JP2003127137A - Prepreg for electric insulating layer and method for manufacturing printed wiring board using prepreg - Google Patents

Prepreg for electric insulating layer and method for manufacturing printed wiring board using prepreg

Info

Publication number
JP2003127137A
JP2003127137A JP2001330608A JP2001330608A JP2003127137A JP 2003127137 A JP2003127137 A JP 2003127137A JP 2001330608 A JP2001330608 A JP 2001330608A JP 2001330608 A JP2001330608 A JP 2001330608A JP 2003127137 A JP2003127137 A JP 2003127137A
Authority
JP
Japan
Prior art keywords
prepreg
printed wiring
insulating layer
wiring board
conductor paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001330608A
Other languages
Japanese (ja)
Inventor
Manabu Ochita
学 落田
Shigeru Kurumaya
茂 車谷
Koichi Hiraoka
宏一 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2001330608A priority Critical patent/JP2003127137A/en
Publication of JP2003127137A publication Critical patent/JP2003127137A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the perforation properties of a prepreg by the irradiation with laser beam in the prepreg for an electric insulating layer obtained by holding a thermosetting resin to a flat glass fiber nonwoven fabric constituted using glass fibers having a flat cross-sectional shape. SOLUTION: The flat glass fiber nonwoven fabric substrate is impregnated with thermosetting resin varnish having a thixotropy imarting function and compounded with fine particles with a particle size of 1 μm or less and the impregnated substrate is dried to obtain the prepreg. The content of the fine particles is preferably set to 0.05-5 pts.mass with respect to 100 pts.mass of the resin solid. The bulk density of the flat glass fiber nonwoven fabric is set to 0.4 g/cm<3> or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、断面形状が偏平で
あるガラス繊維により構成されるガラス不織布を用いた
電気絶縁用プリプレグに関する。また、前記プリプレグ
を用いるプリント配線板(多層プリント配線板をその概
念に含む)の製造法に関するものである。このプリント
配線板は、抵抗、IC等のリードレスチップ部品を表面
実装するのに適したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a prepreg for electrical insulation using a glass nonwoven fabric composed of glass fibers having a flat cross section. The present invention also relates to a method of manufacturing a printed wiring board (including a multilayer printed wiring board in its concept) using the prepreg. This printed wiring board is suitable for surface-mounting leadless chip components such as resistors and ICs.

【0002】[0002]

【従来の技術】電子機器に組込むプリント配線板に電子
部品(抵抗、IC等)を搭載する方式は、これら部品を
チップにして表面実装する方式が主流となってきた。表
面実装方式は、電子機器の小型軽量化、高密度化の点で
好ましい態様である。また、プリント配線の高密度化に
伴い、絶縁層を介するプリント配線の接続は、当該絶縁
層にあけたIVH(Interstitial Via Hole)において
行なわれるようになり、絶縁層にレーザ光を照射して非
貫通穴をあけるIVH加工が主流になっている。プリン
ト配線板は、レーザ光の照射による穴あけ加工が容易で
ある絶縁層を備えることが望まれる。
2. Description of the Related Art As a method of mounting electronic parts (resistors, ICs, etc.) on a printed wiring board incorporated in an electronic device, a method of surface-mounting these parts as chips has become mainstream. The surface mounting method is a preferable mode in terms of downsizing and weight saving and high density of electronic devices. In addition, with the increase in the density of the printed wiring, the connection of the printed wiring through the insulating layer has come to be performed in an IVH (Interstitial Via Hole) opened in the insulating layer, and the insulating layer is irradiated with a laser beam so as not to be connected. IVH processing for making through holes has become the mainstream. It is desirable that the printed wiring board be provided with an insulating layer that can be easily drilled by laser light irradiation.

【0003】近年、上記IVH加工の技術を発展させ
て、プリプレグの所定箇所にレーザ光を照射して貫通穴
をあけ、当該貫通穴に銅粒子と液状樹脂主体の導体ペー
ストを充填し、このプリプレグを加熱加圧成形し電気絶
縁層を構成するプリント配線板の製造が提案されてい
る。例えば、前記プリプレグの両面に金属箔を加熱加圧
成形により一体化して、前記プリプレグにより構成され
た電気絶縁層両面の金属箔を前記導体ペーストの硬化物
で電気接続し、さらに、電気絶縁層両面の金属箔をエッ
チング加工してプリント配線を形成する技術である。あ
るいは、別途準備されたベースプリント配線板に、前記
プリプレグを介して金属箔を加熱加圧成形により一体化
して、前記プリプレグにより構成された電気絶縁層表面
の金属箔とベースプリント配線板を前記導体ペーストの
硬化物で電気接続し、さらに、電気絶縁層表面の金属箔
をエッチング加工してプリント配線を形成する技術であ
る(特開平5−175650号公報,特開平7−176
846号公報等)。
In recent years, with the development of the IVH processing technique, laser light is irradiated to a predetermined portion of a prepreg to form a through hole, and the through hole is filled with copper particles and a conductor paste mainly composed of a liquid resin. It has been proposed to manufacture a printed wiring board in which an electric insulating layer is formed by heat-press molding. For example, metal foils are integrated on both sides of the prepreg by heat and pressure molding, and the metal foils on both sides of the electric insulating layer constituted by the prepreg are electrically connected by a cured product of the conductor paste, and further, both sides of the electric insulating layer. Is a technique for forming a printed wiring by etching the metal foil. Alternatively, a separately prepared base printed wiring board is integrated with a metal foil by heat and pressure molding through the prepreg, and the metal foil on the surface of the electric insulating layer constituted by the prepreg and the base printed wiring board are connected to the conductor. This is a technique for forming a printed wiring by electrically connecting with a cured product of a paste and etching the metal foil on the surface of the electrical insulating layer (Japanese Patent Laid-Open No. 5-175650 and Japanese Patent Laid-Open No. 7-176).
No. 846, etc.).

