。
Further, in the outer pipe 1, spacers 7 which are positioning members attached to the inner pipes 3A to 3D at predetermined intervals in the length direction are arranged.
Is formed in a star shape when viewed from the front, and the inner tube 3A is formed in each recess.
To 3D are retained, whereby the gap between the inner pipes 3A to 3D and the gap between the inner pipes 3A to 3D and the inner surface of the outer pipe 1 are kept constant over the entire length, and the secondary side refrigerant passage 4 is retained.
It is configured to form a turbulent flow in the water W sent to the. Therefore, the inner pipes 3A to 3D are formed by the spacer 7.
It is possible to prevent a decrease in the heat exchange area due to the mutual contact, and a decrease in the heat exchange capacity due to the deviation of the inner tubes 3A to 3D in the outer tube 1.

【0033】またこれらスペーサ7は、金属製や樹脂製
などの1枚の薄板7aを内管3A〜3Dを保持する凹部
を形成するたとえば星形形状に曲げ加工したもので、両
端部に合せ部7bが設けられている。なおスペーサ7を
形成するにあたっては、必ずしも薄板を使用する必要は
ないが、薄板にすれば簡単な曲げ加工で形成できる。
The spacers 7 are formed by bending one thin plate 7a made of metal, resin, or the like into a recess for holding the inner tubes 3A to 3D, for example, by bending it into a star shape. 7b is provided. A thin plate does not necessarily have to be used to form the spacer 7, but a thin plate can be formed by a simple bending process.

【0034】なお、位置決め部材を、図4に示すよう
に、線材8aを用いて内管3A〜3Dに矢印a〜gで示
す方向に巻き付け、終端をh方向に引き出して処理した
スペーサ8を用いても良く、この線材8aにより内管3
A〜3Dを外管1の所定位置に保持している。このスペ
ーサ8により、加工用の型などを使用することもなく、
より容易に所定の目的を果たすことができて安価に製造
でき、二重管熱交換器を安価に供給することができる。
As shown in FIG. 4, the positioning member is wound around the inner pipes 3A to 3D in the directions shown by the arrows a to g using the wire 8a, and the spacer 8 which is processed by pulling out the end in the direction h is used. The wire 8a may be used for the inner pipe 3
A to 3D are held at predetermined positions on the outer tube 1. With this spacer 8, without using a mold for processing,
The predetermined purpose can be more easily achieved, the manufacturing cost can be reduced, and the double-pipe heat exchanger can be supplied at low cost.

【0035】なおこの二重管熱交換器10は、後述の二
次冷媒式空気調和機に使用される時には、螺旋状に巻か
れ所定の大きさにまとめられ、使用される。上記構成に
おいて、一次側冷媒であるフロンFは、冷媒入口3aか
ら入口分岐継手5を介して内管3A〜3Dに供給され、
出口分岐継手6の冷媒出口3bから排出される。また、
二次側冷媒である水Wは、接続継手2Bの水入口4aか
ら二次冷媒通路4に供給され、接続継手2Aの水出口4
bから排出され、内管3A〜3Dの管壁を介してフロン
Fと水Wが互いに熱交換を行う。
When the double-tube heat exchanger 10 is used in a secondary refrigerant type air conditioner, which will be described later, the double-tube heat exchanger 10 is spirally wound into a predetermined size and used. In the above configuration, the Freon F, which is the primary side refrigerant, is supplied from the refrigerant inlet 3a to the inner pipes 3A to 3D via the inlet branch joint 5.
The refrigerant is discharged from the refrigerant outlet 3b of the outlet branch joint 6. Also,
The water W as the secondary side refrigerant is supplied to the secondary refrigerant passage 4 from the water inlet 4a of the connection joint 2B, and the water outlet 4 of the connection joint 2A.
Fluorine F and water W are discharged from b and exchange heat with each other via the tube walls of the inner tubes 3A to 3D.

【0036】上記実施の形態によれば、外管1内に4本
の内管3A〜3Dが挿入されているため、内管3A〜3
Dの合計断面積と同じ断面積を持つ1本の内管を配置す
るのに比べて、断面積あたりの表面積が2倍となり、熱
交換性能も約2倍となる。
According to the above embodiment, since the four inner tubes 3A to 3D are inserted in the outer tube 1, the inner tubes 3A to 3D are inserted.
Compared to disposing one inner tube having the same cross-sectional area as the total cross-sectional area of D, the surface area per cross-sectional area is doubled and the heat exchange performance is also doubled.

【0037】また、内管3A〜3Dはそれぞれ螺旋形状
をしているため、同じ長さの外管1に挿入される各内管
3A〜3Dの長さは、直管を挿入した場合に比較して長
くなり、熱交換面積はさらに増加する。
Further, since the inner pipes 3A to 3D each have a spiral shape, the lengths of the inner pipes 3A to 3D inserted into the outer pipe 1 having the same length are different from those when the straight pipe is inserted. And the heat exchange area is further increased.

【0038】さらに、内管3A〜3Dの螺旋形状は、外
管1と内管3A〜3Dの間の二次側冷媒通路4を流れる
水Wと内管3A〜3Dの管壁との接触の度合いが増し、
管壁と水Wの界面における熱伝達が促進される。
Further, the spiral shape of the inner pipes 3A to 3D means that the water W flowing in the secondary side refrigerant passage 4 between the outer pipe 1 and the inner pipes 3A to 3D is in contact with the wall of the inner pipes 3A to 3D. To a greater degree,
Heat transfer is promoted at the interface between the tube wall and the water W.

