JP2003148951A - Method and instrument for measuring surface roughness - Google Patents

Method and instrument for measuring surface roughness

Info

Publication number
JP2003148951A
JP2003148951A JP2001351723A JP2001351723A JP2003148951A JP 2003148951 A JP2003148951 A JP 2003148951A JP 2001351723 A JP2001351723 A JP 2001351723A JP 2001351723 A JP2001351723 A JP 2001351723A JP 2003148951 A JP2003148951 A JP 2003148951A
Authority
JP
Japan
Prior art keywords
surface roughness
stage
measuring
fixed
rail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001351723A
Other languages
Japanese (ja)
Other versions
JP3654238B2 (en
Inventor
Kazunori Hagimoto
和徳 萩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2001351723A priority Critical patent/JP3654238B2/en
Publication of JP2003148951A publication Critical patent/JP2003148951A/en
Application granted granted Critical
Publication of JP3654238B2 publication Critical patent/JP3654238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Details Of Measuring And Other Instruments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an instrument that eliminate dispersion of a measured value for surface roughness caused by measuring instruments. SOLUTION: This surface roughness measuring instrument is provided with a pair of fixed rails 1, 2 fixed to a base, laid rails 3, 4 laid between the fixed rails 1, 2, and a stage 5 supported on the laid rails 3, 4. The stage 5 is moved while selecting properly linear moving to a direction along the fixed rails 1, 2 accompanied to moving of the laid rails 3, 4 or rotational moving on the rails 3, 4, or combining the both, so as to measure the surface roughness of the a measuring object mounted on the stage 5. Measurement-required positions of the measuring object are moved to a measuring position measured by a surface roughness measuring sensor 6 respectively, without moving the stage 5 to a direction along the laid rails 3, 4 on the rails 4, 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、表面粗さ測定方法
および測定装置に関する。
TECHNICAL FIELD The present invention relates to a surface roughness measuring method and a measuring apparatus.

【0002】[0002]

【従来の技術】例えば半導体基板等の測定対象物の表面
粗さを測定する表面粗さ測定装置(以下、単に測定装置
ともいう)としては、例えば図1に示すように、互いに
平行となるよう土台7上に直接固定された一対のY軸レ
ール1,2と、該一対のY軸レール1,2と直交するよ
うに該一対のY軸レール1,2間に架設された一対のX
軸レール3,4と、該X軸レール3,4上に支持された
ステージ5と、該ステージ5上の測定対象物の表面粗さ
を測定する表面粗さ測定センサ6(以下、単に測定セン
サともいう)とを備えるものが知られている(具体的に
は、例えばHRP(High Resolution Profiler;KLA Ten
cor社商品名))。
2. Description of the Related Art For example, as shown in FIG. 1, a surface roughness measuring device (hereinafter also simply referred to as a measuring device) for measuring the surface roughness of an object to be measured such as a semiconductor substrate may be parallel to each other. A pair of Y-axis rails 1 and 2 fixed directly on the base 7, and a pair of Xs installed between the pair of Y-axis rails 1 and 2 so as to be orthogonal to the pair of Y-axis rails 1 and 2.
Axial rails 3, 4, a stage 5 supported on the X-axis rails 3, 4, and a surface roughness measuring sensor 6 (hereinafter, simply referred to as a measuring sensor) for measuring the surface roughness of a measurement object on the stage 5. (Also referred to as) (specifically, for example, HRP (High Resolution Profiler; KLA Ten
trade name of cor company)).

【0003】このような表面粗さ測定装置では、測定セ
ンサ6の下に、ステージ5上の測定対象物の測定必要箇
所が位置するようにステージ5を平面移動して、該測定
必要箇所の表面粗さを測定する。この際に、ステージ5
上の測定対象物をY軸方向(図1の矢印A方向および矢
印B方向)に移動させるためには、Y軸レール上に架設
されたX軸レール3,4をY軸レール1,2に沿う方向
に移動させるのに伴わせて該X軸レール3,4に支持さ
れたステージ5を移動させる。他方、ステージ5上の測
定対象物をX軸方向(図1の矢印C方向および矢印D方
向)に移動させるためには、ステージ5をX軸レール
3,4に沿う方向に移動させる。
In such a surface roughness measuring device, the stage 5 is moved in plane so that the measurement-required portion of the measurement object on the stage 5 is located below the measurement sensor 6, and the surface of the measurement-required portion is moved. Measure the roughness. At this time, stage 5
In order to move the upper measurement object in the Y-axis direction (the arrow A direction and the arrow B direction in FIG. 1), the X-axis rails 3 and 4 installed on the Y-axis rail are attached to the Y-axis rails 1 and 2. The stage 5 supported by the X-axis rails 3 and 4 is moved along with the movement along the direction. On the other hand, in order to move the measurement object on the stage 5 in the X-axis direction (direction of arrow C and arrow D in FIG. 1), the stage 5 is moved in the direction along the X-axis rails 3, 4.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
測定装置を用いて表面粗さを測定すると、ステージ5の
中心から離れるに従って実際の表面粗さよりも測定値が
大きくなってしまうという問題がある。ただし、この問
題は、ステージ5をY軸レール1,2に沿って移動させ
て測定した場合の測定値には発生せず、X軸レール3,
4に沿って移動させて測定した場合にのみ発生する。従
って、このようなバラツキは、測定対象物の実際の表面
状態ではなく、測定装置に起因すると考えられる。
However, when the surface roughness is measured by using the above measuring device, there is a problem that the measured value becomes larger than the actual surface roughness as the distance from the center of the stage 5 increases. However, this problem does not occur in the measurement value when the stage 5 is moved along the Y-axis rails 1 and 2 for measurement, and the X-axis rails 3,
It occurs only when moved along 4 and measured. Therefore, it is considered that such variations are caused by the measuring device, not by the actual surface state of the measuring object.

