JP5009560B2 - Apparatus for measuring the shape of a thin object to be measured - Google Patents

Apparatus for measuring the shape of a thin object to be measured Download PDF

Info

Publication number
JP5009560B2
JP5009560B2 JP2006179995A JP2006179995A JP5009560B2 JP 5009560 B2 JP5009560 B2 JP 5009560B2 JP 2006179995 A JP2006179995 A JP 2006179995A JP 2006179995 A JP2006179995 A JP 2006179995A JP 5009560 B2 JP5009560 B2 JP 5009560B2
Authority
JP
Japan
Prior art keywords
measured
frame
sensor
shape
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006179995A
Other languages
Japanese (ja)
Other versions
JP2008008778A (en
Inventor
勉 森本
弘行 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006179995A priority Critical patent/JP5009560B2/en
Publication of JP2008008778A publication Critical patent/JP2008008778A/en
Application granted granted Critical
Publication of JP5009560B2 publication Critical patent/JP5009560B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、半導体基板(ウェハ)等の薄片試料の形状、詳しくは厚さ分布および反り形状の測定技術に関する。   The present invention relates to a technique for measuring the shape of a thin sample such as a semiconductor substrate (wafer), specifically, a thickness distribution and a warped shape.

半導体基板(ウェハ)等の薄片試料にはできるだけ厚さが均一でかつ反りが生じていないことが要求される。   A thin sample such as a semiconductor substrate (wafer) is required to be as uniform in thickness as possible and free from warping.

〔従来技術1〕
このような薄片状の試料(被測定物)の厚さ分布および反り形状を同時に測定する方法として、例えば、干渉計、レーザ変位計、静電容量式変位計等の非接触式の変位計2台を対向させて試料の表裏に配置し、これらを走査させて試料表面の高さ(変位量)分布を測定し、その測定値から厚さ分布と反り形状を同時に求める方法が開示されている(特許文献1参照)。この方法は、試料を水平に保持し、2台の変位計をフレームに固定してこのフレームごと水平に移動させて走査するものである。
[Prior art 1]
As a method for simultaneously measuring the thickness distribution and the warp shape of such a flaky sample (object to be measured), for example, a non-contact displacement meter 2 such as an interferometer, a laser displacement meter, a capacitance displacement meter or the like. A method is disclosed in which a table is placed opposite and placed on the front and back of a sample, and these are scanned to measure the height (displacement) distribution of the sample surface, and the thickness distribution and warpage shape are simultaneously obtained from the measured values. (See Patent Document 1). In this method, a sample is held horizontally, two displacement meters are fixed to a frame, and this frame is moved horizontally to scan.

ここで、一般的に半導体基板(ウェハ)のような薄片試料では、反りの大きさは厚さのバラツキに比べ非常に大きい。たとえば、シリコンウェハでは、反りの大きさは10〜100μmのオーダーであるのに対し、厚さのバラツキはウェハ全面で100nm〜1μmのオーダーである。このため、反りの測定に求められる分解能または再現性は0.1μm(=100nm)程度であるに対して、厚さの分解能または再現性は10nm程度であった。上記のようなオーダーの反りを有する試料の表面を上記従来技術1の変位計で走査する場合、試料に接触しないよう安全をみて変位計を試料表面から数100μm離して設置する必要がある。このため、変位計には数100μmの測定範囲と10nmの分解能または再現性が必要とされ、数100μm/10nm=数万のダイナミックレンジが必要であった。しかも、近年LSIの製造に用いられるウェハにはさらなる平坦性が要求されており、厚さのバラツキを1nm程度まで低減したものが求められている。一方、反りの大きさは、ウェハのサイズが200mmから300mmへと拡大してきたこともあり、大きな変化はない。このため、変位計のダイナミックレンジはさらに大きなものが求められ、信号処理の容量の制約などの点から高精度の厚さ測定が困難となってきている。   Here, in general, in a thin sample such as a semiconductor substrate (wafer), the amount of warpage is much larger than the variation in thickness. For example, in a silicon wafer, the magnitude of warpage is on the order of 10 to 100 μm, whereas the variation in thickness is on the order of 100 nm to 1 μm on the entire surface of the wafer. For this reason, the resolution or reproducibility required for measurement of warpage is about 0.1 μm (= 100 nm), whereas the resolution or reproducibility of thickness is about 10 nm. When scanning the surface of the sample having the warp of the order as described above with the displacement meter of the prior art 1, it is necessary to install the displacement meter several hundred μm away from the sample surface for safety. For this reason, the displacement meter is required to have a measurement range of several hundred μm and a resolution or reproducibility of 10 nm, and a dynamic range of several hundred μm / 10 nm = tens of thousands. Moreover, in recent years, further flatness is required for wafers used in the manufacture of LSIs, and there is a demand for wafers with thickness variations reduced to about 1 nm. On the other hand, the size of the warp has not changed greatly since the size of the wafer has increased from 200 mm to 300 mm. For this reason, the dynamic range of the displacement meter is required to be larger, and it is difficult to measure the thickness with high accuracy in view of restrictions on the capacity of signal processing.