【0039】さらにまた、スペーサにより、内管3A〜
3D同士の隙間と内管3A〜3Dと外管1の内面の隙間
が全長にわたって一定に保持されるとともに、二次側冷
媒通路4に流送される水Wに乱流を形成するので、内管
3A〜3D同士の接触により熱交換面積が低下すること
なく、また外管1内における内管3A〜3Dの偏りによ
り熱交換能力が低下することもない。また水Wに形成さ
れる乱流により、水Wが混合されて熱伝達効率の向上を
図ることができる。したがって、二重管熱交換器10の
熱交換性能を大幅に向上させることができる。
Furthermore, the inner pipes 3A ...
Since the gaps between the 3Ds and the gaps between the inner pipes 3A to 3D and the inner surface of the outer pipe 1 are kept constant over the entire length, and a turbulent flow is formed in the water W sent to the secondary side refrigerant passage 4, The heat exchange area does not decrease due to the contact between the tubes 3A to 3D, and the heat exchange capacity does not decrease due to the deviation of the inner tubes 3A to 3D in the outer tube 1. In addition, the turbulent flow formed in the water W mixes the water W, thereby improving the heat transfer efficiency. Therefore, the heat exchange performance of the double tube heat exchanger 10 can be significantly improved.

【0040】次に上記二重管熱交換器120の製造方法
について説明する。二重管熱交換器10の製造方法とし
ては、それぞれ螺旋状に成形した内管を組み上げるので
はなく、直管状の内管を束ねた後一括して螺旋形状を与
えるのが効率的である。
Next, a method for manufacturing the double tube heat exchanger 120 will be described. As a method of manufacturing the double-tube heat exchanger 10, it is effective to bundle the straight tubular inner tubes and then collectively give the spiral shape instead of assembling the inner tubes each formed into a spiral shape.

【0041】すなわち、第1の製造方法として、まず所
定本数(図では4本)の直管状内管3A〜3Dを束ねた
内管群を外管1に挿入した後、内管群の両端部を治具等
を使用して所定の配置で固定し、ついで治具を介して外
管1の軸心周りに内管群に捻りを加える方法である。
That is, as a first manufacturing method, first, an inner tube group in which a predetermined number (four in the figure) of straight tubular inner tubes 3A to 3D are bundled is inserted into the outer tube 1, and then both end portions of the inner tube group are inserted. Is fixed in a predetermined arrangement using a jig or the like, and then twisted to the inner tube group around the axis of the outer tube 1 via the jig.

【0042】上記方法によれば、外管1が内管3A〜3
Dの可動範囲を規制するガイドパイプ的な役割を果すの
で、簡単な治具を使用するだけで内管群の各内管内管3
A〜3Dに螺旋形状を付与することができる。従って、
二重管熱交換器を安価に供給することができる。
According to the above method, the outer pipe 1 is replaced by the inner pipes 3A to 3A.
Since it plays a role of a guide pipe that regulates the movable range of D, each inner pipe of the inner pipe group 3 can be formed by using a simple jig.
A spiral shape can be given to A to 3D. Therefore,
The double tube heat exchanger can be supplied at low cost.

【0043】また第2の製造方法として、所定本数(図
では4本)の直管状内管3A〜3Dを束ねた内管群を、
所定の配置で固定し、内管群に軸心周りの捻りを加えて
螺旋形状を形成した後、外管1に挿入する方法である。
As a second manufacturing method, an inner tube group in which a predetermined number (four in the figure) of straight tubular inner tubes 3A to 3D are bundled,
This is a method in which the inner tube group is fixed in a predetermined arrangement, twisted about the axis of the inner tube group to form a spiral shape, and then inserted into the outer tube 1.

【0044】上記方法によれば、内管3A〜3Dを外管
1に挿入する前に螺旋形状を形成するため、加工工程の
管理が容易となる。また、内管3A〜3D同士の位置決
め手段であるスペーサ7(8)を取付けた後、内管群を
螺旋形状に形成することにより、スペーサ7(8)が内
管3A〜3Dの可動範囲を規制するので、簡単な治具を
使用するだけで螺旋形状を形成することができる。さら
に、内管3A〜3Dを直接操作できる状態で螺旋形状を
付与するので、加工の管理が容易となり、製造の精度を
向上することができる。
According to the above method, since the spiral shape is formed before inserting the inner pipes 3A to 3D into the outer pipe 1, it becomes easy to manage the working process. Further, after the spacer 7 (8) which is a positioning means for the inner pipes 3A to 3D is attached, the inner pipe group is formed in a spiral shape so that the spacer 7 (8) can move the movable range of the inner pipes 3A to 3D. Since it is regulated, the spiral shape can be formed only by using a simple jig. Furthermore, since the spiral shape is imparted in a state where the inner pipes 3A to 3D can be directly operated, it is possible to easily manage the processing and improve the manufacturing accuracy.