【0005】この発明は、上記のような問題点を解決す
るためになされたもので、表面粗さの測定値の、測定装
置に起因するバラツキを解消する表面粗さ測定方法およ
び測定装置を提供することを目的とする。
The present invention has been made to solve the above problems, and provides a surface roughness measuring method and a measuring device for eliminating the variation in the measured value of the surface roughness due to the measuring device. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】本発明の表面粗さ測定方
法は、互いに略平行となるようにそれぞれ土台に固定さ
れた一対の固定レールと、該固定レール間に架設され該
固定レールに案内されて直線移動可能な架設レールと、
該架設レール上に支持され、回転移動と該架設レールに
案内されての直線移動とが可能なステージと、該ステー
ジ上に載置された測定対象物の表面粗さを測定する表面
粗さ測定センサとを備える測定装置を用いる表面粗さ測
定方法であって、前記ステージを、前記架設レール上で
の回転移動と、前記架設レールが前記固定レールに案内
されて移動するのに伴う直線移動と、を適宜選択或いは
組み合わせて移動させることにより、測定対象物の測定
必要箇所をそれぞれ表面粗さ測定センサによる測定可能
位置に移動させることを特徴としている。
A surface roughness measuring method according to the present invention comprises a pair of fixed rails fixed to a base so as to be substantially parallel to each other, and a guide rail installed between the fixed rails. An erection rail that can be moved linearly,
A stage supported on the erection rail, capable of rotating movement and linear movement guided by the erection rail, and a surface roughness measurement for measuring the surface roughness of a measurement target placed on the stage. A surface roughness measuring method using a measuring device including a sensor, wherein the stage is rotationally moved on the erection rail, and linearly moved along with the erection rail being guided by the fixed rail. Are moved or appropriately selected or combined to move the measurement-required portion of the measurement object to a position where the surface roughness measuring sensor can measure.

【0007】また、本発明の表面粗さ測定方法は、土台
に固定された固定レール上に支持されたステージ上に測
定対象物を載置し、前記ステージを、回転移動と前記固
定レールに沿う直線移動とを適宜選択或いは組み合わせ
て移動させることにより、測定対象物の測定必要箇所を
それぞれ表面粗さ測定センサによる測定可能位置に移動
させることを特徴としている。
Further, according to the surface roughness measuring method of the present invention, an object to be measured is placed on a stage supported on a fixed rail fixed to a base, and the stage is rotated and moved along the fixed rail. It is characterized in that the measurement-required portions of the measurement object are respectively moved to the measurable positions by the surface roughness measuring sensor by moving them by appropriately selecting or combining with linear movement.

【0008】また、本発明の表面粗さ測定装置は、土台
に固定された固定レールと、該固定レール上に他のレー
ルを介さずに支持され、回転移動および前記固定レール
に案内されての直線移動が可能なステージと、該ステー
ジ上に載置された測定対象物の表面粗さを測定する表面
粗さ測定センサとを備えることを特徴としている。
Further, the surface roughness measuring device of the present invention comprises a fixed rail fixed to a base, a fixed rail supported on the fixed rail without interposing other rails, a rotational movement and a guide to the fixed rail. It is characterized by comprising a stage capable of linear movement and a surface roughness measuring sensor for measuring the surface roughness of a measuring object placed on the stage.

【0009】また、本発明の表面粗さ測定方法は、互い
に略平行となるようにそれぞれ土台に固定された一対の
固定レールと、該固定レール間に架設され該固定レール
に案内されて直線移動可能な架設レールと、該架設レー
ル上に支持され、回転移動と該架設レールに案内されて
の直線移動とが可能なステージと、該ステージ上に載置
された測定対象物の表面粗さを測定する表面粗さ測定セ
ンサとを備える測定装置を用いる表面粗さ測定方法であ
って、前記ステージを前記架設レールに沿う方向に移動
させて測定対象物の表面粗さを測定する場合の測定値の
分布傾向を予め解析した解析結果に基づく補正を、新た
に測定した測定値に施すことを特徴としている。
In the surface roughness measuring method of the present invention, a pair of fixed rails fixed to the base so as to be substantially parallel to each other and a fixed rail are installed between the fixed rails and linearly moved by being guided by the fixed rails. A possible installation rail, a stage supported on the installation rail, capable of rotational movement and linear movement guided by the installation rail, and a surface roughness of a measurement target placed on the stage. A surface roughness measuring method using a measuring device provided with a surface roughness measuring sensor for measuring, wherein a measured value when the surface roughness of a measuring object is measured by moving the stage in a direction along the erection rail. Is characterized in that a correction based on an analysis result obtained by previously analyzing the distribution tendency of is applied to a newly measured measurement value.

【0010】また、本発明の表面粗さ測定装置は、互い
に略平行となるようにそれぞれ土台に固定された一対の
固定レールと、該固定レール間に架設され該固定レール
に案内されて直線移動可能な架設レールと、該架設レー
ル上に支持され、回転移動と該架設レールに案内されて
の直線移動とが可能なステージと、該ステージ上に載置
された測定対象物の表面粗さを測定する表面粗さ測定セ
ンサと、前記ステージを前記架設レールに沿う方向に移
動させて測定対象物の表面粗さを測定する場合の測定値
の分布傾向を予め解析した解析結果に基づく補正を、新
たに測定した測定値に施す補正手段とを備えることを特
徴としている。
Further, the surface roughness measuring device of the present invention comprises a pair of fixed rails fixed to the base so as to be substantially parallel to each other, and installed between the fixed rails and guided by the fixed rails to move linearly. A possible installation rail, a stage supported on the installation rail, capable of rotational movement and linear movement guided by the installation rail, and a surface roughness of a measurement target placed on the stage. A surface roughness measuring sensor to be measured, and a correction based on an analysis result obtained by pre-analyzing a distribution tendency of measured values when the surface roughness of the measurement target is measured by moving the stage in the direction along the erection rail, It is characterized in that it further comprises a correction means for newly measuring the measured value.

【0011】[0011]

【発明の実施の形態】以下、図面を参照して、本発明に
係る実施の形態について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0012】先ず、本発明に係る表面粗さ測定方法を実
施するための表面粗さ測定装置50の構成について説明
する。
First, the structure of the surface roughness measuring apparatus 50 for carrying out the surface roughness measuring method according to the present invention will be described.

【0013】図1に示すように、本実施の形態の表面粗
さ測定装置50は、土台7上に直接固定された一対のY
軸レール(固定レール)1,2と、該一対のY軸レール
1,2と直交するように該一対のY軸レール1,2間に
架設された一対のX軸レール(架設レール)3,4と、
該X軸レール3,4上に支持されたステージ5と、該ス
テージ5上の測定対象物の表面粗さを測定する表面粗さ
測定センサ6と、ステージ5の水平出しの基準となるオ
プティカルフラット12とを備えて概略構成されてい
る。
As shown in FIG. 1, the surface roughness measuring apparatus 50 of the present embodiment has a pair of Ys directly fixed on the base 7.
Axial rails (fixed rails) 1 and a pair of X-axis rails (erection rails) 3, which are erected between the pair of Y-axis rails 1 and 2 so as to be orthogonal to the pair of Y-axis rails 1 and 2. 4 and
A stage 5 supported on the X-axis rails 3, 4; a surface roughness measuring sensor 6 for measuring the surface roughness of an object to be measured on the stage 5; and an optical flat as a reference for leveling the stage 5. 12 and 12, and is generally configured.

