JP2003145576A - Molding processing method for thermoplastic resin and molding apparatus therefor - Google Patents

Molding processing method for thermoplastic resin and molding apparatus therefor

Info

Publication number
JP2003145576A
JP2003145576A JP2001346645A JP2001346645A JP2003145576A JP 2003145576 A JP2003145576 A JP 2003145576A JP 2001346645 A JP2001346645 A JP 2001346645A JP 2001346645 A JP2001346645 A JP 2001346645A JP 2003145576 A JP2003145576 A JP 2003145576A
Authority
JP
Japan
Prior art keywords
mold
molding
heat
thermoplastic resin
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001346645A
Other languages
Japanese (ja)
Inventor
Takahide Kobayashi
隆英 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Jidosha Kogyo KK
Toyota Motor East Japan Inc
Original Assignee
Kanto Jidosha Kogyo KK
Kanto Auto Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Jidosha Kogyo KK, Kanto Auto Works Ltd filed Critical Kanto Jidosha Kogyo KK
Priority to JP2001346645A priority Critical patent/JP2003145576A/en
Publication of JP2003145576A publication Critical patent/JP2003145576A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a molding processing method for a thermoplastic resin having good productivity taking no time in heat cycle molding, and a molding apparatus therefor. SOLUTION: A core mold 1 is made of concrete and heat radiating and absorbing pipes 15 are parallelly embedded in the core mold 1 at an equal interval in the vicinity of the mold surface of the core mold 1. A cavity mold is a metallized concrete mold and a nickel metal layer is laid on the mold surface thereof. The heat radiating and absorbing pipes 15 on the side of the cavity mold are embedded in the back surface of the metal layer at an equal interval. A heating medium, for example, high temperature water is introduced into the heat radiating and absorbing pipes 15 of the core mold 1 from a heating medium supply tank 11 and, in the same way, high temperature water is introduced into the heat radiating and absorbing pipes 15 in the cavity mold. The high temperature water flows through the parallel heat radiating and absorbing pipes 15 parallelly to raise the temperatures of the molds to a predetermined temperature. Subsequently, the thermoplastic resin and a skin layer material are injected in the mold space to fill the mold space. After the completion of filling, cooling water is injected through the same pipelines.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱可塑性樹脂の成
形加工方法および熱可塑性樹脂の成形装置、とくにヒー
トサイクル成形による加熱及び冷却技術に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoplastic resin molding method and a thermoplastic resin molding apparatus, and more particularly to heating and cooling techniques by heat cycle molding.

【0002】[0002]

【従来の技術】熱可塑性樹脂などで成形物を作る場合、
所定の形状を付与した型を用いる。型成形には型の温度
を一定に保つことが必要で、一定温度に加熱した温水を
型に通すことが必要となる。また、成形樹脂の硬化後
は、成形サイクルを短縮するために型を冷却することも
必要である。このようにして得られる成形物は、更に表
面にスキン層をシボ転写することが行われる。成形と転
写とを同時に行う方法もある。これらを同時に行う場合
は、成形時に型の厳密な温度管理が必要となる。このよ
うに、加熱と冷却の温度制御を行いつつ成形する技術を
ヒートサイクル成形法といい、典型的には、型内に放吸
熱管を埋設し、型を自由に温度制御できるようにして成
形するものである。このようなヒートサイクル成形にお
いて用いる放吸熱管は、熱移動を制御するもので、型空
間内に成形樹脂が完全に充填しきるまで、成形樹脂の冷
却を遅らせるために不可欠である。ヒートサイクル成形
では、従来塗装にて製品化していた成形品の塗装レス化
が図られ、成形した樹脂の表面にスキン層を同時に成形
することができる。このように、樹脂成形物の表面にス
キン層を形成する場合でも、スキン層成形時間が事実上
いらなくなる。しかも高品位のシボ転写が得られるとい
う利点もある。
2. Description of the Related Art When a molded product is made of a thermoplastic resin,
A mold with a given shape is used. Mold molding requires that the temperature of the mold be kept constant, and that hot water heated to a constant temperature be passed through the mold. In addition, after the molding resin is cured, it is necessary to cool the mold in order to shorten the molding cycle. The molded product thus obtained is further subjected to texture transfer with a skin layer on the surface. There is also a method of simultaneously performing molding and transfer. When these are performed simultaneously, strict temperature control of the mold is required during molding. In this way, the technique of molding while controlling the temperature of heating and cooling is called heat cycle molding method.Typically, a heat-radiating tube is embedded in the mold to mold the mold so that the temperature can be freely controlled. To do. The endothermic tube used in such heat cycle molding controls heat transfer and is indispensable for delaying the cooling of the molding resin until the molding resin is completely filled in the mold space. In heat cycle molding, a molded product that has been commercialized by conventional coating can be coated free, and a skin layer can be simultaneously molded on the surface of the molded resin. As described above, even when the skin layer is formed on the surface of the resin molded product, the skin layer molding time is virtually unnecessary. Moreover, there is an advantage that high-quality grain transfer can be obtained.

【0003】ここで、上述のヒートサイクル成形で、コ
ア型1とキャビ型2との間の型空間内に、スキン層3と
熱可塑性樹脂4とを射出機4aから注入していく際の様
子を図5,図6に示す。図5はタイプヒートサイクル成
形法、図6は通常のインジェクション(INJ)成形法
によるものである。タイプヒートサイクル成形法は、片
面にだけスキン層3を形成しながら熱可塑性樹脂4を射
出する。通常のインジェクション成形法は、両面にスキ
ン層3を形成しながら射出する。いずれも型温度を制御
してスキン層3を形成する。
Here, in the heat cycle molding described above, a state in which the skin layer 3 and the thermoplastic resin 4 are injected from the injection machine 4a into the mold space between the core mold 1 and the cavity mold 2. Are shown in FIGS. FIG. 5 shows the type heat cycle molding method, and FIG. 6 shows the normal injection (INJ) molding method. In the type heat cycle molding method, the thermoplastic resin 4 is injected while forming the skin layer 3 on only one surface. In the usual injection molding method, injection is performed while forming the skin layers 3 on both surfaces. In both cases, the mold temperature is controlled to form the skin layer 3.

【0004】図7は、従来からヒートサイクル成形に用
いている成形装置の放吸熱管の配置を示すものである。
図7に示すように、コア型1とキャビ型2の両方の型に
それぞれ放吸熱管15が平行に埋設される。平行に埋設
した管は、隣接する管同士をU字管などで両端を結合し
て全体を直列路とし、いわば一筆書きで流れる流路を形
成している。この放吸熱管15の基端部は、入路切り替
えバルブを設けた合流管継ぎ手13に接合されるととも
に、加熱媒体供給タンク11と冷却媒体供給タンク12
の双方からの吐出管がこの合流管継ぎ手13に接合され
ている。加熱媒体供給タンク11から吐出される加熱媒
体は、例えば高温水や蒸気或いは高温ガス等であり、冷
却媒体供給タンク12から吐出される冷却媒体は、例え
ば冷却水などである。これら加熱媒体及び冷却媒体が、
入路切り替えバルブを設けた合流管継ぎ手13を介して
放吸熱管15を所定の時間サイクルで交互に流通する。
FIG. 7 shows the arrangement of the heat radiating and absorbing tubes of a molding apparatus conventionally used for heat cycle molding.
As shown in FIG. 7, the heat dissipation pipes 15 are embedded in parallel in both the core mold 1 and the mold mold 2. The pipes embedded in parallel are formed by connecting both ends of adjacent pipes with U-shaped pipes or the like to form a series passage as a whole, so to speak, a flow passage that flows in a single stroke. The base end portion of the heat dissipation pipe 15 is joined to the confluence pipe joint 13 provided with an inlet passage switching valve, and the heating medium supply tank 11 and the cooling medium supply tank 12 are joined together.
The discharge pipes from both of the above are joined to this joining pipe joint 13. The heating medium discharged from the heating medium supply tank 11 is, for example, high temperature water, steam or high temperature gas, and the cooling medium discharged from the cooling medium supply tank 12 is, for example, cooling water. These heating medium and cooling medium,
Through the confluent pipe joint 13 provided with an inlet passage switching valve, the heat radiating and absorbing pipes 15 alternately flow in a predetermined time cycle.

【0005】[0005]

【発明が解決しようとする課題】図8は上記した従来の
ヒートサイクル成形装置を用いて、放吸熱管15でコア
型1とキャビ型2の温度管理を行いながら成形するとき
の温度変化の様子を示している。成形の1サイクルにお
いて、先ず、加熱媒体供給タンク11から加熱媒体を吐
出して、放吸熱管15を介してコア型1とキャビ型2の
それぞれを昇温する。この場合、放吸熱管15が上流側
から下降側へと型内を蛇行して直列路に配設されている
ので、下流側の型が所定の設定温度に達するまでに昇温
時間t1を要する。そして、所定の成形工程の経過後冷
却工程に進むが、同様に、直列路に配設された放吸熱管
15の下流側が所定温度に冷却されるまでに冷却時間t
2を要する。
FIG. 8 shows how the temperature changes when molding the core mold 1 and the mold mold 2 while controlling the temperature of the core mold 1 and the mold mold 2 with the heat dissipation tube 15 using the conventional heat cycle molding apparatus described above. Is shown. In one cycle of molding, first, the heating medium is discharged from the heating medium supply tank 11, and the core mold 1 and the cavity mold 2 are respectively heated via the heat dissipation pipe 15. In this case, since the heat sink tube 15 meanders in the mold from the upstream side to the descending side and is arranged in the series path, the temperature rising time t1 is required until the mold on the downstream side reaches a predetermined set temperature. . Then, after a lapse of a predetermined molding process, the process proceeds to a cooling process. Similarly, a cooling time t is reached until the downstream side of the heat-dissipating and absorbing tube 15 arranged in the series passage is cooled to a predetermined temperature.
2 is required.

【0006】このように1サイクル毎に、従来のヒート
サイクル成形では、昇温時間t1をかけて緩いカーブで
昇温させ、所定の成形時間経過後、冷却時間t2をかけ
て緩いカーブで降温させながら、成形作業を行ってい
る。上述のように、従来のヒートサイクル成形法は、種
々の利点がありながら、昇温降温カーブが緩く、放吸熱
管15の配管内の圧損により型全体の温度バランスの安
定に時間がかかり、このため、成形の開始から終了まで
の1サイクルの成形に長時間を要すると言う課題があっ
た。
As described above, in the conventional heat cycle molding, the temperature is raised in a gentle curve for each cycle in the conventional heat-up time t1, and after a predetermined molding time elapses, the temperature is lowered in a gentle curve for the cooling time t2. While doing the molding work. As described above, the conventional heat cycle molding method has various advantages, but the temperature rising / falling curve is gentle, and it takes time to stabilize the temperature balance of the entire mold due to the pressure loss in the pipe of the heat dissipation pipe 15. Therefore, there is a problem that it takes a long time to perform one cycle of molding from the start to the end.

【0007】そこで本発明は、ヒートサイクル成形にお
いて、成形時間を大幅に短縮化でき、生産性のよい熱可
塑性樹脂の成形加工方法および成形装置を提供すること
を目的とする。
Therefore, it is an object of the present invention to provide a thermoplastic resin molding processing method and molding apparatus which can significantly shorten the molding time in heat cycle molding and have good productivity.

【0008】[0008]

【発明が解決しようとする課題】上記目的を達成するた
め、請求項1に記載の本発明では、温度制御用の複数本
の放吸熱管を埋設した型を用い、型内空間に熱可塑性樹
脂とスキン層材とを同時に注入して次いで冷却し、スキ
ン層が表面を被覆する成形物を成形する熱可塑性樹脂の
成形加工方法において、放吸熱管には加熱媒体を並列路
で流通させて成形時、型内空間を温度制御することを特
徴としている。この場合、前記型は、好ましくは、型面
にニッケル金属層を敷設したメタルドコンクリートモー
ルドを用い、前記放吸熱管をニッケル金属層裏面に沿っ
て埋設し、コア型の上流側をキャビ型の下流側に合わ
せ、コア型の下流側をキャビ型の上流側に合わせるよう
に設定する。
In order to achieve the above object, the present invention according to claim 1 uses a mold in which a plurality of heat-dissipating tubes for temperature control are embedded and uses a thermoplastic resin in the space inside the mold. And a skin layer material are injected at the same time and then cooled to form a molded product in which the skin layer covers the surface. It is characterized by controlling the temperature of the space inside the mold. In this case, the mold is preferably a metalized concrete mold in which a nickel metal layer is laid on the mold surface, the heat sink tube is embedded along the back surface of the nickel metal layer, and the upstream side of the core mold is a mold type. The downstream side of the core mold is set to match the downstream side, and the downstream side of the core mold is set to match the upstream side of the cavity mold.

【0009】また、請求項3に記載の発明では、熱可塑
性樹脂とスキン層材とを同時に注入してスキン層で表面
を被覆した成形物を成形する熱可塑性樹脂成形型を含む
成形装置であって、型内に放吸熱管が埋設されるととも
に、この放吸熱管が並列路を構成していることを特徴と
している。この場合、前記型は、好ましくは、型面にニ
ッケル金属層を敷設したメタルドコンクリートモールド
を用い、前記放吸熱管がニッケル金属層裏面に沿って埋
設され、コア型の上流側がキャビ型の下流側に合わせら
れ、コア型の下流側がキャビ型の上流側に合わせて配置
される。
Further, the invention according to claim 3 is a molding apparatus including a thermoplastic resin molding die for molding a molded product having a surface coated with a skin layer by simultaneously injecting a thermoplastic resin and a skin layer material. The heat-dissipating pipe is embedded in the mold, and the heat-dissipating pipe constitutes a parallel path. In this case, the mold is preferably a metalized concrete mold in which a nickel metal layer is laid on the mold surface, the heat dissipation tube is embedded along the back surface of the nickel metal layer, and the upstream side of the core mold is the downstream side of the mold type. The core type is arranged so that the downstream side thereof is aligned with the upstream side of the mold type.

【0010】本発明に従い、埋設した放吸熱管を並列路
に組む成形加工方法あるいは成形加工装置の場合、直列
路で加熱流体又は冷却流体を流通させる従来の場合に比
べ、埋設管の本数を掛け合わせた分のより多くの加熱媒
体を短時間に流通させることができる。この結果、短時
間に大量の熱移動が可能になるので、成形時間を大幅に
短縮させることができる。
According to the present invention, in the case of the molding method or molding apparatus in which the buried heat sink tubes are assembled in parallel paths, the number of buried tubes is multiplied as compared with the conventional case in which the heating fluid or the cooling fluid is circulated in the serial path. It is possible to circulate more heating medium in a short time in the combined amount. As a result, a large amount of heat can be transferred in a short time, so that the molding time can be significantly shortened.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。図1は本発明の実施の形態にかかる熱可塑性樹脂
のヒートサイクル成形法による成形装置の概念図であ
る。この成形装置は、図5,図6に示す従来装置と同様
に、コア型1とキャビ型2とで成る合わせ型を有し、型
を合わせた際に設定される所定の空間内に、スキン層3
と熱可塑性樹脂4とが射出機4aから注入され、所定の
成形物が成形される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. FIG. 1 is a conceptual diagram of a molding apparatus by a heat cycle molding method for a thermoplastic resin according to an embodiment of the present invention. This molding apparatus, like the conventional apparatus shown in FIGS. 5 and 6, has a mating mold composed of a core mold 1 and a cavity mold 2, and a skin is provided in a predetermined space set when the molds are mated. Layer 3
And the thermoplastic resin 4 are injected from the injection machine 4a to form a predetermined molded product.

【0012】図1に示すように、成形用型にはそれぞ
れ、複数本の放吸熱管15、図示例では4本の放吸熱管
が型の一端から貫入して他端へ貫通して、互いに所定間
隔をあけて並列して型内に埋設されている。図1ではコ
ア型1に配設された放吸熱管15を示すが、キャビ型2
にも同様に複数本の放吸熱管15が所定間隔で並行して
配管されている。これらの基端部側、すなわち上流側で
は、放吸熱管15が型の外側まで露出していて多方分岐
管継ぎ手14を介して互いに連通しており、この多方分
岐管継ぎ手14から引き出されて入路切り替えバルブを
設けた合流管継ぎ手13に接合され、加熱媒体供給タン
ク11と冷却媒体供給タンク12に連接されている。ま
た、放吸熱管15の先端側、すなわち下流側では、放吸
熱管15が型の外側まで露出しそこでドレインタンク1
6に並列で直接つながっている。すなわち、本実施の形
態では、多方分岐管継ぎ手14を介して多数本の放吸熱
管15がコア型1のほぼ全長にわたって同間隔で並列で
延設され、それぞれがコア型1の型中を矢印で示す方向
に平行に延び、ドレインタンク16に並列で直接連通し
て配設されている。同じように、キャビ型2についても
放吸熱管15が並列で平行に延び、ドレインタンク16
に連接されている。なお、加熱媒体供給タンク11から
吐出される加熱媒体は、例えば高温水や蒸気或いは高温
ガス等であり、冷却媒体供給タンク12から吐出される
冷却媒体は、例えば冷却水などである。これら加熱媒体
及び冷却媒体が、入路切り替えバルブを設けた合流管継
ぎ手13を介して、放吸熱管15を所定の時間サイクル
で交互に流通する。
As shown in FIG. 1, a plurality of heat radiating / absorbing tubes 15, four heat radiating / absorbing tubes in the illustrated example, are inserted into one of the molding dies from one end of the mold and pierce the other end of the dies, respectively. It is embedded in a mold in parallel at predetermined intervals. In FIG. 1, the heat sink tube 15 arranged in the core mold 1 is shown.
Similarly, a plurality of heat radiation and absorption tubes 15 are arranged in parallel at predetermined intervals. On the base end side, that is, on the upstream side, the heat-radiating heat-absorbing pipes 15 are exposed to the outside of the mold and communicate with each other via a multi-way branch pipe joint 14, and are drawn out from the multi-way branch pipe joint 14. It is joined to a merging pipe joint 13 provided with a passage switching valve, and is connected to a heating medium supply tank 11 and a cooling medium supply tank 12. Further, on the tip end side of the heat dissipation pipe 15, that is, on the downstream side, the heat dissipation pipe 15 is exposed to the outside of the mold, and the drain tank 1 is exposed there.
Directly connected to 6 in parallel. That is, in the present embodiment, a large number of heat-dissipating pipes 15 are extended in parallel at substantially equal intervals over the entire length of the core mold 1 via the multi-way branch pipe joint 14, and each of them has an arrow in the mold of the core mold 1. It extends parallel to the direction shown by and is arranged in parallel with and directly communicates with the drain tank 16. Similarly, in the cabinet type 2 as well, the heat radiation and absorption tubes 15 extend in parallel and in parallel, and the drain tank 16
Are connected to. The heating medium discharged from the heating medium supply tank 11 is, for example, high temperature water, steam or high temperature gas, and the cooling medium discharged from the cooling medium supply tank 12 is, for example, cooling water. The heating medium and the cooling medium alternately flow through the heat-releasing heat-absorbing pipe 15 in a predetermined time cycle via the confluent pipe joint 13 provided with an inlet passage switching valve.

【0013】図2及び図3は、放吸熱管15を埋設した
型の断面図を示す。図2は放吸熱管15を径方向で切断
した断面図、図3は図2中のキャビ型2のA−A面、す
なわち放吸熱管15の長さ方向で切断した断面図を示
す。図2において、コア型1とキャビ型2とは、所定幅
の型空間17を挟んで互いに結合されている。本実施の
形態では、コア型1はコンクリート製で、型面近くに放
吸熱管15が等間隔で並行して埋設されている。キャビ
型2もコンクリート製であり、型面に厚さ5〜8mmの
ニッケル金属層18が敷設されたメタルドコンクリート
モールド(MCM)を用いている。金属層18の裏面に
はキャビ型2側の放吸熱管15が、コア型1側の放吸熱
管15と同一面方向に、しかも図2で示すようにニッケ
ル金属層18の裏面に沿って等間隔でコンクリート内に
埋設されている。図2中、コア型1内において、加熱媒
体例えば高温ガス又は熱水、及び冷却媒体例えば冷却水
は、紙表から紙背に向けて流れ、キャビ型2では、紙背
から紙表側に反対方向に流れている。これによってコア
型の上流側はキャビ型の下流側に合い、コア型の下流側
はキャビ型の上流側に合うようになっている。もちろ
ん、コア型1及びキャビ型2の各放吸熱管15を通す加
熱媒体や冷却媒体の、上流側と下流側とを一致させるよ
うにして流すようにしてもよい。
2 and 3 are sectional views of a mold in which the heat-dissipating and absorbing tube 15 is embedded. 2 is a cross-sectional view taken along the radial direction of the heat dissipation pipe 15, and FIG. 3 is a cross-sectional view taken along the line AA of the mold 2 in FIG. In FIG. 2, the core mold 1 and the cavity mold 2 are connected to each other with a mold space 17 having a predetermined width interposed therebetween. In the present embodiment, the core mold 1 is made of concrete, and the heat radiating tubes 15 are embedded in parallel near the mold surface at equal intervals. The mold 2 is also made of concrete, and uses a metalized concrete mold (MCM) in which a nickel metal layer 18 having a thickness of 5 to 8 mm is laid on the mold surface. On the back surface of the metal layer 18, the heat radiating and absorbing tube 15 on the side of the mold 2 is in the same surface direction as the heat radiating and absorbing tube 15 on the side of the core type 1, and along the back surface of the nickel metal layer 18 as shown in FIG. It is embedded in concrete at intervals. In FIG. 2, in the core mold 1, a heating medium such as high-temperature gas or hot water and a cooling medium such as cooling water flow from the front side of the paper to the back of the paper, and in the mold cavity 2 flow in the opposite direction from the back of the paper toward the front of the paper. ing. As a result, the upstream side of the core type matches the downstream side of the cavity type, and the downstream side of the core type matches the upstream side of the cavity type. Of course, the heating medium and the cooling medium that pass through the heat releasing and absorbing tubes 15 of the core type 1 and the cavity type 2 may be made to flow so that the upstream side and the downstream side coincide with each other.

【0014】上記ヒートサイクル成形装置は、例えば次
のようにして使用する。図1に示す加熱媒体供給タンク
11から高温の加熱媒体をコア型1の放吸熱管15に導
入し、おなじようにキャビ型2中の放吸熱管15に導入
し、図3に示す型空間17内を短時間で均一の高温状態
にする。上記高温状態を保持しつつ、型空間17に射出
機から熱可塑性樹脂とスキン層材とを射出充填する。充
填が完了した時点でドレインタンク16に加熱媒体を排
出し、入路切り替えバルブ付きの合流管継ぎ手13を操
作して入路を切り替え、冷却媒体供給タンク12から低
温水を注入して短時間で型空間17の温度を下げ、熱可
塑性樹脂を冷却する。この場合、各放吸熱管15は、加
熱媒体供給タンク11に対して複数本並列に接続されて
いるので、各放吸熱管15の流路が短いため型の全面積
で所定温度に設定された高温で均一に加熱されることが
できる。成形後、型を冷却する場合も均一な所定の低温
で冷却されることができる。
The heat cycle molding apparatus is used, for example, as follows. A high-temperature heating medium is introduced from the heating medium supply tank 11 shown in FIG. 1 into the heat radiating / absorbing tube 15 of the core mold 1, and similarly introduced into the heat radiating / absorbing tube 15 in the mold 2, and the mold space 17 shown in FIG. The inside is brought to a uniform high temperature state in a short time. While maintaining the high temperature state, the mold space 17 is injected and filled with the thermoplastic resin and the skin layer material from the injection machine. When the filling is completed, the heating medium is discharged to the drain tank 16, the junction pipe joint 13 with an inlet passage switching valve is operated to switch the inlet passage, and low temperature water is injected from the cooling medium supply tank 12 for a short time. The temperature of the mold space 17 is lowered and the thermoplastic resin is cooled. In this case, since the plurality of heat-release pipes 15 are connected in parallel to the heating medium supply tank 11, the flow paths of the heat-release pipes 15 are short, so that the mold is set to a predetermined temperature over the entire area of the mold. It can be heated uniformly at high temperature. When the mold is cooled after the molding, it can be cooled at a uniform low temperature.

【0015】また図2に示すように、キャビ型2は、ニ
ッケル金属層18を敷設したメタルドコンクリートモー
ルドを用い、放吸熱管15をニッケル金属層18の裏面
に埋設すると、放吸熱管15とニッケル金属層18との
間の伝熱距離が短くなり、ニッケル金属層18は伝熱性
も高いことから、型空間17内が急速加熱、急速冷却さ
れる。さらに、キャビ型2とコア型1とは成形時に結合
されるが、コア型1を流れる流路はキャビ型2内を通過
することがなく、また、キャビ型2内を流れる流路もコ
ア型1内を通過しない。したがって、型内の放吸熱管1
5の長さは、コア型1とキャビ型2で等しくなるから動
水圧は等しく、熱移動はバランスよく均一に行われる。
このように、本発明では、放吸熱管15を直列につなげ
ないで並列に接続していることから、キャビ型面とコア
型面で型空間17内の温度に偏りを起こさないでむらな
く熱移動させられるようになる。
Further, as shown in FIG. 2, the mold 2 uses a metalized concrete mold in which a nickel metal layer 18 is laid, and when the heat dissipation pipe 15 is embedded in the back surface of the nickel metal layer 18, Since the heat transfer distance to the nickel metal layer 18 becomes short and the nickel metal layer 18 has a high heat transfer property, the mold space 17 is rapidly heated and rapidly cooled. Further, although the mold 2 and the core mold 1 are joined at the time of molding, the flow path that flows through the core mold 1 does not pass through the mold mold 2, and the flow path that flows inside the mold 2 is also the core mold. Do not pass through 1. Therefore, the heat dissipation pipe 1 in the mold
Since the length of 5 is the same in the core mold 1 and the mold mold 2, the hydrodynamic pressure is the same, and the heat transfer is performed in a well-balanced and uniform manner.
As described above, according to the present invention, since the heat dissipation pipes 15 are connected in parallel without being connected in series, the temperature in the mold space 17 is not unevenly distributed between the mold surface and the core surface, and heat is evenly distributed. You will be able to move.

【0016】図4に、本発明にしたがった場合の温度変
化のグラフを示す。成形工程の1サイクルにおいて、先
ず、加熱媒体供給タンク11から加熱媒体を吐出して、
放吸熱管15を介してコア型1とキャビ型2の全体を昇
温する。この場合、放吸熱管15が加熱媒体供給タンク
11から分岐して、等間隔で並列に複数本配置されてい
るので、型内の各放吸熱管15の長さは1つ1つが極め
て短くなっており、各放吸熱管15の上流側から下降側
への熱伝達が早く、極めて短い昇温時間t3で型全体が
所定の設定温度に達する。そして、所定の成形工程の経
過後、冷却工程において並列に配設された放吸熱管15
に冷却媒体を流すと、同様に、極めて短い降温時間t4
で型全体が所定の温度まで冷却される。従って、図8に
示す従来方式の成形工程に比べ、昇温時間がt3<t
1、降温時間がt4<t2となり、本発明によれば、急
角度で昇温し、また、急角度で降温し、従来装置の例え
ば半分以下の短時間で1サイクル工程が終了する。
FIG. 4 shows a graph of the temperature change according to the present invention. In one cycle of the molding process, first, the heating medium is discharged from the heating medium supply tank 11,
The temperature of the entire core mold 1 and the mold mold 2 is raised via the heat dissipation pipe 15. In this case, since the heat dissipation pipes 15 branch from the heating medium supply tank 11 and a plurality of heat dissipation pipes 15 are arranged in parallel at equal intervals, the length of each heat dissipation pipe 15 in the mold is extremely short. Therefore, the heat is quickly transferred from the upstream side to the descending side of each heat-dissipating pipe 15, and the entire mold reaches a predetermined set temperature in an extremely short heating time t3. Then, after the lapse of a predetermined molding process, the heat-radiating and absorbing tubes 15 arranged in parallel in the cooling process.
Similarly, when a cooling medium is flown in, an extremely short cooling time t4
The entire mold is cooled to a predetermined temperature by. Therefore, compared with the conventional molding process shown in FIG. 8, the temperature rise time is t3 <t.
1. According to the present invention, the temperature is lowered at a steep angle and the temperature is lowered at a steep angle, and one cycle process is completed in a short time, for example, half or less of that of the conventional apparatus.

【0017】なお、図2に示すように、型面にニッケル
金属層を敷設したメタルドコンクリートモールドを用い
た場合、ニッケル金属層は伝熱速度が高く、しかも厚み
を薄くできるから、放吸熱管の熱をほとんど損失なく型
空間に短時間に送ることができる。したがって、放吸熱
管を本発明により並列接続することによって、昇温と降
温が極めて短時間で制御できることになるので、成形時
間の一層の短縮化が達成される。また、コア型の上流側
をキャビ型の下流側に合わせれば、型空間内を温度の偏
りなく均一にバランスよく管理できる。
As shown in FIG. 2, when a metalized concrete mold in which a nickel metal layer is laid on the mold surface is used, the nickel metal layer has a high heat transfer rate and can be made thin, so that the heat dissipation tube The heat can be sent to the mold space in a short time with almost no loss. Therefore, by connecting the heat-dissipating pipes in parallel according to the present invention, the temperature rise and the temperature fall can be controlled in an extremely short time, and the molding time can be further shortened. In addition, if the upstream side of the core mold is aligned with the downstream side of the mold mold, it is possible to manage the mold space uniformly and in good balance without temperature deviation.

【0018】[0018]

【発明の効果】本発明は上記のような構成でなるから、
短時間に大量の熱移動が可能となるので、ヒートサイク
ル成形において、極めて短時間で成形作業を行うことが
でき、生産性のよい熱可塑性樹脂の成形加工方法および
成形装置を提供することができる。
Since the present invention has the above-mentioned structure,
Since a large amount of heat can be transferred in a short time, in heat cycle molding, a molding operation can be performed in an extremely short time, and a thermoplastic resin molding processing method and a molding device with good productivity can be provided. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態にかかる熱可塑性樹脂の成
形装置の概念図である。
FIG. 1 is a conceptual diagram of a thermoplastic resin molding apparatus according to an embodiment of the present invention.

【図2】本発明の実施の形態にかかる放吸熱管を埋設し
たキャビ型の断面図である。
FIG. 2 is a cross-sectional view of a cab type in which a heat radiating and absorbing tube according to an embodiment of the present invention is embedded.

【図3】放吸熱管を埋設したキャビ型の、図2のA−A
線に沿う断面図である。
FIG. 3 is a cabinet type in which a heat-dissipating heat-absorbing tube is embedded, AA in FIG.
It is sectional drawing which follows the line.

【図4】本発明にしたがった場合の型空間内温度変化を
示すグラフである。
FIG. 4 is a graph showing a temperature change in a mold space according to the present invention.

【図5】ヒートサイクル成形法で、スキン層と熱可塑性
樹脂とを注入していく様子を示す断面図である。
FIG. 5 is a cross-sectional view showing how a skin layer and a thermoplastic resin are injected by a heat cycle molding method.

【図6】通常のインジェクション成形法で、スキン層と
熱可塑性樹脂とを注入していく様子を示す断面図であ
る。
FIG. 6 is a cross-sectional view showing how a skin layer and a thermoplastic resin are injected by a normal injection molding method.

【図7】従来の熱可塑性樹脂のヒートサイクル成形装置
の概念図である。
FIG. 7 is a conceptual diagram of a conventional thermoplastic resin heat cycle molding apparatus.

【図8】図7の成形装置を用いた成形時の型空間内温度
変化を示すグラフである。
8 is a graph showing a temperature change in a mold space at the time of molding using the molding apparatus of FIG.

【符号の説明】[Explanation of symbols]

1 コア型 2 キャビ型 3 スキン層 4 熱可塑性樹脂 11 加熱媒体供給タンク 12 冷却媒体供給タンク 13 合流管継ぎ手 14 多方分岐管継ぎ手 15 放吸熱管 16 ドレインタンク 17 型空間 1 core type 2 cabinet type 3 skin layers 4 Thermoplastic resin 11 Heating medium supply tank 12 Coolant supply tank 13 Joint pipe joint 14 Multi-way branch pipe joint 15 Endothermic tube 16 drain tank 17 type space

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 温度制御用の複数本の放吸熱管を埋設し
た型を用い、温度制御した型内空間に熱可塑性樹脂とス
キン層材とを同時に注入して次いで冷却し、スキン層で
表面を被覆した成形物を成形する熱可塑性樹脂の成形加
工方法において、 上記放吸熱管には加熱媒体を並列路で流通させて成形
時、型内空間を温度制御することを特徴とする熱可塑性
樹脂の成形加工方法。
1. A mold in which a plurality of heat-dissipating tubes for temperature control are embedded is used, and a thermoplastic resin and a skin layer material are simultaneously injected into a temperature-controlled internal space of the mold and then cooled, and the surface is covered with the skin layer. In the method of molding a thermoplastic resin for molding a molded article coated with, a thermoplastic resin characterized by controlling the temperature in the mold space during molding by circulating a heating medium in a parallel path through the heat-dissipating pipe. Molding processing method.
【請求項2】 前記型は、型面にニッケル金属層を敷設
したメタルドコンクリートモールドを用い、前記放吸熱
管をニッケル金属層裏面に沿って埋設し、コア型の上流
側をキャビ型の下流側に合わせ、コア型の下流側をキャ
ビ型の上流側に合わせたことを特徴とする、請求項1に
記載の熱可塑性物の成形加工方法。
2. The mold is a metalized concrete mold in which a nickel metal layer is laid on the mold surface, the heat dissipation pipe is buried along the back surface of the nickel metal layer, and the upstream side of the core mold is downstream of the cavity mold. The thermoplastic material molding method according to claim 1, characterized in that the downstream side of the core mold is aligned with the upstream side of the cavity mold according to the side.
【請求項3】 熱可塑性樹脂とスキン層材とを同時に注
入してスキン層で表面を被覆した成形物を成形する熱可
塑性樹脂成形型を含む成形装置であって、 型内に放吸熱管が埋設されるとともに、この放吸熱管が
並列路を構成していることを特徴とする熱可塑性樹脂の
成形装置。
3. A molding apparatus including a thermoplastic resin molding die for molding a molded article whose surface is covered with a skin layer by simultaneously injecting a thermoplastic resin and a skin layer material, wherein a heat-radiating tube is provided in the mold. The thermoplastic resin molding apparatus is characterized in that it is embedded and that the heat-radiating tube forms a parallel path.
【請求項4】 前記型は、型面にニッケル金属層を敷設
したメタルドコンクリートモールドを用い、前記放吸熱
管をニッケル金属層裏面に沿って埋設し、コア型の上流
側をキャビ型の下流側に合わせ、コア型の下流側をキャ
ビ型の上流側に合わせたことを特徴とする、請求項4に
記載の熱可塑性物の成形装置。
4. The mold is a metalized concrete mold in which a nickel metal layer is laid on the mold surface, the heat sink tube is buried along the back surface of the nickel metal layer, and the upstream side of the core mold is downstream of the cavity mold. 5. The molding apparatus for a thermoplastic material according to claim 4, wherein the downstream side of the core mold is aligned with the upstream side of the cavity mold.
JP2001346645A 2001-11-12 2001-11-12 Molding processing method for thermoplastic resin and molding apparatus therefor Pending JP2003145576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001346645A JP2003145576A (en) 2001-11-12 2001-11-12 Molding processing method for thermoplastic resin and molding apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001346645A JP2003145576A (en) 2001-11-12 2001-11-12 Molding processing method for thermoplastic resin and molding apparatus therefor

Publications (1)

Publication Number Publication Date
JP2003145576A true JP2003145576A (en) 2003-05-20

Family

ID=19159786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001346645A Pending JP2003145576A (en) 2001-11-12 2001-11-12 Molding processing method for thermoplastic resin and molding apparatus therefor

Country Status (1)

Country Link
JP (1) JP2003145576A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1618595B (en) * 2003-11-20 2011-08-24 鸿富锦精密工业(深圳)有限公司 Injection shaping device
US20120187273A1 (en) * 2009-09-11 2012-07-26 Suzhou Red Maple Wind Blade Mould Co., Ltd. Wind blade mould including a heating system
CN103806502A (en) * 2014-03-13 2014-05-21 郭晓勇 Pipe network for communicated operation of cooling water filling system and production water supply system in low-temperature season
CN111174929A (en) * 2020-04-10 2020-05-19 上海建工集团股份有限公司 Automatic identification method for mold-entering temperature of mass concrete
WO2022079996A1 (en) * 2020-10-13 2022-04-21 八千代工業株式会社 Tank cooling apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1618595B (en) * 2003-11-20 2011-08-24 鸿富锦精密工业(深圳)有限公司 Injection shaping device
US20120187273A1 (en) * 2009-09-11 2012-07-26 Suzhou Red Maple Wind Blade Mould Co., Ltd. Wind blade mould including a heating system
US8899546B2 (en) * 2009-09-11 2014-12-02 Suzhou Red Maple Wind Blade Mould Co., Ltd. Wind blade mould including a heating system
CN103806502A (en) * 2014-03-13 2014-05-21 郭晓勇 Pipe network for communicated operation of cooling water filling system and production water supply system in low-temperature season
CN103806502B (en) * 2014-03-13 2015-01-21 郭晓勇 Pipe network for communicated operation of cooling water filling system and production water supply system in low-temperature season
CN111174929A (en) * 2020-04-10 2020-05-19 上海建工集团股份有限公司 Automatic identification method for mold-entering temperature of mass concrete
WO2022079996A1 (en) * 2020-10-13 2022-04-21 八千代工業株式会社 Tank cooling apparatus
JPWO2022079996A1 (en) * 2020-10-13 2022-04-21
JP7253120B2 (en) 2020-10-13 2023-04-05 八千代工業株式会社 Tank cooler
US11835286B2 (en) 2020-10-13 2023-12-05 Yachiyo Industry Co., Ltd. Tank cooling apparatus

Similar Documents

Publication Publication Date Title
JP2662023B2 (en) Injection molding method and apparatus
TWI389600B (en) Coaxial cooling and rapid conductive coil construction and molds with cobalt cooling and rapid conductive coil construction
JP2001018229A (en) Mold for molding synthetic resin, mold temperature regulating device, and method for regulating mold temperature
KR100850308B1 (en) Synthetic resin molding mold
KR101195999B1 (en) Injection mold apparatus
JP5261283B2 (en) Mold for plastic molding
JP2003145576A (en) Molding processing method for thermoplastic resin and molding apparatus therefor
JP6744097B2 (en) Injection mold and method of controlling injection mold
JP5395135B2 (en) Injection molding equipment for thermosetting resin
JP6461870B2 (en) Molding die for resin molding
KR100794503B1 (en) Mold for processing polymer resin including selective heat insulation layer and molding method using which
JP2008137275A (en) Mold apparatus and method for manufacturing molded article
KR101033828B1 (en) Manufacturing method of product and heat-treating apparatus for the same
KR20110092649A (en) Mold heating and cooling system using vapor compression cycle
CN105149448B (en) Sheet metal formation system
JP2005271429A (en) Molding die device and molding method
KR102280830B1 (en) Double pipe injection core chiller
KR101623030B1 (en) Rapid heat spreading injection mold
TW201417984A (en) Uniformly rapid heating of the mold equipment
KR100828182B1 (en) Die with Three-Dimensional Heat Exchange Structure and Manufacturing Method thereof
KR20080099756A (en) Injection mold apparatus
JPH08156028A (en) Injection mold and injection molding method
TWM543764U (en) Structure of injection mold
JP2013123900A (en) Injection molding mold
JP5356452B2 (en) Melt fine transfer molding method and melt fine transfer molding apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060725