つまり、測定精度を高めようとして2台の変位計の間隔を狭めて試料に近づけすぎると、試料の反りが大きい場合は変位計が試料に接触してしまうおそれがある。このため、2台の変位計の間隔はある程度大きくしておかざるを得ず、高い精度で試料の厚さと反りの大きさを同時に測定することは困難であった。   That is, if the distance between the two displacement meters is narrowed too close to the sample in order to increase the measurement accuracy, the displacement meter may come into contact with the sample if the sample warps greatly. For this reason, the distance between the two displacement meters must be increased to some extent, and it has been difficult to simultaneously measure the thickness of the sample and the size of the warp with high accuracy.

〔従来技術2〕
一方、試料(被検体)の表面形状を測定する装置として、固定したフレームにリニアモータなどの変位機構を介して静電容量センサを移動可能に取り付け、この変位機構の操作により静電容量センサを試料(被検体)表面から一定の距離範囲に移動させて測定を行うことにより、測定精度を向上させることができる装置が開示されている(特許文献2参照)。
[Prior art 2]
On the other hand, as a device for measuring the surface shape of a sample (subject), a capacitance sensor is movably attached to a fixed frame via a displacement mechanism such as a linear motor, and the capacitance sensor is operated by operating the displacement mechanism. An apparatus is disclosed that can improve measurement accuracy by performing measurement while moving the sample (subject) from a surface within a certain distance (see Patent Document 2).

この装置によれば、変位機構により変位計を試料に接触させることなく接近させることができ、試料の表面形状(すなわち、反り形状)は高精度に測定しうる。しかしながら、この装置は1台の変位計を使用するものであるため裏面形状を同時に測定することができず、試料の厚さは測定することができない。   According to this apparatus, the displacement mechanism can be brought close to the sample without bringing it into contact with the sample, and the surface shape (that is, the warped shape) of the sample can be measured with high accuracy. However, since this apparatus uses one displacement meter, the back surface shape cannot be measured at the same time, and the thickness of the sample cannot be measured.

特開2003−75147号公報JP 2003-75147 A 特開2001−221607号公報JP 2001-221607 A

そこで、本発明は、薄片状の被測定物の厚さ分布および反り形状を同時にかつ高精度に測定できる形状測定装置を提供することを目的とする。 Accordingly, an object of the present invention is to provide a shape measuring apparatus capable of simultaneously measuring the thickness distribution and warpage shape of a flaky object to be measured with high accuracy.

請求項に記載の発明は、薄片状の被測定物をその片端から他端まで非接触式の対物変位センサで走査してその形状を測定する装置であって、被測定物の表裏を挟むように配置されたフレームと、このフレームに固定され、前記被測定物を挟んで対向して配置される一対の非接触式の対物変位センサと、前記フレームを、前記被測定物の厚さ方向に移動可能となすフレーム可動手段としてのPZT素子と、前記フレームの移動量を検出するフレーム変位検出手段と、前記一対の対物変位センサのうちいずれか一方の対物変位センサの移動量を前記PZT素子を変位させることにより調整して前記被測定物との間隙を略一定に保持するセンサ位置制御手段と、前記フレーム移動量検出手段で検出された移動量および前記一対の対物変位センサで検出された当該対物センサから前記被測定物の表面および裏面までの距離に基づいて前記被測定物の厚さおよび反りの度合いを演算する形状演算手段と、を備えたことを特徴とする形状測定装置である。 The invention according to claim 1 is an apparatus for measuring the shape of a thin object to be measured by scanning it from one end to the other end with a non-contact type objective displacement sensor, and sandwiching the front and back of the object to be measured. A pair of non-contact type object displacement sensors fixed to the frame and opposed to each other with the measurement object interposed therebetween, and the frame in the thickness direction of the measurement object A PZT element as a frame moving means that is movable to the frame, a frame displacement detection means for detecting a movement amount of the frame, and a movement amount of one of the pair of objective displacement sensors as the PZT element. A sensor position control means for adjusting the position of the object to be measured to maintain a substantially constant gap with the object to be measured, a movement amount detected by the frame movement amount detection means, and the pair of objective displacement sensors. Shape measuring means, comprising: shape calculating means for calculating the thickness of the object to be measured and the degree of warping based on the distance from the objective sensor to the surface and the back surface of the object to be measured Device.

請求項に記載の発明は、前記対物変位センサが、静電容量センサまたはレーザ干渉測長計である請求項1に記載の形状測定装置である。 The invention according to claim 2 is the shape measuring apparatus according to claim 1, wherein the objective displacement sensor is a capacitance sensor or a laser interferometer.

本発明によれば、対向する一対の対物変位センサを被測定物の表裏にできるだけ近接させた状態で走査できるので、高精度で被測定物の厚さ分布および反り形状を同時に測定できる装置を提供することが実現できる。
According to the present invention, since the pair of displaceable optical sensors which faces can be scanned in a state of being as close as possible to the front and back of the object, equipment that can simultaneously measure the thickness distribution and camber profile of the workpiece with high precision Can be realized.