【0014】このうち、Y軸レール1,2は、互いに平
行となるように、その長手方向に亘って概ね土台7上に
固定されている。
Of these, the Y-axis rails 1 and 2 are fixed on the base 7 substantially in the longitudinal direction so as to be parallel to each other.

【0015】他方、X軸レール3,4は、その一端どう
しがそれぞれ連結部材8,9により連結されているため
常に互いに平行かつ一定距離に保たれているとともに、
これら連結部材8,9を介してY軸レール1,2間に架
設されている。これら連結部材8,9は、Y軸レール
1,2に案内されてY軸方向(図1の矢印A方向および
矢印B方向)に移動可能となっている。そして、X軸レ
ール3,4は、例えば土台7上(例えばY軸レール2の
脇)に設けられたY軸モータ10の駆動により、(連結
部材8,9を介して)Y軸レール1,2に案内されてY
軸方向に移動する。
On the other hand, the X-axis rails 3 and 4 are always kept parallel to each other and at a constant distance because one ends of the X-axis rails 3 and 4 are connected by the connecting members 8 and 9, respectively.
It is installed between the Y-axis rails 1 and 2 via these connecting members 8 and 9. These connecting members 8 and 9 are guided by the Y-axis rails 1 and 2 and are movable in the Y-axis direction (the arrow A direction and the arrow B direction in FIG. 1). Then, the X-axis rails 3 and 4 are driven (via the connecting members 8 and 9) by the Y-axis motor 10 provided on the base 7 (for example, the side of the Y-axis rail 2), for example. Guided by 2, Y
Move in the axial direction.

【0016】また、ステージ5は、その基部5aを介し
てX軸レール3,4上に支持されていて、図示しない回
転駆動装置の駆動により、基部5aに対し水平方向(の
双方向)に回転する。このステージ5をY軸方向に移動
させるには、該ステージ5を支持したX軸レール3,4
を、Y軸レール1,2に沿ってY軸方向に移動させると
良い。さらに、ステージ5は、例えば連結部材9上に設
けられたX軸モータ11の駆動により、X軸レール3,
4に案内されてX軸方向(図1の矢印C方向および矢印
D方向)に移動する。
The stage 5 is supported on the X-axis rails 3 and 4 via its base portion 5a, and is rotated horizontally (in both directions) with respect to the base portion 5a by the driving of a rotary drive device (not shown). To do. To move the stage 5 in the Y-axis direction, the X-axis rails 3, 4 supporting the stage 5 are used.
Should be moved in the Y-axis direction along the Y-axis rails 1 and 2. Further, the stage 5 is driven by an X-axis motor 11 provided on the connecting member 9, for example, so that the X-axis rails 3,
It moves in the X-axis direction (arrow C direction and arrow D direction in FIG. 1) guided by 4.

【0017】また、表面粗さ測定センサ6は、土台7に
固定された架台6aに固定されている。この架台6a
は、具体的には例えば略L字状に構成され、その一辺が
鉛直方向となり、他辺が前記一辺よりも上側かつ水平方
向となるように配されている。そして、表面粗さ測定セ
ンサ6は、この架台6aの上部先端に固定されている。
この表面粗さ測定センサ6は、例えばステージ5上に配
された測定対象物の上面に接触するスタイラスと、コン
デンサと、電磁石とからなる。そして、平行平板コンデ
ンサの原理を用いて測定対象物の表面粗さを検出する。
すなわち、コンデンサの静電容量をC、面積をS、コン
デンサと測定対象物との距離をd、真空誘電率をε0
すると、C=ε0S/dと表せる。つまり、d=ε0S/
Cとも表せる。この式に、真空誘電率ε0およびコンデ
ンサの面積S(ともに一定)と、静電容量の検出値Cを
代入することで、各測定箇所でのコンデンサと測定対象
物との距離dを求めることができる。さらに、この求め
た距離dの測定対象物の面内での変動量或いは基準値か
らのズレ量に基づき表面粗さを算出することができる。
The surface roughness measuring sensor 6 is fixed to a pedestal 6a fixed to a base 7. This stand 6a
Is, for example, substantially L-shaped, and is arranged such that one side thereof is in the vertical direction and the other side is above and horizontal to the one side. The surface roughness measuring sensor 6 is fixed to the top end of the pedestal 6a.
The surface roughness measuring sensor 6 is composed of, for example, a stylus that comes into contact with the upper surface of the measurement target placed on the stage 5, a capacitor, and an electromagnet. Then, the surface roughness of the measurement object is detected using the principle of the parallel plate capacitor.
That is, C = ε 0 S / d, where C is the capacitance of the capacitor, S is the area, d is the distance between the capacitor and the measurement object, and ε 0 is the vacuum dielectric constant. That is, d = ε 0 S /
It can be expressed as C. By substituting the vacuum permittivity ε 0 and the area S of the capacitor (both are constant) and the detected value C of the capacitance into this equation, the distance d between the capacitor and the measurement object at each measurement point can be obtained. You can Further, the surface roughness can be calculated based on the amount of variation of the obtained distance d within the surface of the measurement object or the amount of deviation from the reference value.

【0018】オプティカルフラット12は、ガラス製の
平板であり、ステージ5の下側に、ステージ5とほぼ平
行となるように設けられている。他方、ステージ5の下
面には、オプティカルフラット12の上面を検出するセ
ンサ(図示略)が設けられ、該センサの検出値に基づ
き、オプティカルフラット12の上面と平行になるよう
にステージ5の傾きを補正する制御を行うようになって
いる。或いは、該センサの検出値に基づき、測定データ
に補正(ステージ5の傾きの変動に起因する測定値の変
動を解消するような補正)を施すようになっている。従
って、いずれにしてもステージ5の傾きの変動に起因す
る測定値の変動を解消できる。
The optical flat 12 is a flat plate made of glass and is provided below the stage 5 so as to be substantially parallel to the stage 5. On the other hand, a sensor (not shown) that detects the upper surface of the optical flat 12 is provided on the lower surface of the stage 5, and the tilt of the stage 5 is adjusted so as to be parallel to the upper surface of the optical flat 12 based on the detection value of the sensor. It is designed to perform correction control. Alternatively, the measurement data is corrected (correction for eliminating the fluctuation of the measurement value due to the fluctuation of the inclination of the stage 5) based on the detection value of the sensor. Therefore, in any case, it is possible to eliminate the fluctuation of the measurement value due to the fluctuation of the inclination of the stage 5.

