JP5543184B2 - Wiring board material, laminated board, multilayer board and wiring board - Google Patents

Wiring board material, laminated board, multilayer board and wiring board Download PDF

Info

Publication number
JP5543184B2
JP5543184B2 JP2009279418A JP2009279418A JP5543184B2 JP 5543184 B2 JP5543184 B2 JP 5543184B2 JP 2009279418 A JP2009279418 A JP 2009279418A JP 2009279418 A JP2009279418 A JP 2009279418A JP 5543184 B2 JP5543184 B2 JP 5543184B2
Authority
JP
Japan
Prior art keywords
wiring board
thermal expansion
laminated
resin
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009279418A
Other languages
Japanese (ja)
Other versions
JP2010278414A (en
Inventor
芳宏 久保田
治由 桑原
司 坂口
忠彦 河辺
耕三 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Shin Etsu Quartz Products Co Ltd
NGK Spark Plug Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Shin Etsu Quartz Products Co Ltd
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Shin Etsu Quartz Products Co Ltd, NGK Spark Plug Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2009279418A priority Critical patent/JP5543184B2/en
Publication of JP2010278414A publication Critical patent/JP2010278414A/en
Application granted granted Critical
Publication of JP5543184B2 publication Critical patent/JP5543184B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明はプリント基板、プローブカード、パッケージ用ビルドアップ基板のコア材などに好適な回路基板材料に関するものである。   The present invention relates to a circuit board material suitable for a core material of a printed board, a probe card, a package build-up board, and the like.

回路基板、特に熱硬化樹脂を使用した回路基板では近年の著しい微細化、精密化、薄膜化、或いは工程の高温化などに伴ない、基板材料(通常、熱膨張率=10〜30ppm/℃)とシリコン(熱膨張率=3〜4ppm/℃)との熱膨張率差が問題となっている。即ち、熱膨張率が大きいと、例えば、プローブカードに使った場合、カードと検査対象のシリコン基板との間の熱膨張の差で評価位置のズレが大きくなり、正確な検査が不可能となる。一方、パッケージ用に使った場合は基板とシリコンチップを接着する際の半田リフローなどの熱で歪み応力が発生し、接着部分が剥離し易いと言う問題があった。   Circuit boards, especially circuit boards that use thermosetting resins, have recently become increasingly finer, more precise, thinner, or have increased process temperatures, resulting in board materials (usually thermal expansion coefficient of 10 to 30 ppm / ° C). The difference in thermal expansion coefficient between silicon and silicon (thermal expansion coefficient = 3 to 4 ppm / ° C.) is a problem. That is, if the coefficient of thermal expansion is large, for example, when used for a probe card, the deviation of the evaluation position becomes large due to the difference in thermal expansion between the card and the silicon substrate to be inspected, and accurate inspection becomes impossible. . On the other hand, when used for a package, there is a problem that distortion stress is generated by heat such as solder reflow when bonding the substrate and the silicon chip, and the bonded portion is easily peeled off.

この解決の為に、これまでは熱硬化樹脂(一例として、エポキシ樹脂の熱膨張率=60〜80ppm/℃)と熱膨張率の比較的小さい無機フィラー、例えば、天然や合成の石英インゴットを粉砕したままの角張ったシリカ粉を大量に充填した組成物、更にはNa,Ca,Mg,等の酸化物を主成分とする一般的なアルカリガラスや低熱膨張率ガラスのSi,Ca,Al,B,等の酸化物を主成分とするEガラス(熱膨張率=5.4〜5.6ppm/℃)、或いはSi,B,等の酸化物を主とするDガラス(熱膨張率=3.1ppm/℃)、Si,B,Al,の酸化物を主成分とするNEガラス(熱膨張率=3.4ppm/℃)等のガラスクロスを用いたりした組成物などが使われていた。   In order to solve this problem, a thermosetting resin (for example, thermal expansion coefficient of epoxy resin = 60 to 80 ppm / ° C.) and an inorganic filler having a relatively small thermal expansion coefficient, for example, natural or synthetic quartz ingots have been crushed so far. A composition filled with a large amount of square silica powder as it is, Si, Ca, Al, B of general alkali glass or low thermal expansion glass mainly composed of oxides such as Na, Ca, Mg, etc. E glass (thermal expansion coefficient = 5.4 to 5.6 ppm / ° C.) containing oxides such as Si, B, etc., or D glass (thermal expansion coefficient = 3. 1 ppm / ° C.), NE glass (thermal expansion coefficient = 3.4 ppm / ° C.) such as NE glass mainly composed of oxides of Si, B, Al, and the like.

又、上記のガラスクロスを使用した場合ではコストや、製造の困難さ、積層の容易さの観点から、平均直径が20μm以上のフィラメントであったり、クロスの開口率が20%以下か70%以上、或いはクロス目付けが100g/m以上のガラスクロスが使われていた。しかし、これ等の方法では10ppm/℃以下の熱膨張率を実現することは困難であった。即ち、熱硬化樹脂に熱膨張率を小さくする目的で粉砕シリカ粉を多く充填すると流動性が失われ、配線板や積層板などの加工が困難である。 In addition, when the above glass cloth is used, it is a filament having an average diameter of 20 μm or more, or the opening ratio of the cloth is 20% or less or 70% or more from the viewpoint of cost, manufacturing difficulty, and ease of lamination. Alternatively, a glass cloth having a cloth basis weight of 100 g / m 2 or more has been used. However, it has been difficult to realize a coefficient of thermal expansion of 10 ppm / ° C. or less by these methods. That is, if a large amount of pulverized silica powder is filled in the thermosetting resin for the purpose of reducing the coefficient of thermal expansion, the fluidity is lost and it is difficult to process a wiring board or a laminated board.

又、ガラスクロスを併用した場合はガラスクロスの熱膨張率が小さくないと必然的に得られた物の熱膨張率は大きなものになる。熱膨張率が比較的小さいEガラスの場合でもフィラメントの平均直径が太過ぎたり、クロスの開口率が過小の時や、或いはクロス目付けが100g/m以上の場合は熱硬化樹脂と無機フィラーが均一にクロスに含浸付着せず又、付着量も少量となり、熱膨張率は面内不均一で、しかもシリコンの熱膨張率の近くまで低下させることは困難であった。 Further, when glass cloth is used in combination, the coefficient of thermal expansion of the obtained product is inevitably large unless the coefficient of thermal expansion of the glass cloth is small. Even in the case of E glass having a relatively small coefficient of thermal expansion, when the average diameter of the filament is too large, the opening ratio of the cloth is too small, or the cloth basis weight is 100 g / m 2 or more, a thermosetting resin and an inorganic filler are used. The cloth was not uniformly impregnated and adhered, and the amount of adhesion was small, and the thermal expansion coefficient was in-plane nonuniform, and it was difficult to reduce the thermal expansion coefficient to near that of silicon.

一方、特許文献1は、石英ガラスクロスをシランカップリング剤で表面処理した後、エポキシ系樹脂を含浸させ、プリプレグとし、該プリプレグを積層して得た積層板が記載されている。しかしながら特許文献1記載の積層板は、使用する原材料が管状体であるため高価になるといった問題があった。   On the other hand, Patent Document 1 describes a laminate obtained by surface-treating quartz glass cloth with a silane coupling agent, then impregnating with an epoxy resin to form a prepreg, and laminating the prepreg. However, the laminate described in Patent Document 1 has a problem that it is expensive because the raw material used is a tubular body.

特開2006−27960号公報JP 2006-27960 A

本発明は前記の事情に鑑み、なされたものであり、低熱膨張率で高周波特性、耐熱性、などに優れた回路基板材料を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a circuit board material having a low coefficient of thermal expansion and excellent high-frequency characteristics, heat resistance, and the like.