以下、図面を参照しつつ本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

〔実施形態1〕
図1に、本発明の実施形態に係る形状測定装置の概略構成を示す。ウェハ等の被測定物Sは水平方向に移動可能なステージ7上に複数の支持点12を介して水平に支持される。符号1,1’は固定したフレームであり、被測定物Sの表裏を挟むように配置されている。符号2,2’は一対の非接触式の対物変位センサとしての静電容量センサであり、被測定物Sを挟んで対向して配置されている。符号3,3’はセンサ可動手段としてのPZT素子であり、フレーム1,1’にそれぞれ固定され、静電容量センサ2,2’のそれぞれを、フレーム1,1’それぞれに対して被測定物Sの厚さ方向(すなわち、上下方向)に移動可能に支持している。符号4,4’はセンサ移動量検出手段としての静電容量センサであり、フレーム1,1’それぞれに対する対物変位センサ2,2’のそれぞれの移動量を検出するものである。符号5はセンサ位置制御手段としてのセンサ位置制御部であり、一方(本例では上部)の静電容量センサ2の移動量を調整して被測定物Sとの間隙を略一定に保持するとともに、他方(本例では下部)の静電容量センサ2’を一方(上部)の静電容量センサ2の移動量と同じ量だけ移動させることにより一対の静電容量センサ2,2’間の距離を一定に保持するものである。符号6は形状演算手段としての形状演算部であり、静電容量センサ4,4’で検出された静電容量センサ2,2’の移動量および一対の静電容量センサ2,2’で検出された当該静電容量センサ2,2’それぞれから被測定物Sの表面および裏面までの距離に基づいて被測定物Sの厚さおよび反りの度合いを演算するものである。
Embodiment 1
FIG. 1 shows a schematic configuration of a shape measuring apparatus according to an embodiment of the present invention. An object to be measured S such as a wafer is supported horizontally via a plurality of support points 12 on a stage 7 that can move in the horizontal direction. Reference numerals 1 and 1 ′ denote fixed frames, which are arranged so as to sandwich the front and back of the object S to be measured. Reference numerals 2 and 2 ′ are electrostatic capacitance sensors as a pair of non-contact type objective displacement sensors, and are arranged to face each other with the object S to be measured interposed therebetween. Reference numerals 3 and 3 ′ denote PZT elements as sensor moving means, which are fixed to the frames 1 and 1 ′, respectively, and the capacitance sensors 2 and 2 ′ are respectively measured with respect to the frames 1 and 1 ′. It is supported so as to be movable in the thickness direction of S (that is, in the vertical direction). Reference numerals 4 and 4 ′ denote capacitance sensors as sensor movement amount detection means, which detect the movement amounts of the objective displacement sensors 2 and 2 ′ with respect to the frames 1 and 1 ′, respectively. Reference numeral 5 denotes a sensor position control unit serving as a sensor position control means, which adjusts the amount of movement of one (upper part in this example) of the capacitance sensor 2 and holds the gap with the measured object S substantially constant. The distance between the pair of capacitance sensors 2 and 2 ′ is moved by moving the other (lower in this example) capacitance sensor 2 ′ by the same amount as the movement of one (upper) capacitance sensor 2. Is kept constant. Reference numeral 6 denotes a shape calculation unit as a shape calculation means, which is detected by the movement amount of the capacitance sensors 2 and 2 ′ detected by the capacitance sensors 4 and 4 ′ and the pair of capacitance sensors 2 and 2 ′. The thickness of the measurement object S and the degree of warpage are calculated based on the distances from the respective capacitance sensors 2 and 2 ′ to the front and back surfaces of the measurement object S.

つぎに、本例の形状測定装置により被測定物Sの形状を測定する方法を説明する。まず、静電容量センサ2,2’間の距離は被測定物Sに接触しない範囲でできるだけ被測定物Sに近接させるため、静電容量センサ2,2’の直径等により異なるが、被測定物Sの厚さより少し大きい例えば、被測定物Sの厚さ+100〜2000μm程度、より好ましくは被測定物Sの厚さ+100〜200μm程度とする。そして、ステージ7を初期の位置、すなわち被測定物Sの片端が対向する一対の静電容量センサ2,2’の間に位置するようにセットする。このとき、静電容量センサ2,2’それぞれと被測定物Sとの隙間がほぼ同じになるように静電容量センサ2,2’の高さ位置を予め定めておき、その高さ位置に静電容量センサ2,2’をセットしておく。また、静電容量センサ2で検出された被測定物Sの表面までの距離の信号が常時センサ位置制御部5に送られるようにしておく。   Next, a method for measuring the shape of the object S to be measured using the shape measuring apparatus of this example will be described. First, the distance between the capacitance sensors 2 and 2 ′ is as close as possible to the measurement object S in a range not contacting the measurement object S, and thus varies depending on the diameter of the capacitance sensors 2 and 2 ′. For example, the thickness of the object to be measured S is about +100 to 2000 μm, more preferably the thickness of the object to be measured +100 to about 200 μm. Then, the stage 7 is set so as to be positioned at an initial position, that is, between a pair of electrostatic capacitance sensors 2 and 2 ′ with one end of the object S to be measured facing each other. At this time, the height positions of the capacitance sensors 2 and 2 ′ are determined in advance so that the gaps between the capacitance sensors 2 and 2 ′ and the object S to be measured are substantially the same. Capacitance sensors 2 and 2 'are set. In addition, a signal of the distance to the surface of the measurement object S detected by the capacitance sensor 2 is always sent to the sensor position controller 5.