【0019】本発明者は、従来の方法により測定した場
合の、X軸方向に沿う表面粗さの測定値が、ステージ5
上の測定対象物の中心から離れるほど徐々に大きくなっ
てしまう原因について検討した結果、図3に示すよう
に、X軸レール3,4上をステージ5が移動することに
よりX軸レール3,4の撓み量が変化してしまうことが
その原因であると考えた。つまり、ステージ5がX軸レ
ール3,4の長手方向において中央部に位置するとき
(図3(a))に、X軸レール3,4の撓み量が最大と
なり、ステージ5が両端部(図3(b)或いは図3
(c))に移動するに従って、徐々に撓み量が減少する
と考えた。なお、この図3では、分かり易いようにX軸
レール3,4の下端ラインLの変化量(つまり撓み量の
変化量)を誇張して示す。そして、以下に説明するよう
に、本発明に係る表面粗さ測定方法により表面粗さを測
定した結果、測定装置に起因する測定値のバラツキが生
じないことが分かった。
The present inventor has determined that the measured value of the surface roughness along the X-axis direction when measured by the conventional method is the stage 5
As a result of studying the cause that the distance increases from the center of the upper measurement object, the X-axis rails 3, 4 move as the stage 5 moves on the X-axis rails 3, 4, as shown in FIG. It was thought that the cause was that the amount of deflection of the was changed. That is, when the stage 5 is located at the central portion in the longitudinal direction of the X-axis rails 3 and 4 (FIG. 3A), the amount of bending of the X-axis rails 3 and 4 is maximum, and the stage 5 has both ends (see FIG. 3 (b) or FIG.
It was considered that the amount of flexure gradually decreased as it moved to (c)). In FIG. 3, the change amount of the lower end line L of the X-axis rails 3 and 4 (that is, the change amount of the bending amount) is exaggerated for easy understanding. Then, as described below, as a result of measuring the surface roughness by the surface roughness measuring method according to the present invention, it was found that there is no variation in the measured values due to the measuring device.

【0020】次に、本発明に係る表面粗さ測定方法につ
いて説明する。
Next, the surface roughness measuring method according to the present invention will be described.

【0021】この表面粗さ測定方法では、ステージ5
を、X軸レール3,4上での回転移動と、X軸レール
3,4を介したY軸レール1,2に沿う方向への直線移
動と、を適宜選択或いは組み合わせて移動させることに
より、測定対象物の測定必要箇所をそれぞれ表面粗さ測
定センサ6による測定可能位置に移動させる。つまり、
ステージ5を、以下の条件を満たすように移動させる。
すなわち、Y軸方向と平行、かつ、表面粗さ測定セン
サ6による測定可能位置を通る直線上に、測定対象物の
測定必要箇所が到達するようにステージ5を回転移動さ
せる一方、表面粗さ測定センサ6による測定可能位置
に測定対象物の測定必要箇所が到達するようにステージ
5を直線移動させる。このようにステージ5を移動させ
る結果、表面粗さ測定センサ6による測定可能位置に測
定対象物の測定必要箇所を位置させたら、表面粗さを測
定する。このようなステージ5の移動と表面粗さ測定セ
ンサ6による測定とを各測定必要箇所について繰り返す
ことにより、測定対象物の面内の表面粗さを測定するこ
とができる。従って、ステージ5を、X軸レール3,4
上で該X軸レール3,4に沿う方向に移動させる必要が
ない。なお、測定データを、移動に要した回転角度(ス
テージ5の、基準となる回転位相に対する回転角度)
と、直線移動距離(ステージ5の、基準となるY軸方向
位置に対する移動距離)に応じて、X−Y平面上の座標
値に換算することで、該データを扱いやすくなる。
In this surface roughness measuring method, the stage 5
By appropriately selecting or combining the rotational movement on the X-axis rails 3 and 4 and the linear movement in the direction along the Y-axis rails 1 and 2 via the X-axis rails 3 and 4, The measurement-required portions of the measurement object are moved to positions where the surface roughness measuring sensor 6 can measure them. That is,
The stage 5 is moved so as to satisfy the following conditions.
That is, the stage 5 is rotationally moved so that the measurement-required portion of the measurement target reaches a straight line that is parallel to the Y-axis direction and that passes through the measurable position by the surface roughness measurement sensor 6, while measuring the surface roughness. The stage 5 is linearly moved so that the measurement-required portion of the measurement object reaches the position where the sensor 6 can measure the object. As a result of moving the stage 5 in this way, the surface roughness is measured when the measurement-required portion of the measurement object is located at the position where the surface roughness measurement sensor 6 can measure. By repeating the movement of the stage 5 and the measurement by the surface roughness measuring sensor 6 at each measurement-required location, the in-plane surface roughness of the measurement object can be measured. Therefore, the stage 5 is attached to the X-axis rails 3, 4
It is not necessary to move it in the direction along the X-axis rails 3 and 4 above. In addition, the rotation angle required for the movement of the measurement data (the rotation angle of the stage 5 with respect to the reference rotation phase)
Then, by converting the coordinate value on the XY plane according to the linear movement distance (movement distance of the stage 5 with respect to the reference Y-axis direction position), the data can be easily handled.