【0004】上記技術によれば、絶縁層を介してその両
側に位置するプリント配線を、完全なIVH(Intersti
tial Via Hole)において接続する多層プリント配線板を
製造でき、導体ペーストが硬化してできた導体の直上に
さらにIVHを形成できるので、プリント配線の高密度
化に有利である。
According to the above technique, the printed wirings on both sides of the insulating layer are connected to each other through a complete IVH (Intersti).
It is possible to manufacture a multilayer printed wiring board to be connected at a tial via hole), and IVH can be further formed directly on the conductor formed by curing the conductor paste, which is advantageous for increasing the density of the printed wiring.

【0005】このようなプリント配線板の製造に用いる
プリプレグは、表面の平滑性が重要となる。プリプレグ
の表面が平滑でないと、レーザ光を照射してあけた貫通
穴に導体ペーストを充填するときに、均一な充填をでき
ないからである。不織布を基材としこれに熱硬化性樹脂
を含浸し加熱乾燥したプリプレグは十分な表面平滑性を
確保できるので、前記導体ペーストを充填するプリプレ
グとして最適である。一方、織布を基材とするプリプレ
グは、織布の織り目が表面に現れるので表面平滑性を確
保できず、導体ペーストの充填には適さない。
The surface smoothness of the prepreg used for manufacturing such a printed wiring board is important. This is because if the surface of the prepreg is not smooth, uniform filling cannot be performed when the conductive paste is filled into the through holes formed by irradiating the laser beam. A prepreg obtained by impregnating a non-woven fabric as a base material with a thermosetting resin and heating and drying it can ensure sufficient surface smoothness, and is therefore most suitable as a prepreg for filling the conductor paste. On the other hand, a prepreg using a woven fabric as a base material cannot secure surface smoothness because the texture of the woven fabric appears on the surface and is not suitable for filling with a conductor paste.

【0006】上記技術に用いる不織布としては、アラミ
ド繊維を主体として、繊維同士を熱硬化性樹脂(エポキ
シ樹脂)バインダ、アラミドフィブリドやアラミド繊維
パルプの絡み合い、耐熱性の熱可塑性樹脂繊維の熱融着
等で結着した構成が知られている。プリント配線板用と
して、ガラス繊維同士をバインダで結着した構成のガラ
ス不織布もあるが、通常用いられているガラス不織布
は、嵩密度が小さいためにプリント配線板を薄くするこ
とには適さない。嵩密度を大きくしたガラス不織布とし
て、断面形状を偏平にしたガラス繊維を用いて繊維間の
空隙を少なくした構成の偏平ガラス不織布が知られてい
る(特開平11−172559)。
The non-woven fabric used in the above technique is mainly composed of aramid fibers, in which the fibers are entwined with a thermosetting resin (epoxy resin) binder, aramid fibrid or aramid fiber pulp, and heat-resistant thermoplastic resin fibers are melted. It is known that the clothes are bound together. For printed wiring boards, there are glass nonwoven fabrics in which glass fibers are bound to each other with a binder. However, glass nonwoven fabrics that are normally used are not suitable for thinning printed wiring boards because of their low bulk density. As a glass nonwoven fabric having a high bulk density, there is known a flat glass nonwoven fabric having a configuration in which glass fibers having a flat cross section are used to reduce voids between the fibers (JP-A-11-172559).

【0007】[0007]

【発明が解決しようとする課題】上記偏平ガラス不織布
に熱硬化性樹脂を保持したプリプレグは表面平滑性につ
いては申し分ないが、これにレーザ光を照射して貫通穴
をあけたところ、穴壁面が平滑にならず、ガラス繊維が
毛羽立った状態になることが判明した。このような穴壁
が毛羽立った状態の貫通穴に導体ペーストを充填する
と、充填を均一にできないばかりか、穴壁と導体ペース
ト間に空隙が残り、プリプレグを加熱加圧成形して絶縁
層を構成した後にも導体ペーストが十分に硬化せず、導
体の抵抗値が大きくなってしまう。このように導体の抵
抗値が大きい状態で冷熱サイクル試験等の長期信頼性試
験を行なったところ、導体にクラックが発生し、導通信
頼性が低下することが判明した。
The prepreg obtained by holding the thermosetting resin on the flat glass nonwoven fabric described above is satisfactory in terms of surface smoothness. However, when a through hole was formed by irradiating it with a laser beam, the hole wall surface was It was found that the glass fibers did not become smooth and became fluffy. If a conductor paste is filled into a through hole having such a fluffed hole wall, not only the filling cannot be made uniform, but also a gap remains between the hole wall and the conductor paste, and a prepreg is heated and pressed to form an insulating layer. Even after this, the conductor paste is not sufficiently cured and the resistance value of the conductor becomes large. When a long-term reliability test such as a thermal cycle test was conducted with the conductor having a large resistance value as described above, it was found that a crack was generated in the conductor and the conduction reliability was lowered.

【0008】本発明が解決しようとする課題は、断面形
状を偏平にしたガラス繊維を用いて構成した偏平ガラス
不織布に熱硬化性樹脂を保持した電気絶縁層用プリプレ
グにおいて、プリプレグに対して実施するレーザ光照射
による穴あけ性を改善することである。
The problem to be solved by the present invention is to be carried out on a prepreg in an electric insulating layer prepreg in which a thermosetting resin is held in a flat glass nonwoven fabric formed by using glass fibers having a flat cross section. It is to improve the drilling property by laser light irradiation.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る電気絶縁層用プリプレグは、断面形状
を偏平にしたガラス繊維を用いて構成した偏平ガラス不
織布に保持した熱硬化性樹脂中に、チクソ性付与機能を
有し粒径が1μm以下である微粒子を含有することを特
徴とする。
In order to solve the above-mentioned problems, the prepreg for an electric insulating layer according to the present invention is a thermosetting material which is held in a flat glass nonwoven fabric composed of glass fibers having a flat cross section. The resin is characterized by containing fine particles having a thixotropy imparting function and having a particle diameter of 1 μm or less.

【0010】プリプレグにレーザ光を照射して形成され
る穴は、当該照射箇所のガラス繊維と樹脂が焼失した結
果であるが、このとき、レーザ光のエネルギで溶融する
穴壁の熱硬化性樹脂には、チクソ性付与機能を有する微
粒子の存在によりレベリング効果が働き、穴壁が滑らか
に仕上がる。チクソ性付与機能を有する微粒子の含有量
は、好ましくは、樹脂固形分100質量部に対し0.0
5〜5質量部である。
The hole formed by irradiating the prepreg with laser light is the result of the glass fiber and resin at the irradiation site being burned off. At this time, the thermosetting resin of the hole wall that is melted by the energy of laser light is used. In addition, the leveling effect is exerted by the presence of the fine particles having a thixotropy imparting function, and the hole wall is finished smoothly. The content of the fine particles having a thixotropy imparting function is preferably 0.0 with respect to 100 parts by mass of the resin solid content.
5 to 5 parts by mass.

【0011】偏平ガラス不織布は、断面形状を偏平にし
たガラス繊維を主成分として抄造によりシート状とし、
繊維同士をバインダで結着したものである。不織布強度
を確保するために、嵩密度を0.4g/cm以上にする
ことが望ましい。
The flat glass nonwoven fabric is formed into a sheet by paper-making with glass fibers having a flat cross section as a main component.
The fibers are bound together with a binder. In order to secure the strength of the nonwoven fabric, it is desirable that the bulk density is 0.4 g / cm 3 or more.

【0012】[0012]

【発明の実施の形態】本発明に係る電気絶縁用プリプレ
グの一例を次に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An example of the prepreg for electrical insulation according to the present invention will be described below.

【0013】偏平ガラス不織布を構成するガラス繊維の
種類は特に限定せず、Eガラス、Tガラス、Cガラス、
Dガラスなどである。ガラス繊維の偏平率(ガラス繊維
断面の長径/短径)は、不織布の嵩密度を大きくするた
めには、2以上にすることが望ましいが、特に限定する
ものではない。このような断面形状が偏平であるガラス
繊維を水中に分散してシート状に抄造し、繊維同士をエ
ポキシ樹脂等のバインダで結着して所定嵩密度の偏平ガ
ラス不織布とする。ガラス繊維と樹脂の接着性を向上さ
せるために、シランカップリング剤などを配合すること
もできる。偏平ガラス不織布の嵩密度は、不織布強度を
確保する上で、0.4g/cm以上であることが望まし
い。
The type of glass fiber constituting the flat glass nonwoven fabric is not particularly limited, and includes E glass, T glass, C glass,
D glass and the like. The flatness of the glass fiber (major axis / minor axis of glass fiber cross section) is preferably 2 or more in order to increase the bulk density of the nonwoven fabric, but is not particularly limited. Such glass fibers having a flat cross section are dispersed in water to form a sheet, and the fibers are bound with a binder such as an epoxy resin to obtain a flat glass nonwoven fabric having a predetermined bulk density. A silane coupling agent or the like may be added in order to improve the adhesiveness between the glass fiber and the resin. The bulk density of the flat glass nonwoven fabric is preferably 0.4 g / cm 3 or more in order to secure the strength of the nonwoven fabric.

【0014】偏平ガラス不織布に保持させる熱硬化性樹
脂の種類は特に限定するものではないが、プリプレグに
あけた貫通穴に充填する導体ペーストの熱硬化性樹脂成
分との相性が良好なエポキシ樹脂等を適宜選定する。エ
ポキシ樹脂の硬化剤や硬化促進剤についても一般的に知
られているものを適宜選定できる。偏平ガラス不織布に
保持させるための熱硬化性樹脂ワニスの調製は、まず、
チクソ性付与機能を有する微粒子の全量と使用する樹脂
の一部とを混練し、その後残りの樹脂を加えホモミキサ
等で混合する。このようにして、微粒子の分散を均一に
する。微粒子は、その粒径が小さければ小さいほどチク
ソ性付与効果が増大するので、その粒径は1μm以下と
する。具体的には、タルク,石綿,微粉末シリカ,コロ
イド性含水ケイ酸アルミニウム/有機複合体などであ
り、チクソ性を付与する性質を保持していればよい。微
粒子の配合量が多いほどチクソ性付与効果が増大するの
で、好ましくは、その含有量を熱硬化性樹脂の固形分1
00質量部に対して0.05質量部以上とする。
The type of thermosetting resin held in the flat glass nonwoven fabric is not particularly limited, but an epoxy resin or the like having a good compatibility with the thermosetting resin component of the conductor paste filled in the through holes formed in the prepreg. Is appropriately selected. As the curing agent and curing accelerator for the epoxy resin, those generally known can be appropriately selected. Preparation of the thermosetting resin varnish for holding the flat glass nonwoven fabric, first,
The whole amount of the fine particles having a thixotropy imparting function and a part of the resin used are kneaded, and then the remaining resin is added and mixed with a homomixer or the like. In this way, the fine particles are uniformly dispersed. The smaller the particle size of the fine particles, the more the thixotropy imparting effect increases, so the particle size is set to 1 μm or less. Specifically, it may be talc, asbestos, fine powder silica, colloidal hydrous aluminum silicate / organic composite, or the like, as long as it has the property of imparting thixotropy. Since the thixotropy imparting effect is increased as the amount of the fine particles is increased, the content thereof is preferably 1% of the solid content of the thermosetting resin.
It is 0.05 parts by mass or more with respect to 00 parts by mass.

【0015】上記のように調製した熱硬化性樹脂ワニス
を、偏平ガラス不織布に含浸し加熱乾燥してプリプレグ
を製造する。このとき、チクソ性付与機能を有する微粒
子の含有量が多すぎると、熱硬化性樹脂ワニスの粘度が
増大して含浸作業性が低下するので、好ましくは、その
含有量を熱硬化性樹脂の固形分100質量部に対して5
質量部以下とする。
A flat glass nonwoven fabric is impregnated with the thermosetting resin varnish prepared as described above and dried by heating to produce a prepreg. At this time, if the content of the fine particles having a thixotropy imparting function is too large, the viscosity of the thermosetting resin varnish increases and the impregnating workability decreases, so that the content is preferably a solid of the thermosetting resin. 5 for 100 parts by weight
It should be less than or equal to parts by mass.

【0016】上記のプリプレグを加熱加圧成形すること
により形成した絶縁層を備えるプリント配線板は、次の
ような工程で製造する。まず、プリプレグの所定箇所に
レーザ光を照射して貫通孔をあけ、当該貫通孔に導体ペ
ーストを充填する。導体ペーストは、銅粒子をはじめと
する導電性粒子と液状エポキシ樹脂を主体としたもので
ある。前記工程により得たプリプレグの両面に金属箔
(銅箔やアルミニウム箔、ニッケル箔)を加熱加圧成形
により一体化して、前記プリプレグにより構成された電
気絶縁層両面の金属箔を前記導体ペーストの硬化物で電
気接続する。前記導体ペーストは、加熱加圧によりプリ
プレグの厚みが減じられるに伴って圧縮され、エポキシ
樹脂硬化物中に銅粒子が分散した導体となっている。こ
の導体は、前記プリプレグが硬化してなる絶縁層を貫通
し、両面の金属箔に接触している。さらに、電気絶縁層
両面の金属箔をエッチング加工してプリント配線を形成
する。絶縁層を介して配置されたプリント配線が前記導
体により接続された両面プリント配線板となる。
A printed wiring board having an insulating layer formed by hot pressing the above prepreg is manufactured by the following steps. First, laser light is irradiated to a predetermined portion of the prepreg to open a through hole, and the through hole is filled with a conductor paste. The conductor paste is mainly composed of conductive particles such as copper particles and a liquid epoxy resin. A metal foil (copper foil, aluminum foil, nickel foil) is integrated on both sides of the prepreg obtained by the process by heat and pressure molding, and the metal foil on both sides of the electric insulation layer constituted by the prepreg is cured by the conductor paste. Make an electrical connection with something. The conductor paste is compressed as the thickness of the prepreg is reduced by heating and pressing, and becomes a conductor in which copper particles are dispersed in an epoxy resin cured product. This conductor penetrates the insulating layer formed by curing the prepreg and is in contact with the metal foils on both sides. Further, printed wiring is formed by etching the metal foils on both sides of the electric insulating layer. A printed wiring board arranged via an insulating layer becomes a double-sided printed wiring board connected by the conductor.

【0017】多層のプリント配線板を製造する場合は、
別途準備したプリント配線板(多層プリント配線板でも
よい)をベースプリント配線板とする。ベースプリント
配線板は、上記両面プリント配線板であってもよい。こ
のベースプリント配線板に、上記と同様に導体ペースト
を充填したプリプレグを介して金属箔を加熱加圧成形に
より一体化して、前記プリプレグにより構成された電気
絶縁層表面の金属箔とベースプリント配線板を前記導体
ペーストの硬化物で電気接続する。そして、表面の金属
箔をエッチング加工してプリント配線を形成する。必要
に応じて、この工程を繰り返し、プリント配線の層数を
順次増やしていく。
When manufacturing a multilayer printed wiring board,
A separately prepared printed wiring board (may be a multilayer printed wiring board) is used as the base printed wiring board. The base printed wiring board may be the double-sided printed wiring board described above. A metal foil is integrated with the base printed wiring board by heat and pressure molding through a prepreg filled with a conductive paste in the same manner as described above, and the metal foil on the surface of the electric insulating layer formed by the prepreg and the base printed wiring board. Are electrically connected with the cured product of the conductor paste. Then, the metal foil on the surface is etched to form a printed wiring. If necessary, this process is repeated to sequentially increase the number of layers of printed wiring.

【0018】[0018]

【実施例】実施例1〜6 [偏平ガラス不織布の準備]偏平ガラス繊維(Eガラ
ス,繊維径の長径18μm,短径9μm、繊維長10m
m)を主たる繊維として水中に分散させてシート状に抄
造し、水を分散媒とするエマルジョン形態のエポキシ樹
脂バインダをスプレーして、湿式不織布抄造法による偏
平ガラス不織布を準備する。この不織布は、単位質量5
0g/m、嵩密度0.4g/cmに調整した。 [エポキシ樹脂ワニスの調製]上記偏平ガラス不織布に
保持させる熱硬化性樹脂として、ビスフェノールA型エ
ポキシ樹脂(油化シェル製「Ep−828」,エポキシ
当量189)16質量部、クレゾールノボラック型エポ
キシ樹脂(東都化成製「YDCN704」,エポキシ当
量212)25質量部、臭素化エポキシ樹脂29質量
部、ノボラック型フェノール樹脂30質量部、触媒とし
て2−エチル−4−メチルイミダゾール0.2質量部を
配合し、樹脂固形分65質量%のエポキシ樹脂ワニスを
調製した。上記エポキシ樹脂ワニスに、チクソ性付与機
能をもつ微粒子として微粉末シリカ(日本アエロジル製
「アエロジルRY−200」)を所定量配合し、混練し
てエポキシ樹脂ワニス(A)を調製した。樹脂固形質量
100に対する微粉末シリカの含有量ならびに微粉末シ
リカの粒径を、表1に示すとおりとした。 [プリプレグの作製]上記エポキシ樹脂ワニス(A)を
偏平ガラス不織布に含浸し加熱乾燥して、樹脂含有量5
0質量%のプリプレグ(A)を得た。樹脂含有量には、
微粉末シリカの含有量を含む。 [プリント配線板の製造]上記プリプレグ(A)の所定
箇所にレーザ光の照射により貫通穴をあける。穴径はφ
200μmとした。銅粒子と液状エポキシ樹脂を主体と
した導体ペーストを調製し、この導体ペーストを前記貫
通穴に充填して乾燥する。このように準備したプリプレ
グ(A)1枚の両面に銅箔(18μm厚)を載置し、温
度175℃、圧力5MPaで加熱加圧成形し銅張り積層板
を成形した。前記プリプレグは電気絶縁層となり、導体
ペーストは圧縮され硬化して導体となり、絶縁層両面の
銅箔を電気接続している。絶縁層両面の銅箔をエッチン
グ加工して所定のプリント配線を形成し、絶縁層を介し
て配置されたプリント配線が前記導体により接続された
両面プリント配線板を製造した。
Examples Examples 1 to 6 [Preparation of flat glass nonwoven fabric] Flat glass fiber (E glass, fiber diameter major axis 18 μm, minor axis 9 μm, fiber length 10 m)
m) as a main fiber is dispersed in water to form a sheet, and an epoxy resin binder in an emulsion form using water as a dispersion medium is sprayed to prepare a flat glass nonwoven fabric by a wet nonwoven fabric forming method. This non-woven fabric has a unit mass of 5
It was adjusted to 0 g / m 2 and a bulk density of 0.4 g / cm 3 . [Preparation of Epoxy Resin Varnish] 16 parts by mass of bisphenol A type epoxy resin (“Ep-828” manufactured by Yuka Shell, epoxy equivalent 189), cresol novolac type epoxy resin ( Toto Kasei “YDCN704”, epoxy equivalent 212) 25 parts by mass, brominated epoxy resin 29 parts by mass, novolac type phenol resin 30 parts by mass, and 2-ethyl-4-methylimidazole 0.2 parts by mass as a catalyst are blended, An epoxy resin varnish having a resin solid content of 65 mass% was prepared. A predetermined amount of fine powder silica (“Aerosil RY-200” manufactured by Nippon Aerosil Co., Ltd.) as fine particles having a thixotropy imparting function was mixed with the above epoxy resin varnish and kneaded to prepare an epoxy resin varnish (A). The content of the finely divided silica and the particle size of the finely divided silica with respect to the resin solid mass of 100 are shown in Table 1. [Preparation of prepreg] A flat glass nonwoven fabric was impregnated with the above-mentioned epoxy resin varnish (A) and dried by heating to give a resin content of 5
0% by mass of prepreg (A) was obtained. The resin content includes
Contains the content of finely divided silica. [Manufacture of Printed Wiring Board] A through hole is formed in a predetermined portion of the prepreg (A) by irradiating laser light. Hole diameter is φ
It was set to 200 μm. A conductor paste mainly composed of copper particles and a liquid epoxy resin is prepared, and the conductor paste is filled in the through holes and dried. A copper foil (18 μm thick) was placed on both sides of one prepreg (A) thus prepared, and heat-pressed at a temperature of 175 ° C. and a pressure of 5 MPa to form a copper-clad laminate. The prepreg serves as an electric insulating layer, and the conductor paste is compressed and hardened to become a conductor, which electrically connects the copper foils on both surfaces of the insulating layer. A copper foil on both sides of the insulating layer was etched to form a predetermined printed wiring, and a double-sided printed wiring board in which the printed wiring arranged via the insulating layer was connected by the conductor was manufactured.

【0019】比較例1 微粉末シリカを含有させず、そのほかは上述の実施例と
同様にして両面プリント配線板を製造した。
Comparative Example 1 A double-sided printed wiring board was manufactured in the same manner as in the above-described Examples except that fine powder silica was not contained.

【0020】比較例2 微粉末シリカの粒径を5μm、樹脂固形分100質量部
に対する含有量1質量部として、そのほかは上述の実施
例と同様にして両面プリント配線板を製造した。
Comparative Example 2 A double-sided printed wiring board was manufactured in the same manner as in the above-described example except that the particle size of finely divided silica was 5 μm and the content was 1 part by mass relative to 100 parts by mass of resin solid content.

【0021】上記各例におけるプリント配線板の絶縁層
を介するプリント配線の間(すなわち、絶縁層を貫通す
る導体)の導通抵抗、ならびに、プリプレグ作製上の作
業性について調査した結果を表1に示す。導通抵抗の測
定は、一方の面のプリント配線から他方の面のプリント
配線へ、さらに元の面へと、順次、絶縁層を貫通する導
体100個によりシリーズ接続した配線パターンの導通
抵抗を、ミリオーム計で測定した。
Table 1 shows the results of an examination of the conduction resistance between the printed wirings (that is, the conductors penetrating the insulating layer) through the insulating layer of the printed wiring board in each of the above examples, and the workability in preparing the prepreg. . The conduction resistance is measured from the printed wiring on one surface to the printed wiring on the other surface, and then to the original surface. The conduction resistance of the wiring pattern serially connected by 100 conductors penetrating the insulating layer is measured in milliohms. It was measured with a meter.

【0022】[0022]

【表1】 [Table 1]

【0023】表1から、本発明の実施例に係るプリプレ
グを用いて製造したプリント配線板は、チクソ性を付与
する微粒子の含有量を0.01質量%以上とし、微粒子
の粒径を1μm以下とすることにより、主として導体ペ
ーストによる導体の導通抵抗値を、比較例1と比べて半
減できることが分かる(実施例と比較例の対照)。さら
に、チクソ性を付与する微粒子の粒径を1μm以下とす
ることにより、導通抵抗値を小さくできる(実施例と比
較例2の対照)。チクソ性を付与する微粒子の含有量を
5質量%以下にすると、プリプレグ作製の時の含浸性も
良好である(実施例5と他の実施例の対照)。
From Table 1, the printed wiring boards manufactured using the prepregs according to the examples of the present invention have a content of fine particles imparting thixotropy of 0.01% by mass or more and a particle diameter of 1 μm or less. As a result, it can be seen that the conduction resistance value of the conductor mainly made of the conductor paste can be halved as compared with Comparative Example 1 (a contrast between the example and the comparative example). Furthermore, by setting the particle size of the fine particles imparting thixotropy to 1 μm or less, the conduction resistance value can be reduced (the contrast between the example and the comparative example 2). When the content of the fine particles imparting thixotropy is 5% by mass or less, the impregnation property at the time of producing a prepreg is also good (control of Example 5 and other examples).

【0024】[0024]

【発明の効果】上述のように、本発明に係る電気絶縁層
用の偏平ガラス不織布プリプレグは、レーザ光照射によ
る穴あけ性(壁面の平滑性)に優れる結果、当該貫通穴
に導体ペーストを確実に充填することができ、このよう
なプリプレグを加熱加圧成形して、電気絶縁層と導体を
形成するプリント配線板の導通信頼性を大きく向上でき
る。
As described above, the flat glass nonwoven fabric prepreg for the electric insulating layer according to the present invention is excellent in the perforation property (wall surface smoothness) by laser light irradiation, and as a result, the conductor paste is surely provided in the through hole. It can be filled, and such a prepreg can be heated and pressure-molded to greatly improve the conduction reliability of the printed wiring board that forms the electric insulating layer and the conductor.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B29K 309:08 B29K 309:08 Fターム(参考) 4F072 AA04 AA05 AA07 AB09 AB29 AB34 AD15 AD24 AD28 AD29 AE12 AE23 AF06 AG03 AH02 AH21 AH25 AJ04 AK05 AL13 5E317 AA24 BB01 BB12 BB15 CC17 CC25 CD32 GG09 GG11 5E346 AA12 AA43 CC04 CC09 CC32 DD12 FF07 FF18 GG15 HH07─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // B29K 309: 08 B29K 309: 08 F term (reference) 4F072 AA04 AA05 AA07 AB09 AB29 AB34 AD15 AD24 AD28 AD29 AE12 AE23 AF06 AG03 AH02 AH21 AH25 AJ04 AK05 AL13 5E317 AA24 BB01 BB12 BB15 CC17 CC25 CD32 GG09 GG11 5E346 AA12 AA43 CC04 CC09 CC32 DD12 FF07 FF18 GG15 HH07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】断面形状が偏平であるガラス繊維により構
成されるガラス不織布に熱硬化性樹脂を保持したプリプ
レグにおいて、前記熱硬化性樹脂中に、チクソ性付与機
能を有し粒径が1μm以下である微粒子を含有すること
を特徴とする電気絶縁層用プリプレグ。
1. A prepreg in which a thermosetting resin is held in a glass non-woven fabric composed of glass fibers having a flat cross section, wherein the thermosetting resin has a thixotropy imparting function and a particle size of 1 μm or less. A prepreg for an electric insulating layer, which contains the fine particles of
【請求項2】熱硬化性樹脂中の微粒子含有量が、樹脂固
形分100質量部に対し0.05〜5質量部であること
を特徴とする請求項1記載の電気絶縁層用プリプレグ。
2. The prepreg for an electric insulating layer according to claim 1, wherein the content of fine particles in the thermosetting resin is 0.05 to 5 parts by mass with respect to 100 parts by mass of the resin solid content.
【請求項3】ガラス不織布の嵩密度が、0.4g/cm
以上であることを特徴とする請求項1又は2記載の電気
絶縁層用プリプレグ。
3. The bulk density of the glass non-woven fabric is 0.4 g / cm 3.
It is above, The prepreg for electric insulation layers of Claim 1 or 2 characterized by the above-mentioned.
【請求項4】請求項1〜3のいずれかに記載のプリプレ
グの所定箇所にレーザ光を照射して貫通孔をあけ、当該
貫通孔に導体ペーストを充填する工程、 前記工程により得たプリプレグの両面に金属箔を加熱加
圧成形により一体化して、前記プリプレグにより構成さ
れた電気絶縁層両面の金属箔を前記導体ペーストの硬化
物で電気接続する工程、 さらに、電気絶縁層両面の金属箔をエッチング加工して
プリント配線を形成する工程、を経ることを特徴とする
プリント配線板の製造法。
4. A step of irradiating a predetermined position of the prepreg according to claim 1 with a laser beam to open a through hole, and filling the through hole with a conductor paste. Integrating metal foils on both sides by heat and pressure molding, and electrically connecting the metal foils on both sides of the electrical insulating layer constituted by the prepreg with the cured product of the conductor paste, A method of manufacturing a printed wiring board, which comprises a step of forming a printed wiring by etching.
【請求項5】請求項1〜3のいずれかに記載のプリプレ
グの所定箇所にレーザ光を照射して貫通孔をあけ、当該
貫通孔に導体ペーストを充填する工程、 別途準備されたベースプリント配線板に、前記工程によ
り得たプリプレグを介して金属箔を加熱加圧成形により
一体化して、前記プリプレグにより構成された電気絶縁
層表面の金属箔とベースプリント配線板を前記導体ペー
ストの硬化物で電気接続する工程、 さらに、電気絶縁層表面の金属箔をエッチング加工して
プリント配線を形成する工程、 を経ることを特徴とするプリント配線板の製造法。
5. A step of irradiating a predetermined portion of the prepreg according to any one of claims 1 to 3 with a laser beam to open a through hole and filling the through hole with a conductor paste, a separately prepared base print wiring. On the board, the metal foil is integrated by heat and pressure molding through the prepreg obtained in the above step, and the metal foil on the surface of the electric insulating layer and the base printed wiring board configured by the prepreg is a cured product of the conductor paste. A method for manufacturing a printed wiring board, comprising the steps of electrically connecting and further forming a printed wiring by etching a metal foil on the surface of the electrical insulating layer.
JP2001330608A 2001-10-29 2001-10-29 Prepreg for electric insulating layer and method for manufacturing printed wiring board using prepreg Pending JP2003127137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001330608A JP2003127137A (en) 2001-10-29 2001-10-29 Prepreg for electric insulating layer and method for manufacturing printed wiring board using prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001330608A JP2003127137A (en) 2001-10-29 2001-10-29 Prepreg for electric insulating layer and method for manufacturing printed wiring board using prepreg

Publications (1)

Publication Number Publication Date
JP2003127137A true JP2003127137A (en) 2003-05-08

Family

ID=19146314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001330608A Pending JP2003127137A (en) 2001-10-29 2001-10-29 Prepreg for electric insulating layer and method for manufacturing printed wiring board using prepreg

Country Status (1)

Country Link
JP (1) JP2003127137A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203685A1 (en) * 2016-05-27 2017-11-30 国立研究開発法人科学技術振興機構 Electronic functional member, electronic component, and wearable device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203685A1 (en) * 2016-05-27 2017-11-30 国立研究開発法人科学技術振興機構 Electronic functional member, electronic component, and wearable device
JPWO2017203685A1 (en) * 2016-05-27 2019-04-04 国立研究開発法人科学技術振興機構 Electronic functional members, electronic components and wearable devices
US11547338B2 (en) 2016-05-27 2023-01-10 Japan Science And Technology Agency Electronic functional member, electronic component, and wearable device

Similar Documents

Publication Publication Date Title
JPWO2004064467A1 (en) Multilayer wiring board, manufacturing method thereof, and manufacturing method of fiber reinforced resin substrate
JP3119577B2 (en) Laminated board
JP5543184B2 (en) Wiring board material, laminated board, multilayer board and wiring board
JPS607796A (en) Copper-lined laminated board for printed circuit and method of producing same
JP3138215B2 (en) Circuit board base material and prepreg and printed circuit board using the same
JP3728068B2 (en) Multilayer wiring board
JP2003127137A (en) Prepreg for electric insulating layer and method for manufacturing printed wiring board using prepreg
JPH11131385A (en) Substrate for laminated plate, its production, prepreg and laminated board
US20030045164A1 (en) Non-woven fabric material and prepreg, and circuit board using the same
JP2006100170A (en) Conductive paste and method for manufacturing multilayer printed wiring board using the same
JPWO2003017290A1 (en) Method for producing conductive paste and method for producing printed wiring board
JP3728059B2 (en) Multilayer wiring board
JP3588888B2 (en) Method for manufacturing multilayer printed wiring board
JP3883727B2 (en) Aramid fiber base insulation board and printed wiring board
JP2000239415A (en) Production of electrical insulation prepreg, prepreg and printed-wiring board
JP2000252631A (en) Multilayer printed wiring board and its manufacture
JP4078818B2 (en) Multilayer circuit board manufacturing method
JPH0265193A (en) Multilayer printed board with built-in metal core
JP2001351437A (en) Manufacturing method of prepreg for electric insulation and prepreg
JP2000174438A (en) Manufacture of prepreg and manufacture of multilayer printed wiring board
JP2003313272A (en) Epoxy resin composition for impregnating organic fiber base material, and prepreg, laminated sheet, and printed- wiring board using the same
JP2001313468A (en) Wiring board
JP2633287B2 (en) Manufacturing method of electric laminate
JP2001081214A (en) Resin composition for impegnating nonwoven fabric made of aramid fiber, prepreg, insulating layer and metal clad laminated board
JPH07115444B2 (en) Copper clad laminate