【0045】なお、二重管熱交換器10の外管1や内管
3A〜3Dの材料としては、熱伝導性や加工性に優れた
銅材が適しているが、耐食性に優れたステンレス材やチ
タン材を用いても同様の効果が得られることはいうまで
もない。また高圧がかからない外管1に、樹脂材料を用
いることもでき、樹脂材料の外管1により放熱による熱
損失を抑える断熱効果があるので、外管1を覆う断熱部
材を削除または軽減することができる。
As the material of the outer tube 1 and the inner tubes 3A to 3D of the double tube heat exchanger 10, a copper material having excellent thermal conductivity and workability is suitable, but a stainless material having excellent corrosion resistance. Needless to say, the same effect can be obtained by using a titanium material. Further, a resin material can be used for the outer tube 1 to which a high pressure is not applied, and since the outer tube 1 made of the resin material has a heat insulating effect of suppressing heat loss due to heat radiation, the heat insulating member covering the outer tube 1 can be removed or reduced. it can.

【0046】また上記実施の形態では、内管にベア管3
A〜3Dを使用したが、空気調和機の空気熱交換器で良
く用いられる溝付管を使用することにより、さらに熱交
換性能を向上させることができる。
In the above embodiment, the bare pipe 3 is used as the inner pipe.
Although A to 3D were used, the heat exchange performance can be further improved by using a grooved tube that is often used in the air heat exchanger of the air conditioner.

【0047】さらに二重管熱交換器10におけるフロン
Fと水Wの流れは相対向する対向流であるが、目的に応
じて同一方向の並行流としても同様の効果を得ることが
できる。またフロンFと水Wに代えて、他の冷媒を使用
しても同様の効果を得ることができる。
Further, although the flows of the freon F and the water W in the double-tube heat exchanger 10 are opposite flows which face each other, the same effect can be obtained by using parallel flows in the same direction depending on the purpose. Further, instead of the Freon F and the water W, the same effect can be obtained by using another refrigerant.

【0048】次に上記二重管熱交換器を使用した二次冷
媒式熱交換器の実施の形態を図3を参照して説明する。
二重管熱交換器を用いた空気調和機の室外機21には、
圧縮機22、室外熱交換器23、室外ファン24、オリ
フィス部25を持つエアガイダー26、電装部27、四
方弁28、二重管熱交換器10、水タンク31、水ポン
プ32などで構成されている。なお、図3では説明の関
係上、膨張弁や筐体の一部を省略して図示している。
Next, an embodiment of a secondary refrigerant type heat exchanger using the double tube heat exchanger will be described with reference to FIG.
In the outdoor unit 21 of the air conditioner using the double tube heat exchanger,
Comprised of a compressor 22, an outdoor heat exchanger 23, an outdoor fan 24, an air guider 26 having an orifice portion 25, an electrical equipment portion 27, a four-way valve 28, a double pipe heat exchanger 10, a water tank 31, a water pump 32, etc. There is. Note that in FIG. 3, the expansion valve and a part of the housing are omitted for the sake of explanation.

【0049】上記室外機21において、一次側冷媒であ
るフロンFは圧縮機22で圧縮された後、四方弁28を
通り、冷媒往き口41を経て冷媒入口3aから二重管熱
交換器10に入る。そして、冷媒出口3bに至る間に放
熱凝縮した後、冷媒戻り口42から膨張弁(図示せず)
を通り、室外熱交換器23で吸熱蒸発して四方弁28を
通って圧縮機22に戻る。
In the outdoor unit 21, the primary side refrigerant, Freon F, is compressed by the compressor 22, then passes through the four-way valve 28, the refrigerant outlet port 41, and the refrigerant inlet 3a to the double pipe heat exchanger 10. enter. Then, after heat-dissipating and condensing while reaching the refrigerant outlet 3b, an expansion valve (not shown) is introduced from the refrigerant return port 42.
Through the four-way valve 28 to return to the compressor 22.

【0050】ニ次側冷媒である水Wは水ポンプ32によ
り循環されており、室内からの戻り口33を介して回収
された水Wが、二重管熱交換器220の水入口4aに入
り、水出口4bに至る間に加熱され温水となって水タン
ク31に入る。温水Wは水タンク31から水ポンプ32
を経て室内への往き口34を介して室内機に送り出さ
れ、放熱して戻り口33に戻る。
The water W as the secondary side refrigerant is circulated by the water pump 32, and the water W recovered through the return port 33 from the room enters the water inlet 4a of the double tube heat exchanger 220. , Heated to reach the water outlet 4b and becomes hot water, which enters the water tank 31. The warm water W is supplied from the water tank 31 to the water pump 32.
Is sent out to the indoor unit through the entrance 34 to the room, radiates heat and returns to the return port 33.

【0051】以上は、温水を作り暖房を行う場合である
が、四方弁28で流れを変えて、室外熱交換器23でフ
ロンFを放熱凝縮させ、二重管熱交換器10で吸熱蒸発
させて冷水を作ることも可能である。
The above is the case where hot water is produced for heating. The flow is changed by the four-way valve 28 so that the outdoor heat exchanger 23 radiates and condenses the Freon F and the double-tube heat exchanger 10 absorbs heat and evaporates it. It is also possible to make cold water.

【0052】本発明は、二重管熱交換器10は螺旋状に
巻くことにより収納に大きな空間を必要とするが、中央
部に中空部ができる点に着目した。一方、室外機21に
は室外ファン24の風下側にオリフィスが必要であり、
エアガイダー26のオリフィス部25の外周部分には、
螺旋状に巻かれた二重管熱交換器10を収容可能な円筒
状に大きい空間が生じている点に着目した。
The present invention focuses on the fact that the double-tube heat exchanger 10 requires a large space for storage by being wound in a spiral shape, but has a hollow portion in the central portion. On the other hand, the outdoor unit 21 needs an orifice on the lee side of the outdoor fan 24,
In the outer peripheral portion of the orifice portion 25 of the air guider 26,
Attention was paid to the fact that a large cylindrical space was created in which the double-tube heat exchanger 10 wound in a spiral shape could be accommodated.