【0022】<実施例>図2に、上記実施の形態の表面
粗さ測定方法を適用して、直径200mmの鏡面研磨シ
リコンウェーハ(測定対象物)の表面粗さを測定した結
果(RMS(Root Mean Square Deviation of the Surf
ace;二乗平均平方根粗さ)(単位;nm))をプロッ
トした。なお、測定装置としてはKLA Tencor社製 HRP-3
20(先端形状の曲率半径が2μmのスタイラスを有す
る)を使用し、表面粗さ測定センサ6による測定範囲は
250μm×250μmとした。測定点は、例えば鏡面研
磨シリコンウェーハの中心を原点とし、該ウェーハ面を
含むX−Y平面上の座標(X(mm),Y(mm))=
(−90,0)(図2のP1)、(X,Y)=(−5
0,0)(図2のP2)、(X,Y)=(0,0)(図
2のP3)、(X,Y)=(50,0)(図2のP
4)、(X,Y)=(90,0)(図2のP5)、
(X,Y)=(0,−90)(図2のP6)、(X,
Y)=(0,−50)(図2のP7)、(X,Y)=
(0,50)(図2のP8)、(X,Y)=(0,9
0)(図2のP9)の都合9点である。図2(a)の場
合、各測定点のうち、P1,P2については、ステージ
5を反時計回りに270度回転させ、Y軸方向に直線移
動させてから測定した。また、P6,P7については、
ステージ5を反時計回りに180度回転させ、Y軸方向
に直線移動させてから測定した。また、P4,P5につ
いては、ステージ5を反時計回りに90度回転させ、Y
軸方向に直線移動させてから測定した。また、P3,P
8,P9については、ステージ5をY軸方向に直線移動
のみさせてから測定した。この結果、図2(a)に示す
ように、各測定点で殆ど測定値にバラツキが生じなかっ
た。また、図2(b)の場合、各測定点のうち、P1,
P2については、ステージ5を時計回りに90度回転さ
せ、Y軸方向に直線移動させてから測定した。また、P
6,P7については、ステージ5を時計回りに180度
回転させ、Y軸方向に直線移動させてから測定した。ま
た、P4,P5については、ステージ5を時計回りに2
70度回転させ、Y軸方向に直線移動させてから測定し
た。また、P3,P8,P9については、ステージ5を
Y軸方向に直線移動のみさせてから測定した。この場合
も、同様に、図2(b)に示すように、各測定点で殆ど
測定値にバラツキが生じなかった。
Example FIG. 2 shows the result of measuring the surface roughness of a mirror-polished silicon wafer (measurement object) having a diameter of 200 mm by applying the surface roughness measuring method of the above embodiment (RMS (Root Mean Square Deviation of the Surf
ace; root mean square roughness) (unit: nm)) was plotted. As a measuring device, KLA Tencor HRP-3
20 (having a stylus with a radius of curvature of the tip shape of 2 μm) was used, and the measurement range by the surface roughness measuring sensor 6 was 250 μm × 250 μm. The measurement point has, for example, the center of the mirror-polished silicon wafer as the origin, and the coordinates (X (mm), Y (mm)) on the XY plane including the wafer surface =
(-90,0) (P1 in FIG. 2), (X, Y) = (-5
0,0) (P2 in FIG. 2), (X, Y) = (0,0) (P3 in FIG. 2), (X, Y) = (50,0) (P in FIG. 2)
4), (X, Y) = (90,0) (P5 in FIG. 2),
(X, Y) = (0, −90) (P6 in FIG. 2), (X,
Y) = (0, −50) (P7 in FIG. 2), (X, Y) =
(0,50) (P8 in FIG. 2), (X, Y) = (0,9)
0) (P9 in FIG. 2) for the convenience of 9 points. In the case of FIG. 2A, among the measurement points, P1 and P2 were measured after rotating the stage 5 counterclockwise by 270 degrees and linearly moving in the Y-axis direction. Regarding P6 and P7,
Measurement was performed after rotating the stage 5 counterclockwise 180 degrees and linearly moving in the Y-axis direction. For P4 and P5, rotate the stage 5 90 degrees counterclockwise and
It was measured after linearly moving in the axial direction. Also, P3, P
For 8 and P9, the stage 5 was only linearly moved in the Y-axis direction and then measured. As a result, as shown in FIG. 2 (a), there was almost no variation in the measured values at each measuring point. Further, in the case of FIG. 2B, among the measurement points, P1,
For P2, the stage 5 was rotated clockwise by 90 degrees and linearly moved in the Y-axis direction, and then measured. Also, P
For 6 and P7, the stage 5 was rotated clockwise by 180 degrees and linearly moved in the Y-axis direction, and then measured. For P4 and P5, move stage 5 clockwise
The measurement was performed after rotating 70 degrees and linearly moving in the Y-axis direction. Further, P3, P8, and P9 were measured after the stage 5 was only linearly moved in the Y-axis direction. Also in this case, similarly, as shown in FIG. 2B, there was almost no variation in measured values at each measurement point.

【0023】<比較例>次に、比較例を示す。図4は、
従来の表面粗さ測定方法(P1,P2,P3,P4,P
5はX軸レール3,4に沿ってステージ5を移動して測
定、P6,P7,(P3),P8,P9はY軸方向にス
テージ5を移動して測定)により上記実施例と同様の鏡
面研磨シリコンウェーハの表面粗さを測定した結果(上
記RMSに加えてRa(Roughness Average;中心線平
均粗さ))をプロットしたものであり、図5は、その具
体的数値を示す図である。なお、RMSとRaとは、互
いの絶対値に若干の差がでるだけで、いずれも同様の傾
向を示す。これら図4および図5から明らかなように、
X軸レール3,4に沿わせてステージ5を移動させて測
定した場合の測定値についてのみ、中心から離れるに従
って大きくなる傾向のバラツキが生じてしまう。具体的
には、X軸レールに沿ってステージを移動した場合に
は、図5に示すようにRMSが約0.36nm程度から
約0.72nm程度まで大きく変動し、しかも中心から
離れるほど大きな値を示す傾向があるのに対し、Y軸レ
ールに沿って移動した場合は約0.33nm程度から約
0.36nm程度と殆ど変動しない。
<Comparative Example> Next, a comparative example will be described. Figure 4
Conventional surface roughness measuring method (P1, P2, P3, P4, P
5 moves the stage 5 along the X-axis rails 3 and 4 for measurement, and P6, P7, (P3), P8, and P9 measure the stage 5 by moving the stage 5 in the Y-axis direction. FIG. 5 is a plot of the results of measuring the surface roughness of a mirror-polished silicon wafer (Ra (Roughness Average; centerline average roughness) in addition to the above RMS), and FIG. 5 is a diagram showing specific numerical values thereof. . It should be noted that RMS and Ra show similar tendencies only with a slight difference in their absolute values. As is clear from FIGS. 4 and 5,
Only with respect to the measured values when the stage 5 is moved along the X-axis rails 3 and 4, there is a variation that tends to increase as the distance from the center increases. Specifically, when the stage is moved along the X-axis rail, the RMS greatly fluctuates from about 0.36 nm to about 0.72 nm as shown in FIG. However, when moving along the Y-axis rail, there is almost no change from about 0.33 nm to about 0.36 nm.

