JP3803282B2 - Secondary refrigerant air conditioner - Google Patents

Secondary refrigerant air conditioner Download PDF

Info

Publication number
JP3803282B2
JP3803282B2 JP2001352485A JP2001352485A JP3803282B2 JP 3803282 B2 JP3803282 B2 JP 3803282B2 JP 2001352485 A JP2001352485 A JP 2001352485A JP 2001352485 A JP2001352485 A JP 2001352485A JP 3803282 B2 JP3803282 B2 JP 3803282B2
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
heat exchanger
air conditioner
flowed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001352485A
Other languages
Japanese (ja)
Other versions
JP2003156294A (en
JP2003156294A5 (en
Inventor
義和 川邉
智朗 安藤
成人 山口
幸男 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001352485A priority Critical patent/JP3803282B2/en
Publication of JP2003156294A publication Critical patent/JP2003156294A/en
Publication of JP2003156294A5 publication Critical patent/JP2003156294A5/ja
Application granted granted Critical
Publication of JP3803282B2 publication Critical patent/JP3803282B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/022Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of two or more media in heat-exchange relationship being helically coiled, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2240/00Spacing means

Abstract

PROBLEM TO BE SOLVED: To improve performance of a duplex tube heat exchanger. SOLUTION: A secondary refrigerant passage 4 in a clearance between positions of inner pipes 3A-3D and an outer pipe 1 is maintained constant by spacers 7 mounted with specified intervals by arranging a plurality of inner pipes 3A-3D twisted in a spiral shape respectively around an shaft center of the outer pipe 1 inside the outer pipe 1. A heat exchanging area is increased by making the inner pipes in a spiral shape of a plurality of numbers, and the heat transfer performance is increased by promoting turbulence of water flowing in the secondary refrigerant passage of the outer pipe and the inner pipes.

Description

【0001】
【発明の属する技術分野】
本発明は、一次側冷媒と二次側冷媒の熱交換を行う二重管熱交換器より熱交換された二次側冷媒を使用して空気調和を行う二次冷媒式空気調和機に関するものである。
【0002】
【従来の技術】
従来の二重管熱交換器は、外管に遊嵌された内管を具備し、外管と内管との間の隙間に一次側冷媒(または二次側冷媒)を流すとともに、内管に二次側冷媒(または一次側冷媒)を流して熱交換するものであり、構造が簡素で安価に製造することができるため、たとえば二次冷媒式空気調和機の中間熱交換器として採用されている。
【0003】
図5は二重管熱交換器の従来例を示す。外管101の内部に熱交換性能を高めるための複数のフィン102aが外周部一定間隔(角度)ごとに軸心方向に沿って突設された内管102挿入されている。この従来の二重管熱交換器は、外管101と内管102の隙間103に一次側冷媒であるフロンを、内管102の内部104に二次側冷媒であるブラインを流して熱交換をっている。
【0004】
図5では、高性能化のためにフィン102a付の内管102を用いたが、内管102の形状にも様々な形状があり、断面が花びら形状の内管や、螺旋状にねじりを与えたような特殊なフィン付の内管を用いたりする例もある。
【0005】
また、内管,外管は通常の管を用い、外管と内管の隙間を流れる冷媒の流れが内管の周りを螺旋状に流れるように、外管と内管の隙間に糸あるいは板状の部材を挿入した例もある。
【0006】
ところで、上記二重管熱交換器を採用した中間熱交換器により、一次側冷媒と二次側冷媒の熱交換を行、二次側冷媒を使用して空気調和を行従来の二次冷媒式空気調和機は、中間熱交換器を室外機に設置するために、図6に示す形態が採用されている。
【0007】
すなわち、図6に示す二次冷媒式空気調和機は、外気と熱交換するための室外熱交換器や圧縮機、その関連部品を収めた室外機本体110の上部に、中間熱交換器である二重管熱交換器120やポンプ125、水タンク126などの部品を収めた中間熱交換ユニットボックス117を配置する構成を採用している。
【0008】
そして、室外機110と熱交換ユニットボックス117の各部品とは、接続管111、112により接続されてフロンが循環される。また二重管熱交換器120では、フロンと水が熱交換して温水が作られ、水接続管115により室内機へ送られて室内に放熱した後、水接続管116を介して二重管熱交換器120に戻される。
【0009】
冷媒接続管113、114は一次冷媒を供給するために別に設けられた冷媒回路で、他の室内機に接続され暖房あるいは冷房をうことができる。
【0010】
【発明が解決しようとする課題】
しかしながら、上記従来の二重管熱交換器およびこれを用いた二次冷媒式空気調和機においては、下記のような問題があった。
【0011】
従来の二重管熱交換器は、内管102にフィン付管や花柄断面の管などを使用しても、通常のベア管を使用するのに比較して数十パーセントの性能向上にしかならない。またフィン付内管や花びら断面内管の管自体のコストが高く、また曲げ加工も困難であるためその配置に自由度が低く、二重管熱交換器全体の製造コストが高くなるという問題があった。
【0012】
また二次冷媒式空気調和機では、二重管熱交換器120が一次冷媒を直接室内機へ送る方式の室外機と同一の室外機本体110の上に、熱交換ユニットボックス117を設置した形態となり、室外機本体が大型化してしまうという問題があった。
【0013】
本発明は上記問題点を解決して効率良く収納して室外機を小型できる高性能の二重管熱交換器を用いた二次冷媒式空気調和機提供することを目的とする。
【0014】
【課題を解決するための手段】
上記目的を達成するために請求項1記載の二次冷媒式空気調和機は、冷凍ヒートポンプサイクルを用いて一次側冷媒の冷却あるいは加熱を行う室外機と、該室外機に設けられて前記一次側冷媒と二次側冷媒の間で熱交換を行う中間熱交換器と、前記二次側冷媒により冷却あるいは加熱して空気調和を行う室内機とを具備し、前記中間熱交換器を二重管熱交換器により構成して前記室外機の送風ファンのオリフィス部周囲に配置したものである。
【0015】
上記構成によれば、二重管熱交換器を前記室外機送風ファンのオリフィス部周囲の空き空間に効率良く配置することができ、二次冷媒式空気調和機の小型化を実現することができる。
【0016】
請求項2記載の二次冷媒式空気調和機は、請求項1記載の二次冷媒式空気調和機において、前記中間熱交換器を、前記一次側冷媒および前記二次側冷媒の一方の冷媒が流送される外管と、前記外管内で前記外管の軸心周りに螺旋状に捻られて配置され他方の冷媒が流送される複数の内管とを具備し、前記外管に流送される一方の冷媒と前記各内管に流送される他方の冷媒との間で熱交換するように構成した二重管熱交換器により構成したものである。
【0017】
上記構成によれば、螺旋形状に捻られた複数の内管を使用することにより熱交換面積を拡大すると共に、外管と内管の間を流れる一方の冷媒の乱流化を促進させ、二重管熱交換器の熱交換性能を大幅に向上させることができる。よって、このように単位あたりの熱交換性能が高い二重管熱交換器を使用することにより、オリフィス部周囲の空間が狭い場合でも十分に収納することができ、二次冷媒式空気調和機の小型化を促進することができる。
【0018】
請求項3記載の二次冷媒式空気調和機は、請求項1記載の二次冷媒式空気調和機において、前記中間熱交換器を、前記一次側冷媒および前記二次側冷媒の一方の冷媒が流送される外管と、前記外管内で前記外管の軸心周りに螺旋状に捻られて配置され他方の冷媒が流送される複数の内管と、前記外管内で前記各内管の位置を保持するとともに他方の冷媒を乱流化する複数の位置決め部材とを具備し、前記外管に流送される一方の冷媒と前記各内管に流送される他方の冷媒との間で熱交換するように構成し、かつ前記各位置決め部材を所定の間隔ごとに配置した二重管熱交換器により構成したものである。
【0019】
上記構成によれば、螺旋形状に捻られた複数の内管を使用することにより熱交換面積を拡大すると共に、外管と内管の間を流れる一方の冷媒の乱流化を促進させ、二重管熱交換器の熱交換性能を大幅に向上させることができる。さらに、位置決め手段により、螺旋状に捻られた複数の内管の位置関係を一定に保持することにより、内管同士の接触による熱交換面積の低下を防止するとともに、外管内での内管の偏りをなくして熱交換能力の低下を防止し、外管と内管の間を流れる冷媒を乱流化して熱交換が効果的に行われるよう補助することができる。これにより、二重管熱交換器の熱交換性能を向上させ、部位により熱交換性能がばらつくことなく均一に行うことができる。よって、このように単位あたりの熱交換性能が高い二重管熱交換器を使用することにより、オリフィス部周囲の空間が狭い場合でも十分に収納することができ、二次冷媒式空気調和機の小型化を促進することができる。
【0020】
請求項4記載の二次冷媒式空気調和機は、請求項1記載の二次冷媒式空気調和機において、前記中間熱交換器を、前記一次側冷媒および前記二次側冷媒の一方の冷媒が流送される外管と、前記外管内で前記外管の軸心周りに螺旋状に捻られて配置され他方の冷媒が流送される複数の内管と、前記外管内で前記各内管の位置を保持するとともに他方の冷媒を乱流化する、前記各内管の周囲に外嵌された線状の部材により構成した複数の位置決め部材とを具備し、前記外管に流送される一方の冷媒と前記各内管に流送される他方の冷媒との間で熱交換するように構成し、かつ前記各位置決め部材を所定の間隔ごとに配置した二重管熱交換器により構成したものである。
【0021】
上記構成によれば、螺旋形状に捻られた複数の内管を使用することにより熱交換面積を拡大すると共に、外管と内管の間を流れる一方の冷媒の乱流化を促進させ、二重管熱交換器の熱交換性能を大幅に向上させることができる。さらに、位置決め手段により、螺旋状に捻られた複数の内管の位置関係を一定に保持することにより、内管同士の接触による熱交換面積の低下を防止するとともに、外管内での内管の偏りをなくして熱交換能力の低下を防止し、外管と内管の間を流れる冷媒を乱流化して熱交換が効果的に行われるよう補助することができる。これにより、二重管熱交換器の熱交換性能を向上させ、部位により熱交換性能がばらつくことなく均一に行うことができる。よって、このように単位あたりの熱交換性能が高い二重管熱交換器を使用することにより、オリフィス部周囲の空間が狭い場合でも十分に収納することができ、二次冷媒式空気調和機の小型化を促進することができる。また、線状の部材を整形することで位置決め部材を安価に提供することができ、二重管熱交換器および二次冷媒式空気調和機のコストの低減に寄与できる。
【0022】
請求項5記載の二次冷媒式空気調和機は、請求項1ないし4のいずれかに記載の二次冷媒式空気調和機において、単一管と複数の内管との間で冷媒を分岐または合流する二重管熱交換器の冷媒入口および冷媒出口のうち、少なくとも冷媒入口を、冷媒の分岐部分の流れが鉛直方向となるよう配置したものである。
【0023】
上記構成によれば、単管から複数の内管に分流して冷媒を供給するための、冷媒入口の分岐部分を鉛直方向に配置することにより、各内管にそれぞれ冷媒を均等に分配して良好に供給することができる。これにより、二重管熱交換器の性能を十分に引き出し、二次冷媒式空気調和機の性能を向上させることができる。
【0024】
【発明の実施の形態】
以下、本発明に係る二次冷媒式空気調和機を構成する二重管熱交換器の実施の形態を図1および図2を参照して説明する。
【0025】
図1に示すように、円形断面の外管1には、両側に接続継手2A,2Bが取り付けられ、これら接続継手2A,2B間の外管1内に、外管1の軸心周りにそれぞれ螺旋状に捻られて一次側冷媒であるフロンFを流送する複数(図では4本)の内管3A〜3Dが配置されている。そして、外管1内には、外管1と内管3A〜3Dの間および内管3A〜3Dとの隙間に二次側冷媒である水Wを流送する二次側冷媒通路4が形成されている。
【0026】
外管1の両端側には、内管3A〜3Dを接続継手2A,2Bからそれぞれ真っ直ぐに取り出して取り出し口を1つにまとめた入口分岐継手5および出口分岐継手6とがそれぞれ設けられており、入口分岐継手5に冷媒入口3aが形成されるとともに出口分岐継手6に冷媒出口3bが形成されている。また冷媒入口a側の接続継手2Aに二次側冷媒通路4から水Wを排出する水出口4bが形成され、また冷媒出口3b側の接続継手2Bに二次側冷媒通路4に水Wを供給する水入口4aが形成されている。
【0027】
また外管1内には長さ方向に所定の間隔ごと位置決め部材であるスペーサ7が配置されており、これらスペーサ7はたとえば正面視が星形に形成されて各凹部に内管3A〜3Dが保持され、これにより、内管3A〜3D同士の隙間および内管3A〜3Dと外管1の内面の隙間を全長にわたって一定に保持するとともに、二次側冷媒通路4に流送される水Wに乱流を形成するように構成されている。したがって、前記スペーサ7により内管3A〜3D同士の接触による熱交換面積の低下や、外管1内における内管3A〜3Dの偏りによる熱交換能力の低下を防ぐことができる。
【0028】
またこれらスペーサ7は、金属製や樹脂製などの1枚の薄板7aを内管3A〜3Dを保持する凹部を形成するたとえば星形形状に曲げ加工したもので、両端部に合せ部7bが設けられている。なおスペーサ7を形成するにあたっては、必ずしも薄板を使用する必要はないが、薄板にすれば簡単な曲げ加工で形成できる。
【0029】
なお、位置決め部材として、図4に示すように、線材8a内管3A〜3Dに矢印a〜gで示す方向に巻き付け、終端をh方向に引き出して形成したスペーサ8を用いても良く、この線材8aにより内管3A〜3Dを外管1の所定位置に保持る。このスペーサ8により、加工用の型などを使用することもなく、より容易に所定の目的を果たすことができて安価に製造でき、二重管熱交換器を安価に供給することができる。
【0030】
なおこの二重管熱交換器10は、後述の二次冷媒式空気調和機に使用される時には、螺旋状に巻かれ所定の大きさにまとめられ、使用される。
上記構成において、一次側冷媒であるフロンFは、冷媒入口3aから入口分岐継手5を介して内管3A〜3Dに供給され、出口分岐継手6の冷媒出口3bから排出される。また、二次側冷媒である水Wは、接続継手2Bの水入口4aから二次冷媒通路4に供給され、接続継手2Aの水出口4bから排出され、内管3A〜3Dの管壁を介してフロンF互いに熱交換を行う。
【0031】
上記実施の形態によれば、外管1内に4本の内管3A〜3Dが挿入されているため、内管3A〜3Dの合計断面積と同じ断面積を持つ1本の内管を配置するのに比べて、断面積あたりの表面積が2倍となり、熱交換性能も約2倍となる。
【0032】
また、内管3A〜3Dはそれぞれ螺旋形状をしているため、同じ長さの外管1に挿入される各内管3A〜3Dの長さは、直管を挿入した場合に比較して長くなり、熱交換面積はさらに増加する。
【0033】
さらに、内管3A〜3Dの螺旋形状は、外管1と内管3A〜3Dの間の二次側冷媒通路4を流れる水Wと内管3A〜3Dの管壁との接触の度合いを増やし、管壁と水Wの界面における熱伝達促進る。
【0034】
さらにまた、スペーサにより、内管3A〜3D同士の隙間と内管3A〜3Dと外管1の内面の隙間が全長にわたって一定に保持されるとともに、二次側冷媒通路4に流送される水Wに乱流を形成するので、内管3A〜3D同士の接触により熱交換面積が低下することなく、また外管1内における内管3A〜3Dの偏りにより熱交換能力が低下することもない。また水Wに形成される乱流により、水Wが混合されて熱伝達効率の向上を図ることができる。したがって、二重管熱交換器10の熱交換性能を大幅に向上させることができる。
【0035】
次に上記二重管熱交換器10の製造方法について説明する。
二重管熱交換器10の製造方法としては、それぞれ螺旋状に成形した内管を組み上げるのではなく、直管状の内管を束ねた後一括して螺旋形状を与えるのが効率的である。
【0036】
すなわち、第1の製造方法、まず所定本数(図では4本)の直管状内管3A〜3Dを束ねた内管群を外管1に挿入した後、内管群の両端部を治具等を使用して所定の配置で固定し、ついで治具を介して外管1の軸心周りに内管群に捻りを加える方法である。
【0037】
上記方法によれば、外管1が内管3A〜3Dの可動範囲を規制するガイドパイプ的な役割を果すので、簡単な治具を使用するだけで内管群の各内管3A〜3Dに螺旋形状を付与することができる。従って、二重管熱交換器を安価に供給することができる。
【0038】
また第2の製造方法、所定本数(図では4本)の直管状内管3A〜3Dを束ねた内管群を、所定の配置で固定し、内管群に軸心周りの捻りを加えて螺旋形状を形成した後、外管1に挿入する方法である。
【0039】
上記方法によれば、内管3A〜3Dを外管1に挿入する前に螺旋形状を形成するため、加工工程の管理が容易となる。また、内管3A〜3D同士の位置決め手段であるスペーサ7(8)を取付けた後、内管群を螺旋形状に形成することにより、スペーサ7(8)が内管3A〜3Dの可動範囲を規制するので、簡単な治具を使用するだけで螺旋形状を形成することができる。さらに、内管3A〜3Dを直接操作できる状態で螺旋形状を付与するので、加工の管理が容易となり、製造の精度を向上することができる。
【0040】
なお、二重管熱交換器10の外管1や内管3A〜3Dの材料としては、熱伝導性や加工性に優れた銅材が適しているが、耐食性に優れたステンレス材やチタン材を用いても同様の効果が得られることはいうまでもない。また高圧がかからない外管1に、樹脂材料を用いることもでき、樹脂材料の外管1に放熱による熱損失を抑える断熱効果があるので、外管1を覆う断熱部材を削除または軽減することができる。
【0041】
また上記実施の形態では、内管にベア管3A〜3Dを使用したが、空気調和機の空気熱交換器で良く用いられる溝付管を使用することにより、さらに熱交換性能を向上させることができる。
【0042】
さらに二重管熱交換器10におけるフロンFと水Wの流れは相対向する対向流であるが、目的に応じて同一方向の並行流としても同様の効果を得ることができる。またフロンFと水Wに代えて、他の冷媒を使用しても同様の効果を得ることができる。
【0043】
次に上記二重管熱交換器を使用した二次冷媒式熱交換器の実施の形態を図3を参照して説明する。
二重管熱交換器を用いた空気調和機の室外機21、圧縮機22、室外熱交換器23、室外ファン24、オリフィス部25を持つエアガイダー26、電装部27、四方弁28、二重管熱交換器10、水タンク31、水ポンプ32などで構成されている。なお、図3では説明の関係上、膨張弁や筐体の一部を省略して図示している。
【0044】
上記室外機21において、一次側冷媒であるフロンFは圧縮機22で圧縮された後、四方弁28を通り、冷媒往き口41を経て冷媒入口3aから二重管熱交換器10に入る。そして、冷媒出口3bに至る間に放熱凝縮した後、冷媒戻り口42から膨張弁(図示せず)を通り、室外熱交換器23で吸熱蒸発して四方弁28を通って圧縮機22に戻る。
【0045】
二次側冷媒である水Wは水ポンプ32により循環されており、室内からの戻り口33を介して回収された水Wが、二重管熱交換器10の水入口4aに入り、水出口4bに至る間に加熱され温水となって水タンク31に入る。温水Wは水タンク31から水ポンプ32を経て室内への往き口34を介して室内機に送り出され、放熱して戻り口33に戻る。
【0046】
以上は、温水を作り暖房を行う場合であるが、四方弁28で流れを変えて、室外熱交換器23でフロンFを放熱凝縮させ、二重管熱交換器10で吸熱蒸発させて冷水を作ることも可能である。
【0047】
本発明は、二重管熱交換器10は螺旋状に巻くことにより収納に大きな空間を必要とするが、中央部に中空部ができる点に着目した。一方、室外機21には室外ファン24の風下側にオリフィスが必要であり、エアガイダー26のオリフィス部25の外周部分には、螺旋状に巻かれた二重管熱交換器10を収容可能な円筒状に大きい空間が生じている点に着目した。
【0048】
すなわち、この実施の形態では、オリフィス部25の外周部に生じた空間に二重管熱交換器10を配置して収納している。ここで、従来の二重管熱交換器を使用しても同様の配置が可能であるが、先の実施の形態で説明した二重管熱交換器10を使用すれば、単位長さ当りの熱交換性能が高いため、長さを短くでき、オリフィス部25の外周部の僅かな空間でも、十分に二重管熱交換器10の収納が可能である。これにより、二重管熱交換器10を用いた二次冷媒式空気調和機の室外機21を小型化することができる。なお、水ポンプ32と水タンク31はエアガイダー26と室外機21の筐体(ケース)の間に配置されている。
【0049】
またこのように螺旋状に巻かれた二重管熱交換器10では、冷媒入口3aの単パス(単一管)である冷媒入口3aから複数パスである内管3A〜3Dへの分流部、および複数パスである内管3A〜3Dから単パスである冷媒出口3bの合流部で、均等な分配と合流が行われないと、熱交換性能の低下をもたらす原因となる。このため、この実施の形態では、冷媒の送りこみあるいは取りだしとなる接続継手2A,2B部分が、内管3〜3の鉛直下側となるよう配置することにより、フロンFの分流を均等に保つように構成されている。これにより、熱交換性能を十分に引き出すことが可能であり、二重管熱交換器10を用いた二次冷媒式空気調和機の性能をさらに向上させることができる。
【0050】
【発明の効果】
以上に述べたごとく請求項1記載の二次冷媒式空気調和機によれば、二重管熱交換器を前記室外機送風ファンのオリフィス部周囲の空き空間に効率良く配置することができ、二次冷媒式空気調和機の小型化を実現することができる。
【0051】
請求項2記載の二次冷媒式空気調和機によれば、螺旋形状に捻られた複数の内管を使用することにより熱交換面積を拡大すると共に、外管と内管の間を流れる一方の冷媒の乱流化を促進させ、二重管熱交換器の熱交換性能を大幅に向上させることができる。このように単位あたりの熱交換性能が高い二重管熱交換器を使用することにより、オリフィス部周囲の空間が狭い場合でも十分に収納することができ、二次冷媒式空気調和機の小型化を促進することができる。
【0052】
請求項3記載の二次冷媒式空気調和機によれば、螺旋形状に捻られた複数の内管を使用することにより熱交換面積を拡大すると共に、外管と内管の間を流れる一方の冷媒の乱流化を促進させ、二重管熱交換器の熱交換性能を大幅に向上させることができる。さらに、位置決め手段により、螺旋状に捻られた複数の内管の位置関係を一定に保持することにより、内管同士の接触による熱交換面積の低下を防止するとともに、外管内での内管の偏りをなくして熱交換能力の低下を防止し、外管と内管の間を流れる冷媒を乱流化して熱交換が効果的に行われるよう補助することができる。これにより、二重管熱交換器の熱交換性能を向上させ、部位により熱交換性能がばらつくことなく均一に行うことができる。よっ て、このように単位あたりの熱交換性能が高い二重管熱交換器を使用することにより、オリフィス部周囲の空間が狭い場合でも十分に収納することができ、二次冷媒式空気調和機の小型化を促進することができる。
【0053】
請求項4記載の二次冷媒式空気調和機によれば、螺旋形状に捻られた複数の内管を使用することにより熱交換面積を拡大すると共に、外管と内管の間を流れる一方の冷媒の乱流化を促進させ、二重管熱交換器の熱交換性能を大幅に向上させることができる。さらに、位置決め手段により、螺旋状に捻られた複数の内管の位置関係を一定に保持することにより、内管同士の接触による熱交換面積の低下を防止するとともに、外管内での内管の偏りをなくして熱交換能力の低下を防止し、外管と内管の間を流れる冷媒を乱流化して熱交換が効果的に行われるよう補助することができる。これにより、二重管熱交換器の熱交換性能を向上させ、部位により熱交換性能がばらつくことなく均一に行うことができる。よって、このように単位あたりの熱交換性能が高い二重管熱交換器を使用することにより、オリフィス部周囲の空間が狭い場合でも十分に収納することができ、二次冷媒式空気調和機の小型化を促進することができる。また、線状の部材を整形することで位置決め部材を安価に提供することができ、二重管熱交換器および二次冷媒式空気調和機のコストの低減に寄与できる。
【0054】
請求項5記載の二次冷媒式空気調和機によれば、単管から複数の内管に分流して冷媒を供給するための、冷媒入口の分岐部分を鉛直方向に配置することにより、各内管にそれぞれ冷媒を均等に分配して良好に供給することができる。これにより、二重管熱交換器の性能を十分に引き出し、二次冷媒式空気調和機の性能を向上させることができる。
【図面の簡単な説明】
【図1】 本発明に係る二次冷媒式空気調和機を構成する二重管熱交換器の実施の形態を示す一部切欠き斜視図である。
【図2】 図1に示すA−A’断面図である。
【図3】 本発明に係る二重管熱交換器を用いた二次冷媒式空気調和機の実施の形態を示す室外機の一部分解斜視図である。
【図4】 同二重管熱交換器のスペーサの変形例を示し、(a)はスペーサの正面図、(b)はスペーサの形成手順を説明する説明図である。
【図5】 従来の二重管熱交換器を示す切欠き斜視図である。
【図6】 従来の二次冷媒式空気調和機を示す室外機の一部切欠き斜視図である。
【符号の説明】
W 水
F フロン
1 外管
2A,2B 接続継手
3A〜3D 内管
3a 冷媒入口
3b 冷媒出口
4 冷媒通路
4a 水入口
4b 水出口
5 入口分岐継手
6 出口分岐継手
7 スペーサ
7a 薄板
7b 合わせ部
8 スペーサ
8a 線材
10 二重管熱交換器
21 室外機
22 圧縮機
23 室外熱交換器
24 室外ファン
25 オリフィス部
26 エアガイダ
31 水タンク
32 水ポンプ
33 水戻り口
34 水往き口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a primary side refrigerant and the secondary side to the double-pipe heat exchanger for exchanging heat of the coolant by using a more heat-exchanged secondary side refrigerant secondary refrigerant type air conditioner for performing air conditioning It is.
[0002]
[Prior art]
A conventional double tube heat exchanger includes an inner tube loosely fitted to an outer tube, and flows a primary side refrigerant (or secondary side refrigerant) through a gap between the outer tube and the inner tube, The secondary side refrigerant (or the primary side refrigerant) is passed through to exchange heat, and the structure is simple and can be manufactured at low cost. For example, it is used as an intermediate heat exchanger of a secondary refrigerant type air conditioner. ing.
[0003]
Figure 5 shows the conventional example of the double-pipe heat exchanger. Inside the outer tube 101, inner tube 102 having a plurality of fins 102a to enhance the heat exchange performance is projected along the axial direction for each outer peripheral portion fixed intervals (angles) are inserted. This conventional double-tube heat exchanger performs heat exchange by flowing chlorofluorocarbon, which is a primary refrigerant, in a gap 103 between an outer tube 101 and an inner tube 102, and brine, which is a secondary refrigerant, in an inner 104 of the inner tube 102. have you line.
[0004]
In FIG. 5, the inner tube 102 with the fins 102a is used for higher performance, but there are various shapes of the inner tube 102, and the inner tube with a petal shape in cross section or a twist is applied to the spiral shape. There are also examples of using special pipes with special fins.
[0005]
In addition, normal pipes are used for the inner pipe and the outer pipe, and a thread or plate is provided in the gap between the outer pipe and the inner pipe so that the refrigerant flowing through the gap between the outer pipe and the inner pipe spirals around the inner pipe. There is also an example in which a shaped member is inserted.
[0006]
Incidentally, the intermediate heat exchanger employing a double-pipe heat exchanger described above, have rows of heat exchange of the primary refrigerant and the secondary refrigerant, the secondary air conditioning lines cormorants conventional using secondary refrigerant The refrigerant air conditioner employs the form shown in FIG. 6 in order to install the intermediate heat exchanger in the outdoor unit.
[0007]
That is, the secondary refrigerant type air conditioner shown in FIG. 6 is an intermediate heat exchanger on the upper part of the outdoor unit main body 110 containing an outdoor heat exchanger and a compressor for exchanging heat with the outside air and related parts. A configuration is adopted in which an intermediate heat exchange unit box 117 containing components such as the double pipe heat exchanger 120, the pump 125, and the water tank 126 is disposed.
[0008]
And the outdoor unit 110 and each component of the heat exchange unit box 117 are connected by the connecting pipes 111 and 112, and CFCs are circulated. In the double pipe heat exchanger 120, CFC and water exchange heat to produce hot water, which is sent to the indoor unit by the water connection pipe 115 and dissipates heat in the room, and then the double pipe through the water connection pipe 116. Returned to the heat exchanger 120.
[0009]
Refrigerant connection pipe 113, 114 is a refrigerant circuit provided separately for supplying the primary refrigerant, is connected to the other indoor unit heating or cooling can line Ukoto.
[0010]
[Problems to be solved by the invention]
However, the conventional double pipe heat exchanger and the secondary refrigerant air conditioner using the same have the following problems.
[0011]
Even if a conventional double tube heat exchanger uses a finned tube or a tube with a cross section of the flower for the inner tube 102, it can only improve the performance by several tens of percent compared to a normal bare tube. Don't be. Also, the cost of the finned inner tube and the petal cross-section inner tube itself is high, and bending is difficult, so the degree of freedom is low, and the manufacturing cost of the entire double tube heat exchanger increases. there were.
[0012]
In the secondary refrigerant type air conditioner, the heat exchanger unit box 117 is installed on the same outdoor unit body 110 as the outdoor unit in which the double pipe heat exchanger 120 sends the primary refrigerant directly to the indoor unit. Thus, there is a problem that the outdoor unit main body becomes large.
[0013]
The present invention is to solve the above problems, and an object thereof is to provide an efficient storage and secondary refrigerant type air conditioner using a high-performance double-pipe heat exchanger can be miniaturized outdoor unit.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, a secondary refrigerant air conditioner according to claim 1 includes an outdoor unit that cools or heats a primary refrigerant using a refrigeration heat pump cycle, and the primary side that is provided in the outdoor unit. An intermediate heat exchanger that exchanges heat between the refrigerant and the secondary side refrigerant, and an indoor unit that performs air conditioning by cooling or heating with the secondary side refrigerant, and the intermediate heat exchanger is a double pipe It comprises a heat exchanger and is arranged around the orifice part of the blower fan of the outdoor unit .
[0015]
According to the said structure, a double pipe heat exchanger can be efficiently arrange | positioned in the empty space around the orifice part of the said outdoor unit ventilation fan, and size reduction of a secondary refrigerant type air conditioner can be implement | achieved. .
[0016]
The secondary refrigerant type air conditioner according to claim 2 is the secondary refrigerant type air conditioner according to claim 1, wherein one of the primary side refrigerant and the secondary side refrigerant is used as the intermediate heat exchanger. An outer pipe to be flowed, and a plurality of inner pipes arranged in a spiral manner around the axis of the outer pipe in the outer pipe and to which the other refrigerant is fed. It is constituted by a double tube heat exchanger configured to exchange heat between one refrigerant to be sent and the other refrigerant to be sent to each of the inner pipes .
[0017]
According to the above configuration, the heat exchange area is expanded by using a plurality of inner tubes twisted in a spiral shape, and the turbulence of one refrigerant flowing between the outer tube and the inner tube is promoted. The heat exchange performance of the heavy pipe heat exchanger can be greatly improved. Therefore, by using such a double pipe heat exchanger with high heat exchange performance per unit, it can be stored sufficiently even when the space around the orifice is narrow, and the secondary refrigerant air conditioner Miniaturization can be promoted.
[0018]
The secondary refrigerant type air conditioner according to claim 3 is the secondary refrigerant type air conditioner according to claim 1, wherein one of the primary side refrigerant and the secondary side refrigerant is used as the intermediate heat exchanger. An outer pipe to be sent, a plurality of inner pipes spirally arranged around the axis of the outer pipe in the outer pipe, and the other refrigerant being sent, and the inner pipes in the outer pipe And a plurality of positioning members for turbulent flow of the other refrigerant, between one refrigerant sent to the outer pipe and the other refrigerant sent to each inner pipe And a double pipe heat exchanger in which the positioning members are arranged at predetermined intervals .
[0019]
According to the above configuration, the heat exchange area is expanded by using a plurality of inner tubes twisted in a spiral shape, and the turbulence of one refrigerant flowing between the outer tube and the inner tube is promoted. The heat exchange performance of the heavy pipe heat exchanger can be greatly improved. Furthermore, the positioning means keeps the positional relationship of the plurality of spirally twisted inner pipes constant, thereby preventing a reduction in heat exchange area due to contact between the inner pipes, and the inner pipes in the outer pipes. The bias can be eliminated to prevent the heat exchange capability from being lowered, and the refrigerant flowing between the outer tube and the inner tube can be turbulent to assist heat exchange effectively. Thereby, the heat exchange performance of a double tube heat exchanger can be improved, and it can carry out uniformly, without the heat exchange performance varying with parts. Therefore, by using such a double pipe heat exchanger with high heat exchange performance per unit, it can be stored sufficiently even when the space around the orifice is narrow, and the secondary refrigerant air conditioner Miniaturization can be promoted.
[0020]
The secondary refrigerant type air conditioner according to claim 4 is the secondary refrigerant type air conditioner according to claim 1, wherein one of the primary side refrigerant and the secondary side refrigerant is used as the intermediate heat exchanger. An outer pipe to be sent, a plurality of inner pipes spirally arranged around the axis of the outer pipe in the outer pipe, and the other refrigerant being sent, and the inner pipes in the outer pipe A plurality of positioning members constituted by linear members fitted around the inner pipes, which maintain the position of the inner pipe and turbulently flow the other refrigerant, and are fed to the outer pipe. It comprised so that heat could be exchanged between one refrigerant | coolant and the other refrigerant | coolant flowed to each said inner pipe, and comprised with the double tube heat exchanger which arrange | positioned each said positioning member for every predetermined space | interval Is.
[0021]
According to the above configuration, the heat exchange area is expanded by using a plurality of inner tubes twisted in a spiral shape, and the turbulence of one refrigerant flowing between the outer tube and the inner tube is promoted. The heat exchange performance of the heavy pipe heat exchanger can be greatly improved. Furthermore, the positioning means keeps the positional relationship of the plurality of spirally twisted inner pipes constant, thereby preventing a reduction in heat exchange area due to contact between the inner pipes, and the inner pipes in the outer pipes. The bias can be eliminated to prevent the heat exchange capability from being lowered, and the refrigerant flowing between the outer tube and the inner tube can be turbulent to assist heat exchange effectively. Thereby, the heat exchange performance of a double tube heat exchanger can be improved, and it can carry out uniformly, without the heat exchange performance varying with parts. Therefore, by using such a double pipe heat exchanger with high heat exchange performance per unit, it can be stored sufficiently even when the space around the orifice is narrow, and the secondary refrigerant air conditioner Miniaturization can be promoted. Further, the positioning member can be provided at a low cost by shaping the linear member, which can contribute to the cost reduction of the double pipe heat exchanger and the secondary refrigerant air conditioner.
[0022]
The secondary refrigerant air conditioner according to claim 5 is the secondary refrigerant air conditioner according to any one of claims 1 to 4, wherein the refrigerant is branched or split between a single pipe and a plurality of inner pipes. Of the refrigerant inlet and the refrigerant outlet of the double pipe heat exchanger to be merged, at least the refrigerant inlet is arranged so that the flow of the refrigerant branch portion is in the vertical direction .
[0023]
According to the above configuration, the refrigerant is equally distributed to each of the inner pipes by arranging the branch portion of the refrigerant inlet for dividing the single pipe into the plurality of inner pipes and supplying the refrigerant in the vertical direction. It can be supplied satisfactorily. Thereby, the performance of a double pipe heat exchanger can fully be drawn, and the performance of a secondary refrigerant type air conditioner can be improved.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a double pipe heat exchanger constituting a secondary refrigerant air conditioner according to the present invention will be described with reference to FIG. 1 and FIG.
[0025]
As shown in FIG. 1, connecting joints 2A, 2B are attached to both sides of the outer pipe 1 having a circular cross section, and the outer pipe 1 between these connecting joints 2A, 2B is respectively disposed around the axis of the outer pipe 1. A plurality (four in the figure) of inner tubes 3A to 3D that are twisted in a spiral shape and flow in the chlorofluorocarbon F, which is the primary refrigerant, are arranged. And in the outer tube | pipe 1, the secondary side refrigerant | coolant channel | path 4 which flows the water W which is a secondary side refrigerant | coolant in the clearance gap between the outer tube | pipe 1 and inner tube | pipe 3A-3D and inner tube | pipe 3A-3D is formed. Has been.
[0026]
At both ends of the outer pipe 1, there are provided an inlet branch joint 5 and an outlet branch joint 6 in which the inner pipes 3A to 3D are respectively taken out straight from the connection joints 2A and 2B and the outlets are combined into one. The inlet branch joint 5 is formed with a refrigerant inlet 3 a and the outlet branch joint 6 is formed with a refrigerant outlet 3 b. The water outlet 4b is formed for discharging water W from the secondary side refrigerant passage 4 on the connection joint 2A of the refrigerant inlet 3 a side, also the water W in the secondary side refrigerant passages 4 to the refrigerant outlet 3b side of the connection joint 2B A water inlet 4a to be supplied is formed.
[0027]
Also in the outer tube 1, there is disposed a spacer 7 is positioned member at predetermined intervals in the longitudinal direction, these spacers 7 inner tube 3A~ example front view is formed in a star shape in the recesses 3D is held, and thereby, the gap between the inner pipes 3A to 3D and the gap between the inner pipes 3A to 3D and the inner surface of the outer pipe 1 are kept constant over the entire length, and are sent to the secondary refrigerant passage 4. The water W is configured to form a turbulent flow. Therefore, the spacer 7 can prevent a decrease in heat exchange area due to contact between the inner tubes 3A to 3D and a decrease in heat exchange capability due to the bias of the inner tubes 3A to 3D in the outer tube 1.
[0028]
Also these spacers 7, metallic or inner tube 3A~3D the one thin plate 7a such as a resin which was bent to example star-shaped to form a recess for holding the causes portion 7b 's case at both ends Is provided. In forming the spacer 7, it is not always necessary to use a thin plate, but if the spacer 7 is formed, it can be formed by a simple bending process.
[0029]
As a positioning member, as shown in FIG. 4, a spacer 8 formed by winding the wire 8a around the inner pipes 3A to 3D in the directions indicated by arrows a to g and pulling the terminal ends in the h direction may be used. that holds the inner tube 3A~3D a predetermined position of the outer tube 1 by wire 8a. The spacer 8 can more easily achieve a predetermined purpose without using a processing die or the like, can be manufactured at low cost, and can supply a double-pipe heat exchanger at low cost.
[0030]
In addition, when this double tube heat exchanger 10 is used for a secondary refrigerant type air conditioner described later, the double tube heat exchanger 10 is spirally wound to be gathered into a predetermined size and used.
In the above configuration, the chlorofluorocarbon F, which is the primary refrigerant, is supplied from the refrigerant inlet 3 a to the inner pipes 3 </ b> A to 3 </ b> D via the inlet branch joint 5 and discharged from the refrigerant outlet 3 b of the outlet branch joint 6. Moreover, the water W which is a secondary side refrigerant | coolant is supplied to the secondary side refrigerant | coolant channel | path 4 from the water inlet 4a of the connection coupling 2B, is discharged | emitted from the water outlet 4b of the connection coupling 2A, and passes through the pipe wall of the inner pipes 3A-3D. exchange heat with each other with flon F through.
[0031]
According to the above embodiment, since the four inner pipes 3A to 3D are inserted in the outer pipe 1, one inner pipe having the same cross-sectional area as the total cross-sectional area of the inner pipes 3A to 3D is arranged. Compared with this, the surface area per cross-sectional area is doubled, and the heat exchange performance is also doubled.
[0032]
Moreover, since each of the inner tubes 3A to 3D has a spiral shape, the length of each of the inner tubes 3A to 3D inserted into the outer tube 1 having the same length is longer than that when a straight tube is inserted. Thus, the heat exchange area is further increased.
[0033]
Furthermore, the spiral shape of the inner pipes 3A to 3D increases the degree of contact between the water W flowing through the secondary refrigerant passage 4 between the outer pipe 1 and the inner pipes 3A to 3D and the pipe walls of the inner pipes 3A to 3D. , it facilitates heat transfer at the interface of the pipe wall and the water W.
[0034]
Furthermore, the gap between the inner pipes 3A to 3D and the gap between the inner pipes 3A to 3D and the inner surface of the outer pipe 1 are kept constant over the entire length by the spacer, and the water that is fed to the secondary refrigerant passage 4 Since a turbulent flow is formed in W, the heat exchange area does not decrease due to contact between the inner tubes 3A to 3D, and the heat exchange capacity does not decrease due to the bias of the inner tubes 3A to 3D in the outer tube 1. . Moreover, the water W is mixed by the turbulent flow formed in the water W, and the heat transfer efficiency can be improved. Therefore, the heat exchange performance of the double tube heat exchanger 10 can be greatly improved.
[0035]
Next, a method for manufacturing the double pipe heat exchanger 10 will be described.
As a method of manufacturing the double-tube heat exchanger 10, it is efficient not to assemble the inner pipes formed in a spiral shape, but to give a spiral shape in a lump after bundling the straight tubular inner pipes.
[0036]
That is, the first manufacturing method, first predetermined number after insertion of the inner tube group a bundle of straight tubular pipe 3A~3D of the outer tube 1 (four in the drawing), the ends of the inner tube bundle jig The inner tube group is twisted around the axis of the outer tube 1 through a jig.
[0037]
According to the above method, the outer tube 1 plays the role of a guide pipe that regulates the movable range of the inner tubes 3A to 3D. A spiral shape can be imparted. Therefore, a double pipe heat exchanger can be supplied at low cost.
[0038]
The second manufacturing method, the inner tube group a bundle of straight tubular pipe 3A~3D of (four in the drawing) a predetermined number, and fixed in a predetermined arrangement, the twisting of the axis around the inner tube bank added This is a method of forming the spiral shape and then inserting it into the outer tube 1.
[0039]
According to the above method, since the spiral shape is formed before the inner pipes 3A to 3D are inserted into the outer pipe 1, the processing process can be easily managed. Moreover, after attaching the spacer 7 (8) which is a positioning means of the inner pipes 3A to 3D, the inner pipe group is formed in a spiral shape so that the spacer 7 (8) has a movable range of the inner pipes 3A to 3D. Since it regulates, a spiral shape can be formed only by using a simple jig. Furthermore, since the spiral shape is imparted in a state where the inner pipes 3A to 3D can be directly operated, the management of processing becomes easy, and the manufacturing accuracy can be improved.
[0040]
In addition, as a material of the outer tube 1 and the inner tubes 3A to 3D of the double tube heat exchanger 10, a copper material excellent in thermal conductivity and workability is suitable, but a stainless material or a titanium material excellent in corrosion resistance is used. It goes without saying that the same effect can be obtained even when using. Also, a resin material can be used for the outer tube 1 that is not subjected to high pressure. Since the outer tube 1 of the resin material has a heat insulating effect to suppress heat loss due to heat dissipation, the heat insulating member that covers the outer tube 1 can be deleted or reduced. Can do.
[0041]
Moreover, in the said embodiment, although the bare pipes 3A-3D were used for the inner pipe, heat exchange performance can be further improved by using the grooved pipe | tube often used with the air heat exchanger of an air conditioner. it can.
[0042]
Furthermore, although the flow of Freon F and water W in the double-pipe heat exchanger 10 is a countercurrent flow that opposes each other, the same effect can be obtained even if they are parallel flow in the same direction depending on the purpose. The same effect can be obtained by using another refrigerant instead of Freon F and water W.
[0043]
Next, an embodiment of a secondary refrigerant heat exchanger using the double pipe heat exchanger will be described with reference to FIG.
An outdoor unit 21 of an air conditioner using a double pipe heat exchanger includes a compressor 22, an outdoor heat exchanger 23, an outdoor fan 24, an air guider 26 having an orifice 25, an electrical component 27, a four-way valve 28, a double The pipe heat exchanger 10, the water tank 31, the water pump 32, etc. are comprised. In FIG. 3, for the sake of explanation, a part of the expansion valve and the casing are omitted.
[0044]
In the outdoor unit 21, flon F, which is a primary refrigerant, is compressed by the compressor 22, passes through the four-way valve 28, enters the double-tube heat exchanger 10 from the refrigerant inlet 3 a through the refrigerant outlet 41. Then, after radiating and condensing while reaching the refrigerant outlet 3b, it passes through an expansion valve (not shown) from the refrigerant return port 42, absorbs and evaporates in the outdoor heat exchanger 23, and returns to the compressor 22 through the four-way valve 28. .
[0045]
The water W as the secondary refrigerant is circulated by the water pump 32, and the water W collected through the water return port 33 from the room enters the water inlet 4a of the double-pipe heat exchanger 10 , The water is heated to reach the outlet 4b and enters the water tank 31 as hot water. Hot water W is fed to the indoor unit through the water forward port 34 into the room from the water tank 31 through the water pump 32, returns to the heat dissipating water return port 33.
[0046]
The above is a case where warm water is produced and heated, but the flow is changed by the four-way valve 28, chlorofluorocarbon F is radiated and condensed by the outdoor heat exchanger 23, and endothermic evaporation is performed by the double pipe heat exchanger 10 to cool the cold water. It is also possible to make it.
[0047]
The present invention focused on the fact that the double-tube heat exchanger 10 requires a large space for storage by being spirally wound, but has a hollow portion at the center. On the other hand, the outdoor unit 21 requires an orifice on the leeward side of the outdoor fan 24, and the outer peripheral portion of the orifice portion 25 of the air guider 26 is a cylinder that can accommodate the double-tube heat exchanger 10 wound spirally. We focused on the fact that a large space was created.
[0048]
That is, in this embodiment, the double-pipe heat exchanger 10 is disposed and accommodated in a space generated in the outer peripheral portion of the orifice portion 25. Here, the same arrangement is possible even if a conventional double tube heat exchanger is used, but if the double tube heat exchanger 10 described in the previous embodiment is used, the unit per unit length may be used. Since the heat exchange performance is high, the length can be shortened, and the double-pipe heat exchanger 10 can be stored sufficiently even in a small space in the outer peripheral portion of the orifice portion 25. Thereby, the outdoor unit 21 of the secondary refrigerant type air conditioner using the double tube heat exchanger 10 can be reduced in size. The water pump 32 and the water tank 31 are disposed between the air guider 26 and the casing (case) of the outdoor unit 21.
[0049]
Further, in the double pipe heat exchanger 10 spirally wound in this way, a flow dividing section from the refrigerant inlet 3a which is a single path (single pipe) of the refrigerant inlet 3a to the inner pipes 3A to 3D which are a plurality of paths, If uniform distribution and merging are not performed at the merging portion from the inner pipes 3A to 3D, which are a plurality of passes, to the refrigerant outlet 3b , which is a single pass, it causes a reduction in heat exchange performance. Therefore, in this embodiment, by connecting fittings 2A to be taken out infeed or refrigerant, is 2B portion, arranged so as to be vertically lower side of the inner tube 3 A to 3 D, evenly diversion of Freon F Configured to keep on. Thereby, it is possible to fully extract the heat exchange performance, and the performance of the secondary refrigerant air conditioner using the double pipe heat exchanger 10 can be further improved.
[0050]
【The invention's effect】
As described above, according to the secondary refrigerant air conditioner of the first aspect , the double pipe heat exchanger can be efficiently arranged in the empty space around the orifice part of the outdoor unit blower fan, Miniaturization of the secondary refrigerant air conditioner can be realized.
[0051]
According to the secondary refrigerant air conditioner according to claim 2, the heat exchange area is expanded by using a plurality of inner pipes twisted in a spiral shape, and one of the inner pipes flowing between the outer pipe and the inner pipe is used. The turbulent flow of the refrigerant can be promoted, and the heat exchange performance of the double pipe heat exchanger can be greatly improved. By using a double-tube heat exchanger with high heat exchange performance per unit in this way, it can be stored well even when the space around the orifice is small, and the secondary refrigerant air conditioner can be downsized. Can be promoted.
[0052]
According to the secondary refrigerant type air conditioner according to claim 3, the heat exchange area is expanded by using a plurality of inner pipes twisted in a spiral shape, and one of the inner pipes flowing between the outer pipe and the inner pipe is used. The turbulent flow of the refrigerant can be promoted, and the heat exchange performance of the double pipe heat exchanger can be greatly improved. Furthermore, the positioning means keeps the positional relationship of the plurality of spirally twisted inner pipes constant, thereby preventing a reduction in heat exchange area due to contact between the inner pipes, and the inner pipes in the outer pipes. The bias can be eliminated to prevent the heat exchange capability from being lowered, and the refrigerant flowing between the outer tube and the inner tube can be turbulent to assist heat exchange effectively. Thereby, the heat exchange performance of a double tube heat exchanger can be improved, and it can carry out uniformly, without the heat exchange performance varying with parts. By, by using such heat exchange performance per unit high double-pipe heat exchanger, even when space around the orifice portion is small can be sufficiently accommodated, the secondary refrigerant type air conditioner Downsizing can be promoted.
[0053]
According to the secondary refrigerant air conditioner according to claim 4, the heat exchange area is expanded by using a plurality of inner pipes twisted in a spiral shape, and one of the inner pipes flowing between the outer pipe and the inner pipe is used. The turbulent flow of the refrigerant can be promoted, and the heat exchange performance of the double pipe heat exchanger can be greatly improved. Furthermore, the positioning means keeps the positional relationship of the plurality of spirally twisted inner pipes constant, thereby preventing a reduction in heat exchange area due to contact between the inner pipes, and the inner pipes in the outer pipes. The bias can be eliminated to prevent the heat exchange capability from being lowered, and the refrigerant flowing between the outer tube and the inner tube can be turbulent to assist heat exchange effectively. Thereby, the heat exchange performance of a double tube heat exchanger can be improved, and it can carry out uniformly, without the heat exchange performance varying with parts. Therefore, by using such a double pipe heat exchanger with high heat exchange performance per unit, it can be stored sufficiently even when the space around the orifice is narrow, and the secondary refrigerant air conditioner Miniaturization can be promoted. Further, the positioning member can be provided at a low cost by shaping the linear member, which can contribute to the cost reduction of the double pipe heat exchanger and the secondary refrigerant air conditioner.
[0054]
According to the secondary refrigerant type air conditioner of claim 5 , by arranging the branch portion of the refrigerant inlet for supplying the refrigerant by diverting it from the single pipe to the plurality of inner pipes, The refrigerant can be equally distributed to the pipes and supplied satisfactorily. Thereby, the performance of a double pipe heat exchanger can fully be drawn, and the performance of a secondary refrigerant type air conditioner can be improved.
[Brief description of the drawings]
FIG. 1 is a partially cutaway perspective view showing an embodiment of a double pipe heat exchanger constituting a secondary refrigerant air conditioner according to the present invention.
FIG. 2 is a cross-sectional view taken along the line AA ′ shown in FIG.
FIG. 3 is a partially exploded perspective view of an outdoor unit showing an embodiment of a secondary refrigerant air conditioner using a double pipe heat exchanger according to the present invention.
FIGS. 4A and 4B show a modification of the spacer of the double-tube heat exchanger, FIG. 4A is a front view of the spacer, and FIG. 4B is an explanatory view for explaining the procedure for forming the spacer.
FIG. 5 is a cutaway perspective view showing a conventional double tube heat exchanger.
FIG. 6 is a partially cutaway perspective view of an outdoor unit showing a conventional secondary refrigerant air conditioner.
[Explanation of symbols]
W Water F Freon 1 Outer pipe 2A, 2B Connection joint 3A-3D Inner pipe 3a Refrigerant inlet 3b Refrigerant outlet 4 Refrigerant passage 4a Water inlet 4b Water outlet 5 Inlet branch joint 6 Outlet branch joint 7 Spacer 7a Thin plate 7b Mating portion 8 Spacer 8a wire 10 double-pipe heat exchanger 21 outdoor unit 22 compressor 23 outdoor heat exchanger 24 outdoor fan 25 orifice 26 Eagaida over <br/> 31 water tank 32 water pump 33 water return port 34 water forward opening

Claims (5)

冷凍ヒートポンプサイクルを用いて一次側冷媒の冷却あるいは加熱を行う室外機と、該室外機に設けられて前記一次側冷媒と二次側冷媒の間で熱交換を行う中間熱交換器と、前記二次側冷媒により冷却あるいは加熱して空気調和を行う室内機とを具備し、An outdoor unit that cools or heats the primary side refrigerant using a refrigeration heat pump cycle, an intermediate heat exchanger that is provided in the outdoor unit and performs heat exchange between the primary side refrigerant and the secondary side refrigerant, An indoor unit that performs air conditioning by cooling or heating with a secondary refrigerant,
前記中間熱交換器を二重管熱交換器により構成して前記室外機の送風ファンのオリフィス部周囲に配置したThe intermediate heat exchanger is constituted by a double pipe heat exchanger and is arranged around the orifice portion of the blower fan of the outdoor unit.
ことを特徴とする二次冷媒式空気調和機。A secondary refrigerant type air conditioner characterized by that.
請求項1記載の二次冷媒式空気調和機であって、It is a secondary refrigerant type air conditioner according to claim 1,
前記二重管熱交換器は、The double pipe heat exchanger is
前記一次側冷媒および前記二次側冷媒の一方の冷媒が流送される外管と、An outer pipe through which one of the primary side refrigerant and the secondary side refrigerant is flowed;
前記外管内で前記外管の軸心周りに螺旋状に捻られて配置され他方の冷媒が流送される複数の内管とを具備し、A plurality of inner pipes arranged to be spirally twisted around the axis of the outer pipe within the outer pipe and to which the other refrigerant is flowed,
前記外管に流送される一方の冷媒と前記各内管に流送される他方の冷媒との間で熱交換するように構成したIt was configured to exchange heat between one refrigerant flowed to the outer pipe and the other refrigerant flowed to each inner pipe.
ことを特徴とする二次冷媒式空気調和機。A secondary refrigerant type air conditioner characterized by that.
請求項1記載の二次冷媒式空気調和機であって、It is a secondary refrigerant type air conditioner according to claim 1,
前記二重管熱交換器は、The double pipe heat exchanger is
前記一次側冷媒および前記二次側冷媒の一方の冷媒が流送される外管と、An outer pipe through which one of the primary side refrigerant and the secondary side refrigerant is flowed;
前記外管内で前記外管の軸心周りに螺旋状に捻られて配置され他方の冷媒が流送される複数の内管と、A plurality of inner tubes in which the other refrigerant is flowed by being spirally twisted around the axis of the outer tube in the outer tube;
前記外管内で前記各内管の位置を保持するとともに他方の冷媒を乱流化する複数の位置決め部材とを具備し、A plurality of positioning members that maintain the position of each inner tube in the outer tube and turbulently flow the other refrigerant;
前記外管に流送される一方の冷媒と前記各内管に流送される他方の冷媒との間で熱交換するように構成し、かつ前記各位置決め部材を所定の間隔ごとに配置したThe refrigerant is configured to exchange heat between the one refrigerant sent to the outer pipe and the other refrigerant sent to the inner pipe, and the positioning members are arranged at predetermined intervals.
ことを特徴とする二次冷媒式空気調和機。A secondary refrigerant type air conditioner characterized by that.
請求項1記載の二次冷媒式空気調和機であって、It is a secondary refrigerant type air conditioner according to claim 1,
前記二重管熱交換器は、The double pipe heat exchanger is
前記一次側冷媒および前記二次側冷媒の一方の冷媒が流送される外管と、An outer pipe through which one of the primary side refrigerant and the secondary side refrigerant is flowed;
前記外管内で前記外管の軸心周りに螺旋状に捻られて配置され他方の冷媒が流送される複数の内管と、A plurality of inner tubes in which the other refrigerant is flowed by being spirally twisted around the axis of the outer tube in the outer tube;
前記外管内で前記各内管の位置を保持するとともに他方の冷媒を乱流化する、前記各内管の周囲に外嵌された線状の部材により構成した複数の位置決め部材とを具備し、A plurality of positioning members constituted by linear members fitted around the inner pipes for maintaining the position of the inner pipes in the outer pipe and turbulently flowing the other refrigerant;
前記外管に流送される一方の冷媒と前記各内管に流送される他方の冷媒との間で熱交換するように構成し、かつ前記各位置決め部材を所定の間隔ごとに配置したIt is configured to exchange heat between one refrigerant that is flowed to the outer pipe and the other refrigerant that is flowed to each inner pipe, and the positioning members are arranged at predetermined intervals.
ことを特徴とする二次冷媒式空気調和機。A secondary refrigerant type air conditioner characterized by that.
単一管と複数の内管との間で冷媒を分岐または合流する二重管熱交換器の冷媒入口および冷媒出口のうち、少なくとも冷媒入口を、冷媒の分岐部分の流れが鉛直方向となるよう配置したOf the refrigerant inlet and the refrigerant outlet of the double pipe heat exchanger that branches or merges the refrigerant between the single pipe and the plurality of inner pipes, at least the refrigerant inlet and the flow of the refrigerant branching portion are in the vertical direction. Arranged
ことを特徴とする請求項1ないし4のいずれかに記載の二次冷媒式空気調和機。The secondary refrigerant type air conditioner according to any one of claims 1 to 4, wherein
JP2001352485A 2001-11-19 2001-11-19 Secondary refrigerant air conditioner Expired - Fee Related JP3803282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001352485A JP3803282B2 (en) 2001-11-19 2001-11-19 Secondary refrigerant air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001352485A JP3803282B2 (en) 2001-11-19 2001-11-19 Secondary refrigerant air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006054239A Division JP2006189249A (en) 2006-03-01 2006-03-01 Double pipe heat exchanger

Publications (3)

Publication Number Publication Date
JP2003156294A JP2003156294A (en) 2003-05-30
JP2003156294A5 JP2003156294A5 (en) 2005-06-09
JP3803282B2 true JP3803282B2 (en) 2006-08-02

Family

ID=19164652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001352485A Expired - Fee Related JP3803282B2 (en) 2001-11-19 2001-11-19 Secondary refrigerant air conditioner

Country Status (1)

Country Link
JP (1) JP3803282B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021068294A1 (en) * 2019-10-12 2021-04-15 西安交通大学 Split type helical coil double-pipe heat exchanger

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100802176B1 (en) 2006-08-29 2008-02-12 고등기술연구원연구조합 Condensation apparatus of gas mixture
JP2008267632A (en) * 2007-04-17 2008-11-06 Matsushita Electric Ind Co Ltd Heat exchanger
CN101765563B (en) * 2007-06-07 2012-10-24 德卡产品有限公司 Water vapor distillation apparatus, method and system
JP2009068764A (en) * 2007-09-13 2009-04-02 T Rad Co Ltd Double pipe heat exchanger
US9587888B2 (en) * 2008-07-24 2017-03-07 Mahle International Gmbh Internal heat exchanger assembly
JP4912419B2 (en) * 2009-02-02 2012-04-11 三菱電機株式会社 Heat pump water heater
JP5474483B2 (en) * 2009-10-16 2014-04-16 株式会社日立製作所 Intermediate heat exchanger and air-conditioning hot water supply system using the same
JP4947162B2 (en) * 2010-02-09 2012-06-06 パナソニック株式会社 Heat exchanger
US9109813B2 (en) 2010-02-23 2015-08-18 Robert Jensen Twisted conduit for geothermal heating and cooling systems
US9909783B2 (en) 2010-02-23 2018-03-06 Robert Jensen Twisted conduit for geothermal heat exchange
DE102010034112A1 (en) 2010-08-12 2012-02-16 Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) Internal heat exchanger for a motor vehicle air conditioning system
DE102011118761A1 (en) * 2011-11-17 2013-05-23 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Internal heat exchanger for a motor vehicle air conditioning system
JP5812365B2 (en) * 2011-12-22 2015-11-11 株式会社日本イトミック Heat pump type heat source machine
JP2016211770A (en) * 2015-05-06 2016-12-15 株式会社アクアノエル Heat exchange body, heat exchange unit and air conditioning system
RU173387U1 (en) * 2016-11-15 2017-08-24 Общество с ограниченной ответственностью "Прогресс" SECTIONAL COIL HEAT EXCHANGER
PL232977B1 (en) * 2017-02-07 2019-08-30 Aic Spolka Akcyjna Water heater and the coil for a heat exchanger, preferably for this water heater
CN113048817A (en) * 2021-03-16 2021-06-29 金竟(广州)科技有限责任公司 Manufacturing method of heat exchange device
KR102385311B1 (en) * 2021-04-08 2022-04-11 주식회사 차고엔지니어링 Multi chiller system
KR102295350B1 (en) * 2021-05-03 2021-08-31 더블유아이엠 주식회사 Cooling water cooling apparatus for generating ozone using heat exchange method and system comprising the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021068294A1 (en) * 2019-10-12 2021-04-15 西安交通大学 Split type helical coil double-pipe heat exchanger

Also Published As

Publication number Publication date
JP2003156294A (en) 2003-05-30

Similar Documents

Publication Publication Date Title
JP3803282B2 (en) Secondary refrigerant air conditioner
US8205470B2 (en) Indoor unit for air conditioner
JP3043051B2 (en) Heat exchange equipment
EP2762820B1 (en) Air conditioner and heat exchanger therefor
JP4987685B2 (en) Double tube heat exchanger, method for manufacturing the same, and heat pump system including the same
JPWO2003040640A1 (en) Heat exchanger and heat exchanger tube
JP2004219052A (en) Heat exchanger
JP2006336894A (en) Heat pump water heater
JP2006189249A (en) Double pipe heat exchanger
CN215412617U (en) Heat exchanger with multi-plate micro-channels and refrigeration circuit comprising same
JP2005133999A (en) Heat pump type hot-water supplier
JP4536243B2 (en) Heat exchanger for air conditioning
JPH10205919A (en) Condenser of air-cooling apparatus
KR100273084B1 (en) heat transmitter
JP2009145010A (en) Fin-less heat exchanger for air conditioner
CN210861410U (en) Heat exchanger assembly and air conditioner indoor unit with same
JP2003222436A (en) Heat exchanger for heat pump type air conditioner
JP2007078252A (en) Heat exchanger
JP4328411B2 (en) Heat exchanger
KR20030042708A (en) Heat exchanger for air conditioner
JP2010281562A (en) Heat exchange device
JP2008215766A (en) Heat exchanger for hot water supply
JP2004116809A (en) Refrigerant distributor of heat exchanger for air conditioner
KR20030042709A (en) Heat exchanger for air conditioner
WO2018098991A1 (en) Evaporator pipeline, evaporator, and air conditioner

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060502

LAPS Cancellation because of no payment of annual fees