【0053】すなわち、この実施の形態では、オリフィ
ス部25の外周部に生じた空間に二重管熱交換器10を
配置して収納している。ここで、従来の二重管熱交換器
を使用しても同様の配置が可能であるが、先の実施の形
態で説明した二重管熱交換器10を使用すれば、単位長
さ当りの熱交換性能が高いため、長さを短くでき、オリ
フィス部25の外周部の僅かな空間でも、十分に二重管
熱交換器10の収納が可能である。これにより、二重管
熱交換器10を用いた二次冷媒式空気調和機の室外機2
1を小型化することができる。なお、水ポンプ32と水
タンク31はエアガイダー26と室外機21の筐体(ケ
ース)の間に配置されている。
That is, in this embodiment, the double pipe heat exchanger 10 is arranged and housed in the space formed on the outer peripheral portion of the orifice portion 25. Here, although the same arrangement is possible using the conventional double-tube heat exchanger, if the double-tube heat exchanger 10 described in the above embodiment is used, the unit length per unit length can be increased. Since the heat exchange performance is high, the length can be shortened, and the double-tube heat exchanger 10 can be sufficiently accommodated even in a small space on the outer peripheral portion of the orifice portion 25. Thereby, the outdoor unit 2 of the secondary refrigerant type air conditioner using the double-tube heat exchanger 10
1 can be miniaturized. The water pump 32 and the water tank 31 are arranged between the air guider 26 and the housing (case) of the outdoor unit 21.

【0054】またこのように螺旋状に巻かれた二重管熱
交換器10では、冷媒入口3aの単パス(単一管)であ
る冷媒入口3aから複数パスである内管3A〜3Dへの
分流部、および複数パスである内管3A〜3Dから単パ
スである冷媒出口3bにへの合流部で、均等な分配と合
流が行われないと、熱交換性能の低下をもたらす原因と
なる。このため、この実施の形態では、冷媒の送りこみ
あるいは取りだしとなる接続継手2A,2B部分が、内
管3a〜3dの鉛直下側となるよう配置することによ
り、フロンFの分流を均等に保つように構成されてい
る。これにより、熱交換性能を十分に引き出すことが可
能であり、二重管熱交換器10を用いた二次冷媒式空気
調和機の性能をさらに向上させることができる。
Further, in the double-pipe heat exchanger 10 spirally wound in this way, from the refrigerant inlet 3a which is a single pass (single pipe) of the refrigerant inlet 3a to the inner pipes 3A to 3D which are a plurality of passes. If uniform distribution and merging are not performed in the flow dividing part and the merging part from the inner pipes 3A to 3D having a plurality of passes to the refrigerant outlet 3b having a single pass, it causes a decrease in heat exchange performance. For this reason, in this embodiment, by arranging the connection joints 2A and 2B for sending or taking out the refrigerant so as to be vertically below the inner pipes 3a to 3d, the shunting of the Freon F is kept uniform. Is configured. As a result, the heat exchange performance can be sufficiently brought out, and the performance of the secondary refrigerant type air conditioner using the double pipe heat exchanger 10 can be further improved.

【0055】[0055]

【発明の効果】以上に述べたごとく請求項1記載の二重
管熱交換器によれば、螺旋形状に捻られた複数の内管を
使用することにより熱交換面積を拡大すると共に、外管
と内管の間を流れる一方の冷媒の乱流化を促進させ、二
重管熱交換器の熱交換性能を大幅に向上させることがで
きる。
As described above, according to the double-tube heat exchanger of claim 1, the heat exchange area is expanded and the outer tube is expanded by using a plurality of inner tubes twisted in a spiral shape. The turbulent flow of one of the refrigerants flowing between the inner pipe and the inner pipe can be promoted, and the heat exchange performance of the double-pipe heat exchanger can be significantly improved.

【0056】請求項2記載の二重管熱交換器によれば、
位置決め手段により、螺旋状に捻られた複数の内管の位
置関係を一定に保持することにより、内管同士の接触に
よる熱交換面積の低下を防止するとともに、外管内での
内管の偏りをなくして熱交換能力の低下を防止し、外管
と内管の間を流れる冷媒を乱流化して熱交換が効果的に
行なわれるよう補助することができる。これにより、二
重管熱交換器の熱交換性能を向上させ、部位により熱交
換性能がばらつくことなく均一に行うことができる。
According to the double tube heat exchanger of claim 2,
By maintaining the positional relationship of the plurality of spirally twisted inner tubes constant by the positioning means, it is possible to prevent the heat exchange area from decreasing due to the contact between the inner tubes and to prevent the inner tubes from being biased in the outer tube. Without this, it is possible to prevent the heat exchange capacity from deteriorating, and to make the refrigerant flowing between the outer pipe and the inner pipe turbulent to assist the effective heat exchange. As a result, the heat exchange performance of the double-tube heat exchanger can be improved, and the heat exchange performance can be uniformly performed without variation depending on the parts.

【0057】請求項3記載の二重管熱交換器によれば、
線状の部材を整形することで位置決め部材を安価に提供
することができ、二重管熱交換器のコストの低減に寄与
できる。
According to the double-tube heat exchanger of claim 3,
By shaping the linear member, the positioning member can be provided at a low cost, which can contribute to the cost reduction of the double-tube heat exchanger.

【0058】請求項4記載の二重管熱交換器の製造方法
によれば、外管をガイドとして、一度の加工で内管群に
まとめて各内管に螺旋形状を与えることができるので、
内管の加工が容易となり、二重管熱交換器を安価に供給
することができる。
According to the method for manufacturing a double-tube heat exchanger of claim 4, since the outer tube can be used as a guide, the inner tube group can be collectively processed into a spiral shape by a single process.
The inner pipe can be easily processed, and the double pipe heat exchanger can be supplied at a low cost.

【0059】請求項5記載の二重管熱交換器の製造方法
によれば、内管群を捻って螺旋形状を与えた後、外管に
挿入するので、内管を精度良く螺旋状に形成することが
でき、加工の管理が容易となるので、二重管熱交換器を
精度良く製造することができる。
According to the method of manufacturing a double-tube heat exchanger of claim 5, the inner tube group is twisted to give a spiral shape and then inserted into the outer tube, so that the inner tube is formed into a spiral shape with high accuracy. Therefore, the double tube heat exchanger can be manufactured with high accuracy because the processing can be controlled easily.

【0060】請求項6記載の二次冷媒式空気調和機によ
れば、二重管熱交換器を前記室外機送風ファンのオリフ
ィス部周囲の空き空間に効率良く配置することができ、
二次冷媒式空気調和機の小型化を実現することができ
る。
According to the secondary refrigerant type air conditioner of the sixth aspect, the double tube heat exchanger can be efficiently arranged in the empty space around the orifice portion of the outdoor unit blowing fan,
The secondary refrigerant type air conditioner can be downsized.

【0061】請求項7記載の二次冷媒式空気調和機によ
れば、単位あたりの熱交換性能が高い二重管熱交換器を
使用することにより、オリフィス部周囲の空間が狭い場
合でも十分に収納することができ、小型化を促進するこ
とができる。
According to the secondary refrigerant type air conditioner of the seventh aspect, by using the double tube heat exchanger having a high heat exchange performance per unit, even if the space around the orifice portion is narrow, it is sufficiently possible. It can be stored, and miniaturization can be promoted.

【0062】請求項8記載の二次冷媒式空気調和機によ
れば、単管から複数の内管に分流して冷媒を供給するた
めの、冷媒入口の分岐部分を鉛直方向に配置することに
より、各内管にそれぞれ冷媒を均等に分配して良好に供
給することができる。これにより、二重管熱交換器の性
能を十分に引き出し、二次冷媒式空気調和機の性能を向
上させることができる。
According to the secondary refrigerant type air conditioner of claim 8, the branch portion of the refrigerant inlet for diverting the single pipe into the plurality of inner pipes to supply the refrigerant is arranged in the vertical direction. The refrigerant can be evenly distributed to each of the inner tubes to be satisfactorily supplied. Thereby, the performance of the double-tube heat exchanger can be sufficiently brought out, and the performance of the secondary refrigerant type air conditioner can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る二重管熱交換器の実施の形態を示
す一部切欠き斜視図である。
FIG. 1 is a partially cutaway perspective view showing an embodiment of a double pipe heat exchanger according to the present invention.

【図2】図1に示すA−A’断面図である。FIG. 2 is a cross-sectional view taken along the line A-A ′ shown in FIG.

【図3】本発明に係る二重管熱交換器を用いた二次冷媒
式空気調和機の実施の形態を示す室外機の一部分解斜視
図である。
FIG. 3 is a partially exploded perspective view of an outdoor unit showing an embodiment of a secondary refrigerant type air conditioner using a double tube heat exchanger according to the present invention.

【図4】同二重管熱交換器のスペーサの変形例を示し、
(a)はスペーサの正面図、(b)はスペーサの形成手
順を説明する説明図である。
FIG. 4 shows a modified example of the spacer of the double-tube heat exchanger,
(A) is a front view of a spacer, (b) is explanatory drawing explaining the formation procedure of a spacer.

【図5】従来の二重管熱交換器を示す切欠き斜視図であ
る。
FIG. 5 is a cutaway perspective view showing a conventional double-tube heat exchanger.

【図6】従来の二次冷媒式空気調和機を示す室外機の一
部切欠き斜視図である。
FIG. 6 is a partially cutaway perspective view of an outdoor unit showing a conventional secondary refrigerant type air conditioner.

【符号の説明】[Explanation of symbols]

W 水 F フロン 1 外管 2A,2B 接続継手 3A〜3D 内管 3a 冷媒入口 3b 冷媒出口 4 冷媒通路 4a 水入口 4b 水出口 5 入口分岐継手 6 出口接続継手 7 スペーサ 7a 薄板 7b 合わせ部 8 スペーサ 8a 線材 10 熱交換器 21 室外機 22 圧縮機 23 室外熱交換器 24 室外ファン 25 オリフィス部 26 エアガイダ 31 水タンク 32 水ポンプ 33 水戻り口 34 水往き口 W water F CFC 1 outer tube 2A, 2B connection joint 3A-3D inner tube 3a Refrigerant inlet 3b Refrigerant outlet 4 Refrigerant passage 4a water inlet 4b water outlet 5 inlet branch fittings 6 outlet connection fittings 7 Spacer 7a thin plate 7b mating part 8 spacers 8a wire 10 heat exchanger 21 outdoor unit 22 compressor 23 Outdoor heat exchanger 24 outdoor fan 25 Orifice part 26 Air Guider 31 water tank 32 water pump 33 Water return port 34 Water outlet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 成人 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 渡邊 幸男 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 3L054 BC01 3L103 AA35 BB38 CC02 CC12 DD05 DD38    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yamaguchi Adult             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Yukio Watanabe             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 3L054 BC01                 3L103 AA35 BB38 CC02 CC12 DD05                       DD38