【0024】このような実施例と比較例との比較から、
X軸レール3,4に沿ってステージ5を移動させて表面
粗さを測定した場合には、ステージ5の位置変化に応じ
たX軸レール3,4の撓み量の変化により、測定値にバ
ラツキが生じていることが明らかである。つまり、X軸
レール3,4といったように、ステージ5の荷重が加わ
る部分には、例えばステンレスなどの剛性の高い材料が
用いられているため、元々、荷重による撓み量は極めて
小さいのではあるが、例えばオングストロームオーダー
といった極微少な測定誤差も無視できない測定の場合に
は問題となることが分かる。これに対し、Y軸レール
1,2は、土台7上に直接固定されているため、撓むこ
とがなく、従って、Y軸レール1,2に沿ってステージ
5を移動させて表面粗さを測定した場合には、測定装置
に起因する測定値のバラツキは生じないと考えられる。
From the comparison between the embodiment and the comparative example,
When the surface roughness is measured by moving the stage 5 along the X-axis rails 3 and 4, variations in the amount of bending of the X-axis rails 3 and 4 in response to changes in the position of the stage 5 cause variations in the measured values. Is apparently occurring. That is, since a material having high rigidity, such as stainless steel, is used for the portion of the stage 5 to which the load is applied, such as the X-axis rails 3 and 4, the amount of bending due to the load is originally extremely small. It can be seen that this is a problem in the case of a measurement in which even a minute measurement error such as Angstrom order cannot be ignored. On the other hand, since the Y-axis rails 1 and 2 are directly fixed on the base 7, they do not bend, and therefore the stage 5 is moved along the Y-axis rails 1 and 2 to reduce the surface roughness. When measured, it is considered that there is no variation in measured values due to the measuring device.

【0025】以上のように、本実施の形態の表面粗さ測
定方法によれば、ステージ5を、X軸レール3,4上で
の回転移動と、X軸レール3,4を介したY軸レール
1,2に沿う方向への直線移動と、を適宜選択或いは組
み合わせて移動させることにより、測定対象物の測定必
要箇所をそれぞれ表面粗さ測定センサ6による測定可能
位置に移動させて、各測定必要箇所の表面粗さを測定す
るので、ステージ5を、X軸レール3,4上で該X軸レ
ール3,4に沿う方向に移動させる必要がない。よっ
て、測定データに、X軸レール3,4の撓み量の変動に
起因するバラツキが生じることがない。
As described above, according to the surface roughness measuring method of this embodiment, the stage 5 is rotationally moved on the X-axis rails 3 and 4, and the Y-axis is moved via the X-axis rails 3 and 4. By appropriately selecting or combining and moving linearly in the direction along the rails 1 and 2, the measurement required points of the measuring object are moved to the measurable positions by the surface roughness measuring sensor 6, respectively, and each measurement is performed. Since the surface roughness of the required portion is measured, it is not necessary to move the stage 5 on the X-axis rails 3 and 4 in the direction along the X-axis rails 3 and 4. Therefore, the measurement data does not vary due to the variation in the bending amount of the X-axis rails 3 and 4.

【0026】なお、上記の実施の形態では、半導体基板
(例えば鏡面研磨シリコンウェーハ)の測定に用いた
が、表面粗さを測定する必要があるものであればその他
のものに用いても良い。また、上記の実施の形態では、
ステージ5をX軸レール3,4に沿って移動させること
なく測定を行う例について説明したが、本発明はこれに
限らず、例えばステージ5をX軸レール3,4に沿う方
向に移動させて測定対象物の表面粗さを測定する場合の
測定値の分布傾向を予め解析した解析結果に基づく補正
を、新たに測定した測定値に施すようにしても良い。つ
まり、ステージ5をX軸レール3,4に沿う方向に移動
させて表面粗さを測定した場合に、測定点がステージ5
の中心から離れるに従って、測定値がどのように大きく
なるかを解析することにより、X軸レール3,4の撓み
量の変化に起因する各測定点毎の測定値の誤差(以下、
装置起因誤差ともいう)を算出しておき、この算出した
装置起因誤差分だけ、各測定点での実際の測定値から差
し引くといった補正を施すことにより、装置起因誤差の
ない適正な測定値を求めることができる。さらに、この
ような補正を自動で行う機能を表面粗さ測定装置50に
持たせても良い(つまり、測定装置50が本発明に係る
補正手段を備えることとしても良い)。また、上記の実
施の形態の表面粗さ測定装置50は、Y軸レール1,2
とX軸レール3,4とを共に備える構成を例示したが、
本発明はこれに限らず、例えばX軸レール3,4を有さ
ず、ステージ5が、Y軸レール1,2上に支持され、該
Y軸レール1,2上で回転移動および該Y軸レール1,
2に案内されての直線移動が可能に構成された表面粗さ
測定装置を用いても良い。すなわち、この場合のステー
ジ5上に測定対象物を載置し、該ステージ5を、回転移
動とY軸レール1,2に沿う直線移動とを適宜選択或い
は組み合わせて移動させることにより、測定対象物の測
定必要箇所をそれぞれ表面粗さ測定センサ6による測定
可能位置に移動させて表面粗さを測定するようにしても
良い。或いは、単に、X軸レール3,4の剛性を高める
ことにより、該X軸レール3,4に案内されて移動する
ステージ5の位置に拘わらず該X軸レール3,4の撓み
量が変化しないようにしても良い。
In the above embodiment, the semiconductor substrate (for example, a mirror-polished silicon wafer) is used for measurement, but it may be used for other purposes as long as the surface roughness needs to be measured. Further, in the above embodiment,
Although the example of performing the measurement without moving the stage 5 along the X-axis rails 3 and 4 has been described, the present invention is not limited to this, and for example, the stage 5 may be moved in the direction along the X-axis rails 3 and 4. The newly measured measurement value may be corrected based on the analysis result obtained by previously analyzing the distribution tendency of the measurement value when the surface roughness of the measurement target is measured. That is, when the surface roughness is measured by moving the stage 5 in the direction along the X-axis rails 3 and 4, the measurement point is the stage 5
By analyzing how the measured value increases as it moves away from the center of the, the error in the measured value at each measuring point due to the change in the amount of bending of the X-axis rails 3 and 4 (hereinafter,
(Also referred to as device-induced error) is calculated, and the calculated device-induced error is subtracted from the actual measurement value at each measurement point to obtain a proper measurement value without device-induced error. be able to. Further, the surface roughness measuring device 50 may be provided with a function of automatically performing such a correction (that is, the measuring device 50 may include the correction means according to the present invention). In addition, the surface roughness measuring device 50 of the above-described embodiment is provided with the Y-axis rails 1 and 2.
Although the configuration including both the X-axis rails 3 and 4 has been exemplified,
The present invention is not limited to this. For example, the stage 5 does not have the X-axis rails 3 and 4, and the stage 5 is supported on the Y-axis rails 1 and 2 and rotationally moves on the Y-axis rails 1 and 2. Rail 1,
It is also possible to use a surface roughness measuring device configured to be capable of linear movement guided by 2. That is, the object to be measured is placed on the stage 5 in this case, and the object to be measured is moved by appropriately selecting or combining the stage 5 with rotational movement and linear movement along the Y-axis rails 1 and 2. The surface roughness may be measured by moving each of the measurement-requiring points to the position where the surface roughness measuring sensor 6 can measure. Alternatively, simply by increasing the rigidity of the X-axis rails 3 and 4, the bending amount of the X-axis rails 3 and 4 does not change regardless of the position of the stage 5 that is guided and moved by the X-axis rails 3 and 4. You may do it.