そして、被測定物Sを走査するためステージ7の水平移動を開始すると、被測定物Sに反りが存在する場合は、上部の静電容量センサ2と被測定物Sの表面との間隙の大きさが変化する。   When the horizontal movement of the stage 7 is started to scan the measurement object S, if the measurement object S is warped, the size of the gap between the upper capacitance sensor 2 and the surface of the measurement object S is large. Changes.

センサ位置制御部5は、この間隙の大きさの変化を検知すると、この変化分と同じ量だけ上下方向に変位(伸縮)するよう上部のPZT素子3の入力電圧を変化させる。これにより上部のPZT素子3は変位(伸縮)し、フレーム1に対する上部の静電容量センサ2の上下方向の相対的な位置も変位する。センサ可動手段としてPZT素子3を用いたのは、位置決めの整定時間を短縮できるからである。しかしながら、PZT素子3の入力電圧に対する変位の特性はヒステリシスや温度ドリフトを有するので、入力電圧だけからではPZT素子3の実際の変位量は確定できず、静電容量センサ2の実際の変位量を正確に求めることができない。このため、上部の静電容量センサ2の実際の変位量は静電容量センサ4で測定する。   When detecting the change in the size of the gap, the sensor position control unit 5 changes the input voltage of the upper PZT element 3 so as to be displaced (expanded / contracted) by the same amount as this change. As a result, the upper PZT element 3 is displaced (stretched), and the relative position in the vertical direction of the upper capacitive sensor 2 with respect to the frame 1 is also displaced. The reason why the PZT element 3 is used as the sensor moving means is that the settling time for positioning can be shortened. However, since the displacement characteristic of the PZT element 3 with respect to the input voltage has hysteresis and temperature drift, the actual displacement amount of the PZT element 3 cannot be determined from the input voltage alone, and the actual displacement amount of the capacitance sensor 2 can be determined. It cannot be determined accurately. For this reason, the actual displacement amount of the upper capacitance sensor 2 is measured by the capacitance sensor 4.

次いで,センサ位置制御部5は、この上部の静電容量センサ2の実際の変位量と同じ量だけ下部の静電容量センサ2’が変位するように、下部のPZT素子3’の入力電圧を変化させる。上部と同様、下部の静電容量センサ2’の実際の変位量は静電容量センサ4’で測定する。   Next, the sensor position control unit 5 changes the input voltage of the lower PZT element 3 ′ so that the lower capacitance sensor 2 ′ is displaced by the same amount as the actual displacement amount of the upper capacitance sensor 2. Change. Similar to the upper part, the actual displacement of the lower capacitive sensor 2 'is measured by the capacitive sensor 4'.

なお、上下の静電容量センサ2,2’の変位をできるだけ同じにするため、上下のPZT素子3,3’は、同じ形状、同じ特性を有するものを選択し、フレーム1,1’への固定方法、PZT素子3,3’にかかる荷重も同じとして、上下のPZT素子3,3’の動特性を可能な範囲で同じとすることが望ましい。   In order to make the displacement of the upper and lower electrostatic capacitance sensors 2 and 2 ′ as similar as possible, the upper and lower PZT elements 3 and 3 ′ are selected to have the same shape and the same characteristics, The fixing method and the load applied to the PZT elements 3 and 3 ′ are the same, and it is desirable that the dynamic characteristics of the upper and lower PZT elements 3 and 3 ′ are the same as much as possible.

また、ウェハ等の薄片の被測定物Sを横置きした場合、反りの他に被測定物S自身の重さによるたわみが発生するが、このたわみ量は予め、ステージ7の支持位置や被測定物Sの径、厚さ、結晶方位、弾性係数などから計算して、その影響を除去しておくことができる。   In addition, when a thin object to be measured S such as a wafer is placed sideways, deflection due to the weight of the object to be measured S is generated in addition to warping. The amount of deflection is determined in advance by the support position of the stage 7 and the object to be measured. The influence can be removed by calculating from the diameter, thickness, crystal orientation, elastic modulus, etc. of the object S.

次いで、形状演算部6において、被測定物Sの厚さおよび反りの度合いを演算する。   Next, the shape calculation unit 6 calculates the thickness of the workpiece S and the degree of warpage.

被測定物Sの反り量は、所定の高さ位置(例えば測定開始時における上部の静電容量センサ2の高さ位置)を基準にして、被測定物Sの表面までの距離と、予め定めた基準の平面(例えば被測定物Sの端部の高さ位置)までの距離との差で求めることができる。なお、ウェハ等の薄片の被測定物Sを横置きした場合、反りの他に被測定物S自身の重さによるたわみが発生するが、このたわみ量は予め、ステージ7の支持位置や被測定物Sの径、厚さ、結晶方位、弾性係数などから計算して、その影響を除去しておくことができる。   The amount of warpage of the object S to be measured is determined in advance with respect to a predetermined height position (for example, the height position of the upper capacitive sensor 2 at the start of measurement) and the distance to the surface of the object S to be measured. It can be obtained from the difference from the distance to the reference plane (for example, the height position of the end of the object S to be measured). In addition, when a thin object to be measured S such as a wafer is placed sideways, in addition to warping, deflection due to the weight of the object to be measured S is generated. The influence can be removed by calculating from the diameter, thickness, crystal orientation, elastic modulus, etc. of the object S.

また、被測定物Sの厚さtは、図2を参照して、以下のようにして求めることができる。すなわち、各静電容量センサ2,2’と被測定物Sとの間隙をそれぞれa,bとし、上下の静電容量センサ2,2’間の距離をcとすると、
t=c−a−b …式(1)
の関係がある。ここで、上下の静電容量センサ2,2’間の距離cは被測定物Sの走査中には直接測定することはできないが、この距離は常に一定に保持されるので、事前に既知の厚さtの較正片を用いて測定しておくことができる。各静電容量センサ2,2’と較正片との間隙をそれぞれa,bとすると、cは、
c=t+a+b …式(2)
で得られる。したがって、このcの値を式(1)に用いることにより、被測定物Sの厚さtを求めることができる。なお、a,bの値は各静電容量センサ2,2’からの出力に基づいて個別に求めてもよいが、センサ位置制御部5で各出力の電気的な加算を行い、a+bの値を直接求めることもできる。
Further, the thickness t of the measurement object S can be obtained as follows with reference to FIG. That is, if the gaps between the capacitance sensors 2 and 2 ′ and the object S to be measured are a and b, respectively, and the distance between the upper and lower capacitance sensors 2 and 2 ′ is c,
t = c−a−b Formula (1)
There is a relationship. Here, the distance c between the upper and lower capacitance sensors 2 and 2 'cannot be directly measured during scanning of the object S to be measured, but since this distance is always kept constant, it is known in advance. It may have been measured with a calibration strip having a thickness of t 0. If the gaps between the capacitance sensors 2 and 2 ′ and the calibration piece are a 0 and b 0 , respectively, c is
c = t 0 + a 0 + b 0 Formula (2)
It is obtained by. Therefore, the thickness t of the measurement object S can be obtained by using the value of c in the equation (1). The values of a and b may be obtained individually based on the outputs from the electrostatic capacitance sensors 2 and 2 ′. However, the sensor position control unit 5 electrically adds the outputs to obtain the value of a + b. Can also be obtained directly.

このようにして、被測定物Sを他端まで走査しつつ上記測定・演算を繰り返すことによって、被測定物Sの反り形状および厚さ分布が測定できる。   In this way, the warp shape and thickness distribution of the measurement object S can be measured by repeating the measurement and calculation while scanning the measurement object S to the other end.

図3は、上記測定の概念を示す模式図であり、横軸は水平方向の位置、縦軸は高さ位置を示す。図中、上から順に、上部の静電容量センサ2の高さ位置の軌跡、被測定物Sの表面形状、被測定物Sの裏面形状、上部の静電容量センサ2’の高さ位置の軌跡を示す。上述したように、静電容量センサ2と被測定物Sの表面との間隙aは一定に保持する制御を行っているが、被測定物Sを所定の速度で走査する関係上、上部の静電容量センサ2の高さ位置は被測定物Sの表面形状には完全には追随できない。すなわち、大まかな表面形状には追随できるが、空間周波数の高い、細かい変化を有する部分の表面形状には追随できず、この部分は制御誤差が残る。また、下部の静電容量センサ2’の高さ位置は、上部の静電容量センサ2の高さ位置に連動して変化するので、上部の静電容量センサ2の軌跡から一定のオフセット分だけ下方にずれた軌跡となる。   FIG. 3 is a schematic diagram illustrating the concept of the measurement, in which the horizontal axis indicates the horizontal position and the vertical axis indicates the height position. In the figure, in order from the top, the locus of the height position of the upper capacitance sensor 2, the surface shape of the object S to be measured, the back surface shape of the object S to be measured, and the height position of the upper capacitance sensor 2 ′. Show the trajectory. As described above, the gap a between the electrostatic capacitance sensor 2 and the surface of the object S to be measured is controlled to be constant. However, the upper static is controlled because the object S is scanned at a predetermined speed. The height position of the capacitance sensor 2 cannot completely follow the surface shape of the object S to be measured. That is, it can follow a rough surface shape, but cannot follow the surface shape of a portion having a high spatial frequency and a fine change, and a control error remains in this portion. In addition, the height position of the lower capacitance sensor 2 ′ changes in conjunction with the height position of the upper capacitance sensor 2, so that a certain offset from the locus of the upper capacitance sensor 2 exists. The locus is shifted downward.

図4は、図3の測定中に得られる上下の静電容量センサ2,2’の出力(すなわち、上部の静電容量センサ2から被測定物Sの表面までの距離aおよび下部の静電容量センサ2から被測定物Sの裏面までの距離b)と、これらの出力a,bに基づいて上記式(1)で計算された厚さtの分布を示す。上下の静電容量センサ2,2’の出力a,bはいずれも、大まかな反りが除去され、細かい変化を有する部分の表面形状が忠実に再現されており、計算された厚さtは被測定物Sの真の厚さを高精度に再現することになる。   4 shows the outputs of the upper and lower capacitance sensors 2, 2 ′ obtained during the measurement of FIG. 3 (that is, the distance a from the upper capacitance sensor 2 to the surface of the object S to be measured and the lower capacitance). The distance b) from the capacitance sensor 2 to the back surface of the object S to be measured and the distribution of the thickness t calculated by the above equation (1) based on these outputs a and b are shown. The outputs a and b of the upper and lower electrostatic capacitance sensors 2 and 2 'are both substantially free from warping, and the surface shape of the portion having a fine change is faithfully reproduced. The true thickness of the measurement object S is reproduced with high accuracy.

〔実施形態2〕
図5に、本発明の別の実施形態に係る形状測定装置の概略を示す。本例は上記実施形態1と異なり、1個のフレーム11に一対の非接触式の対物変位センサとしての静電容量センサ12,12’を対向させて固定し、このフレーム11をフレーム可動手段としてのPZT素子13を介して別の固定フレーム18に昇降可能に固定している。さらに、固定フレーム18に対するフレーム11の移動量を検出するため、固定フレーム18にフレーム変位検出手段としての静電容量センサ14をフレーム11の底面に面して設けている。
[Embodiment 2]
FIG. 5 shows an outline of a shape measuring apparatus according to another embodiment of the present invention. Unlike the first embodiment, this example fixes a pair of non-contact type capacitive sensors 12, 12 'as a non-contact type objective displacement sensor to face each other and fixes the frame 11 as a frame moving means. It is fixed to another fixed frame 18 via the PZT element 13 so as to be movable up and down. Further, in order to detect the amount of movement of the frame 11 with respect to the fixed frame 18, a capacitance sensor 14 as a frame displacement detecting means is provided on the fixed frame 18 so as to face the bottom surface of the frame 11.

また、センサ位置制御手段としてのセンサ位置制御部15は、フレーム11の移動量を調整して上下の静電容量センサ12,12’と被測定物Sとの間隙を略一定に保持するものである。また、形状演算手段としての形状演算部16は、静電容量センサ14で検出されたフレーム11の移動量および一対の静電容量センサ12,12’で検出された当該静電容量センサ12,12’それぞれから被測定物Sの表面および裏面までの距離に基づいて被測定物Sの厚さおよび反りの度合いを演算するものである。   The sensor position control unit 15 as sensor position control means adjusts the amount of movement of the frame 11 to keep the gap between the upper and lower capacitance sensors 12, 12 ′ and the measured object S substantially constant. is there. Further, the shape calculation unit 16 as the shape calculation means includes the movement amount of the frame 11 detected by the capacitance sensor 14 and the capacitance sensors 12, 12 detected by the pair of capacitance sensors 12, 12 ′. 'The thickness and the degree of warpage of the device under test S are calculated based on the distances from the respective surfaces to the front and back surfaces of the device under test S.

上記の構成により、一対の静電容量センサ12,12’間の距離は固定されているので、上記実施形態1に比べ、PZT素子や静電容量センサの数を節約できる。   With the above configuration, since the distance between the pair of capacitance sensors 12 and 12 ′ is fixed, the number of PZT elements and capacitance sensors can be saved as compared with the first embodiment.

フレーム11は、例えば図5に示すように断面コの字状とし、フレーム11に取り付けられた一対の静電容量センサ12,12’間の距離が変動して誤差が生じないよう、剛性を有する材料、例えばステンレス鋼で作製するとよい。   For example, as shown in FIG. 5, the frame 11 has a U-shaped cross section, and has rigidity so that an error does not occur due to variation in the distance between the pair of capacitance sensors 12 and 12 ′ attached to the frame 11. It may be made of a material such as stainless steel.

[変形例]
上記実施例1,2では、対物変位センサとして静電容量センサを例示したが、レーザ干渉測長計を用いることもできる。
[Modification]
In the said Example 1, 2, although the electrostatic capacitance sensor was illustrated as an objective displacement sensor, a laser interference length meter can also be used.

また、上記実施例1では、センサ移動量検出手段として静電容量センサを例示したが、レーザ変位計、リニアスケールなどを用いることもできる。   In the first embodiment, the capacitance sensor is exemplified as the sensor movement amount detection unit. However, a laser displacement meter, a linear scale, or the like may be used.

また、上記実施例2では、フレーム移動量検出手段として静電容量センサを例示したが、上記センサ移動量検出手段と同様、レーザ変位計、リニアスケールなどを用いることもできる。   In the second embodiment, the capacitance sensor is exemplified as the frame movement amount detection unit. However, as with the sensor movement amount detection unit, a laser displacement meter, a linear scale, or the like may be used.

上記実施例1,2では、被測定物を横置きとする例を示したが、被測定物の置き方に特に制約はなく、例えば縦置きも可能である。   In the first and second embodiments, an example is shown in which the object to be measured is placed horizontally. However, there is no particular restriction on how to place the object to be measured, and for example, the object can be placed vertically.

上記実施例1,2では、上部の静電容量センサと被測定物との間隙を一定とする制御を例示したが、下部の静電容量センサと被測定物Sとの間隙を一定とする制御も当然に可能である。   In the first and second embodiments, the control for making the gap between the upper capacitance sensor and the object to be measured constant is illustrated, but the control for making the gap between the lower capacitance sensor and the object to be measured S constant. Is of course possible.

上記実施例1,2では、フレームの水平方向への移動を禁止してステージを水平に移動させることにより被測定物の方を走査する例を示したが、固定のステージ上に被測定物を載置してフレームの方を水平に移動させて走査することもできる。   In the first and second embodiments, the example in which the measurement object is scanned by prohibiting the horizontal movement of the frame and moving the stage horizontally is shown. However, the measurement object is placed on a fixed stage. It is also possible to scan by moving the frame horizontally.

上記実施例1では、固定したフレーム2個で構成する例を示したが、1個で構成することも可能であり、例えば上記実施例2のフレームと同様の断面コの字状のフレームを用いれば1個で構成することができる。   In the first embodiment, an example in which the frame is composed of two fixed frames has been shown. However, it is also possible to construct a single frame. For example, a U-shaped frame similar to the frame in the second embodiment may be used. It can be configured with one piece.

上記実施例2では、断面コの字状のフレームを例示したが、断面ロの字状のフレームを用いることもできる。   In the second embodiment, a U-shaped frame is illustrated, but a frame having a U-shaped cross section can also be used.

実施形態1に係る形状測定装置の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the shape measuring apparatus which concerns on Embodiment 1. FIG. 被測定物の厚さを求める方法を説明する部分縦断面図である。It is a fragmentary longitudinal cross-section explaining the method of calculating | requiring the thickness of to-be-measured object. 本発明に係る測定の概念を示すグラフ図である。It is a graph which shows the concept of the measurement which concerns on this invention. 被測定物の厚さの分布を示すグラフ図である。It is a graph which shows distribution of the thickness of a to-be-measured object. 実施形態2に係る形状測定装置の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the shape measuring apparatus which concerns on Embodiment 2. FIG.

符号の説明Explanation of symbols

1,1’,11:フレーム
2,2’,12,12’:対物変位センサ(静電容量センサ)
3,3’:センサ可動手段(PZT素子)
4,4’:センサ移動量検出手段(静電容量センサ)
5,15:センサ位置制御手段(センサ位置制御部)
6,16:形状演算手段(形状演算部)
7:ステージ
13:フレーム可動手段(PZT素子)
14:フレーム変位検出手段(静電容量センサ)
18:固定フレーム
S:被測定物(ウェハ)
1, 1 ', 11: Frame 2, 2', 12, 12 ': Objective displacement sensor (capacitance sensor)
3, 3 ': Sensor moving means (PZT element)
4, 4 ': Sensor movement amount detection means (capacitance sensor)
5, 15: Sensor position control means (sensor position control unit)
6, 16: Shape calculation means (shape calculation unit)
7: Stage 13: Frame moving means (PZT element)
14: Frame displacement detection means (capacitance sensor)
18: Fixed frame S: Object to be measured (wafer)

Claims (2)

薄片状の被測定物をその片端から他端まで非接触式の対物変位センサで走査してその形状を測定する装置であって、
被測定物の表裏を挟むように配置されたフレームと、
このフレームに固定され、前記被測定物を挟んで対向して配置される一対の非接触式の対物変位センサと、
前記フレームを、前記被測定物の厚さ方向に移動可能となすフレーム可動手段としてのPZT素子と、
前記フレームの移動量を検出するフレーム変位検出手段と、
前記一対の対物変位センサのうちいずれか一方の対物変位センサの移動量を前記PZT素子を変位させることにより調整して前記被測定物との間隙を略一定に保持するセンサ位置制御手段と、
前記フレーム移動量検出手段で検出された移動量および前記一対の対物変位センサで検出された当該対物センサから前記被測定物の表面および裏面までの距離に基づいて前記被測定物の厚さおよび反りの度合いを演算する形状演算手段と、
を備えたことを特徴とする形状測定装置。
A device for measuring the shape of a thin object to be measured by scanning it from one end to the other end with a non-contact type objective displacement sensor,
A frame arranged so as to sandwich the front and back of the object to be measured;
A pair of non-contact type objective displacement sensors fixed to the frame and arranged to face each other with the object to be measured interposed therebetween;
A PZT element as a frame moving means that enables the frame to move in the thickness direction of the object to be measured;
Frame displacement detection means for detecting the amount of movement of the frame;
Sensor position control means for adjusting the amount of movement of one of the pair of objective displacement sensors by displacing the PZT element so as to keep the gap between the object to be measured substantially constant;
The thickness and warpage of the object to be measured based on the amount of movement detected by the frame movement amount detection means and the distance from the object sensor detected by the pair of object displacement sensors to the front and back surfaces of the object to be measured. Shape calculating means for calculating the degree of
A shape measuring apparatus comprising:
前記対物変位センサが、静電容量センサまたはレーザ干渉測長計である請求項1に記載の形状測定装置。 The shape measuring apparatus according to claim 1, wherein the objective displacement sensor is a capacitance sensor or a laser interferometer.
JP2006179995A 2006-06-29 2006-06-29 Apparatus for measuring the shape of a thin object to be measured Active JP5009560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006179995A JP5009560B2 (en) 2006-06-29 2006-06-29 Apparatus for measuring the shape of a thin object to be measured

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006179995A JP5009560B2 (en) 2006-06-29 2006-06-29 Apparatus for measuring the shape of a thin object to be measured

Publications (2)

Publication Number Publication Date
JP2008008778A JP2008008778A (en) 2008-01-17
JP5009560B2 true JP5009560B2 (en) 2012-08-22

Family

ID=39067121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006179995A Active JP5009560B2 (en) 2006-06-29 2006-06-29 Apparatus for measuring the shape of a thin object to be measured

Country Status (1)

Country Link
JP (1) JP5009560B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170051A (en) 2008-01-18 2009-07-30 Funai Electric Co Ltd Disk drive

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186101A (en) * 1981-05-12 1982-11-16 Toshiba Corp Thickness measuring device
US4849916A (en) * 1985-04-30 1989-07-18 Ade Corporation Improved spatial resolution measurement system and method
JPS62144002A (en) * 1985-12-18 1987-06-27 Anelva Corp Apparatus for measuring thickness of metal membrane
JP3532642B2 (en) * 1994-11-28 2004-05-31 黒田精工株式会社 Method and apparatus for measuring surface shape of wafer and other thin layers
JPH10246621A (en) * 1997-03-04 1998-09-14 Tokyo Seimitsu Co Ltd Thickness measuring apparatus
JP3404319B2 (en) * 1999-04-02 2003-05-06 黒田精工株式会社 Method for measuring surface shape and thickness of semiconductor wafer
JP3406889B2 (en) * 1999-12-03 2003-05-19 株式会社ミツトヨ Distance measuring device
JP2001280946A (en) * 2000-03-29 2001-10-10 Daido Steel Co Ltd Non-contact type thickness measuring method and measuring instrument
JP4014376B2 (en) * 2001-08-31 2007-11-28 株式会社神戸製鋼所 Flatness measuring device
WO2006018961A1 (en) * 2004-08-17 2006-02-23 Shin-Etsu Handotai Co., Ltd. Method of measuring semiconductor wafer, method of supervising production process therefor and process for producing semiconductor wafer

Also Published As

Publication number Publication date
JP2008008778A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
CN1187571C (en) Method for probing a substrate
JP2000258153A (en) Plane flatness measurement device
Schulz et al. Scanning deflectometric form measurement avoiding path-dependent angle measurement errors
US5469734A (en) Scanning apparatus linearization and calibration system
CN101196391B (en) Surface shape measuring device
CN105937886B (en) Shape measuring device, machining device, and method for correcting shape measuring device
JP5089166B2 (en) How to reduce the effects of component deflection in a probe card analyzer
JP4531685B2 (en) Shape measuring device and shape measuring method
US6694797B2 (en) Dial indicator calibration apparatus
JP5009560B2 (en) Apparatus for measuring the shape of a thin object to be measured
JP4717639B2 (en) Method and apparatus for measuring both sides of substrate shape
RU2442131C1 (en) Method for measuring surface texture properties and mechanical properties of the materials
US7458254B2 (en) Apparatus for evaluating piezoelectric film, and method for evaluating piezoelectric film
JP2005331446A (en) Micro material tester
Tahara et al. Site flatness measurement system with accuracy of sub-nanometer order for silicon wafer
CN114530400A (en) Method for the distributed distance compensation between a handling device and two workpieces
WO2005098869A1 (en) Scanning probe microscope with integrated calibration
JP6101603B2 (en) Stage device and charged particle beam device
RU2510009C1 (en) Device to measure parameters of surface relief and mechanical properties of materials
US6242926B1 (en) Method and apparatus for moving an article relative to and between a pair of thickness measuring probes to develop a thickness map for the article
JPH09250922A (en) Method and device for obtaining surface shape
JP4019039B2 (en) Capacitance type thickness measurement method
JP2003254747A (en) Straightness measurement method
JP3940819B2 (en) Semiconductor wafer surface shape measuring apparatus and surface shape measuring method
TWI777205B (en) Calibration method of shape measuring device, reference device and detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110118

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120411

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120531

R150 Certificate of patent or registration of utility model

Ref document number: 5009560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3