JP2003117499A - Ultra-precision cleaning apparatus - Google Patents

Ultra-precision cleaning apparatus

Info

Publication number
JP2003117499A
JP2003117499A JP2001318191A JP2001318191A JP2003117499A JP 2003117499 A JP2003117499 A JP 2003117499A JP 2001318191 A JP2001318191 A JP 2001318191A JP 2001318191 A JP2001318191 A JP 2001318191A JP 2003117499 A JP2003117499 A JP 2003117499A
Authority
JP
Japan
Prior art keywords
cleaning
cleaned
ultrapure water
ultra
precision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001318191A
Other languages
Japanese (ja)
Inventor
Yuzo Mori
勇藏 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001318191A priority Critical patent/JP2003117499A/en
Publication of JP2003117499A publication Critical patent/JP2003117499A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultra-precision cleaning apparatus which does not use a chemical at all and can remove not only formerly unremovable foreign matters with a particle size of 0.01 μm order but also a metal contaminant of an atomic/ molecular level. SOLUTION: This ultra-precision cleaning apparatus is equipped with a pair of or a plurality of pairs of high-pressure nozzles 2 for jetting ultrapure water which are arranged in a cleaning tank 1 filled with ultrapure water at mirror image symmetry positions so that a cleaning area is secured between the nozzles; a wafer drive mechanism 4 which, while holding the edge of a flat object 3 to be cleaned (e.g. a semiconductor wafer), supplies the object in such a way as to traverse the cleaning area and recovers it after cleaning; and a circulation system 7 which jets ultrapure water from the high-pressure nozzles to both the surfaces of the object while controlling the pressure balance to the both surfaces of the object, cleans the object by generating a high-speed shear flow of ultrapure water jetted from the high-pressure nozzles at the vicinity of the surface of the object, removes fine particles dissolved in ultrapure water in the cleaning tank with a filter, and returns the ultrapure water again to the cleaning tank.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体ウエハー
(Si、GaAs等)の洗浄、液晶基板の洗浄、光ディ
スク、光磁気ディスク、薄膜磁気ヘッド等の洗浄、超精
密光学部品の精密洗浄、次世代の高集積半導体ウエハー
対応の超精密洗浄が可能な超精密洗浄装置に係わり、更
に詳しくは被洗浄面上の粒径0.01μmオーダーの異
物微粒子及び各種不純物金属原子の除去を実現すること
が可能な超精密洗浄装置に関するものである。
TECHNICAL FIELD The present invention relates to cleaning semiconductor wafers (Si, GaAs, etc.), cleaning liquid crystal substrates, cleaning optical disks, magneto-optical disks, thin-film magnetic heads, etc., precision cleaning of ultra-precision optical parts, next generation. Related to the ultra-precision cleaning equipment capable of ultra-precision cleaning compatible with highly integrated semiconductor wafers. More specifically, it is possible to realize removal of foreign particles and particles of various impurities with a particle size of 0.01 μm order on the surface to be cleaned. Ultra precision cleaning equipment.

【0002】[0002]

【従来の技術】半導体デバイスの高集積化やマイクロエ
レクトロニクス技術の高度化に伴い、半導体ウエハーや
液晶基板の製造分野を始め、電子デバイスの製造分野等
では、製品製造の様々なプロセスで極めて精密な洗浄技
術の導入が必要とされている。今日では基板上に付着し
た直径0.1μm以下の異物微粒子までもが除去すべき
対象となっており、いろいろな手法が試みられている
が、高濃度な薬液を用いた化学洗浄や、1MHz以上の
高周波を用いた超音波洗浄等の物理洗浄の併用も進めら
れたが、除去率が不十分であったり、被洗浄物表面に欠
陥が導入されたりするのが現状である。
2. Description of the Related Art With the high integration of semiconductor devices and the sophistication of microelectronics technology, in the field of manufacturing semiconductor wafers and liquid crystal substrates, in the field of manufacturing electronic devices, etc. The introduction of cleaning technology is required. Today, even foreign particles with a diameter of 0.1 μm or less adhering to the substrate have to be removed, and various methods have been tried, but chemical cleaning using a high-concentration chemical solution and 1 MHz or more Although the combined use of physical cleaning such as ultrasonic cleaning using the above high frequency has also been promoted, the present situation is that the removal rate is insufficient or defects are introduced on the surface of the object to be cleaned.

【0003】フロンなどの高濃度な薬液を用いた化学洗
浄では、洗浄液の環境への影響の大きいといった問題を
有している。また、現在よく使われている高周波の超音
波洗浄は、従来の超音波洗浄と違いキャビテーションに
よる洗浄ではないためウエハー表面のダメージが少ない
とされている。しかし、実用的な除去率から考えると粒
径がせいぜい0.3μm程度の微粒子の除去が限界であ
る。また、超純水ジェット流れによる洗浄技術も最近開
発されているが、気中ジェット流れによる力学的な衝撃
作用を利用したものであるため、洗浄表面への欠陥の導
入を避けることができず、ノズルへの供給圧力は高々5
0気圧程度のものしか開発されていない。またこれらの
洗浄方法では金属汚染物の除去は不可能である。
The chemical cleaning using a high-concentration chemical liquid such as CFC has a problem that the cleaning liquid has a great influence on the environment. Further, it is said that the high frequency ultrasonic cleaning which is often used at present is not the cleaning by cavitation unlike the conventional ultrasonic cleaning, and thus the damage on the wafer surface is small. However, in view of the practical removal rate, the removal of fine particles having a particle size of at most about 0.3 μm is the limit. In addition, although a cleaning technology using an ultrapure water jet flow has been recently developed, it is inevitable to introduce defects on the cleaning surface because it utilizes the mechanical impact of an air jet flow. Supply pressure to the nozzle is at most 5
Only one of about 0 atm has been developed. In addition, these cleaning methods cannot remove metal contaminants.

【0004】こうした中、これらを解決し得る新しい洗
浄技術の開発に大きな期待が寄せられていることは言う
までもない。本発明者らは、超純水を金属汚染等なく1
000気圧以上の超高圧に加圧する技術を開発し(特開
2001−73930公報)、さらに隙間50μmのノ
ズルによる超純水中への吐出流れによって超純水中で洗
浄物表面に極めて高速な超純水の剪断流れ(速度勾配が
数10m/sec・μm程度)を安定的に発生させる技術を
開発し、表面上に付着した0.01μmオーダの微粒子
の除去が可能であることを実証した(特開2000−1
73965公報)。また触媒技術を応用して、薬液添加
をせずに超純水中できわめて高濃度のOH-イオンの生
成に成功し、このOH-イオンを外部電界により被洗浄
面に輸送し、様々なイオン化した金属原子との化学的溶
出反応を併用させることにより従来の超音波洗浄などで
は除去することが困難であった微細な金属不純物も完全
に除去することが可能であることを見出した(特開20
00−173970公報)。しかも前述の高速剪断流に
よりいったん除去した金属汚染物が被洗浄物の表面に再
付着することを防止し、洗浄を能率よくできる。また、
超純水中に溶け込んだ微粒子を除去して循環再利用を図
るための高濃度スラリー精製システムも既に開発してい
る(特開2000−15012公報)。この高濃度スラ
リー精製システムでは、フィルター膜面に高速剪断流を
発生させることにより、膜面上で微粒子の堆積を防いで
効率良く濾過することができるようになっている。
Under these circumstances, it goes without saying that great expectations are placed on the development of new cleaning techniques capable of solving these problems. The inventors of the present invention used ultrapure water to remove metal contamination, etc.
We have developed a technology to pressurize ultra high pressure of 000 atm or more (Japanese Patent Laid-Open No. 2001-73930). We have developed a technology to stably generate a pure water shear flow (velocity gradient of several tens of m / sec · μm) and demonstrated that it is possible to remove fine particles on the surface of the order of 0.01 μm ( JP 2000-1
73965 publication). Also, by applying the catalyst technology, we succeeded in producing extremely high concentration OH ions in ultrapure water without adding chemicals, and transporting these OH ions to the surface to be cleaned by an external electric field, and various ionization. It has been found that it is possible to completely remove fine metal impurities, which were difficult to remove by conventional ultrasonic cleaning or the like, by using the chemical elution reaction with the metal atom together (Japanese Patent 20
00-173970). Moreover, the metal contaminants once removed by the above-mentioned high-speed shearing flow can be prevented from reattaching to the surface of the object to be cleaned, and the cleaning can be efficiently performed. Also,
A high-concentration slurry refining system for removing fine particles dissolved in ultrapure water and recycling it has already been developed (Japanese Patent Laid-Open No. 2000-15012). In this high-concentration slurry refining system, a high-speed shear flow is generated on the filter membrane surface to prevent the accumulation of fine particles on the membrane surface and enable efficient filtration.

【0005】このように本洗浄技術は、これらの化学作
用と物理作用を併用した全く新しい洗浄技術を提案する
もので、従来の洗浄技術には類を見ないものである。ま
たこの洗浄表面上の高速剪断流は、洗浄表面に力学的な
衝撃作用を与えることがなく、電子材料等の機能材料の
精密洗浄に極めて有効であり、また超純水以外の一切の
薬液を使用せず、極めてクリーンかつ環境に優しい新技
術であることも特筆すべき点である。
As described above, the present cleaning technique proposes a completely new cleaning technique that combines these chemical action and physical action, and is unprecedented in the conventional cleaning technique. In addition, this high-speed shear flow on the cleaned surface is extremely effective for precision cleaning of functional materials such as electronic materials without giving a mechanical impact to the cleaned surface. It is also worth noting that it is a new technology that is extremely clean and eco-friendly without using it.

【0006】[0006]

【発明が解決しようとする課題】本発明者らは、被洗浄
物表面に化学結合を伴って付着した不純物金属を取り除
くためには、被洗浄物表面上に所定の強さ以上の剪断流
が必要であること、つまり剪断流の一定の速度勾配以上
が必要であることを、理論的に予測し、実験において確
認するとともに、超純水中の水酸化物イオンと不純物金
属との化学的溶出反応を併用することが有効であること
を見出したのである。
DISCLOSURE OF THE INVENTION In order to remove the impurity metal attached to the surface of the object to be cleaned accompanied by a chemical bond, the inventors of the present invention apply a shear flow of a predetermined strength or more to the surface of the object to be cleaned. It is theoretically predicted and confirmed in experiments that it is necessary, that is, that a certain velocity gradient of the shear flow is required, and chemical elution of hydroxide ions and impurity metals in ultrapure water is performed. It was found that it is effective to use the reaction in combination.

【0007】そこで、本発明が前述の状況に鑑み、解決
しようとするところは、超純水の高速剪断流による物理
作用と超純水中でのOH-イオンによる電気的化学作用
とを併用して、超清浄表面を得ることができる技術を利
用し、薬剤を一切使わず、従来では不可能であった粒径
0.01μmオーダの異物の除去のみならず原子・分子
レベルの金属汚染物の除去までが可能な超精密洗浄装置
を提供することを目的とする。
In view of the above situation, the present invention intends to solve the problems by combining the physical action of high-speed shear flow of ultrapure water with the electrochemical action of OH ions in ultrapure water. By using the technology that can obtain an ultra-clean surface, no chemicals are used, and not only the removal of foreign substances with a particle size on the order of 0.01 μm, which was impossible in the past, but also the atomic and molecular level metal contamination It is an object of the present invention to provide an ultra-precision cleaning device that can be removed.

【0008】[0008]

【課題を解決するための手段】本発明は、前述の課題解
決のために、超純水を満たした洗浄槽内に、高圧力の超
純水を洗浄領域に噴射する単又は複数の高圧ノズルを配
設し、被洗浄物の縁部を保持して前記洗浄領域を横切る
ように該被洗浄物を供給し且つ洗浄後回収するウエハー
駆動機構を備え、前記被洗浄物の表面近傍に高圧ノズル
から噴射した超純水の高速剪断流を発生させて洗浄し、
洗浄槽内の超純水中に溶け込んだ微粒子を濾過器で除去
して再度洗浄槽内に供給する循環系を備えてなる超精密
洗浄装置を構成した。それにより、高圧ノズルから噴射
した超純水が作る被洗浄物の表面近傍の高速剪断流によ
って、被洗浄物の表面に付着した微細な異物を、該表面
との結合を切って剥離するとともに、除去した異物を高
速剪断流の流れによって表面に再付着することを防止し
た。
In order to solve the above problems, the present invention provides a single or a plurality of high pressure nozzles for injecting high pressure ultrapure water into a cleaning area in a cleaning tank filled with ultrapure water. And a wafer drive mechanism for holding the edge of the object to be cleaned and supplying the object to be cleaned so as to cross the cleaning area and recovering after cleaning, and a high-pressure nozzle near the surface of the object to be cleaned. Generated by high-speed shear flow of ultrapure water injected from
An ultra-precision cleaning device was provided with a circulation system for removing fine particles dissolved in ultrapure water in the cleaning tank with a filter and supplying again to the cleaning tank. Thereby, by the high-speed shear flow in the vicinity of the surface of the object to be cleaned made by the ultrapure water injected from the high-pressure nozzle, the fine foreign matter adhering to the surface of the object to be cleaned is removed by cutting the bond with the surface, The removed foreign matter was prevented from reattaching to the surface by the flow of high-speed shear flow.

【0009】更に、本発明は、超純水を満たした洗浄槽
内に、高圧力の超純水を噴射する一対又は複数対の高圧
ノズルをその間に洗浄領域を設けて鏡像対称位置に配設
し、半導体ウエハー等の扁平状の被洗浄物の縁部を保持
して前記洗浄領域を横切るように該被洗浄物を供給し且
つ洗浄後回収するウエハー駆動機構を備え、前記被洗浄
物の両面に対する圧力バランスを制御しつつ、該被洗浄
物の両面に前記高圧ノズルから超純水を噴射してなる超
精密洗浄装置を構成した。これにより、半導体ウエハー
等の扁平状の被洗浄物の両面を効率良く洗浄できるよう
になる。
Further, according to the present invention, a cleaning tank filled with ultrapure water is provided with a pair of or a plurality of pairs of high-pressure nozzles for injecting ultrapure water of high pressure, and a cleaning region is provided between them to arrange them in a mirror image symmetrical position. A wafer drive mechanism that holds the edge of a flat object to be cleaned such as a semiconductor wafer and supplies the object to be cleaned so as to cross the cleaning region and recovers the object after cleaning. An ultra-precision cleaning apparatus was constructed by injecting ultrapure water from the high-pressure nozzle onto both sides of the object to be cleaned while controlling the pressure balance with respect to. As a result, both sides of the flat object to be cleaned such as a semiconductor wafer can be efficiently cleaned.

【0010】また、前記洗浄槽内又は超純水の循環系
に、水酸化物イオンを増加させるイオン交換材料又は触
媒材料を配することにより、超純水中の水酸化物イオン
濃度を飛躍的に高めることができ、被洗浄物表面に付着
した微細な不純物金属を、水酸化物イオンとの化学的溶
出反応と高速剪断流によって被洗浄物の表面から効率良
く剥離することができる。
Further, by placing an ion exchange material or a catalyst material for increasing hydroxide ions in the cleaning tank or in the ultrapure water circulation system, the hydroxide ion concentration in ultrapure water can be dramatically increased. The fine impurity metal adhering to the surface of the object to be cleaned can be efficiently separated from the surface of the object to be cleaned by the chemical elution reaction with hydroxide ions and the high-speed shear flow.

【0011】更に、前記洗浄槽内に、前記被洗浄物の電
位よりも低い電位のイオン輸送用電極を配して、被洗浄
物の表面とイオン輸送用電極間に電位勾配を形成し、水
酸化物イオンを被洗浄物の表面に導くとともに、水素イ
オンをイオン輸送用電極に導いてなることも好ましい。
実際には、洗浄槽を接地し、被洗浄物が正電位、イオン
輸送用電極が負電位となるように、被洗浄物とイオン輸
送用電極間に電圧を印加することで、クーロン力により
水酸化物イオンを被洗浄物に引き寄せるのである。
Further, an electrode for ion transport having a potential lower than the potential of the object to be cleaned is arranged in the cleaning tank to form a potential gradient between the surface of the object to be cleaned and the electrode for ion transportation, It is also preferable to introduce the oxide ions to the surface of the object to be cleaned and the hydrogen ions to the ion transport electrode.
In practice, the cleaning tank is grounded and a voltage is applied between the object to be cleaned and the electrode for ion transport so that the object to be cleaned has a positive potential and the electrode for ion transport has a negative potential. The oxide ions are attracted to the object to be cleaned.

【0012】また、本発明では、前記高圧ノズルの超純
水噴射方向を、被洗浄物の表面に対して0〜90度の角
度に調節可能としている。超純水噴射方向を被洗浄物の
表面に対して傾斜角度を持たせることで、被洗浄物表面
に沿った高速剪断流を安定に形成し、また剥離した微小
異物を下流側に流して表面から速やかに除去できるの
で、表面への再付着を防止するのに効果的である。
Further, in the present invention, the injection direction of ultrapure water from the high-pressure nozzle can be adjusted to an angle of 0 to 90 degrees with respect to the surface of the object to be cleaned. By making the jet direction of ultrapure water have an inclination angle with respect to the surface of the object to be cleaned, a high-speed shear flow along the surface of the object to be cleaned can be stably formed, and the separated fine foreign matter is made to flow to the downstream side. Since it can be quickly removed from the surface, it is effective in preventing redeposition on the surface.

【0013】ここで、前記高圧ノズルの噴出口がスリッ
ト孔であると、被洗浄物の表面をライン状に洗浄するこ
とができるので、洗浄効率を高めることが可能となる。
Here, if the jet port of the high-pressure nozzle is a slit hole, the surface of the object to be cleaned can be cleaned in a line, and the cleaning efficiency can be improved.

【0014】そして、本発明では、前記ウエハー駆動機
構として、外周に前記被洗浄物の縁部を嵌合する溝を形
成した無端状ベルトを複数のプーリで張設した二系統の
ベルト駆動系を有し、前記洗浄領域を挟む両側に両ベル
トの直線部分を互いに平行に配し、両ベルトの直線部分
の溝に前記被洗浄物の縁部を弾性的に保持し、各ベルト
駆動系の少なくとも一つのプーリを駆動プーリとしてモ
ータで回転させて、両ベルトを駆動することで前記被洗
浄物を洗浄領域に供給し又は洗浄領域から回収してなる
ものを採用した。
Further, in the present invention, as the wafer drive mechanism, a two-system belt drive system in which an endless belt having a groove for fitting an edge portion of the object to be cleaned is formed on the outer periphery is stretched by a plurality of pulleys. And having linear portions of both belts arranged parallel to each other on both sides of the cleaning region, and elastically holding the edge of the object to be cleaned in the grooves of the linear portions of both belts, and at least one of the belt drive systems. One pulley is used as a drive pulley and is rotated by a motor, and both belts are driven to supply or recover the object to be cleaned to the cleaning area.

【0015】ここで、前記各ベルト駆動系の駆動プーリ
の回転速度を独立して設定できるようにすれば、両ベル
トをその直線部分の送り速度を同調させて同一方向に駆
動することで被洗浄物を非回転状態で洗浄領域に供給し
又は洗浄領域から回収し、あるいは両ベルトをその直線
部分の送り速度を非同調させて駆動することで被洗浄物
を回転させながら洗浄領域に供給し又は洗浄領域から回
収し、あるいは両ベルトをその直線部分の送り速度を同
調させて逆方向に駆動することで被洗浄物を定位置で回
転させることが可能となる。
Here, if the rotational speeds of the drive pulleys of the belt drive systems can be set independently, both belts are driven in the same direction by synchronizing the feed speeds of their linear portions to be cleaned. An object is supplied to the cleaning area in a non-rotating state or is recovered from the cleaning area, or both belts are driven by non-synchronizing the feed speeds of their linear portions to supply the object to be cleaned while rotating the object to be cleaned, or It is possible to rotate the object to be cleaned at a fixed position by recovering it from the cleaning area or by driving both belts in the opposite directions by synchronizing the feed speeds of their linear portions.

【0016】また、他の構造の前記ウエハー駆動機構と
して、互いに間隔を設けて平行移動可能となした一対の
アームの各先端部内側に、内面側に前記被洗浄物の縁部
を嵌合する溝を形成した保持部材を互いに平行に張設
し、両保持部材の溝に前記被洗浄物の縁部を弾性的に保
持し、両アームを同調して同一方向に駆動することで前
記被洗浄物を洗浄領域に供給し又は洗浄領域から回収し
てなるものを採用することも好ましい。
Further, as the wafer driving mechanism of another structure, a pair of arms, which are spaced apart from each other and can be moved in parallel, are fitted to the insides of the tips of the arms at the edges of the object to be cleaned. The holding members having grooves are stretched in parallel with each other, the edges of the object to be cleaned are elastically held in the grooves of both holding members, and both arms are synchronized and driven in the same direction to perform the cleaning. It is also preferable to employ a product obtained by supplying an object to the cleaning region or recovering it from the cleaning region.

【0017】[0017]

【発明の実施の形態】次に、本発明の実施形態を添付図
面に基づき詳細に説明する。図1は、本発明の洗浄原理
を示し、図2〜図5は本発明に係る超精密洗浄装置の概
要を示し、図中符号1は洗浄槽、2は高圧ノズル、3は
半導体ウエハー、4はウエハー駆動機構、5はイオン交
換材料、6はイオン輸送用電極、7は超純水の循環系を
それぞれ示している。以下の実施形態では、半導体ウエ
ハー3の洗浄について説明するが、本発明は、半導体ウ
エハー3の表面に付着した汚染金属の除去に止まらず、
その他のパーティクルや有機汚染物質の除去においても
当然効果的である。更に、本発明は、洗浄対象としてS
iウエハー等の半導体ウエハーに限定されず、広く液晶
基板等を含めた電子デバイス用基板や、光ディスク、光
磁気ディスク、薄膜磁気ヘッド等、その他超精密光学部
品、次世代の高集積半導体ウエハーの表面洗浄に適用す
ることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows the cleaning principle of the present invention, and FIGS. 2 to 5 show the outline of an ultra-precision cleaning apparatus according to the present invention. In the drawing, reference numeral 1 is a cleaning tank, 2 is a high pressure nozzle, 3 is a semiconductor wafer, and 4 is a semiconductor wafer. Is a wafer drive mechanism, 5 is an ion exchange material, 6 is an ion transport electrode, and 7 is a circulation system of ultrapure water. In the following embodiments, the cleaning of the semiconductor wafer 3 will be described, but the present invention is not limited to the removal of the contaminant metal adhering to the surface of the semiconductor wafer 3,
It is naturally effective in removing other particles and organic pollutants. Furthermore, the present invention uses S as a cleaning target.
Not limited to semiconductor wafers such as i-wafers, but widely used for electronic device substrates including liquid crystal substrates, optical discs, magneto-optical discs, thin-film magnetic heads, and other ultra-precision optical components, and the surface of next-generation highly integrated semiconductor wafers. It can be applied to cleaning.

【0018】本発明の半導体ウエハーの超精密洗浄装置
は、図1及び図2に示すように、超純水を満たした洗浄
槽1内に、高圧力の超純水を噴射する一対又は複数対の
高圧ノズル2,2をその間に洗浄領域Cを設けて鏡像対
称位置に配設し、半導体ウエハー3の縁部を保持して前
記洗浄領域Cを横切るように該半導体ウエハー3を供給
し且つ洗浄後回収するウエハー駆動機構4を備え、前記
半導体ウエハー3の両面に対する圧力バランスを制御し
つつ、該半導体ウエハー3の両面に前記高圧ノズル2,
2から超純水を噴射し、該半導体ウエハー3の表面近傍
に高圧ノズル2から噴射した超純水の高速剪断流を発生
させて洗浄し、洗浄槽1内の超純水中に溶け込んだ微粒
子を濾過器(図示せず)で除去して再度洗浄槽1内に供
給する循環系7を備えたものである。
As shown in FIGS. 1 and 2, the semiconductor wafer ultra-precision cleaning apparatus of the present invention comprises a pair or a plurality of pairs for injecting high-pressure ultrapure water into a cleaning tank 1 filled with ultrapure water. The high-pressure nozzles 2 and 2 are provided in a mirror image symmetrical position with a cleaning region C provided therebetween, and the semiconductor wafer 3 is supplied and cleaned so as to cross the cleaning region C while holding the edge of the semiconductor wafer 3. A wafer drive mechanism 4 for post-collection is provided, and the high pressure nozzles 2 are provided on both sides of the semiconductor wafer 3 while controlling the pressure balance on both sides of the semiconductor wafer 3.
Ultrapure water is sprayed from 2 to generate a high-speed shear flow of ultrapure water sprayed from the high-pressure nozzle 2 in the vicinity of the surface of the semiconductor wafer 3 for cleaning, and fine particles dissolved in the ultrapure water in the cleaning tank 1 Is removed by a filter (not shown) and supplied again into the cleaning tank 1 with a circulation system 7.

【0019】本発明の洗浄原理は、図1に示すように、
洗浄槽1内の超純水中に配した半導体ウエハー3の表面
に対して高圧ノズル2,2から超純水を噴射し、超純水
の水分子aが分解して生じた水酸化物イオンbを表面に
供給し、半導体ウエハーの構成原子dに付着した汚染金
属e(金属原子あるいは凝集状態の微小金属塊)と水酸
化物イオンbとの反応によって生成された反応物質fを
超純水中に溶出し、また高速剪断流によって半導体ウエ
ハー表面と汚染金属eとの結合を切って剥離し、この反
応物質fを半導体ウエハー3の表面に沿った超純水の流
れによって半導体ウエハー3の表面から除去することで
洗浄を行うのである。
The cleaning principle of the present invention is as shown in FIG.
Hydroxide ions generated by spraying ultrapure water from the high-pressure nozzles 2 and 2 onto the surface of the semiconductor wafer 3 placed in the ultrapure water in the cleaning tank 1 to decompose the water molecules a of the ultrapure water. b is supplied to the surface, and the reactant f generated by the reaction of the pollutant metal e (metal atoms or agglomerated fine metal lumps) adhering to the constituent atoms d of the semiconductor wafer with the hydroxide ion b is ultrapure water. The surface of the semiconductor wafer 3 is eluted by the flow of ultrapure water along the surface of the semiconductor wafer 3. It is washed by removing it from the.

【0020】良く知られているように、超純水中には、
自然の状態で水酸化物イオン(OH -)が微量(25℃
において10-7mol/l)ではあるが存在する。しか
し、超純水中の水酸化物イオンは微量であるので、実用
的な洗浄を可能にするには、何らかの方法で水酸化物イ
オン密度を増大させなければならない。本発明では、他
の溶液を加えることなく、水酸化物イオンbを増加させ
るため、超純水中にイオン交換材料5又は触媒材料を配
して、超純水中の水酸化物イオン密度を増大させて、極
度に清浄化された環境での材料の洗浄を行うようにして
いる。
As is well known, in ultrapure water,
Hydroxide ion (OH -) Is small (25 ℃
At 10-7mol / l) but present. Only
However, since the amount of hydroxide ion in ultrapure water is very small, it is practical
In some way, a hydroxide
The on-density must be increased. In the present invention,
Increase hydroxide ion b without adding the solution of
Therefore, the ion exchange material 5 or the catalyst material is placed in ultrapure water.
Then, increase the hydroxide ion density in ultrapure water,
Try to wash the material in a clean environment
There is.

【0021】また、前記半導体ウエハー3と対面させて
イオン輸送用電極6を配し、該イオン輸送用電極6を前
記半導体ウエハー3の電位よりも低い電位に設定して半
導体ウエハー3の表面とイオン輸送用電極6間に電位勾
配を形成し、水酸化物イオンbを半導体ウエハー3の表
面に導くとともに、水素イオンcをイオン輸送用電極6
に導き、洗浄効率を高めるようにしている。実際には、
洗浄槽1を接地し、半導体ウエハー3が正電位、イオン
輸送用電極6が負電位となるように、半導体ウエハー3
とイオン輸送用電極6間に電圧を印加することで、クー
ロン力により水酸化物イオンを半導体ウエハーに引き寄
せるのである。また、不純物金属が正イオン状態である
場合には、電気的な反発力を利用して半導体ウエハー3
表面からの不純物金属の剥離を促すことも可能である。
Further, an ion transporting electrode 6 is arranged so as to face the semiconductor wafer 3, and the ion transporting electrode 6 is set to a potential lower than the potential of the semiconductor wafer 3 so that the surface of the semiconductor wafer 3 and the ions are A potential gradient is formed between the transport electrodes 6 to guide the hydroxide ions b to the surface of the semiconductor wafer 3 and hydrogen ions c to the ion transport electrodes 6.
To improve the cleaning efficiency. actually,
The cleaning tank 1 is grounded so that the semiconductor wafer 3 has a positive potential and the ion transport electrode 6 has a negative potential.
By applying a voltage between the ion transport electrode 6 and the ion transport electrode 6, hydroxide ions are attracted to the semiconductor wafer by the Coulomb force. When the impurity metal is in the positive ion state, the electric repulsive force is used to make the semiconductor wafer 3
It is also possible to promote the separation of the impurity metal from the surface.

【0022】次に、半導体ウエハー表面に化学結合を伴
って付着した微粒子を取り除くためには、半導体ウエハ
ー表面上にどの程度の剪断流の強さ(速度勾配)が必要
であるかを見積もった。粒径0.1μmのZrO2微粒
子をSi(100)表面に超純水中で吸着させ、この表
面上に様々な強さの超純水の剪断流を作用させた時、微
粒子がSi表面から除去される様子を光学顕微鏡により
観察した。その結果、5m/sec ・μm程度の速度勾配
を越えると効果的な微粒子の除去が進行することが分か
った。この結果から、洗浄には一定の速度勾配以上の剪
断流が必要であることが判ったが、その下限は半導体ウ
エハーの材質と、付着微粒子の種類及び粒径によって変
わることが予想される。しかし、高圧ノズル2による高
速剪断流と、前述のイオン交換材料5による水酸化物イ
オン密度の増加手段や、半導体ウエハーを陽極として電
圧を印加する手段を併用することによって、必要な剪断
流の速度勾配を減少させることは可能である。
Next, it was estimated how much shear flow strength (velocity gradient) is required on the surface of the semiconductor wafer in order to remove the fine particles attached to the surface of the semiconductor wafer along with chemical bonds. When ZrO 2 fine particles with a particle diameter of 0.1 μm are adsorbed on the Si (100) surface in ultrapure water and a shear flow of ultrapure water of various strengths is applied to this surface, the particles are removed from the Si surface. The state of removal was observed with an optical microscope. As a result, it was found that effective removal of fine particles proceeds when the velocity gradient of about 5 m / sec · μm is exceeded. From this result, it was found that the cleaning requires a shear flow with a certain velocity gradient or more, but the lower limit thereof is expected to change depending on the material of the semiconductor wafer and the type and particle size of the adhered fine particles. However, by using the high-speed shear flow by the high-pressure nozzle 2 and the above-mentioned means for increasing the hydroxide ion density by the ion exchange material 5 and the means for applying a voltage with the semiconductor wafer as the anode, the required shear flow rate can be obtained. It is possible to reduce the slope.

【0023】ここで、前記高圧ノズルから噴出した超純
水のジェットが前記半導体ウエハー3の表面に及ぼす力
を見積もる。先の特開2000−173970公報に記
載してあるように、1000気圧の高圧超純水を直径
0.1mmφのノズルから被洗浄物表面に直角に噴出さ
せた場合、該ノズルと被洗浄物の表面間のギャップ間隔
が数mmでは被洗浄物の表面から100μm程度までは
略一定の流速(400〜450m/s)となることがシ
ミュレーションによって確認されている。そこで、高圧
超純水の供給圧力を1000気圧とし、圧損を最小限に
抑えたとし、高圧ノズルのスリット孔の寸法を横幅15
0mm、縦幅50μmとするとともに、半導体ウエハー
表面に対する角度を30度にして噴出させ、表面近傍で
450m/sの流速であると仮定すれば、半導体ウエハ
ーの表面には垂直方向にトータル37.5kgの力がか
かることになる。従って、半導体ウエハー表面に対する
角度が大きくなるにつれて、半導体ウエハーの両面での
高圧ノズルのバランスが非常に重要になる。尚、流速1
00m/sでその他の条件を同じとすれば、2kg弱の
力である。しかし、被洗浄物(半導体ウエハー)表面に
対する高圧ノズルの角度が小さい場合には、被洗浄物表
面に対して垂直な方向に加わる力は小さく、両面の圧力
バランスに対する制約がなくなるので、その場合には被
洗浄物の片面側に高圧ノズルを配設して被洗浄物の片面
のみを洗浄することが可能である。
Here, the force exerted by the jet of ultrapure water ejected from the high pressure nozzle on the surface of the semiconductor wafer 3 will be estimated. As described in JP-A-2000-173970, when high pressure ultrapure water of 1000 atm is jetted from a nozzle having a diameter of 0.1 mmφ at right angles to the surface of the object to be cleaned, the nozzle and the object to be cleaned are It has been confirmed by simulation that when the gap distance between the surfaces is several mm, the flow velocity is approximately constant (400 to 450 m / s) up to about 100 μm from the surface of the object to be cleaned. Therefore, assuming that the supply pressure of the high-pressure ultrapure water is 1000 atm and the pressure loss is minimized, the slit hole of the high-pressure nozzle has a width of 15 mm.
Assuming that the flow rate is 0 mm and the vertical width is 50 μm, the angle is 30 degrees with respect to the surface of the semiconductor wafer, and the flow velocity is 450 m / s in the vicinity of the surface, the total surface area of the semiconductor wafer is 37.5 kg in the vertical direction. Will be applied. Therefore, as the angle to the semiconductor wafer surface increases, the balance of the high pressure nozzles on both sides of the semiconductor wafer becomes very important. In addition, flow velocity 1
If the other conditions are the same at 00 m / s, the force is a little less than 2 kg. However, when the angle of the high-pressure nozzle with respect to the surface of the object to be cleaned (semiconductor wafer) is small, the force applied in the direction perpendicular to the surface of the object to be cleaned is small, and there is no restriction on the pressure balance on both sides. It is possible to clean only one side of the object to be cleaned by disposing a high pressure nozzle on one side of the object to be cleaned.

【0024】また、1000気圧に加圧された水を直径
0.1mmのノズルから水中に噴出し、これを固体表面
に照射すると表面上に数10m/sec・μmを超える強い
剪断流を発生できることが理論計算により示されてい
る。更に、Siウエハー表面に対して非常に付着力の強い
ZrO2微粒子(直径0.01μmオーダ)を付着させた場合
でも、10m/sec・μm程度の剪断流によって除去可能
であることが実験的に示され、超純水中のジェット流が
つくる高速剪断流が新しい超精密洗浄技術の基盤技術と
して極めて有効であることが確認されている。更に、円
孔とスリット孔とのノズル形状の場合の流れ解析シミュ
レーションによる比較では、スリット状のノズルの方
が、吐出速度が遅くても高速流れの減衰が遅く、より広
範囲にわたって微粒子の除去に必要な強い表面剪断流を
発生でき、洗浄用ヘッドとしてより効果的であることも
わかり実験でも実証されている。またノズル近傍の気泡
(キャビテーション)の発生は被洗浄面にダメージを与
えるが、そのメカニズムについても解析し、対策検討し
た。即ち、気泡は高圧ノズルの極近傍における吐出流れ
の速度勾配が大きいほどを発生しやすいことを見出し、
吐出口の形状及び内部の流路について検討し、実験によ
りその効果を実証した。
Further, when water pressurized to 1000 atm is jetted into water from a nozzle having a diameter of 0.1 mm and irradiated onto a solid surface, a strong shear flow exceeding several tens of m / sec.μm can be generated on the surface. Is shown by theoretical calculation. Furthermore, it has very strong adhesion to the Si wafer surface.
It has been experimentally shown that even when ZrO 2 fine particles (diameter of 0.01 μm) are attached, it can be removed by a shear flow of about 10 m / sec · μm, and high-speed shear created by the jet flow in ultrapure water. It has been confirmed that the stream is extremely effective as the basic technology of the new ultra-precision cleaning technology. Furthermore, in the comparison by the flow analysis simulation in the case of the nozzle shape of the circular hole and the slit hole, the slit-shaped nozzle is slower in the attenuation of the high-speed flow even if the discharge speed is slower, and it is necessary to remove the fine particles in a wider range. It has been proved by experiments that it can generate a strong surface shear flow and is more effective as a cleaning head. Moreover, the generation of bubbles (cavitation) near the nozzle damages the surface to be cleaned, but the mechanism was also analyzed and countermeasures were examined. That is, it is found that bubbles are more likely to occur as the velocity gradient of the discharge flow in the immediate vicinity of the high pressure nozzle is larger,
The shape of the discharge port and the internal flow path were examined, and the effect was verified by experiments.

【0025】本発明は、高速剪断流の物理的作用ととも
に超純水中の水酸化物イオンと不純物イオンの化学的溶
出反応を併用して洗浄するものであり、イオン状態の金
属汚染物の剥離を促すためには被洗浄面近傍でOH-
オン密度をいかに増加させるかが重要である。既に、本
発明者らは、触媒材料(たとえばスルホン酸基)による
2O分子の電離反応をシミュレーションにより解析
し、効果的に電離反応を起し、OH-イオン密度を増加
させるには、触媒活性点の担体の最適な構造が重要であ
ることを実験により実証した。例えば、通常のPTFE
樹脂を触媒の担体とした場合であっても触媒のない場合
(超純水のみの場合の理論値)に対して10000倍の電
流が流れ、更にグラフト重合繊維を担体とした場合に
は、その100〜1000倍の電流が流れることがわか
り、グラフト重合繊維を担体とした触媒ユニットの開発
が有望であることを見出している。
According to the present invention, the physical action of high-speed shearing flow and the chemical elution reaction of hydroxide ion and impurity ion in ultrapure water are used together for cleaning. In order to promote this, it is important to increase the OH ion density near the surface to be cleaned. The present inventors have already analyzed the ionization reaction of H 2 O molecules by a catalyst material (for example, a sulfonic acid group) by a simulation, and in order to effectively cause the ionization reaction and increase the OH ion density, Experiments have demonstrated that the optimal structure of the active site carrier is important. For example, normal PTFE
Even when resin is used as catalyst carrier, but without catalyst
It was found that a current of 10000 times as much as (theoretical value in the case of only ultrapure water) flows, and when a graft-polymerized fiber is used as a carrier, a current of 100 to 1000 times that current flows. We have found promising development of catalyst units as carriers.

【0026】このように、本発明は、高圧ノズルに10
0〜1000気圧程度の超純水を供給し、超純水中でキ
ャビテーションのない100m/sec以上の超高速流れ
を発生させ、被洗浄物表面に数10m/sec・μm以上の
高速剪断流を発生させる。この際、キャビテーションの
ない安定な剪断流の発生には、気中ではなく超純水中へ
の吐出流れを利用することとノズル形状の最適化が非常
に重要になる。そして、被洗浄物上で最大の剪断流が発
生する位置には、例えばスルフォン酸基をもつ高分子繊
維が配置され、これが触媒になって水分子の解離を促進
し、同位置にかけられた電界により、被洗浄物表面にO
-イオンの電気化学作用と高速剪断流による物理的作
用により、速やかに被洗浄物上の原子・分子状の金属吸
着物が除去され、0.01μmオーダの異物微粒子とと
もに除去することができる。
As described above, according to the present invention, the high pressure nozzle has 10
Ultrapure water of 0 to 1000 atm is supplied to generate ultrahigh-speed flow of 100 m / sec or more without cavitation in ultrapure water, and high-speed shear flow of several tens of m / sec · μm or more is applied to the surface of the object to be cleaned. generate. At this time, in order to generate a stable shear flow without cavitation, it is very important to use the discharge flow into ultrapure water instead of the air and to optimize the nozzle shape. Then, at the position where the maximum shear flow is generated on the object to be cleaned, for example, a polymer fiber having a sulfonic acid group is arranged, which serves as a catalyst to promote the dissociation of water molecules, and the electric field applied to the same position. O on the surface to be cleaned
Due to the electrochemical action of H ions and the physical action of the high-speed shearing flow, atomic and molecular metal adsorbates on the object to be cleaned can be promptly removed, and can be removed together with foreign particles on the order of 0.01 μm.

【0027】本発明の超精密洗浄装置には、加圧装置で
100〜1000気圧程度に加圧された超高圧の超純水
を前記高圧ノズル2に供給し、洗浄槽1から排出した汚
染超純水を精密濾過装置で不純物を除去し、再度加圧装
置に供給するように超純水の循環系7が設けられてい
る。ここで、前記加圧装置及び精密濾過装置は既に開発
されている。
In the ultra-precision cleaning apparatus of the present invention, ultra-high-pressure ultra-pure water pressurized to about 100 to 1000 atm by a pressurizing apparatus is supplied to the high-pressure nozzle 2 and discharged from the cleaning tank 1 to avoid contamination An ultrapure water circulation system 7 is provided to remove impurities from the pure water by a microfiltration device and supply the purified water again to the pressurizing device. Here, the pressurizing device and the microfiltration device have already been developed.

【0028】前記高圧ノズル2は、スリット状の吐出口
を有し、大型の被洗浄物でも一方向走査により洗浄する
ことが可能である。そして、大型の液晶や大口径のSi
ウエハーなどを洗浄するために、実際のウエハー寸法幅
の基板洗浄が可能な寸法としている。本装置では超純水
中で2つの高圧ノズル2,2を対向させて配置してお
り、2つのノズルの間を被洗浄物(半導体ウエハー)が
移動できるようになっている。このとき、一度除去され
た金属汚染物や異物微粒子は超純水中のダウンフローの
流れにより、半導体ウエハー表面に再付着することのな
いように配慮されている。
The high-pressure nozzle 2 has a slit-shaped discharge port, and even a large object to be cleaned can be cleaned by one-way scanning. And large liquid crystal and large diameter Si
In order to clean wafers and the like, the size is set to allow cleaning of the substrate within the actual wafer size width. In this apparatus, two high-pressure nozzles 2 and 2 are arranged to face each other in ultrapure water, and an object to be cleaned (semiconductor wafer) can be moved between the two nozzles. At this time, it is taken into consideration that the once removed metal contaminants and foreign particles are not reattached to the surface of the semiconductor wafer due to the downflow flow in the ultrapure water.

【0029】更に詳しくは、各部の構成を図2〜図8に
基づいて説明する。前記ウエハー駆動機構4は、外周に
前記半導体ウエハー3の縁部を嵌合するV字状の溝10
を形成した無端状ベルト9を複数のプーリ11,…で張
設した二系統のベルト駆動系8,8を有し、前記洗浄領
域を挟む両側に両ベルト9,9の直線部分9A,9Aを
互いに平行に配し、両ベルト9,9の直線部分9A,9
Aの溝10,10に前記半導体ウエハー3の縁部を弾性
的に保持し、各ベルト駆動系8,8の少なくとも一つの
プーリを駆動プーリ12としてモータ13で回転させ
て、両ベルト9,9を駆動することで前記半導体ウエハ
ー3を洗浄領域に供給し又は洗浄領域から回収するもの
である。
More specifically, the structure of each part will be described with reference to FIGS. The wafer driving mechanism 4 has a V-shaped groove 10 that fits the edge of the semiconductor wafer 3 on the outer circumference.
The endless belt 9 having the above-mentioned structure is stretched by a plurality of pulleys 11, ..., and has two systems of belt drive systems 8, 8 and linear portions 9A, 9A of both belts 9, 9 are provided on both sides of the cleaning area. The belts 9 and 9 are arranged in parallel to each other and are straight portions 9A and 9
The edges of the semiconductor wafer 3 are elastically held in the grooves 10, 10 of A, and at least one pulley of each belt drive system 8, 8 is rotated by a motor 13 as a drive pulley 12, so that both belts 9, 9 are rotated. Is driven to supply or recover the semiconductor wafer 3 to or from the cleaning region.

【0030】ここで、前記ベルト9は、ポリウレタンや
四フッ化エチレン樹脂等の膨潤性がない素材で作成して
いる。更に、前記ベルト9の引張り強度を高めるため
に、内部に金属ワイヤーや炭素繊維あるいはガラス繊維
等の補強芯を埋設することも有効である。
Here, the belt 9 is made of a non-swelling material such as polyurethane or tetrafluoroethylene resin. Further, in order to increase the tensile strength of the belt 9, it is also effective to embed a reinforcing core such as a metal wire, carbon fiber or glass fiber inside.

【0031】前記ベルト駆動系8は、一端を洗浄槽1の
外部に固定し、該洗浄槽1の上部から超純水中へ延びた
ベルト保持部材14に設けられ、該ベルト保持部材14
の洗浄領域側の上下に従動プーリ11A,11Bを配
し、この従動プーリ11A,11B間のベルト9の部分
が前記直線部分9Aを形成し、更に上部外側に前記駆動
プーリ12を配するとともに、該駆動プーリ12と下方
の従動プーリ11B間のベルト9を押圧して該ベルト9
を所定の張力に維持するための張設プーリ11Cを配し
て構成している。ここで、上下の従動プーリ11A,1
1Bは、水平方向の位置を変更できるようになってお
り、それにより両ベルト駆動系8,8の直線部分9A,
9Aの間隔を半導体ウエハー3の直径に応じて調節可能
となっている。それに伴って、前記張設プーリ11Cも
位置を変更できるようになっている。但し、予め定まっ
た大きさの半導体ウエハー3を洗浄する場合には、前記
従動プーリ11A,11Bは固定しても良い。
The belt drive system 8 has one end fixed to the outside of the cleaning tank 1 and is provided on a belt holding member 14 extending from the upper portion of the cleaning tank 1 into ultrapure water.
Driven pulleys 11A and 11B are arranged on the upper and lower sides of the cleaning area, the portion of the belt 9 between the driven pulleys 11A and 11B forms the linear portion 9A, and the drive pulley 12 is arranged on the upper outer side, The belt 9 between the drive pulley 12 and the driven pulley 11B below is pressed to press the belt 9.
Is provided with a tension pulley 11C for maintaining the tension at a predetermined tension. Here, the upper and lower driven pulleys 11A, 1
1B is adapted to be able to change the position in the horizontal direction, so that the linear portions 9A of both belt drive systems 8 and 8,
The distance of 9 A can be adjusted according to the diameter of the semiconductor wafer 3. Along with this, the tension pulley 11C can also be changed in position. However, when cleaning the semiconductor wafer 3 having a predetermined size, the driven pulleys 11A and 11B may be fixed.

【0032】前記各プーリ11,…や駆動プーリ12
は、超純水中に浸漬されるので、その軸受部分からパー
ティクルや有機不純物が発生しないように、流体軸受機
構を採用するとともに、前記駆動プーリ12の回転軸1
5と洗浄槽1の外部に配したモータ13とは完全に遮断
した上でマグネットカップリング16で回転を伝達する
ようにしている。
.. and drive pulley 12
Is immersed in ultrapure water, a fluid bearing mechanism is adopted so that particles and organic impurities are not generated from the bearing portion thereof, and the rotary shaft 1 of the drive pulley 12 is used.
The motor 5 arranged outside the cleaning tank 1 is completely cut off, and the rotation is transmitted by the magnetic coupling 16.

【0033】また、前記高圧ノズル2は、一端を洗浄槽
1の外部に保持し、該洗浄槽1の上部から超純水中へ延
びたノズル保持部材17の下端部に設けられており、該
高圧ノズル2の超純水噴射方向を、半導体ウエハー3
(被洗浄物)の表面に対して0〜90度の角度に調節可
能としている。それぞれ高圧ノズル2を設けた各ノズル
保持部材17,17は、ノズル間の間隔を調節できるよ
うに、洗浄槽1の外部に配したリニア駆動機構18を介
して該洗浄槽1に取付けられている。ここで、リニア駆
動機構18としては、リニアガイドとエアーシリンダー
若しくはボールネジ送り装置等で構成されている。
The high-pressure nozzle 2 has one end held outside the cleaning tank 1 and is provided at the lower end of a nozzle holding member 17 extending from the upper portion of the cleaning tank 1 into ultrapure water. The direction in which the high-pressure nozzle 2 jets ultrapure water is changed to the semiconductor wafer 3
It can be adjusted to an angle of 0 to 90 degrees with respect to the surface of (the object to be cleaned). Each of the nozzle holding members 17, 17 provided with the high-pressure nozzle 2 is attached to the cleaning tank 1 via a linear drive mechanism 18 arranged outside the cleaning tank 1 so that the distance between the nozzles can be adjusted. . Here, the linear drive mechanism 18 includes a linear guide and an air cylinder or a ball screw feeder.

【0034】ここで、前記各ベルト駆動系8,8の駆動
プーリ12,12の回転速度は、独立して設定可能であ
り、両ベルト9,9をその直線部分9A,9Aの送り速
度を同調させて同一方向に駆動することで半導体ウエハ
ー3(被洗浄物)を非回転状態で洗浄領域に供給し又は
洗浄領域から回収し、あるいは両ベルト9,9をその直
線部分9A,9Aの送り速度を非同調させて駆動するこ
とで半導体ウエハー3(被洗浄物)を回転させながら洗
浄領域に供給し又は洗浄領域から回収し、あるいは両ベ
ルト9,9をその直線部分9A,9Aの送り速度を同調
させて逆方向に駆動することで半導体ウエハー3(被洗
浄物)を定位置で回転させることが可能である。
Here, the rotational speeds of the drive pulleys 12, 12 of the belt drive systems 8, 8 can be independently set, and the two belts 9, 9 are synchronized with the feed speed of the linear portions 9A, 9A. Then, the semiconductor wafer 3 (object to be cleaned) is supplied to the cleaning area in a non-rotating state or recovered from the cleaning area by driving in the same direction, or both belts 9 and 9 are fed at their linear portions 9A and 9A. The semiconductor wafer 3 (object to be cleaned) is supplied to the cleaning area or recovered from the cleaning area by rotating the semiconductor wafer 3 (object to be cleaned) by rotating the belts 9 and 9 at the feed rate of the linear portions 9A and 9A. It is possible to rotate the semiconductor wafer 3 (object to be cleaned) at a fixed position by synchronizing and driving in the opposite direction.

【0035】尚、半導体ウエハー3には、位置決め用の
カット部が外周に存在するため、半導体ウエハー3を回
転させながら洗浄を行うとは、完全に一回転させるので
はなく、高速剪断流の方向に対して洗浄面の向きを変え
て洗浄を行うことを意味している。勿論、被洗浄物を回
転させながら洗浄する必要があるのは、被洗浄物を非回
転状態で洗浄する場合より洗浄効果に優れる場合に限
る。
Since the semiconductor wafer 3 has a cut portion for positioning on the outer periphery, cleaning while rotating the semiconductor wafer 3 does not mean that the semiconductor wafer 3 is rotated completely once but the direction of the high-speed shear flow. It means that the cleaning is performed by changing the direction of the cleaning surface. Needless to say, it is necessary to clean the object to be cleaned while rotating it only when the cleaning effect is better than when cleaning the object to be cleaned in the non-rotating state.

【0036】前記高圧ノズル2は、図6〜図7に詳しく
示している。この高圧ノズル2は、1000気圧までの
超高圧に耐えられるように設計されており、先端には横
幅150mm、縦幅50μmのスリット状の吐出口19
が設けられている。前記高圧ノズル2は、SUS製のブ
ロック体からなる本体部20の内部に側方から先端側へ
向かう流路21を形成し、該流路21の出口部分に二つ
の口金22,22を重合した状態で、固定金具23で本
体部20に固定し、該口金22,22の間に前記吐出口
19を形成している。従って、前記口金22,22を交
換することで、吐出口19の寸法を変更することができ
る。この高圧ノズル2は、前記ノズル保持部材17に角
度変更可能に取付けられており、加圧超純水供給系24
に接続されている。
The high-pressure nozzle 2 is shown in detail in FIGS. This high-pressure nozzle 2 is designed to withstand ultra-high pressure up to 1000 atm, and has a slit-shaped discharge port 19 with a width of 150 mm and a length of 50 μm at the tip.
Is provided. The high-pressure nozzle 2 has a flow passage 21 extending from the side to the tip side inside a main body 20 made of a block body made of SUS, and two outlets 22 and 22 are superposed on the outlet portion of the flow passage 21. In this state, it is fixed to the main body 20 with the fixing metal fitting 23, and the discharge port 19 is formed between the caps 22 and 22. Therefore, the dimensions of the discharge port 19 can be changed by exchanging the caps 22, 22. The high pressure nozzle 2 is attached to the nozzle holding member 17 so that the angle can be changed, and the pressurized ultrapure water supply system 24 is provided.
It is connected to the.

【0037】このように、洗浄槽1内の超純水中に配し
た一対の高圧ノズル2,2の吐出口19,19から高圧
超純水を噴出させ、その間の洗浄領域に前記ウエハー駆
動機構4の両ベルト9,9の直線部分9A,9Aに縁部
を弾性的に保持された半導体ウエハー3を供給して、そ
の両面を同時に洗浄するのである。洗浄後の超純水は、
逆流防止構造となった洗浄槽1の下部から排出されて、
超純水の循環系7の送られて精密濾過され、加圧装置で
所定圧力に加圧されて加圧超純水供給系24を通して高
圧ノズル2から再度噴出させるのである。
As described above, the high-pressure ultrapure water is jetted from the discharge ports 19, 19 of the pair of high-pressure nozzles 2 arranged in the ultrapure water in the cleaning tank 1, and the wafer driving mechanism is provided in the cleaning area between them. The semiconductor wafer 3 whose edges are elastically held is supplied to the linear portions 9A and 9A of both belts 4 and 9 of No. 4, and both surfaces thereof are simultaneously cleaned. The ultrapure water after cleaning is
It is discharged from the lower part of the washing tank 1 that has a backflow prevention structure,
The ultrapure water circulation system 7 is sent to perform microfiltration, pressurizes it to a predetermined pressure by a pressurizing device, and ejects it again from the high-pressure nozzle 2 through the pressurized ultrapure water supply system 24.

【0038】図9〜図12は、本発明の超精密洗浄装置
の第2実施形態を示している。本実施形態の超精密洗浄
装置は、第1実施形態とは異なる構造のウエハー駆動機
構4を採用したものである。即ち、このウエハー駆動機
構4は、互いに間隔を設けて平行移動可能となした一対
のアーム25,25の各先端部内側に、内面側に前記半
導体ウエハー3の縁部を嵌合する溝27を形成した保持
部材26を互いに平行に張設し、両保持部材26,26
の溝27,27に前記半導体ウエハー3の縁部を弾性的
に保持し、両アーム25,25を同調させて同一方向に
駆動することで前記半導体ウエハー3を洗浄領域に供給
し又は洗浄領域から回収する構造である。
9 to 12 show a second embodiment of the ultra-precision cleaning device of the present invention. The ultra-precision cleaning apparatus of this embodiment employs a wafer drive mechanism 4 having a structure different from that of the first embodiment. That is, the wafer drive mechanism 4 has a groove 27 on the inner surface side for fitting the edge portion of the semiconductor wafer 3 inside the respective tip end portions of the pair of arms 25, 25 which are spaced apart from each other and can be moved in parallel. The formed holding members 26 are stretched in parallel with each other, and both holding members 26, 26
The edges of the semiconductor wafer 3 are elastically held in the grooves 27, 27, and both arms 25, 25 are synchronized and driven in the same direction to supply the semiconductor wafer 3 to or from the cleaning area. It is a structure to collect.

【0039】更に詳しくは、前記洗浄槽1の外部上部に
取付けた垂直リニア駆動機構28の可動部29に、水平
リニア駆動機構30を取付け、その可動部31に前記ア
ーム25の上端部を固定している。従って、両水平リニ
ア駆動機構30,30を互いに接近する方向へ駆動して
アーム25,25の先端部に張設した保持部材26,2
6間に半導体ウエハー3を挟持し、それから両垂直リニ
ア駆動機構28,28を同調させて下方へ駆動すること
で、半導体ウエハー3を両高圧ノズル2,2間の洗浄領
域に供給するのである。また、洗浄後の半導体ウエハー
3を回収するには、両垂直リニア駆動機構28,28を
同調させて上方へ駆動し、両水平リニア駆動機構30,
30を互いに離れる方向へ駆動して半導体ウエハー3を
取り外すのである。
More specifically, the horizontal linear drive mechanism 30 is attached to the movable portion 29 of the vertical linear drive mechanism 28 attached to the outer upper portion of the cleaning tank 1, and the upper end portion of the arm 25 is fixed to the movable portion 31. ing. Therefore, the two horizontal linear drive mechanisms 30, 30 are driven in the directions in which they approach each other, and the holding members 26, 2 stretched on the tips of the arms 25, 25.
The semiconductor wafer 3 is sandwiched between 6 and then both vertical linear drive mechanisms 28, 28 are synchronized and driven downward, so that the semiconductor wafer 3 is supplied to the cleaning region between both high pressure nozzles 2, 2. Further, in order to collect the semiconductor wafer 3 after cleaning, both vertical linear drive mechanisms 28, 28 are synchronized and driven upward, and both horizontal linear drive mechanisms 30,
The semiconductor wafer 3 is removed by driving the 30 away from each other.

【0040】また、前記高圧ノズル2の角度を調節する
ために、ノズル保持部材17の先端に高圧ノズル2の本
体部20を回動可能に取付けるとともに、該高圧ノズル
2をリンク機構32を介して角度調節機構33にて駆動
している。
In order to adjust the angle of the high pressure nozzle 2, the main body 20 of the high pressure nozzle 2 is rotatably attached to the tip of the nozzle holding member 17, and the high pressure nozzle 2 is connected via a link mechanism 32. It is driven by the angle adjusting mechanism 33.

【0041】[0041]

【発明の効果】以上にしてなる本発明の超精密洗浄装置
は、薬液等一切使わず、超純水のみの清浄な環境下にお
いて半導体ウエハー等の扁平状の被洗浄物に付着した金
属イオンや粒径0.01μmオーダーの異物微粒子を除
去することができる。用途としては、例えば半導体ウエ
ハーの超精密洗浄装置として、特に将来の高集積化半導
体ウエハーの標準的な超精密洗浄装置として期待できる
ばかりでなく、シンクロトン放射ミラーや超高性能なX
線ミラー等の超精密光学部品の洗浄装置としても期待で
きる。また、この技術は液晶、磁性薄膜などの洗浄工程
にも適用可能である。更に、各種製造業のほぼ全分野
で、洗浄技術は必須であり、最近問題視されている環境
面からも非常に有効である。
The ultra-precision cleaning apparatus of the present invention as described above does not use chemicals or the like, and does not use metal ions adhering to flat objects to be cleaned such as semiconductor wafers in a clean environment of only ultrapure water. It is possible to remove foreign particles having a particle size of 0.01 μm order. As an application, for example, not only can it be expected as an ultra-precision cleaning apparatus for semiconductor wafers, especially as a standard ultra-precision cleaning apparatus for highly integrated semiconductor wafers in the future, but also as a synchroton radiation mirror and an ultra-high performance X
It can also be expected as a cleaning device for ultra-precision optical components such as line mirrors. Further, this technique can be applied to a cleaning process for liquid crystals, magnetic thin films, and the like. Furthermore, cleaning technology is essential in almost all fields of various manufacturing industries, and is very effective from the environmental aspect, which has recently been regarded as a problem.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の洗浄原理を示す説明図である。FIG. 1 is an explanatory diagram showing the cleaning principle of the present invention.

【図2】第1実施形態の超精密洗浄装置の概念図であ
る。
FIG. 2 is a conceptual diagram of an ultra-precision cleaning device according to the first embodiment.

【図3】同じく部分縦断正面図である。FIG. 3 is a partially vertical front view of the same.

【図4】同じく部分縦断側面図である。FIG. 4 is likewise a partial vertical cross-sectional side view.

【図5】同じく平面図である。FIG. 5 is a plan view of the same.

【図6】高圧ノズルの側面図である。FIG. 6 is a side view of a high pressure nozzle.

【図7】同じく高圧ノズルの平面図である。FIG. 7 is a plan view of the same high pressure nozzle.

【図8】同じく高圧ノズルの正面図である。FIG. 8 is a front view of the same high pressure nozzle.

【図9】第2実施形態の超精密洗浄装置の部分縦断正面
図である。
FIG. 9 is a partial vertical sectional front view of the ultra-precision cleaning device of the second embodiment.

【図10】同じく部分縦断側面図である。FIG. 10 is a partial vertical sectional side view of the same.

【図11】同じく平面図である。FIG. 11 is a plan view of the same.

【図12】両アームの先端間に半導体ウエハーを保持し
た状態の部分拡大正面図である。
FIG. 12 is a partially enlarged front view showing a state in which a semiconductor wafer is held between the tips of both arms.

【符号の説明】[Explanation of symbols]

1 洗浄槽 2 高圧ノズル 3 半導体ウエハー(被洗浄物) 4 ウエハー駆動機構 5 イオン交換材料 6 イオン輸送用電極 7 超純水の循環系 8 ベルト駆動系 9 ベルト 9A ベルトの直線部分 10 溝 11 プーリ 11A,11B 従動プーリ 11C 張設プーリ 11C 張設プーリ 12 駆動プーリ 13 モータ 14 ベルト保持部材 15 回転軸 16 マグネットカップリング 17 ノズル保持部材 18 リニア駆動機構 19 吐出口 20 本体部 21 流路 22 口金 23 固定金具 24 加圧超純水供給系 25 アーム 26 保持部材 27 溝 28 垂直リニア駆動機構 29 可動部 30 水平リニア駆動機構 31 可動部 32 リンク機構 33 角度調節機構 1 cleaning tank 2 high pressure nozzle 3 Semiconductor wafer (object to be cleaned) 4 Wafer drive mechanism 5 Ion exchange material 6 Ion transport electrodes 7 Ultrapure water circulation system 8 Belt drive system 9 belt 9A Belt straight section 10 grooves 11 pulley 11A, 11B driven pulley 11C tension pulley 11C tension pulley 12 Drive pulley 13 motor 14 Belt holding member 15 rotation axis 16 Magnet coupling 17 Nozzle holding member 18 Linear drive mechanism 19 outlets 20 body 21 channel 22 Clasp 23 Fixing bracket 24 pressurized ultrapure water supply system 25 arms 26 Holding member 27 grooves 28 Vertical linear drive mechanism 29 Moving part 30 Horizontal linear drive mechanism 31 Moving part 32 link mechanism 33 Angle adjustment mechanism

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 超純水を満たした洗浄槽内に、高圧力の
超純水を洗浄領域に噴射する単又は複数の高圧ノズルを
配設し、被洗浄物の縁部を保持して前記洗浄領域を横切
るように該被洗浄物を供給し且つ洗浄後回収するウエハ
ー駆動機構を備え、前記被洗浄物の表面近傍に高圧ノズ
ルから噴射した超純水の高速剪断流を発生させて洗浄
し、洗浄槽内の超純水中に溶け込んだ微粒子を濾過器で
除去して再度洗浄槽内に供給する循環系を備えてなるこ
とを特徴とする超精密洗浄装置。
1. A single or a plurality of high-pressure nozzles for injecting high-pressure ultrapure water into a cleaning region is provided in a cleaning tank filled with ultrapure water, and the edge of an object to be cleaned is held. A wafer drive mechanism that supplies the object to be cleaned across the cleaning area and recovers the object after cleaning is provided, and a high-speed shear flow of ultrapure water injected from a high-pressure nozzle is generated near the surface of the object to be cleaned for cleaning. An ultra-precision cleaning device comprising a circulation system for removing fine particles dissolved in ultrapure water in a cleaning tank with a filter and supplying the particles again into the cleaning tank.
【請求項2】 超純水を満たした洗浄槽内に、高圧力の
超純水を噴射する一対又は複数対の高圧ノズルをその間
に洗浄領域を設けて鏡像対称位置に配設し、半導体ウエ
ハー等の扁平状の被洗浄物の縁部を保持して前記洗浄領
域を横切るように該被洗浄物を供給し且つ洗浄後回収す
るウエハー駆動機構を備え、前記被洗浄物の両面に対す
る圧力バランスを制御しつつ、該被洗浄物の両面に前記
高圧ノズルから超純水を噴射してなる請求項1記載の超
精密洗浄装置。
2. A semiconductor wafer in which a cleaning tank filled with ultrapure water is provided with a pair or a plurality of pairs of high-pressure nozzles for injecting high-pressure ultrapure water, and a cleaning region is provided between them in a mirror image symmetrical position. A wafer drive mechanism that holds the edge of a flat object to be cleaned and supplies the object to be cleaned so as to cross the cleaning area and recovers the object after cleaning is provided. The ultra-precision cleaning device according to claim 1, wherein ultra-pure water is sprayed from both the high-pressure nozzles onto both surfaces of the object to be cleaned while controlling.
【請求項3】 前記洗浄槽内又は超純水の循環系に、水
酸化物イオンを増加させるイオン交換材料又は触媒材料
を配してなる請求項1又は2記載の超精密洗浄装置。
3. The ultraprecision cleaning device according to claim 1, wherein an ion exchange material or a catalyst material for increasing hydroxide ions is arranged in the cleaning tank or in a circulation system of ultrapure water.
【請求項4】 前記洗浄槽内に、前記被洗浄物の電位よ
りも低い電位のイオン輸送用電極を配して、被洗浄物の
表面とイオン輸送用電極間に電位勾配を形成し、水酸化
物イオンを被洗浄物の表面に導くとともに、水素イオン
をイオン輸送用電極に導いてなる請求項1〜3何れかに
記載の超精密洗浄装置。
4. An ion transport electrode having a potential lower than the potential of the object to be cleaned is arranged in the cleaning tank to form a potential gradient between the surface of the object to be cleaned and the electrode for ion transportation, The ultraprecision cleaning device according to any one of claims 1 to 3, wherein the oxide ions are guided to the surface of the object to be cleaned and the hydrogen ions are guided to the electrode for ion transport.
【請求項5】 前記高圧ノズルの超純水噴射方向を、被
洗浄物の表面に対して0〜90度の角度に調節可能とし
てなる請求項1〜4何れかに記載の超精密洗浄装置。
5. The ultra-precision cleaning device according to claim 1, wherein the jet direction of the ultra-pure water of the high-pressure nozzle can be adjusted to an angle of 0 to 90 degrees with respect to the surface of the object to be cleaned.
【請求項6】 前記高圧ノズルの噴出口がスリット孔で
ある請求項1〜5何れかに記載の超精密洗浄装置。
6. The ultraprecision cleaning device according to claim 1, wherein the ejection port of the high-pressure nozzle is a slit hole.
【請求項7】 前記ウエハー駆動機構は、外周に前記被
洗浄物の縁部を嵌合する溝を形成した無端状ベルトを複
数のプーリで張設した二系統のベルト駆動系を有し、前
記洗浄領域を挟む両側に両ベルトの直線部分を互いに平
行に配し、両ベルトの直線部分の溝に前記被洗浄物の縁
部を弾性的に保持し、各ベルト駆動系の少なくとも一つ
のプーリを駆動プーリとしてモータで回転させて、両ベ
ルトを駆動することで前記被洗浄物を洗浄領域に供給し
又は洗浄領域から回収してなるものである請求項1〜6
何れかに記載の超精密洗浄装置。
7. The wafer drive mechanism has a two-system belt drive system in which an endless belt having a groove for fitting an edge portion of the object to be cleaned is formed on the outer periphery by a plurality of pulleys. Linear parts of both belts are arranged parallel to each other on both sides of the cleaning area, and the edges of the object to be cleaned are elastically held in the grooves of the linear parts of both belts, and at least one pulley of each belt drive system is provided. 7. The drive pulley is rotated by a motor and both belts are driven to supply or recover the object to be cleaned into the cleaning area.
The ultra-precision cleaning device according to any one of claims.
【請求項8】 前記各ベルト駆動系の駆動プーリの回転
速度は、独立して設定可能であり、両ベルトをその直線
部分の送り速度を同調させて同一方向に駆動することで
被洗浄物を非回転状態で洗浄領域に供給し又は洗浄領域
から回収し、あるいは両ベルトをその直線部分の送り速
度を非同調させて駆動することで被洗浄物を回転させな
がら洗浄領域に供給し又は洗浄領域から回収し、あるい
は両ベルトをその直線部分の送り速度を同調させて逆方
向に駆動することで被洗浄物を定位置で回転させてなる
請求項7記載の超精密洗浄装置。
8. The rotational speed of the drive pulley of each belt drive system can be set independently, and both belts are driven in the same direction by synchronizing the feed speeds of their linear portions to drive the object to be cleaned. It is supplied to the cleaning area in a non-rotating state or is recovered from the cleaning area, or both belts are driven by non-synchronizing the feed speeds of their linear portions to supply the cleaning object while rotating the object to be cleaned or the cleaning area. 8. The ultra-precision cleaning device according to claim 7, wherein the object to be cleaned is rotated at a fixed position by recovering from the belt or driving both belts in the opposite directions by synchronizing the feed speeds of the linear portions thereof.
【請求項9】 前記ウエハー駆動機構は、互いに間隔を
設けて平行移動可能となした一対のアームの各先端部内
側に、内面側に前記被洗浄物の縁部を嵌合する溝を形成
した保持部材を互いに平行に張設し、両保持部材の溝に
前記被洗浄物の縁部を弾性的に保持し、両アームを同調
させて同一方向に駆動することで前記被洗浄物を洗浄領
域に供給し又は洗浄領域から回収してなるものである請
求項1〜6何れかに記載の超精密洗浄装置。
9. The wafer drive mechanism has a pair of arms, which are arranged in parallel with each other and are spaced apart from each other, and each of which has a pair of arms formed with a groove formed on an inner surface thereof so as to fit an edge portion of the object to be cleaned, inside each tip portion. Holding members are stretched in parallel with each other, the edges of the object to be cleaned are elastically held in the grooves of both holding members, and both arms are synchronized and driven in the same direction to wash the object to be cleaned. The ultra-precision cleaning device according to any one of claims 1 to 6, wherein the ultra-precision cleaning device is supplied to or recovered from the cleaning area.
JP2001318191A 2001-10-16 2001-10-16 Ultra-precision cleaning apparatus Pending JP2003117499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001318191A JP2003117499A (en) 2001-10-16 2001-10-16 Ultra-precision cleaning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001318191A JP2003117499A (en) 2001-10-16 2001-10-16 Ultra-precision cleaning apparatus

Publications (1)

Publication Number Publication Date
JP2003117499A true JP2003117499A (en) 2003-04-22

Family

ID=19135945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001318191A Pending JP2003117499A (en) 2001-10-16 2001-10-16 Ultra-precision cleaning apparatus

Country Status (1)

Country Link
JP (1) JP2003117499A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012230253A (en) * 2011-04-26 2012-11-22 Osaka Univ Method of cleaning substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012230253A (en) * 2011-04-26 2012-11-22 Osaka Univ Method of cleaning substrate

Similar Documents

Publication Publication Date Title
US7198055B2 (en) Meniscus, vacuum, IPA vapor, drying manifold
US7000622B2 (en) Methods and systems for processing a bevel edge of a substrate using a dynamic liquid meniscus
US8327861B2 (en) Megasonic precision cleaning of semiconductor process equipment components and parts
EP1612845B1 (en) Cleaning Apparatus and Method
US7234477B2 (en) Method and apparatus for drying semiconductor wafer surfaces using a plurality of inlets and outlets held in close proximity to the wafer surfaces
US7127831B2 (en) Methods and systems for processing a substrate using a dynamic liquid meniscus
EP2169706A1 (en) Method and apparatus for processing wafer surfaces
EP1582269A1 (en) Proximity meniscus manifold
KR101350022B1 (en) Apparatus and method for edge processing of a sheet of brittle material
KR100563843B1 (en) Processing apparatus and processing method
JP2015193105A (en) Plate cleaning device
JP2003117499A (en) Ultra-precision cleaning apparatus
KR102157973B1 (en) Foreign matter removal device and foreign matter removal method
JP2007201186A (en) Substrate cleaning device and substrate cleaning method
US20170361361A1 (en) Apparatus for particle cleaning
JP2000167770A (en) Machining method by high speed shear stream
JP3635951B2 (en) Cleaning method with hydroxide ions in ultrapure water
JP2006122784A (en) Substrate washing method and substrate washing apparatus
KR20040029578A (en) A device for cleaning wafer by a megasonic cleaner
KR100849591B1 (en) Nozzle for supplying treatment liquid and substrate treating apparatus
JPH07155709A (en) Precision washing method and device therefor
US20070181442A1 (en) Method and apparatus for foam removal in an electrochemical mechanical substrate polishing process
JP2000173965A (en) Cleaning method by high-speed shear flow
JPH01151975A (en) Washing method
CN118103968A (en) Surface cleaning with directed high pressure chemicals

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040928

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070315

A131 Notification of reasons for refusal

Effective date: 20070327

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070413

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20070710

Free format text: JAPANESE INTERMEDIATE CODE: A02