【0027】[0027]

【発明の効果】本発明の表面粗さ測定方法および測定装
置によれば、測定装置に起因する測定値のバラツキを解
消して適正な測定を行うことができる。
According to the surface roughness measuring method and the measuring apparatus of the present invention, it is possible to eliminate the variation in the measured values due to the measuring apparatus and perform the proper measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】表面粗さ測定装置を示す図であり、このうち
(a)は平面図、(b)は正面図である。
FIG. 1 is a diagram showing a surface roughness measuring device, in which (a) is a plan view and (b) is a front view.

【図2】本発明の表面粗さ測定方法により半導体基板の
表面粗さを測定した場合の測定値の面内分布の傾向を示
す図である。
FIG. 2 is a diagram showing a tendency of in-plane distribution of measured values when the surface roughness of a semiconductor substrate is measured by the surface roughness measuring method of the present invention.

【図3】ステージの移動位置に応じた架設レールの撓み
量の変化を示す模式図である。
FIG. 3 is a schematic diagram showing a change in a bending amount of an erection rail according to a moving position of a stage.

【図4】従来の表面粗さ測定方法により半導体基板の表
面粗さを測定した場合の測定値の面内分布の傾向を示す
図である。
FIG. 4 is a diagram showing a tendency of in-plane distribution of measured values when the surface roughness of a semiconductor substrate is measured by a conventional surface roughness measuring method.

【図5】従来の表面粗さ測定方法により半導体基板の表
面粗さを測定した場合の測定値を示す図である。
FIG. 5 is a diagram showing measured values when the surface roughness of a semiconductor substrate is measured by a conventional surface roughness measuring method.

【符号の説明】[Explanation of symbols]

1,2 Y軸レール(固定レール) 3,4 X軸レール(架設レール) 5 ステージ 6 表面粗さ測定センサ 1, 2 Y-axis rail (fixed rail) 3,4 X-axis rail (construction rail) 5 stages 6 Surface roughness measurement sensor

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F063 AA43 BA27 BC05 BD11 DA01 DA13 DB05 DB07 DC08 HA04 ZA03 2F069 AA57 BB14 CC06 GG06 GG62 HH09 JJ14 JJ17 2F078 CA06 CB02 CB09 CB12 CC11   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 2F063 AA43 BA27 BC05 BD11 DA01                       DA13 DB05 DB07 DC08 HA04                       ZA03                 2F069 AA57 BB14 CC06 GG06 GG62                       HH09 JJ14 JJ17                 2F078 CA06 CB02 CB09 CB12 CC11

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 互いに略平行となるようにそれぞれ土台
に固定された一対の固定レールと、該固定レール間に架
設され該固定レールに案内されて直線移動可能な架設レ
ールと、該架設レール上に支持され、回転移動と該架設
レールに案内されての直線移動とが可能なステージと、
該ステージ上に載置された測定対象物の表面粗さを測定
する表面粗さ測定センサとを備える測定装置を用いる表
面粗さ測定方法であって、前記ステージを、前記架設レ
ール上での回転移動と、前記架設レールが前記固定レー
ルに案内されて移動するのに伴う直線移動と、を適宜選
択或いは組み合わせて移動させることにより、測定対象
物の測定必要箇所をそれぞれ表面粗さ測定センサによる
測定可能位置に移動させることを特徴とする表面粗さ測
定方法。
1. A pair of fixed rails, which are fixed to a base so as to be substantially parallel to each other, an erection rail that is installed between the fixed rails and is linearly movable by being guided by the fixed rail, and on the erection rail. A stage that is supported by and is capable of rotating movement and linear movement guided by the erection rail;
A surface roughness measuring method using a measuring device equipped with a surface roughness measuring sensor for measuring the surface roughness of a measuring object placed on the stage, comprising rotating the stage on the erection rail. By appropriately selecting or combining the movement and the linear movement accompanying the movement of the erection rail guided by the fixed rail, the measurement target points of the measurement target are respectively measured by the surface roughness measuring sensor. A method for measuring surface roughness, which comprises moving to a feasible position.
【請求項2】 土台に固定された固定レール上に支持さ
れたステージ上に測定対象物を載置し、前記ステージ
を、回転移動と前記固定レールに沿う直線移動とを適宜
選択或いは組み合わせて移動させることにより、測定対
象物の測定必要箇所をそれぞれ表面粗さ測定センサによ
る測定可能位置に移動させることを特徴とする表面粗さ
測定方法。
2. An object to be measured is placed on a stage supported on a fixed rail fixed to a base, and the stage is moved by appropriately selecting or combining rotational movement and linear movement along the fixed rail. The surface roughness measuring method is characterized in that the measurement-required portion of the measurement object is moved to a measurable position by the surface roughness measuring sensor.
【請求項3】 土台に固定された固定レールと、該固定
レール上に他のレールを介さずに支持され、回転移動と
前記固定レールに案内されての直線移動とが可能なステ
ージと、該ステージ上に載置された測定対象物の表面粗
さを測定する表面粗さ測定センサとを備えることを特徴
とする表面粗さ測定装置。
3. A fixed rail fixed to a base, a stage supported on the fixed rail without interposing other rails, and capable of rotational movement and linear movement guided by the fixed rail, A surface roughness measuring device, comprising: a surface roughness measuring sensor for measuring the surface roughness of a measuring object placed on a stage.
【請求項4】 互いに略平行となるようにそれぞれ土台
に固定された一対の固定レールと、該固定レール間に架
設され該固定レールに案内されて直線移動可能な架設レ
ールと、該架設レール上に支持され、回転移動と該架設
レールに案内されての直線移動とが可能なステージと、
該ステージ上に載置された測定対象物の表面粗さを測定
する表面粗さ測定センサとを備える測定装置を用いる表
面粗さ測定方法であって、前記ステージを前記架設レー
ルに沿う方向に移動させて測定対象物の表面粗さを測定
する場合の測定値の分布傾向を予め解析した解析結果に
基づく補正を、新たに測定した測定値に施すことを特徴
とする表面粗さ測定方法。
4. A pair of fixed rails fixed to a base so as to be substantially parallel to each other, an erection rail that is erected between the fixed rails and is linearly movable by being guided by the fixed rails, and on the erection rail. A stage that is supported by and is capable of rotating movement and linear movement guided by the erection rail;
A surface roughness measuring method using a measuring device equipped with a surface roughness measuring sensor for measuring the surface roughness of a measuring object placed on the stage, wherein the stage is moved in a direction along the erection rail. A method for measuring surface roughness, characterized in that a newly measured measurement value is subjected to correction based on an analysis result obtained by previously analyzing a distribution tendency of measurement values when the surface roughness of a measurement target is measured.
【請求項5】 互いに略平行となるようにそれぞれ土台
に固定された一対の固定レールと、該固定レール間に架
設され該固定レールに案内されて直線移動可能な架設レ
ールと、該架設レール上に支持され、回転移動と該架設
レールに案内されての直線移動とが可能なステージと、
該ステージ上に載置された測定対象物の表面粗さを測定
する表面粗さ測定センサと、前記ステージを前記架設レ
ールに沿う方向に移動させて測定対象物の表面粗さを測
定する場合の測定値の分布傾向を予め解析した解析結果
に基づく補正を、新たに測定した測定値に施す補正手段
とを備えることを特徴とする表面粗さ測定装置。
5. A pair of fixed rails, which are fixed to a base so as to be substantially parallel to each other, an erection rail that is erected between the fixed rails and is linearly movable by being guided by the fixed rail, and on the erection rail. A stage that is supported by and is capable of rotating movement and linear movement guided by the erection rail;
A surface roughness measuring sensor for measuring the surface roughness of the measuring object placed on the stage, and a case of measuring the surface roughness of the measuring object by moving the stage in the direction along the erection rail. A surface roughness measuring device comprising: a correction unit that applies a correction based on an analysis result of a distribution of measured values in advance to a newly measured measured value.
JP2001351723A 2001-11-16 2001-11-16 Surface roughness measurement method Expired - Fee Related JP3654238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001351723A JP3654238B2 (en) 2001-11-16 2001-11-16 Surface roughness measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001351723A JP3654238B2 (en) 2001-11-16 2001-11-16 Surface roughness measurement method