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】一次側冷媒および二次側冷媒の一方の冷媒
が流送される外管と、 該外管内で外管の軸心周りに螺旋状に捻られて配置され
他方の冷媒が流送される複数の内管とを具備し、 前記外管に流送される一方の冷媒と内管に流送され他方
の冷媒との間で熱交換するように構成したことを特徴と
する二重管熱交換器。
1. An outer pipe to which one of a primary-side refrigerant and a secondary-side refrigerant is sent, and an outer pipe in which the other refrigerant is arranged so as to be spirally twisted around the axis of the outer pipe. A plurality of inner pipes to be sent, wherein one of the refrigerants sent to the outer pipe and the other refrigerant sent to the inner pipe are configured to exchange heat with each other. Heavy pipe heat exchanger.
【請求項2】外管内で各内管の位置を保持するとともに
他方の冷媒を乱流化する位置決め部材を所定の間隔ごと
に配置したことを特徴とする請求項1記載の二重管熱交
換器。
2. The double-tube heat exchange according to claim 1, wherein positioning members for holding the positions of the respective inner tubes in the outer tube and turbulently flowing the other refrigerant are arranged at predetermined intervals. vessel.
【請求項3】位置決め部材を、各内管の周囲に外嵌され
た線状の部材により構成したことを特徴とする請求項2
記載の二重管熱交換器。
3. The positioning member is constituted by a linear member fitted around the inner pipe.
The described double-tube heat exchanger.
【請求項4】一次側冷媒および二次側冷媒の一方の冷媒
が流送される外管内に、該外管の軸心周りに螺旋状に捻
られて他方の冷媒が流送される複数の内管を配置した二
重管熱交換器を製造するに際して、 前記外管内に、複数の直管状内管を束ねた内管群を挿入
し、 前記内管群の両端部を外管の軸心周りに捻って、前記内
管をそれぞれ螺旋形状に形成することを特徴とした二重
管熱交換器の製造方法。
4. A plurality of refrigerants, which are spirally twisted around the axis of the outer tube and are sent to the other refrigerant, inside an outer tube to which one of the primary side refrigerant and the secondary side refrigerant is sent. When manufacturing a double-tube heat exchanger in which an inner tube is arranged, in the outer tube, an inner tube group in which a plurality of straight tubular inner tubes are bundled is inserted, and both ends of the inner tube group are arranged at the axial center of the outer tube. A method of manufacturing a double-tube heat exchanger, characterized by twisting around to form each of the inner tubes in a spiral shape.
【請求項5】一次側冷媒および二次側冷媒の一方の冷媒
が流送される外管内に、該外管の軸心周りに螺旋状に捻
られて他方の冷媒が流送される複数の内管を配置した二
重管熱交換器を製造するに際して、 複数の直管状内管を束ねて内管群を形成し、 前記内管群の両端部を保持して内管群を軸心周りに捻り
各内管を螺旋形状に形成して螺旋形状の内管群を形成
し、 前記内管群を外管内に挿入することを特徴とした二重管
熱交換器の製造方法。
5. A plurality of refrigerants, which are spirally twisted around the axis of the outer tube and are sent to the other refrigerant, in an outer tube to which one of the primary side refrigerant and the secondary side refrigerant is sent. When manufacturing a double-tube heat exchanger in which the inner tubes are arranged, a plurality of straight tubular inner tubes are bundled to form an inner tube group, and both ends of the inner tube group are held to keep the inner tube group around the axial center. A method for manufacturing a double-tube heat exchanger, characterized in that each inner tube is twisted to form a spiral shape to form a spiral inner tube group, and the inner tube group is inserted into the outer tube.
【請求項6】冷凍ヒートポンプサイクルを用いて一次側
冷媒の冷却あるいは加熱を行なう室外機と、該室外機に
設けられて一次側冷媒と二次側冷媒の間で熱交換を行う
中間熱交換器と、前記二次側冷媒により冷却あるいは加
熱して空気調和を行なう室内機とを具備し、 前記中間熱交換器を二重管熱交換器により構成して前記
室外機の送風ファンのオリフィス部周囲に配置したこと
を特徴とする二次冷媒式空気調和機。
6. An outdoor unit for cooling or heating a primary side refrigerant using a refrigeration heat pump cycle, and an intermediate heat exchanger provided in the outdoor unit for exchanging heat between the primary side refrigerant and the secondary side refrigerant. And an indoor unit that cools or heats the secondary side refrigerant to perform air conditioning, and the intermediate heat exchanger is configured by a double-tube heat exchanger to surround the orifice portion of the blower fan of the outdoor unit. A secondary refrigerant type air conditioner, which is characterized in that
【請求項7】中間熱交換器を請求項1乃至3のいずれか
に記載の二重管熱交換器により構成したことを特徴とす
る請求項6記載の二次冷媒式空気調和機。
7. The secondary refrigerant air conditioner according to claim 6, wherein the intermediate heat exchanger is constituted by the double-tube heat exchanger according to any one of claims 1 to 3.
【請求項8】単一管と複数の内管との間で冷媒を分岐ま
たは合流する二重管熱交換器の冷媒入口および冷媒出口
のうち、少なくとも冷媒入口を、冷媒の分岐部分の流れ
が鉛直方向となるよう配置したことを特徴とする請求項
6または7記載の二次冷媒式空気調和機。
8. A refrigerant inlet and a refrigerant outlet of a double pipe heat exchanger for branching or joining the refrigerant between a single pipe and a plurality of inner pipes, wherein at least the refrigerant inlet has a flow at a branched portion of the refrigerant. The secondary refrigerant type air conditioner according to claim 6 or 7, wherein the secondary refrigerant type air conditioner is arranged in a vertical direction.
JP2001352485A 2001-11-19 2001-11-19 Secondary refrigerant air conditioner Expired - Fee Related JP3803282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001352485A JP3803282B2 (en) 2001-11-19 2001-11-19 Secondary refrigerant air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001352485A JP3803282B2 (en) 2001-11-19 2001-11-19 Secondary refrigerant air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006054239A Division JP2006189249A (en) 2006-03-01 2006-03-01 Double pipe heat exchanger

Publications (3)

Publication Number Publication Date
JP2003156294A true JP2003156294A (en) 2003-05-30
JP2003156294A5 JP2003156294A5 (en) 2005-06-09
JP3803282B2 JP3803282B2 (en) 2006-08-02

Family

ID=19164652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001352485A Expired - Fee Related JP3803282B2 (en) 2001-11-19 2001-11-19 Secondary refrigerant air conditioner

Country Status (1)

Country Link
JP (1) JP3803282B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100802176B1 (en) 2006-08-29 2008-02-12 고등기술연구원연구조합 Condensation apparatus of gas mixture
JP2008267632A (en) * 2007-04-17 2008-11-06 Matsushita Electric Ind Co Ltd Heat exchanger
JP2009068764A (en) * 2007-09-13 2009-04-02 T Rad Co Ltd Double pipe heat exchanger
JP2010175223A (en) * 2009-02-02 2010-08-12 Mitsubishi Electric Corp Heat pump water heater
JP2011085332A (en) * 2009-10-16 2011-04-28 Hitachi Ltd Intermediate heat exchanger and air-conditioning hot water supply system using the same
JP2011163640A (en) * 2010-02-09 2011-08-25 Panasonic Corp Heat exchanger
EP2539645A2 (en) * 2010-02-23 2013-01-02 Agreenability, LLC Twisted conduit for geothermal heating and cooling systems
DE102011118761A1 (en) * 2011-11-17 2013-05-23 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Internal heat exchanger for a motor vehicle air conditioning system
EP2148161A3 (en) * 2008-07-24 2014-01-01 Delphi Technologies, Inc. Internal heat exchanger assembly
JPWO2013094049A1 (en) * 2011-12-22 2015-04-27 株式会社日本イトミック Heat pump type heat source machine
US9279621B2 (en) 2010-08-12 2016-03-08 GM Global Technology Operations LLC Internal heat exchanger for a motor vehicle air-conditioning system
JP2016211770A (en) * 2015-05-06 2016-12-15 株式会社アクアノエル Heat exchange body, heat exchange unit and air conditioning system
RU173387U1 (en) * 2016-11-15 2017-08-24 Общество с ограниченной ответственностью "Прогресс" SECTIONAL COIL HEAT EXCHANGER
US9909783B2 (en) 2010-02-23 2018-03-06 Robert Jensen Twisted conduit for geothermal heat exchange
KR101826452B1 (en) * 2007-06-07 2018-03-22 데카 프로덕츠 리미티드 파트너쉽 Water vapor distillation apparatus, method and system
EP3358271A1 (en) * 2017-02-07 2018-08-08 Aic Spó Ka Akcyjna Water heater and a pipe coil for a heat exchanger, in particular an exchanger intended for that specific water heater
CN111288819A (en) * 2020-03-24 2020-06-16 常州市常蒸热交换器科技有限公司 High-efficient cooling body of two refrigerants
CN113048817A (en) * 2021-03-16 2021-06-29 金竟(广州)科技有限责任公司 Manufacturing method of heat exchange device
KR102295350B1 (en) * 2021-05-03 2021-08-31 더블유아이엠 주식회사 Cooling water cooling apparatus for generating ozone using heat exchange method and system comprising the same
KR102385311B1 (en) * 2021-04-08 2022-04-11 주식회사 차고엔지니어링 Multi chiller system
JP2023049748A (en) * 2021-09-29 2023-04-10 セントラル・エンジニアリング株式会社 Heat releasing device, heat releasing method, power generation apparatus and power generation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110822943B (en) * 2019-10-12 2021-01-29 西安交通大学 Split type spiral coiling type sleeve heat exchanger

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100802176B1 (en) 2006-08-29 2008-02-12 고등기술연구원연구조합 Condensation apparatus of gas mixture
JP2008267632A (en) * 2007-04-17 2008-11-06 Matsushita Electric Ind Co Ltd Heat exchanger
KR101826492B1 (en) * 2007-06-07 2018-03-22 데카 프로덕츠 리미티드 파트너쉽 Water vapor distillation apparatus, method and system
EP3730458A1 (en) * 2007-06-07 2020-10-28 DEKA Products Limited Partnership Water vapor distillation apparatus, method and system
KR101826452B1 (en) * 2007-06-07 2018-03-22 데카 프로덕츠 리미티드 파트너쉽 Water vapor distillation apparatus, method and system
JP2009068764A (en) * 2007-09-13 2009-04-02 T Rad Co Ltd Double pipe heat exchanger
EP2148161A3 (en) * 2008-07-24 2014-01-01 Delphi Technologies, Inc. Internal heat exchanger assembly
JP2010175223A (en) * 2009-02-02 2010-08-12 Mitsubishi Electric Corp Heat pump water heater
EP2489972A1 (en) * 2009-10-16 2012-08-22 Hitachi, Ltd. Intermediate heat exchanger and air-conditioning hot-water supply system using same
EP2489972A4 (en) * 2009-10-16 2014-11-26 Hitachi Ltd Intermediate heat exchanger and air-conditioning hot-water supply system using same
JP2011085332A (en) * 2009-10-16 2011-04-28 Hitachi Ltd Intermediate heat exchanger and air-conditioning hot water supply system using the same
JP2011163640A (en) * 2010-02-09 2011-08-25 Panasonic Corp Heat exchanger
EP2539645A2 (en) * 2010-02-23 2013-01-02 Agreenability, LLC Twisted conduit for geothermal heating and cooling systems
EP2539645A4 (en) * 2010-02-23 2014-11-19 Agreenability Llc Twisted conduit for geothermal heating and cooling systems
US9909783B2 (en) 2010-02-23 2018-03-06 Robert Jensen Twisted conduit for geothermal heat exchange
US9109813B2 (en) 2010-02-23 2015-08-18 Robert Jensen Twisted conduit for geothermal heating and cooling systems
US9279621B2 (en) 2010-08-12 2016-03-08 GM Global Technology Operations LLC Internal heat exchanger for a motor vehicle air-conditioning system
DE102011118761A1 (en) * 2011-11-17 2013-05-23 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Internal heat exchanger for a motor vehicle air conditioning system
JPWO2013094049A1 (en) * 2011-12-22 2015-04-27 株式会社日本イトミック Heat pump type heat source machine
JP2016211770A (en) * 2015-05-06 2016-12-15 株式会社アクアノエル Heat exchange body, heat exchange unit and air conditioning system
RU173387U1 (en) * 2016-11-15 2017-08-24 Общество с ограниченной ответственностью "Прогресс" SECTIONAL COIL HEAT EXCHANGER
EP3358271A1 (en) * 2017-02-07 2018-08-08 Aic Spó Ka Akcyjna Water heater and a pipe coil for a heat exchanger, in particular an exchanger intended for that specific water heater
CN111288819A (en) * 2020-03-24 2020-06-16 常州市常蒸热交换器科技有限公司 High-efficient cooling body of two refrigerants
CN113048817A (en) * 2021-03-16 2021-06-29 金竟(广州)科技有限责任公司 Manufacturing method of heat exchange device
KR102385311B1 (en) * 2021-04-08 2022-04-11 주식회사 차고엔지니어링 Multi chiller system
KR102295350B1 (en) * 2021-05-03 2021-08-31 더블유아이엠 주식회사 Cooling water cooling apparatus for generating ozone using heat exchange method and system comprising the same
JP2023049748A (en) * 2021-09-29 2023-04-10 セントラル・エンジニアリング株式会社 Heat releasing device, heat releasing method, power generation apparatus and power generation method
JP7486128B2 (en) 2021-09-29 2024-05-17 セントラル・エンジニアリング株式会社 Heat removal device, heat removal method, power generation device, and power generation method

Also Published As

Publication number Publication date
JP3803282B2 (en) 2006-08-02

Similar Documents

Publication Publication Date Title
JP2003156294A (en) Duplex tube heat exchanger, its manufacturing method and secondary refrigerant type air conditioner using duplex tube heat exchanger
JP4987685B2 (en) Double tube heat exchanger, method for manufacturing the same, and heat pump system including the same
EP2762820B1 (en) Air conditioner and heat exchanger therefor
US7546867B2 (en) Spirally wound, layered tube heat exchanger
JP2004219052A (en) Heat exchanger
JPH04187990A (en) Heat exchanging device
US20090032224A1 (en) Heat exchanger
JP2011106738A (en) Heat exchanger and heat pump system
CN105526710A (en) Internal condenser for heat pump water heater
JP2006336894A (en) Heat pump water heater
JP2006189249A (en) Double pipe heat exchanger
JP2005133999A (en) Heat pump type hot-water supplier
US20060108107A1 (en) Wound layered tube heat exchanger
US20110209857A1 (en) Wound Layered Tube Heat Exchanger
JP2004347258A (en) Heat exchanger
KR100273084B1 (en) heat transmitter
JP2004340455A (en) Heat exchanger
JP2004218945A (en) Heat exchanger and method of manufacturing the same
JP2003222436A (en) Heat exchanger for heat pump type air conditioner
CN218634655U (en) Radiator and variable frequency air conditioning system
CN112179164B (en) Fin type heat exchanger and refrigeration equipment
KR20060096840A (en) Tube type heat-exchanger structure for airconditioner
WO2018098991A1 (en) Evaporator pipeline, evaporator, and air conditioner
KR20030042708A (en) Heat exchanger for air conditioner
KR20080089972A (en) Heat exchanger of air conditioner and manufacturing method of the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060502

LAPS Cancellation because of no payment of annual fees