前記課題を解決するため、本発明の配線板用材料は、熱硬化性樹脂と、無機フィラーと、石英クロス(熱膨張率=0.5〜0.6ppm/℃)とを含む配線板用材料であって、
前記石英クロスのクロス目付けが100g/m以下であること、
前記熱硬化性樹脂100質量部に対して前記無機フィラーを50〜700質量部配合すること、
前記熱硬化性樹脂が、エポキシ樹脂、ビスマレイミドトリアジン樹脂及びポリイミド樹脂からなる群から選ばれる1種以上であること、
前記無機フィラーが、平均粒子径が0.1〜20μmの球状シリカを主成分とすること、
前記石英クロスが、平均直径20μm以下の石英フィラメントを15〜200本束ねた繊維束を用いて形成されること、及び
前記石英クロスの開口率が20〜70%であること、
を包含し、
低熱膨張率で高周波特性や耐熱特性に優れ、かつ当該低熱膨張率であることによって当該配線板用材料から成形加工された低熱膨張率の積層板を配線基板のコア基板としてシリコンチップ(熱膨張率3〜6ppm/℃)を実装する場合、半田リフロー時、はんだ溶融温度まで加熱した後、温度降下を行っても、熱膨張の差に起因する半田接合部分の剥離が生じないようにしたことを特徴とする。
In order to solve the above problems, a wiring board material of the present invention includes a thermosetting resin, an inorganic filler, and quartz cloth (thermal expansion coefficient = 0.5 to 0.6 ppm / ° C.). Because
The cloth weight of the quartz cloth is 100 g / m 2 or less,
Blending 50 to 700 parts by mass of the inorganic filler with respect to 100 parts by mass of the thermosetting resin;
The thermosetting resin is at least one selected from the group consisting of an epoxy resin, a bismaleimide triazine resin and a polyimide resin;
The inorganic filler is mainly composed of spherical silica having an average particle size of 0.1 to 20 μm,
The quartz cloth is formed using a fiber bundle in which 15 to 200 quartz filaments having an average diameter of 20 μm or less are bundled; and the opening ratio of the quartz cloth is 20 to 70%.
Including
Silicon chip (thermal expansion coefficient) with a low thermal expansion coefficient , excellent high frequency characteristics and heat resistance characteristics , and a low thermal expansion coefficient laminated board molded from the wiring board material due to the low thermal expansion coefficient. 3-6ppm / ° C), when solder reflow, after heating up to the solder melting temperature, even if the temperature dropped, the solder joint part was not peeled off due to the difference in thermal expansion. Features.

本発明の配線板用材料に於いて、前記熱硬化性樹脂が、エポキシ樹脂、ビスマレイミドトリアジン樹脂及びポリイミド樹脂からなる群から選ばれる1種以上であることが好ましい。熱硬化性樹脂がエポキシ樹脂、ビスマレイミドトリアジン樹脂、ポリイミド樹脂であることにより、コストが比較的安く、加工性の良い配線板用材料が出来る。   In the wiring board material of the present invention, the thermosetting resin is preferably at least one selected from the group consisting of an epoxy resin, a bismaleimide triazine resin and a polyimide resin. When the thermosetting resin is an epoxy resin, a bismaleimide triazine resin, or a polyimide resin, a material for a wiring board having a relatively low cost and good workability can be obtained.

本発明の配線板用材料に於いて、前記無機フィラーが、平均粒子径が0.1〜20μmの球状シリカを主成分とすることが好適である。無機フィラーが平均粒子径が0.1〜20μmの球状シリカを主成分とすることにより、シリカを高充填した配線板用材料でも成形時には流動性が良く積層が容易である。   In the wiring board material of the present invention, it is preferable that the inorganic filler is mainly composed of spherical silica having an average particle diameter of 0.1 to 20 μm. When the inorganic filler contains spherical silica having an average particle size of 0.1 to 20 μm as a main component, even a wiring board material highly filled with silica has good fluidity and can be easily laminated.

本発明の配線板用材料に於いて、前記石英クロスが、平均直径20μm以下の石英フィラメントを15〜200本束ねた繊維束を用いて形成されることが好ましい。石英クロスが平均直径20μm以下の石英フィラメントを15〜200本束ねた繊維束であることにより、成形して得られる積層板がより薄く、平滑で高強度なものが得られる。   In the wiring board material of the present invention, the quartz cloth is preferably formed using a fiber bundle in which 15 to 200 quartz filaments having an average diameter of 20 μm or less are bundled. When the quartz cloth is a fiber bundle in which 15 to 200 quartz filaments having an average diameter of 20 μm or less are bundled, a laminate obtained by molding can be made thinner, smooth and high in strength.

本発明の配線板用材料に於いて、前記石英クロスの開口率が20〜70%であることが好適である。   In the wiring board material of the present invention, it is preferable that the aperture ratio of the quartz cloth is 20 to 70%.

本発明のプリプレグは、本発明の配線板用材料を用いて形成されることを特徴とする。   The prepreg of the present invention is formed using the wiring board material of the present invention.

本発明の積層板は、本発明の配線板用材料をそのままか、又はプリプレグにした後、所要の枚数を積層し、必要に応じ、この片側又は両側に金属箔を重ねて加熱、加圧成形することを特徴とする。   The laminated board of the present invention is formed by using the wiring board material of the present invention as it is or after making a prepreg, and then laminating the required number of sheets, and if necessary, superposing the metal foil on one side or both sides, and heating and pressing. It is characterized by doing.

本発明の多層板は、本発明の積層板をコア材とし、必要に応じ、その片側又は両側に回路を形成したプリント基板を積層することを特徴とする。   The multilayer board of the present invention is characterized in that the laminated board of the present invention is used as a core material, and if necessary, a printed board having a circuit formed on one side or both sides thereof is laminated.

本発明の配線基板は、本発明の配線板用材料を含むコア基板の片側又は両側に、導体層と絶縁層とを交互に積層した配線積層部が形成されていることを特徴とする。   The wiring board of the present invention is characterized in that a wiring laminated portion in which conductor layers and insulating layers are alternately laminated is formed on one side or both sides of a core substrate containing the wiring board material of the present invention.

本発明の配線基板は、前記配線積層部が、表面側にチップ部品と接続するための端子パッドが形成されていることが好ましい。ICチップやLSI等のチップ部品を搭載するための端子パッドが形成されたパッケージ基板とすることにより、シリコンチップ(熱膨張率3〜6ppm/℃)を接着する際の半田リフロー時、はんだ溶融温度まで加熱した後、温度降下を行っても、熱膨張の差に起因する半田接合部分の剥離という問題は生じず、接続信頼性が高くなる。   In the wiring board of the present invention, it is preferable that the wiring laminated portion has a terminal pad for connecting to a chip component on the surface side. By using a package substrate on which terminal pads for mounting chip parts such as IC chips and LSIs are formed, the solder melting temperature at the time of solder reflow when bonding silicon chips (thermal expansion coefficient 3 to 6 ppm / ° C.) Even if the temperature is lowered after heating up, the problem of peeling of the solder joint due to the difference in thermal expansion does not occur, and the connection reliability is improved.

また、本発明の配線基板は、前記配線積層部の表面に電子部品検査用のプローブが形成されていることが好適である。プローブカードなどの電子部品検査用装置とすることにより、配線基板と検査対象のシリコン基板との間の熱膨張の差に起因する評価位置のズレ及び接触不良が少なくなる。その結果、接続信頼性の高い正確な検査が可能となる。   In the wiring board of the present invention, it is preferable that a probe for electronic component inspection is formed on the surface of the wiring laminated portion. By using an electronic component inspection apparatus such as a probe card, the evaluation position shift and contact failure due to the difference in thermal expansion between the wiring board and the silicon substrate to be inspected are reduced. As a result, accurate inspection with high connection reliability is possible.

本発明の配線板用材料及び本発明のプリプレグによれば、熱硬化性樹脂系ではこれまでに到達出来なかった低熱膨張率を実現することが出来ると共に高周波特性や耐熱特性に優れた回路基板材料を得ることが可能となる。   According to the wiring board material of the present invention and the prepreg of the present invention, a circuit board material that can realize a low thermal expansion coefficient that has not been achieved so far with a thermosetting resin system and that is excellent in high frequency characteristics and heat resistance characteristics. Can be obtained.

本発明の積層板、及び本発明の多層板によれば、基板の反りやチップ剥離が極めて少ない低熱膨張率で高周波特性、耐熱性、などに優れた実用的な回路基板材料を提供することが出来る。   According to the laminated board of the present invention and the multilayer board of the present invention, it is possible to provide a practical circuit board material excellent in high-frequency characteristics, heat resistance, etc. with a low thermal expansion coefficient with very little substrate warpage and chip peeling. I can do it.

本発明の配線基板によれば、熱膨張率が低く接続信頼性の高い配線基板を得ることができる。   According to the wiring board of the present invention, a wiring board having a low coefficient of thermal expansion and high connection reliability can be obtained.

本発明の配線基板の一実施形態を示す概略平面図である。It is a schematic plan view which shows one Embodiment of the wiring board of this invention. 図1の配線基板の概略裏面図である。It is a schematic back view of the wiring board of FIG. 図1の配線基板の部分断面図である。It is a fragmentary sectional view of the wiring board of FIG. 石英クロスの開口率の測定方法を示す概略説明図である。It is a schematic explanatory drawing which shows the measuring method of the aperture ratio of a quartz cloth.

以下に本発明の実施の形態について説明する。
本発明の配線板用材料は、熱硬化性樹脂と、無機フィラーと、1枚以上の石英クロスとを含む配線板用材料であって、前記石英クロスのクロス目付けが100g/m以下であり、前記熱硬化性樹脂100質量部に対して前記無機フィラーを50〜700質量部配合する配線板用材料である。本発明の配線板用材料を用いて成形された熱硬化性樹脂系の積層板、回路基板はシリコンに近い熱膨張率のものが得ることが出来る。
Embodiments of the present invention will be described below.
The wiring board material of the present invention is a wiring board material containing a thermosetting resin, an inorganic filler, and one or more quartz cloths, and the cloth weight of the quartz cloth is 100 g / m 2 or less. A wiring board material containing 50 to 700 parts by mass of the inorganic filler with respect to 100 parts by mass of the thermosetting resin. A thermosetting resin-based laminate and circuit board molded using the wiring board material of the present invention can be obtained with a thermal expansion coefficient close to that of silicon.

本発明の配線板用材料の製造方法は特に制限はないが、熱硬化性樹脂、無機フィラー、及び必要に応じて、溶媒、硬化剤、硬化促進剤、改質剤、難燃剤等の成分を配合し、ニーダー、ミキサー、ブレンダー等で均一に混合して樹脂組成物を調整した後、1枚又は複数枚重ねた石英クロスに該樹脂組成物を含浸し、本発明の配線板用材料を製造することが好ましい。本発明の配線板用材料において、前記熱硬化性樹脂100質量部に対して、前記石英クロスを200〜1200質量部配合することが好適である。   The method for producing the wiring board material of the present invention is not particularly limited, but components such as a thermosetting resin, an inorganic filler, and, if necessary, a solvent, a curing agent, a curing accelerator, a modifier, a flame retardant, and the like. After compounding and mixing uniformly with a kneader, mixer, blender, etc. to adjust the resin composition, one or more laminated quartz cloths are impregnated with the resin composition to produce the wiring board material of the present invention It is preferable to do. In the wiring board material of the present invention, it is preferable to mix 200 to 1200 parts by mass of the quartz cloth with respect to 100 parts by mass of the thermosetting resin.

本発明のプリプレグは、本発明の配線板用材料を用いて形成されることを特徴とする。
本発明のプリプレグの製造方法は特に制限はないが、熱硬化性樹脂、無機フィラー、及び必要に応じて、溶媒、硬化剤、硬化促進剤、改質剤、難燃剤等の成分を配合し、ニーダー、ミキサー、ブレンダー等で均一に混合して樹脂組成物を調整した後、1枚又は複数枚の石英クロスに該樹脂組成物を含浸し、本発明の配線板用材料を得た後、該配線板用材料を乾燥し、本発明のプリプレグを製造することが好ましい。
The prepreg of the present invention is formed using the wiring board material of the present invention.
The production method of the prepreg of the present invention is not particularly limited, but a thermosetting resin, an inorganic filler, and, if necessary, a solvent, a curing agent, a curing accelerator, a modifier, a flame retardant, and the like are blended, After uniformly mixing with a kneader, a mixer, a blender, etc. to adjust the resin composition, impregnating the resin composition into one or more quartz cloths to obtain the wiring board material of the present invention, It is preferable to dry the wiring board material to produce the prepreg of the present invention.

本発明に於いて、熱硬化性樹脂としてはエポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、シリコーン樹脂、ビスマレイミドトリアジン樹脂、ポリイミドアミド樹脂、ポリイミド樹脂、ウレタン樹脂などの熱硬化性樹脂であれば特に制限は無いが、コストと成形加工性、基板特性の面から特にはエポキシ樹脂、ビスマレイミドトリアジン樹脂、ポリイミド樹脂が好適である。   In the present invention, the thermosetting resin may be an epoxy resin, phenol resin, unsaturated polyester resin, silicone resin, bismaleimide triazine resin, polyimide amide resin, polyimide resin, urethane resin, etc. Although there is no limitation, epoxy resin, bismaleimide triazine resin, and polyimide resin are particularly preferable in terms of cost, moldability, and substrate characteristics.

無機フィラーとしてはアルミナ、水酸化アルミニウム、タルク、シリカ、炭酸カルシウム、酸化鉄、雲母、窒化珪素、窒化アルミニウム、セリヤなど通常の無機化合物、或いはこれ等の混合物などの微粉であれば良いが、特には自体が低熱膨張率で、しかも大量に配合しても高流動性の配線板用材料が可能で、積層板に成形し易い、主成分が平均粒子径が0.1〜20μmの球状シリカよりなるフィラーが最適である。平均粒子径が0.1μmより細かいと樹脂組成物の粘度が上がり流動性が悪くなり、成形作業時に困難さが生じる。また、20μmより粗いと積層板の表面の平滑性が悪くなる。   The inorganic filler may be fine powder such as alumina, aluminum hydroxide, talc, silica, calcium carbonate, iron oxide, mica, silicon nitride, aluminum nitride, and ceria, or a mixture thereof. It has a low coefficient of thermal expansion and can be used as a high fluidity wiring board material even when blended in large quantities. It is easier to mold into a laminated board than the spherical silica whose average particle size is 0.1 to 20 μm. The filler is optimal. When the average particle diameter is smaller than 0.1 μm, the viscosity of the resin composition increases and the fluidity is deteriorated, resulting in difficulty during the molding operation. On the other hand, if it is coarser than 20 μm, the smoothness of the surface of the laminate is deteriorated.

石英クロスとしては天然、又は合成石英の石英フィラメントを織布もしくは不織布のいずれの形態でも使えるが、特に配線板用材料を薄く精密な積層板に成形加工するにはクロス目付けが100g/m以下に織布した石英クロスが良く、10g/m以上100g/m以下がより好ましい。100g/mを超えた石英クロスを使用すると粗雑で厚いものとなる。 As the quartz cloth, natural or synthetic quartz quartz filaments can be used in either woven or non-woven form, but the cloth weight is 100 g / m 2 or less, especially for forming wiring board materials into thin and precise laminates. Quartz cloth woven into the fabric is good, and is preferably 10 g / m 2 or more and 100 g / m 2 or less. When a quartz cloth exceeding 100 g / m 2 is used, it becomes coarse and thick.

織布に平均直径が20μm以下、好ましくは3μm以上15μm以下の石英フィラメントを15〜200本束ねた繊維束を用いると石英クロスの目付けが上記の100g/m以下の物として得られ易い。
この範囲外の繊維束の場合はクロス強度が極端に弱くなったり、部厚い物になってしまう。尚、平均直径が20μmを超えた石英フィラメントを用いると精密な薄物の積層板の製造が難しい。
When a fiber bundle in which 15 to 200 quartz filaments having an average diameter of 20 μm or less, preferably 3 μm or more and 15 μm or less are bundled on a woven fabric, the weight of the quartz cloth is easily obtained as a product having the above-mentioned 100 g / m 2 or less.
In the case of a fiber bundle outside this range, the cross strength becomes extremely weak or thick. If a quartz filament having an average diameter exceeding 20 μm is used, it is difficult to manufacture a precise thin laminate.

石英クロスの開口率が20〜70%であることにより、樹脂組成物の含浸付着が好適に実施できる。この範囲を外れると、例えば石英クロスの開口率が20%未満であると樹脂組成物の含浸がしづらく、付着量が多くなり斑に成り易い。一方、70%よりも高いと樹脂組成物が石英クロスに留まりづらく付着量が著しく少なくなってしまう。さらに、石英クロスの開口率が20〜70%であると、樹脂組成物の均一な含浸付着が容易であるばかりでなく、成形加工された積層板は低熱膨張率で表面が平滑であり、厚みのバラツキも極めて少ない。これ等の積層板をコア材とした多層基板は最先端の回路基板材料に好適である。   When the opening ratio of the quartz cloth is 20 to 70%, the impregnation and adhesion of the resin composition can be suitably performed. Outside this range, for example, when the opening ratio of the quartz cloth is less than 20%, it is difficult to impregnate the resin composition, the amount of adhesion increases, and it tends to become spots. On the other hand, if it is higher than 70%, the resin composition will hardly stay on the quartz cloth, and the amount of adhesion will be significantly reduced. Furthermore, when the opening ratio of the quartz cloth is 20 to 70%, not only uniform impregnation and adhesion of the resin composition is easy, but the molded laminate has a low coefficient of thermal expansion, a smooth surface, and a thickness. There is very little variation. A multilayer substrate using such a laminated plate as a core material is suitable for a state-of-the-art circuit board material.

図4は、石英クロスの開口率の測定方法を示す概略説明図である。図4において、符号100は石英クロスであり、符号102は石英フィラメントを束ねた繊維束である。本発明において、石英クロスの開口率とは、図4に示した如く、クロス間隙104の面積(a×b)及び隣接するクロス間隙の間隙中心C1,C2,C3,C4間の面積(X×Y)を測定し、クロス網目全体に占める隙間の割合を下記式(1)により算出したものである。   FIG. 4 is a schematic explanatory view showing a method for measuring the aperture ratio of the quartz cloth. In FIG. 4, reference numeral 100 denotes a quartz cloth, and reference numeral 102 denotes a fiber bundle in which quartz filaments are bundled. In the present invention, as shown in FIG. 4, the aperture ratio of the quartz cloth refers to the area of the cross gap 104 (a × b) and the area between the gap centers C1, C2, C3, C4 of the adjacent cross gap (X × Y) is measured, and the ratio of the gap to the entire cross network is calculated by the following formula (1).

Figure 0005543184
Figure 0005543184

前記式(1)において、aは縦方向のクロス間隙の長さ、bは横方向のクロス間隙の長さ、Xは横方向で隣接するクロス間隙の間隙中心C1,C2間の距離、Yは縦方向で隣接するクロス間隙の間隙中心C2,C3間の距離である。   In the formula (1), a is the length of the cross gap in the vertical direction, b is the length of the cross gap in the horizontal direction, X is the distance between the gap centers C1 and C2 of the cross gaps adjacent in the horizontal direction, and Y is This is the distance between the gap centers C2 and C3 of the cross gaps adjacent in the vertical direction.

本発明の積層板を得るには上記の配線板用材料をそのまま又は適宜加熱してプリプレグにした後に所要の枚数を積層し、必要に応じ、この片側又は両側に金属、例えば銅箔などを重ねて加圧、加熱したロール又はプレスで成形する。
本発明の積層板において、石英クロスの枚数は複数枚であればよく特に制限はないが、5枚/mm〜75枚/mmであることが好適である。本発明において、石英クロスを重ねる方法に制限はなく、1枚の石英クロスに前述した樹脂組成物を含浸し、本発明の配線板用材料を製造し、必要に応じてプリプレグとした後、該配線板用材料又はプリプレグを複数枚重ねて作成してもよく、また、複数枚重ねた石英クロスに前述した樹脂組成物を含浸し、本発明の配線板用材料を製造し、必要に応じてプリプレグとした後、該配線板用材料又はプリプレグを1枚又は複数枚重ねて作成してもよい。
In order to obtain the laminate of the present invention, the above-described wiring board material is used as it is or appropriately heated to form a prepreg, and then a required number of layers are laminated, and if necessary, a metal such as copper foil is laminated on one side or both sides. Molded with a roll or press heated and pressed.
In the laminated board of the present invention, the number of quartz cloths is not particularly limited as long as it is a plurality, but is preferably 5 sheets / mm to 75 sheets / mm. In the present invention, there is no limitation on the method of stacking the quartz cloth, and a single quartz cloth is impregnated with the resin composition described above to produce the wiring board material of the present invention. A plurality of wiring board materials or prepregs may be made by stacking, and the above-described resin composition is impregnated into a plurality of stacked quartz cloths to produce the wiring board material of the present invention. After forming a prepreg, the wiring board material or the prepreg may be formed by stacking one or more sheets.

本発明の多層板は前記で作成した積層板をコア材として必要に応じ、その片側又は両側に回路を形成したプリント基板を1枚以上、積層して作られる。尚、層間の導通は通常はスルーホールのメッキ或いは導電ペーストなどの充填で行われる。   The multilayer board of the present invention is produced by laminating one or more printed boards having circuits formed on one side or both sides of the laminated board prepared as described above as a core material. Note that conduction between layers is usually performed by plating through holes or filling with conductive paste.

本発明の配線基板を具体化した一実施形態を図面に基づき詳細に説明する。図1は、本発明の配線基板の一実施形態を示す概略平面図であり、図2は、図1の配線基板の概略裏面図である。図3は、図1の配線基板の部分断面図である。   An embodiment embodying a wiring board of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic plan view showing an embodiment of the wiring board of the present invention, and FIG. 2 is a schematic back view of the wiring board of FIG. FIG. 3 is a partial cross-sectional view of the wiring board of FIG.

図1〜3において、符号10は本発明の一実施形態の配線基板で、チップ部品搭載用の配線基板である。図3に示されるように、前記配線基板10は、略矩形板状のコア基板12と、コア基板12のコア主面13上に形成される第1ビルドアップ層(配線積層部)15と、コア基板12のコア裏面14上に形成される第2ビルドアップ層(配線積層部)16とからなる。   1-3, the code | symbol 10 is a wiring board of one Embodiment of this invention, and is a wiring board for chip component mounting. As shown in FIG. 3, the wiring substrate 10 includes a substantially rectangular plate-shaped core substrate 12, a first buildup layer (wiring laminated portion) 15 formed on the core main surface 13 of the core substrate 12, It consists of a second buildup layer (wiring laminated portion) 16 formed on the core back surface 14 of the core substrate 12.

前記コア基板12は、本発明の配線板用材料を用いて形成された積層板を用いている。コア基板12における複数箇所にはスルーホール導体17が形成されている。スルーホール導体17の内部は、例えばエポキシ樹脂を主成分とする充填材18で埋められている。また、コア基板12のコア主面13及びコア裏面14には、銅からなる導体層19がパターン形成されており、各導体層19は、スルーホール導体17に電気的に接続されている。   The core substrate 12 uses a laminated board formed using the wiring board material of the present invention. Through-hole conductors 17 are formed at a plurality of locations on the core substrate 12. The inside of the through-hole conductor 17 is filled with a filler 18 having an epoxy resin as a main component, for example. A conductor layer 19 made of copper is patterned on the core main surface 13 and the core back surface 14 of the core substrate 12, and each conductor layer 19 is electrically connected to the through-hole conductor 17.

コア基板12のコア主面13上に形成された第1ビルドアップ層15は、熱硬化性樹脂(例えば、エポキシ樹脂)を主成分とする2層の樹脂絶縁層20,21と、銅からなる導体層19,22,23を交互に積層した構造を有している。また、第2層の樹脂絶縁層21の表面上における複数箇所には、導体層23を構成する端子パッド230がアレイ状に形成されている。さらに、樹脂絶縁層21の表面は、ソルダーレジスト29によってほぼ全体的に覆われている。ソルダーレジスト29の所定箇所には、端子パッド230を露出させる開口部30が形成されている。端子パッド230の表面上には、複数のはんだバンプが配設され、矩形平板状をなすチップ部品(シリコンを主体とするICチップ等)の面接続端子に電気的に接続される。また、樹脂絶縁層20,21内には、それぞれビア導体26,28が設けられている。これらビア導体26,28は、導体層19,22,23を相互に電気的に接続している。   The first buildup layer 15 formed on the core main surface 13 of the core substrate 12 is made of two resin insulating layers 20 and 21 mainly composed of a thermosetting resin (for example, epoxy resin), and copper. The conductor layers 19, 22, and 23 are alternately stacked. In addition, terminal pads 230 constituting the conductor layer 23 are formed in an array at a plurality of locations on the surface of the second resin insulating layer 21. Further, the surface of the resin insulating layer 21 is almost entirely covered with a solder resist 29. An opening 30 for exposing the terminal pad 230 is formed at a predetermined location of the solder resist 29. A plurality of solder bumps are disposed on the surface of the terminal pad 230 and are electrically connected to surface connection terminals of a chip component (such as an IC chip mainly composed of silicon) having a rectangular flat plate shape. In addition, via conductors 26 and 28 are provided in the resin insulating layers 20 and 21, respectively. These via conductors 26 and 28 electrically connect the conductor layers 19, 22 and 23 to each other.

コア基板12のコア裏面14上に形成された第2ビルドアップ層16は、上述した第1ビルドアップ層15と同様に、熱硬化性樹脂(例えば、エポキシ樹脂)からなる2層の樹脂絶縁層31,32と、導体層19,33,34とを交互に積層した構造を有している。第2層の樹脂絶縁層32の下面上における複数箇所には、ビア導体28を介して導体層33に電気的に接続されるBGA用パッド340がアレイ状に形成されている。また、樹脂絶縁層32の下面は、ソルダーレジスト36によってほぼ全体的に覆われている。ソルダーレジスト36の所定箇所には、BGA用パッド340を露出させる開口部37が形成されている。BGA用パッド340の表面上にははんだバンプ38が形成されている。   Similar to the first buildup layer 15 described above, the second buildup layer 16 formed on the core back surface 14 of the core substrate 12 is a two-layer resin insulation layer made of a thermosetting resin (for example, epoxy resin). 31 and 32 and conductor layers 19, 33, and 34 are alternately stacked. BGA pads 340 that are electrically connected to the conductor layer 33 through the via conductors 28 are formed in an array at a plurality of locations on the lower surface of the second resin insulating layer 32. The lower surface of the resin insulating layer 32 is almost entirely covered with a solder resist 36. An opening 37 for exposing the BGA pad 340 is formed at a predetermined position of the solder resist 36. Solder bumps 38 are formed on the surface of the BGA pad 340.

図1に示されるように、配線基板10の表面53(ビルドアップ層15の表面)側において、部品と接続するための端子パッド230がアレイ状に露出している。図2に示されるように、配線基板10の裏面54(ビルドアップ層16の表面)において、外部回路基板と接続するためのはんだバンプ38がアレイ状に形成されている。   As shown in FIG. 1, on the surface 53 (surface of the buildup layer 15) side of the wiring board 10, terminal pads 230 for connecting to components are exposed in an array. As shown in FIG. 2, solder bumps 38 for connection to an external circuit board are formed in an array on the back surface 54 (the surface of the buildup layer 16) of the wiring board 10.

次に、上記構成の配線基板10の製造手順について説明する。
前述した本発明の配線板用材料を用いて形成された積層板(コア基板)のコア主面13及びコア裏面14に導体層19となる銅箔を貼着してなる両面銅張積層板(金属箔付きコア基板)を準備する。両面銅張積層板を貫通する貫通孔を所定位置に形成する。そして、従来公知の手法に従って無電解銅めっき及び電解銅めっきを行うことでめっきスルーホール17を形成した後、そのめっきスルーホール17内に充填材18を充填し熱硬化させる。
Next, a manufacturing procedure of the wiring board 10 having the above configuration will be described.
Double-sided copper-clad laminates obtained by adhering a copper foil to be a conductor layer 19 to the core main surface 13 and the core back surface 14 of a laminate (core substrate) formed using the wiring board material of the present invention described above ( A core substrate with metal foil) is prepared. A through hole penetrating the double-sided copper clad laminate is formed at a predetermined position. Then, after forming a plated through hole 17 by performing electroless copper plating and electrolytic copper plating according to a conventionally known method, the plated through hole 17 is filled with a filler 18 and thermally cured.

その後、コア基板両面の銅箔のエッチングを行うことでコア基板12上に導体層19をパターニング形成する。具体的には、無電解銅めっきの後、露光用ガラスマスクを配置して露光を行い、さらに現像を行って所定パターンのめっきレジストを形成する。この状態で無電解銅めっき層を共通電極として電解銅めっきを施した後、まずレジストを溶解除去して、さらに不要な無電解銅めっき層をエッチングで除去する。その結果、コア基板12の表面に所定パターンの導体層19が形成される。   Thereafter, the copper foil on both surfaces of the core substrate is etched to form the conductor layer 19 on the core substrate 12 by patterning. Specifically, after electroless copper plating, an exposure glass mask is placed for exposure, followed by development to form a predetermined pattern of plating resist. In this state, after electrolytic copper plating is performed using the electroless copper plating layer as a common electrode, first, the resist is dissolved and removed, and further unnecessary electroless copper plating layer is removed by etching. As a result, a conductor layer 19 having a predetermined pattern is formed on the surface of the core substrate 12.

次に、従来周知のビルドアップ法に基づいて、コア基板12のコア主面13の上にビルドアップ層15を形成するとともに、コア基板12のコア裏面14の上にビルドアッブ層16を形成する。   Next, the buildup layer 15 is formed on the core main surface 13 of the core substrate 12 and the buildup layer 16 is formed on the core back surface 14 of the core substrate 12 based on a conventionally known buildup method.

詳述すると、先ず、コア基板12のコア主面13及びコア裏面14に、それぞれエポキシ樹脂を主成分とするフィルム状絶縁樹脂材料を重ね合わせるようにして配置する。そして、この積層物を真空圧着熱プレス機で真空下にて加圧加熱することにより、フィルム状絶縁樹脂材料を硬化させてコア主面13及びコア裏面14に1層目の樹脂絶縁層20,31を各々形成する。   More specifically, first, a film-like insulating resin material mainly composed of an epoxy resin is placed on the core main surface 13 and the core back surface 14 of the core substrate 12 so as to overlap each other. Then, the laminate is heated under pressure with a vacuum press-bonding hot press to cure the film-like insulating resin material, and the first resin insulating layer 20 on the core main surface 13 and the core back surface 14. 31 is formed.

その樹脂絶縁層20,31の所定の位置にレーザを照射することによりビア穴25を形成する。そして、無電解銅めっきを行うことにより、ビア穴25内にビア導体26を形成するとともに、樹脂絶縁層20の上面全体に無電解めっき層を形成する。その後、露光及び現像を行って所定パターンのレジストを形成する。そして、電解銅めっきを施した後、まずレジストを溶解除去して、さらに不要な無電解銅めっき層をエッチングで除去する。その結果、樹脂絶縁層20,31上に所定パターンの導体層22,33が形成される。   Via holes 25 are formed by irradiating laser at predetermined positions of the resin insulating layers 20 and 31. Then, by performing electroless copper plating, a via conductor 26 is formed in the via hole 25, and an electroless plating layer is formed on the entire top surface of the resin insulating layer 20. Thereafter, exposure and development are performed to form a resist having a predetermined pattern. Then, after the electrolytic copper plating is performed, the resist is first dissolved and removed, and an unnecessary electroless copper plating layer is removed by etching. As a result, conductor layers 22 and 33 having a predetermined pattern are formed on the resin insulating layers 20 and 31.

上記1層目の樹脂絶縁層20,31の場合と同様に、2層目の樹脂絶縁層21,32を形成する。さらに、樹脂絶縁層21,32の所定の位置にレーザを照射することでビア穴27を形成する。そして無電解銅めっきを行うことにより、ビア穴27にビア導体28を形成するとともに、樹脂絶縁層21,32の上面全体に無電解銅めっき層を形成する。その後、露光及び現像を行って所定パターンのめっきレジストを形成して、電解銅めっきを施す。そして、レジストを溶解除去して、さらに不要な無電解銅めっき層をエッチングで除去する。その結果、樹脂絶縁層21上には、複数の端子パッド230を構成する導体層23が形成されるとともに、樹脂絶縁層32上には、複数のBGA用パッド340を構成する導体層34が形成される。   As in the case of the first resin insulation layers 20 and 31, the second resin insulation layers 21 and 32 are formed. Furthermore, a via hole 27 is formed by irradiating a predetermined position on the resin insulating layers 21 and 32 with a laser. Then, by performing electroless copper plating, a via conductor 28 is formed in the via hole 27, and an electroless copper plating layer is formed on the entire upper surfaces of the resin insulating layers 21 and 32. Thereafter, exposure and development are performed to form a plating resist having a predetermined pattern, and electrolytic copper plating is performed. Then, the resist is dissolved and removed, and an unnecessary electroless copper plating layer is removed by etching. As a result, the conductor layer 23 constituting the plurality of terminal pads 230 is formed on the resin insulating layer 21, and the conductor layer 34 constituting the plurality of BGA pads 340 is formed on the resin insulating layer 32. Is done.

次いで、樹脂絶縁層21,32の表面上に感光性液状樹脂材料を塗布して硬化させることによりソルダーレジスト29,36を形成する。そして、ソルダーレジスト29の表面に露光用ガラスマスクを重ね合わせるように配置する。その状態で、露光用ガラスマスクを重ね合わせるように配置する。その状態で、露光用ガラスマスクを介して露光を行い、さらに現像を行うことで、ソルダーレジストに開口部30をパターニングする。また、コア基板12の下面側のソルダーレジスト36についても、同様に、ソルダーレジスト36の表面に露光用ガラスマスクを配置して、露光及び現像を行い、ソルダーレジスト36に開口部37をパターニングする。   Next, solder resists 29 and 36 are formed by applying and curing a photosensitive liquid resin material on the surfaces of the resin insulating layers 21 and 32. And it arrange | positions so that the glass mask for exposure may be piled up on the surface of the soldering resist 29. FIG. In this state, the exposure glass masks are arranged so as to overlap each other. In this state, the opening 30 is patterned in the solder resist by performing exposure through a glass mask for exposure and further developing. Similarly, with respect to the solder resist 36 on the lower surface side of the core substrate 12, an exposure glass mask is disposed on the surface of the solder resist 36, exposure and development are performed, and the opening 37 is patterned in the solder resist 36.

そして、各開口部30,37から露出した端子パッド230,BGA用パッド340に対してニッケル−金めっきの処理を行う。その後、周知の手法によりBGA用パッド340の表面上にはんだバンプ38を形成することにより配線基板10が完成する。   The terminal pad 230 and the BGA pad 340 exposed from the openings 30 and 37 are subjected to nickel-gold plating. Thereafter, the solder bumps 38 are formed on the surface of the BGA pad 340 by a well-known method, whereby the wiring substrate 10 is completed.

本実施の形態によれば、コア基板12の熱膨張率が小さいため、シリコンチップ(熱膨張率3〜6ppm/℃)を実装する場合、半田リフロー時、はんだ溶融温度まで加熱した後、温度降下を行っても、熱膨張の差に起因する半田接合部分の剥離という問題は生じない。従って、実装するチップ部品との接続不具合を確実に抑えることができる。   According to the present embodiment, since the thermal expansion coefficient of the core substrate 12 is small, when a silicon chip (thermal expansion coefficient 3 to 6 ppm / ° C.) is mounted, the temperature drops after heating to the solder melting temperature during solder reflow. Even if it performs, the problem of peeling of the solder joint part resulting from the difference in thermal expansion does not arise. Accordingly, it is possible to reliably suppress a connection failure with the chip component to be mounted.

上記実施の形態ではチップ部品搭載用の配線基板を示したが、電子部品検査装置としての配線基板とすることもできる。この場合、配線積層部15の表面に露出する端子パッド230に導電性金属プローブが形成される。導電性金属プローブはウェハ上に形成されたICの端子群に対して当接可能となる。この配線基板もコア基板12の熱膨張率が小さいため、配線基板と検査対象のシリコン基板との間の熱膨張の差に起因する評価位置のずれが少なく、接続信頼性が高くなる。その結果、正確な検査が可能となる。   In the above embodiment, the wiring board for mounting chip components is shown, but it can also be a wiring board as an electronic component inspection apparatus. In this case, a conductive metal probe is formed on the terminal pad 230 exposed on the surface of the wiring laminated portion 15. The conductive metal probe can come into contact with the terminal group of the IC formed on the wafer. Since this wiring board also has a small coefficient of thermal expansion of the core substrate 12, there is little shift in the evaluation position due to the difference in thermal expansion between the wiring board and the silicon substrate to be inspected, and connection reliability is increased. As a result, an accurate inspection can be performed.

上記実施の形態の製造方法では、従来周知のビルドアップ法に基づいて、コア基板12のコア主面13の上にビルドアップ層15を形成するとともに、コア基板12のコア裏面14の上にビルドアップ層16を形成したが、以下のような工程に変更することもできる。   In the manufacturing method of the above embodiment, the build-up layer 15 is formed on the core main surface 13 of the core substrate 12 and the build-up is performed on the core back surface 14 of the core substrate 12 based on a conventionally known build-up method. Although the up layer 16 is formed, it can be changed to the following process.

ビルドアップ層15,16を得るために、外側面に銅箔が貼り付けられたポリイミドのフィルムからなる感光性の樹脂絶縁層20,31を用意する。なお、樹脂絶縁層21,32についても同様に用意する。次いで銅箔および樹脂絶縁層20,31における所定の位置に対し、レーザの照射を銅箔側から行って、ほぼ円錐台形のビアホール25を複数個形成する。さらに、各ビアホール25内に対し、スキージを用いてAg粉末またはCu粉末を含む導電性ペーストを個別に充填し、表面がほぼ面一である円錐台形の導電性ペースト充填体を形成した。かかる状態で、導電性ペースト充填体を仮硬化しビア導体26とすべく樹脂絶縁層20,31を加熱する。   In order to obtain the buildup layers 15 and 16, photosensitive resin insulating layers 20 and 31 made of a polyimide film having a copper foil attached to the outer surface are prepared. The resin insulating layers 21 and 32 are similarly prepared. Next, a predetermined number of positions in the copper foil and the resin insulating layers 20 and 31 are irradiated with laser from the copper foil side to form a plurality of substantially frustoconical via holes 25. Further, each via hole 25 was individually filled with a conductive paste containing Ag powder or Cu powder using a squeegee to form a truncated cone-shaped conductive paste filling body having a substantially flush surface. In this state, the resin insulating layers 20 and 31 are heated so that the conductive paste filler is temporarily cured to form the via conductors 26.

次いで、仮硬化されたビア導体26および銅箔の上に、所定パターンのメッキレジストを形成した状態で、メッキレジストに覆われていない部分をエッチング液に接触させて除去した後、メッキレジストを剥離液で剥離する。その結果、樹脂絶縁層20,31の表面にはビア導体26と接続された所定パターンの導体層22,33が形成される。なお、樹脂絶縁層21,32についても前記同様の工程を施して、ビア導体28、端子パッド230,BGA用パッド340を形成する。一方、ソルダーレジスト29,36として、ポリイミドフィルムの所定の位置に対して穴あけ加工を行った熱硬化性の樹脂フィルムを用意する。   Next, in a state in which a predetermined pattern of plating resist is formed on the pre-cured via conductor 26 and the copper foil, the portion not covered with the plating resist is removed by contact with an etching solution, and then the plating resist is peeled off. Peel off with liquid. As a result, conductor layers 22 and 33 having a predetermined pattern connected to the via conductor 26 are formed on the surfaces of the resin insulating layers 20 and 31. The resin insulating layers 21 and 32 are also subjected to the same process as above to form the via conductor 28, the terminal pad 230, and the BGA pad 340. On the other hand, as the solder resists 29 and 36, a thermosetting resin film prepared by drilling a predetermined position of the polyimide film is prepared.

上記実施の形態の導体層19を形成したコア基板12(コア材)の表面上に、樹脂絶縁層20,21(プリント基板)及びソルダーレジスト29を積層・圧着・加熱して、ビルドアップ層15を形成すると共に、導体層19を形成したコア基板12(コア材)の裏面上に、樹脂絶縁層31,32(プリント基板)及びソルダーレジスト36を積層・圧着・加熱して、ビルドアップ層16を形成する。この際、導体層19とビルドアップ層15,16におけるビア導体26,28、導体層22,33、端子パッド230,BGA用パッド340が電気的に接続された状態となる。   On the surface of the core substrate 12 (core material) on which the conductor layer 19 of the above-described embodiment is formed, the resin insulating layers 20 and 21 (printed substrate) and the solder resist 29 are laminated, pressure-bonded, and heated to build up the layer 15 In addition, the resin insulation layers 31 and 32 (printed circuit board) and the solder resist 36 are laminated, pressure-bonded and heated on the back surface of the core substrate 12 (core material) on which the conductor layer 19 is formed. Form. At this time, the via conductors 26 and 28, the conductor layers 22 and 33, the terminal pads 230, and the BGA pads 340 in the conductor layer 19 and the build-up layers 15 and 16 are electrically connected.

上記実施の形態では、配線基板の裏面54上には半田バンプが形成されているため、BGA用パッド340とされているが、PGA用パッド、LGA用パッドとすることも可能である。PGA用パッドを形成した場合、その表面上にはピンが立設される。LGA用パッドは外部回路基板のコネクタ等の接続端子と接続されるため、配線基板の裏面54にて露出した形態となる。   In the above embodiment, since the solder bumps are formed on the back surface 54 of the wiring board, the BGA pad 340 is used. However, a PGA pad or an LGA pad may be used. When the PGA pad is formed, a pin is erected on the surface. Since the LGA pad is connected to a connection terminal such as a connector on the external circuit board, the LGA pad is exposed on the back surface 54 of the wiring board.

以下に実施例を示し、更に詳細に説明するが以下の例で本発明がこれに限定されるものではない。   Examples will be described below in more detail, but the present invention is not limited to these examples.

(実施例1)
ビスフェノールA及びFをベースにし、酸無水物を硬化剤にしたエポキシ樹脂100質量部、硬化促進剤としてイミダゾール1質量部、及び平均粒子径が5.3μmの球状シリカ570質量部をニーダーで混合した樹脂組成物を、平均フィラメント径6μmの石英ガラスフィラメントを40本束ねた繊維束で形成された開口率35%、目付け15g/mの石英クロスを5枚重ねたものに含浸させ、本発明の配線板用材料を得た後、150℃、100kg/cm、の条件下で2時間プレスを行って、縦25mm×横25mm×厚さ1.0mmの平面視略矩形板状の積層板を得た。
Example 1
100 parts by mass of an epoxy resin based on bisphenol A and F and using an acid anhydride as a curing agent, 1 part by mass of imidazole as a curing accelerator, and 570 parts by mass of spherical silica having an average particle size of 5.3 μm were mixed in a kneader. The resin composition was impregnated into a laminate of five quartz cloths having an aperture ratio of 35% and a basis weight of 15 g / m 2 formed by a bundle of 40 quartz glass filaments having an average filament diameter of 6 μm. After obtaining the wiring board material, pressing is performed for 2 hours under the conditions of 150 ° C. and 100 kg / cm 2 , and a laminate having a substantially rectangular plate shape in plan view of 25 mm length × 25 mm width × 1.0 mm thickness is obtained. Obtained.

この積層板の平面方向(XY方向)における熱膨張率を圧縮法で測定した結果、ガラス転移点前(50℃〜150℃)までは4.3ppm/℃であり、極めてシリコンの熱膨張率に近いものであった。ガラス転移点は、JPCA−BU01に規定されるTMA(熱機械分析)にて測定したものであり、積層板のガラス転移点は、140℃であった。積層板の曲げ弾性率は17GPaで十分なる強度を有していた。   As a result of measuring the thermal expansion coefficient in the plane direction (XY direction) of this laminate by the compression method, it was 4.3 ppm / ° C. before the glass transition point (50 ° C. to 150 ° C.), which is extremely high in the thermal expansion coefficient of silicon. It was close. The glass transition point was measured by TMA (thermomechanical analysis) defined in JPCA-BU01, and the glass transition point of the laminate was 140 ° C. The bending elastic modulus of the laminate was 17 GPa and had sufficient strength.

この積層板をコア材にして銅張りのポリイミド基板に回路を形成したプリント基板を10層積層した多層板にシリコンチップを半田で接着したが剥離は全く起こらなかった。
又、高周波特性もテフロン(登録商標)基板に近い優れたものであった。
さらに、この積層板をコア基材にして、図1に示した配線基板を前述の如く製造した。半田リフロー時、はんだ溶融温度まで加熱した後、温度降下を行っても、熱膨張の差に起因する半田接合部分は剥離せず、実装するチップ部品との接続不具合を抑えることができた。
A silicon chip was bonded to a multilayer board obtained by laminating 10 layers of a printed board in which a circuit was formed on a copper-clad polyimide board using the laminated board as a core material, but no peeling occurred.
In addition, the high-frequency characteristics were excellent, similar to a Teflon (registered trademark) substrate.
Further, using this laminate as a core base material, the wiring board shown in FIG. 1 was manufactured as described above. Even when the temperature was lowered after heating up to the solder melting temperature at the time of solder reflow, the solder joint part due to the difference in thermal expansion did not peel off, and the connection failure with the chip component to be mounted could be suppressed.

(実施例2)
実施例1で示したエポキシ樹脂100質量部、硬化促進剤としてイミダゾール1質量部、及び平均粒子径が5.3μmの球状シリカ570質量部をニーダーで混合した樹脂組成物を、平均フィラメント径7μmの石英ガラスフィラメントを200本束ねた繊維束で形成された開口率20%、目付け100g/mの1枚の石英クロスに含浸させ、本発明の配線板用材料を得た後、120℃、1分で仮乾燥し、本発明のプリプレグを作成した。該プリプレグを切断後15枚重ね、150℃、100kg/cm、の条件下で2時間プレスを行って、縦25mm×横25mm×厚さ1.5mmの平面視略矩形板状の積層板を得た。この積層板の平面方向(XY方向)における熱膨張率を圧縮法で測定した結果、ガラス転移点前(50℃〜150℃);3.9ppm/℃であった。
(Example 2)
A resin composition obtained by mixing 100 parts by mass of the epoxy resin shown in Example 1, 1 part by mass of imidazole as a curing accelerator, and 570 parts by mass of spherical silica having an average particle diameter of 5.3 μm with a kneader, has an average filament diameter of 7 μm. After impregnating one quartz cloth having an aperture ratio of 20% and a basis weight of 100 g / m 2 formed of a bundle of 200 quartz glass filaments to obtain a wiring board material of the present invention, The mixture was temporarily dried for minutes to prepare a prepreg of the present invention. After cutting the prepreg, 15 sheets are stacked and pressed for 2 hours under the conditions of 150 ° C. and 100 kg / cm 2 , and a laminated plate having a substantially rectangular plate shape in plan view of 25 mm length × 25 mm width × 1.5 mm thickness is obtained. Obtained. As a result of measuring the thermal expansion coefficient in the plane direction (XY direction) of this laminated board by the compression method, it was before the glass transition point (50 ° C. to 150 ° C.); 3.9 ppm / ° C.

(比較例1)
実施例1で示したエポキシ樹脂100質量部、硬化促進剤としてイミダゾール1質量部、及び平均粒子径が5μmの球状シリカ5質量部をニーダーで混合した樹脂組成物を、平均フィラメント径7μmの石英ガラスフィラメントを200本束ねた繊維束で形成された目付け100g/mの石英クロスに含浸後、120℃、1分で仮乾燥し、切断後15枚重ね、150℃、100kg/cm、の条件下で2時間プレスを行って、縦25mm×横25mm×厚さ1.5mmの平面視略矩形板状の積層板を得た。この積層板の平面方向(XY方向)における熱膨張率を圧縮法で測定した結果、ガラス転移点前(50℃〜150℃);10.5ppm/℃であった。
(Comparative Example 1)
Quartz glass having an average filament diameter of 7 μm was prepared by mixing a resin composition obtained by mixing 100 parts by mass of the epoxy resin shown in Example 1, 1 part by mass of imidazole as a curing accelerator, and 5 parts by mass of spherical silica having an average particle diameter of 5 μm with a kneader. After impregnating a quartz cloth with a basis weight of 100 g / m 2 formed by a bundle of 200 bundles of filaments, preliminarily dried at 120 ° C. for 1 minute, then cut 15 sheets, 150 ° C., 100 kg / cm 2 A press was performed for 2 hours underneath to obtain a laminate having a substantially rectangular plate shape in plan view of 25 mm length × 25 mm width × 1.5 mm thickness. As a result of measuring the thermal expansion coefficient in the plane direction (XY direction) of this laminate by the compression method, it was 10.5 ppm / ° C. before the glass transition point (50 ° C. to 150 ° C.).

(比較例2)
実施例1で示したエポキシ樹脂100質量部、硬化促進剤としてイミダゾール1質量部、及び平均粒子径が30μmの球状シリカ100質量部を混合した樹脂組成物を、平均フィラメント径9μmの石英ガラスフィラメントを250本束ねた繊維束で形成された目付け130g/m、開口率10%の石英クロスに含浸後、120℃、5分で仮乾燥し、切断後8枚重ね、150℃、150kg/cm、の条件下で4時間プレスを行って、縦25mm×横25mm×厚さ1.0mmの平面視略矩形板状の積層板を得た。この積層板の断面を観察すると球状シリカが不均一に存在しプリント基板用のコア材として好ましくないものであった。
(Comparative Example 2)
A resin composition obtained by mixing 100 parts by mass of the epoxy resin shown in Example 1, 1 part by mass of imidazole as a curing accelerator, and 100 parts by mass of spherical silica having an average particle diameter of 30 μm is used as a quartz glass filament having an average filament diameter of 9 μm. After impregnating a quartz cloth having a basis weight of 130 g / m 2 and an opening rate of 10% formed of 250 bundles of fibers, it is preliminarily dried at 120 ° C. for 5 minutes, and after cutting, 8 sheets are stacked, 150 ° C., 150 kg / cm 2 The laminate was pressed for 4 hours under the above conditions to obtain a substantially rectangular plate-like laminate in plan view of 25 mm length × 25 mm width × 1.0 mm thickness. When the cross section of this laminated board was observed, spherical silica was present non-uniformly and was not preferable as a core material for a printed circuit board.

(比較例3)
石英クロスの代わりにEガラスのクロスを用いた以外は実施例1と同様な処方で実験を行った結果、積層板の熱膨張率は、ガラス転移点前(50℃〜150℃);12ppm/℃、多層板はシリコンチップと基板との界面で一部に剥離が見られた。尚、高周波特性は従来の基板にほぼ近いものであまり改善されていなかった。
(Comparative Example 3)
As a result of conducting an experiment with the same formulation as in Example 1 except that an E glass cloth was used instead of the quartz cloth, the thermal expansion coefficient of the laminated plate was before the glass transition point (50 ° C. to 150 ° C.); 12 ppm / The multilayer board was partially peeled at the interface between the silicon chip and the substrate. The high-frequency characteristics are almost the same as those of conventional substrates and have not been improved so much.

10:配線基板、12:コア基板、13:コア主面、14:コア裏面、15:第1ビルドアップ層、配線積層部、16:第2ビルドアップ層、配線積層部、17:スルーホール導体、18:充填材、19,22,23,33,34:導体層、20,21,31,32:樹脂絶縁層、25,27:ビア穴、26,28:ビア導体、29,36:ソルダーレジスト、30,37:開口部、38:はんだバンプ、53:配線基板の表面、54:配線基板の裏面、230:端子パッド、340:BGA用パッド、100:石英クロス、102:繊維束、クロス間隙104、C:間隙中心。   10: Wiring substrate, 12: Core substrate, 13: Core main surface, 14: Core back surface, 15: First buildup layer, wiring laminated portion, 16: Second buildup layer, wiring laminated portion, 17: Through-hole conductor , 18: filler, 19, 22, 23, 33, 34: conductor layer, 20, 21, 31, 32: resin insulation layer, 25, 27: via hole, 26, 28: via conductor, 29, 36: solder Resist, 30, 37: opening, 38: solder bump, 53: front surface of wiring board, 54: back surface of wiring board, 230: terminal pad, 340: pad for BGA, 100: quartz cloth, 102: fiber bundle, cloth Gap 104, C: Center of the gap.

Claims (7)

熱硬化性樹脂と、無機フィラーと、石英クロスとを含有する配線板用材料であって、
前記石英クロスのクロス目付けが100g/m以下であること、
前記熱硬化性樹脂100質量部に対して前記無機フィラーを50〜700質量部配合すること、
前記熱硬化性樹脂が、エポキシ樹脂、ビスマレイミドトリアジン樹脂及びポリイミド樹脂からなる群から選ばれる1種以上であること、
前記無機フィラーが、平均粒子径が0.1〜20μmの球状シリカを主成分とすること、
前記石英クロスが、平均直径20μm以下の石英フィラメントを15〜200本束ねた繊維束を用いて形成されること、及び
前記石英クロスの開口率が20〜70%であること、
を包含し、
低熱膨張率で高周波特性や耐熱特性に優れ、かつ当該低熱膨張率であることによって当該配線板用材料から成形加工された低熱膨張率の積層板を配線基板のコア基板としてシリコンチップ(熱膨張率3〜6ppm/℃)を実装する場合、半田リフロー時、はんだ溶融温度まで加熱した後、温度降下を行っても、熱膨張の差に起因する半田接合部分の剥離が生じないようにしたことを特徴とする配線板用材料。
A wiring board material containing a thermosetting resin, an inorganic filler, and quartz cloth,
The cloth weight of the quartz cloth is 100 g / m 2 or less,
Blending 50 to 700 parts by mass of the inorganic filler with respect to 100 parts by mass of the thermosetting resin;
The thermosetting resin is at least one selected from the group consisting of an epoxy resin, a bismaleimide triazine resin and a polyimide resin;
The inorganic filler is mainly composed of spherical silica having an average particle size of 0.1 to 20 μm,
The quartz cloth is formed using a fiber bundle in which 15 to 200 quartz filaments having an average diameter of 20 μm or less are bundled; and the opening ratio of the quartz cloth is 20 to 70%.
Including
Silicon chip (thermal expansion coefficient) with a low thermal expansion coefficient , excellent high frequency characteristics and heat resistance characteristics , and a low thermal expansion coefficient laminated board molded from the wiring board material due to the low thermal expansion coefficient. 3-6ppm / ° C), when solder reflow, after heating up to the solder melting temperature, even if the temperature dropped, the solder joint part was not peeled off due to the difference in thermal expansion. Characteristic wiring board material.
請求項1記載の配線板用材料を用いて形成されることを特徴とするプリプレグ。   A prepreg formed using the wiring board material according to claim 1. 請求項1記載の配線板用材料をそのままか、又はプリプレグにした後、所要の枚数を積層し、必要に応じ、この片側又は両側に金属箔を重ねて加熱、加圧成形することを特徴とする積層板。   After the wiring board material according to claim 1 is used as it is or made into a prepreg, a required number of sheets are laminated, and if necessary, a metal foil is stacked on one side or both sides and heated and pressure-molded. Laminated board. 請求項3記載の積層板をコア材とし、必要に応じ、その片側又は両側に回路を形成したプリント基板を積層することを特徴とする多層板。   A multilayer board comprising the laminated board according to claim 3 as a core material, and a printed board having a circuit formed on one side or both sides thereof, if necessary. 請求項1記載の配線板用材料を含むコア基板の片側又は両側に、導体層と絶縁層とを交互に積層した配線積層部が形成されていることを特徴とする配線基板。   A wiring board comprising a wiring laminated portion in which conductor layers and insulating layers are alternately laminated on one side or both sides of a core board containing the wiring board material according to claim 1. 前記配線積層部は、表面側にチップ部品と接続するための端子パッドが形成されていることを特徴とする請求項5記載の配線基板。   6. The wiring board according to claim 5, wherein the wiring laminated portion is formed with terminal pads for connecting to chip components on the surface side. 前記配線積層部の表面に電子部品検査用のプローブが形成されていることを特徴とする請求項5記載の配線基板。   6. The wiring board according to claim 5, wherein a probe for inspecting electronic components is formed on a surface of the wiring laminated portion.
JP2009279418A 2009-04-27 2009-12-09 Wiring board material, laminated board, multilayer board and wiring board Active JP5543184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009279418A JP5543184B2 (en) 2009-04-27 2009-12-09 Wiring board material, laminated board, multilayer board and wiring board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009108173 2009-04-27
JP2009108173 2009-04-27
JP2009279418A JP5543184B2 (en) 2009-04-27 2009-12-09 Wiring board material, laminated board, multilayer board and wiring board

Publications (2)

Publication Number Publication Date
JP2010278414A JP2010278414A (en) 2010-12-09
JP5543184B2 true JP5543184B2 (en) 2014-07-09

Family

ID=43425063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009279418A Active JP5543184B2 (en) 2009-04-27 2009-12-09 Wiring board material, laminated board, multilayer board and wiring board

Country Status (1)

Country Link
JP (1) JP5543184B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014046493A (en) * 2012-08-30 2014-03-17 Sumitomo Bakelite Co Ltd Laminate and production method of laminate
JP6217069B2 (en) * 2012-10-26 2017-10-25 住友ベークライト株式会社 Resin substrate, metal-clad laminate, printed wiring board, and semiconductor device
JP2014090147A (en) 2012-10-31 2014-05-15 Kyocer Slc Technologies Corp Wiring board and packaging structure employing the same
CN109153228B (en) 2016-05-25 2021-09-07 昭和电工材料株式会社 Metal-clad laminate, printed wiring board, and semiconductor package
JP2019127492A (en) * 2018-01-19 2019-08-01 信越化学工業株式会社 Quartz glass fiber-containing film and quartz glass fiber-containing substrate
JP2019127491A (en) * 2018-01-19 2019-08-01 信越化学工業株式会社 Quartz glass fiber-containing prepreg, quartz glass fiber-containing film and quartz glass fiber-containing substrate
JP2019127494A (en) * 2018-01-19 2019-08-01 信越化学工業株式会社 Quartz glass fiber-containing prepreg, quartz glass fiber-containing film and quartz glass fiber-containing substrate
JP7434707B2 (en) * 2018-11-30 2024-02-21 株式会社レゾナック FRP precursor, FRP, laminate, metal clad laminate, printed wiring board, semiconductor package, and method for producing FRP precursor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297560A (en) * 1994-04-28 1995-11-10 Hitachi Ltd Multilayer printed wiring board and its mounting structure
JP3638635B2 (en) * 1994-07-01 2005-04-13 株式会社有沢製作所 Printed circuit board
KR101141902B1 (en) * 2007-04-10 2012-05-03 스미토모 베이클리트 컴퍼니 리미티드 Epoxy resin composition, prepreg, laminate board, multilayer printed wiring board, semiconductor device, insulating resin sheet, and process for manufacturing multilayer printed wiring board
JP2009019150A (en) * 2007-07-13 2009-01-29 Panasonic Corp Heat transfer prepreg and method for producing the same and heat transfer printed circuit board using the same

Also Published As

Publication number Publication date
JP2010278414A (en) 2010-12-09

Similar Documents

Publication Publication Date Title
JP5543184B2 (en) Wiring board material, laminated board, multilayer board and wiring board
JP3375555B2 (en) Circuit component built-in module and method of manufacturing the same
TWI428999B (en) Method of manufacturing semiconductor package and semiconductor plastic package using the same
JP4199198B2 (en) Multilayer wiring board and manufacturing method thereof
TW550997B (en) Module with built-in components and the manufacturing method thereof
JP4820388B2 (en) Semiconductor plastic package and manufacturing method thereof
EP2180772A1 (en) Multilayered wiring board and semiconductor device
KR100920535B1 (en) Resin composition, prepreg, laminated sheet and semiconductor package
US20080116611A1 (en) Method of Manufacturing Multilayer Wiring Board
KR20100134017A (en) Multilayer circuit board, insulating sheet, and semiconductor package using multilayer circuit board
JP5200405B2 (en) Multilayer wiring board and semiconductor package
JP2008153693A (en) Manufacturing method of module incorporating circuit component therein
KR20080111495A (en) Solder resist material, wiring board using the solder resist material, and semiconductor package
US20020127418A1 (en) Embedding resin and wiring substrate using the same
JP2003188340A (en) Part incorporating module and its manufacturing method
JP4606685B2 (en) Module with built-in circuit components
JP3959261B2 (en) Wiring board
JP2009272435A (en) Circuit board including built-in component and method for manufacturing the same
JP3440174B2 (en) Multilayer printed wiring board and method of manufacturing the same
KR101039846B1 (en) Method for manufacturing multilayer printed circuit board and semiconductor plastic package using the same
JP2018009065A (en) Epoxy resin composition, prepreg, metal-clad laminate and printed wiring board
KR100971294B1 (en) Semiconductor plastic package and fabricating method therefore
JP2007221117A (en) Substrate incorporated with components, and its manufacturing method
JP5105030B2 (en) Substrate, semiconductor device and substrate manufacturing method
JP4385555B2 (en) Interposer, semiconductor package and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140304

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140508

R150 Certificate of patent or registration of utility model

Ref document number: 5543184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250