Publications (2)

Publication Number Publication Date
JP2003148951A true JP2003148951A (en) 2003-05-21
JP3654238B2 JP3654238B2 (en) 2005-06-02

Family

ID=19163997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001351723A Expired - Fee Related JP3654238B2 (en) 2001-11-16 2001-11-16 Surface roughness measurement method

Country Status (1)

Country Link
JP (1) JP3654238B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101929835B (en) * 2009-06-22 2013-03-20 鸿富锦精密工业(深圳)有限公司 Measuring device for inner bore surface roughness of workpieces
CN105444725A (en) * 2016-01-15 2016-03-30 晋西车轴股份有限公司 A hollow shaft deep-small bore surface quality automatic detection apparatus
CN106247927A (en) * 2016-08-09 2016-12-21 电子科技大学 A kind of negative cruvature ruled surface measuring device for surface roughness and method
WO2017086484A1 (en) * 2015-11-20 2017-05-26 日立オートモティブシステムズ株式会社 Surface inspection method, surface inspection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103033162B (en) * 2012-12-25 2015-09-30 浙江大学 Silk cocoon contracting wrinkle detection method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101929835B (en) * 2009-06-22 2013-03-20 鸿富锦精密工业(深圳)有限公司 Measuring device for inner bore surface roughness of workpieces
WO2017086484A1 (en) * 2015-11-20 2017-05-26 日立オートモティブシステムズ株式会社 Surface inspection method, surface inspection device
JP2017096697A (en) * 2015-11-20 2017-06-01 日立オートモティブシステムズ株式会社 Surface inspection method and surface inspection device
CN105444725A (en) * 2016-01-15 2016-03-30 晋西车轴股份有限公司 A hollow shaft deep-small bore surface quality automatic detection apparatus
CN106247927A (en) * 2016-08-09 2016-12-21 电子科技大学 A kind of negative cruvature ruled surface measuring device for surface roughness and method
CN106247927B (en) * 2016-08-09 2019-08-20 电子科技大学 A kind of negative cruvature ruled surface measuring device for surface roughness and method

Also Published As

Publication number Publication date
JP3654238B2 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
US6367159B1 (en) Method and apparatus for measuring surface shape of thin element
KR20020065369A (en) Position measuring apparatus
KR100685216B1 (en) Substrate processing apparatus and substrate processing method
JP2005037205A (en) Scanning probe microscope and measuring method of the same
JP4531685B2 (en) Shape measuring device and shape measuring method
JP4095991B2 (en) Total reflection X-ray fluorescence analyzer
JP2003148951A (en) Method and instrument for measuring surface roughness
JP4717639B2 (en) Method and apparatus for measuring both sides of substrate shape
JP4441523B2 (en) Scanning probe microscope and measuring method using the same
Dai et al. Measurement of micro-roughness using a metrological large range scanning force microscope
CN109959350A (en) The detection method and device of prism right angle working face verticality
JPH10307018A (en) Measuring device for inner and outer surfaces
JPH11125520A (en) Member for supporting semiconductor wafer, and flatness measuring instrument for semiconductor wafer
US6405584B1 (en) Probe for scanning probe microscopy and related methods
JP5470525B2 (en) Total reflection X-ray fluorescence analyzer
JP3790902B2 (en) Stage structure
Dixson et al. Measurement of pitch and width samples with the NIST calibrated atomic force microscope
JP4198944B2 (en) Substrate processing equipment
JP2003075147A (en) Method and device for measurement of flatness
JPH0886640A (en) Method and instrument for measuring shape
JP5009560B2 (en) Apparatus for measuring the shape of a thin object to be measured
KR102645994B1 (en) Tilt Stage for Atomic Force Microscope
JP2001183282A (en) Information detector having scanning probe and information detecting method
JP5076171B2 (en) Shape measuring method and shape measuring apparatus
JP2005172700A (en) Capacitance thickness measuring method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees