JP2006122784A - Substrate washing method and substrate washing apparatus - Google Patents

Substrate washing method and substrate washing apparatus Download PDF

Info

Publication number
JP2006122784A
JP2006122784A JP2004312740A JP2004312740A JP2006122784A JP 2006122784 A JP2006122784 A JP 2006122784A JP 2004312740 A JP2004312740 A JP 2004312740A JP 2004312740 A JP2004312740 A JP 2004312740A JP 2006122784 A JP2006122784 A JP 2006122784A
Authority
JP
Japan
Prior art keywords
substrate
cleaned
pure water
liquid film
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004312740A
Other languages
Japanese (ja)
Inventor
Kenichi Morita
健一 森田
Yuzo Mori
勇藏 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004312740A priority Critical patent/JP2006122784A/en
Publication of JP2006122784A publication Critical patent/JP2006122784A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate washing method capable of continuously performing the peeling and removal of the pollutant on a substrate from the surface of the substrate and the extrusion of the pollutant to the outside of the substrate using only pure water but not using a chemical liquid of a high concentration without using a plurality of chemical liquid tanks, pin water discharge devices and the like, and a substrate washing apparatus. <P>SOLUTION: The substrate 1 is held to an inclined posture so as to form angle θ1 of inclination with respect to a horizontal surface 2 and pure water in a pressurized state is ejected to the surface 1a to be washed of the substrate 1 from a pure water jet means 3 so as to leave an interval d1 from the surface 1a to be washed to form a liquid film 7 flowing on the surface 1a to be washed in one direction from the upper part to the lower part of the substrate 1 to remove the pollutant on the surface 1a to be washed of the substrate 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、基板洗浄方法および洗浄装置に関する。   The present invention relates to a substrate cleaning method and a cleaning apparatus.

現在、半導体基板などを用いて電子デバイスを製造するに際しては、半導体基板(以後単に「基板」と称す)表面に付着する基板汚染物が電子デバイスの動作不良を引き起こし易いことから、基板表面を洗浄し、表面に付着する基板汚染物を除去することが必要不可欠である。基板汚染物としては、たとえば、微粒子(パーティクル)、金属粒子、金属化合物、有機物などが挙げられる。また、電子デバイス製造工程においては多種多様な洗浄方法が開発され実用化されているけれども、前記のような基板汚染物の除去には、薬液を用いる洗浄(以後「薬液洗浄」と称す)が一般的である。薬液洗浄は、基板を薬液中に浸漬し、薬液に含まれる有効成分と基板表面の基板汚染物との化学反応を利用して、基板表面の基板汚染物を除去するものであり、その代表例として、RCA洗浄法が挙げられる。   Currently, when manufacturing an electronic device using a semiconductor substrate or the like, the substrate contamination that adheres to the surface of the semiconductor substrate (hereinafter simply referred to as “substrate”) tends to cause malfunction of the electronic device. In addition, it is essential to remove substrate contaminants attached to the surface. Examples of substrate contaminants include fine particles (particles), metal particles, metal compounds, and organic substances. In addition, a wide variety of cleaning methods have been developed and put into practical use in the electronic device manufacturing process, but cleaning using chemicals (hereinafter referred to as “chemical cleaning”) is generally used to remove substrate contaminants as described above. Is. In chemical cleaning, a substrate is immersed in a chemical solution and the substrate contamination on the substrate surface is removed by utilizing a chemical reaction between the active ingredient contained in the chemical solution and the substrate contamination on the substrate surface. As an example, an RCA cleaning method may be used.

しかしながら、前記したように基板汚染物には数種の物質があり、それぞれの化学反応性が異なるので、一度の薬液洗浄で全ての基板汚染物を除去することは困難である。したがって、現状では、薬液を変えて、複数回の薬液洗浄が行なわれる。その場合、複数の薬液槽を用いるかまたは一回の洗浄毎に薬液槽内の薬液を入れ換えることが必要になる。しかしながら、複数の薬液槽を用いると、洗浄設備が大型化および複雑化するという問題が生じる。また、薬液を入れ換えるには、薬液槽自体の洗浄が必要になるので、操作が繁雑になりかつ薬液の入れ換えおよび薬液槽の洗浄に長時間を要するという問題が生じる。また、薬液中には、主に、水酸化アンモニウム、過酸化水素、塩酸、硫酸、フッ化水素、フッ化アンモニウムなどの、環境に大きな負荷を与える化学物質が高濃度で含まれ、薬液の使用量も多いので、使用済の薬液を処理する設備が必要になる。   However, as described above, there are several kinds of substrate contaminants, and their chemical reactivity is different. Therefore, it is difficult to remove all substrate contaminants with a single chemical cleaning. Therefore, under the present circumstances, the chemical solution is washed multiple times by changing the chemical solution. In that case, it is necessary to use a plurality of chemical tanks or to replace the chemical liquid in the chemical tank for each cleaning. However, when a plurality of chemical tanks are used, there arises a problem that the cleaning equipment is enlarged and complicated. In addition, since the chemical tank itself needs to be cleaned in order to replace the chemical liquid, there is a problem that the operation becomes complicated and it takes a long time to replace the chemical liquid and clean the chemical tank. In addition, chemicals contain high concentrations of chemical substances that have a large environmental impact, such as ammonium hydroxide, hydrogen peroxide, hydrochloric acid, sulfuric acid, hydrogen fluoride, and ammonium fluoride. Since the amount is also large, equipment for processing used chemicals is required.

このような現状に鑑み、たとえば、基板に向けて液体を吐出しつつ前記液体に超音波を印加して超音波洗浄を行う超音波洗浄手段と、超音波洗浄手段とは異なる位置に設けられ、超音波が印加された液体が基板上に存在する領域に向けて高圧液体を噴射する高圧洗浄手段とを含み、超音波洗浄手段から基板の被洗浄面に吐出され、被洗浄面に沿って流過する超音波印加液体に向けて、高圧洗浄手段が高圧液体を噴射し、超音波洗浄と高圧洗浄とを複合して実施することを特徴とする基板洗浄装置が提案されている(たとえば、特許文献1参照)。そして、超音波洗浄手段から吐出される液体および高圧洗浄手段から噴射される液体には、いずれも、超純水が用いられる。特許文献1の基板洗浄装置は、薬液を用いることなく、超音波および圧力という物理的エネルギを付加した純水により、基板表面に付着する微粒子の中でも、相対的に粒径の大きな微粒子を除去するものである。しかしながら、この基板洗浄装置により、基板表面上の微粒子が除去される領域は、主に、超音波が作用する「点」状または「線」状の狭い領域に限定され、基板表面の全ての微粒子をほぼ完全に除去できるわけではない。したがって、微粒子の除去効率を向上させるためには、超音波が作用しない領域の微粒子を基板表面から離反させる装置、基板表面から離反した微粒子を基板面外に排出する装置など、複数の余分な装置が必要になる。さらに特許文献1の基板洗浄装置は、基板表面に付着する相対的に粒径の大きな粒子のみを除去するものであり、それ以外の粒径の小さな微粒子、金属粒子、金属化合物、有機物などの基板汚染物を充分に除去するものではない。したがって、粒径の大きな粒子以外の基板汚染物の除去には、従来と同様に薬液洗浄を複数回実施する必要があり、従来の問題を解決するには至っていない。   In view of such a current situation, for example, an ultrasonic cleaning means for performing ultrasonic cleaning by applying ultrasonic waves to the liquid while discharging the liquid toward the substrate, and the ultrasonic cleaning means are provided at different positions, High-pressure cleaning means for jetting high-pressure liquid toward the area where the liquid to which ultrasonic waves are applied is present on the substrate, and is discharged from the ultrasonic cleaning means onto the surface to be cleaned and flows along the surface to be cleaned. A substrate cleaning apparatus has been proposed in which a high-pressure cleaning means jets a high-pressure liquid toward an ultrasonically applied liquid, and the ultrasonic cleaning and high-pressure cleaning are performed in combination (for example, a patent) Reference 1). Ultrapure water is used for both the liquid discharged from the ultrasonic cleaning means and the liquid ejected from the high pressure cleaning means. The substrate cleaning apparatus of Patent Document 1 removes fine particles having a relatively large particle size from among fine particles adhering to the substrate surface by using pure water to which physical energy such as ultrasonic waves and pressure is applied without using a chemical solution. Is. However, the area where fine particles on the substrate surface are removed by this substrate cleaning apparatus is mainly limited to a narrow area of “dot” shape or “line” shape where ultrasonic waves act, and all fine particles on the substrate surface Cannot be removed almost completely. Therefore, in order to improve the removal efficiency of fine particles, a plurality of extra devices such as a device that separates fine particles in a region where ultrasonic waves do not act from the substrate surface, a device that discharges fine particles separated from the substrate surface to the outside of the substrate surface, etc. Is required. Furthermore, the substrate cleaning apparatus of Patent Document 1 removes only particles having a relatively large particle size adhering to the substrate surface, and other substrates such as fine particles, metal particles, metal compounds, and organic substances having a small particle size. It does not remove contaminants sufficiently. Therefore, in order to remove substrate contaminants other than particles having a large particle size, it is necessary to carry out chemical cleaning a plurality of times in the same manner as in the past, and the conventional problems have not been solved.

また、純水を用いて基板を洗浄する、別形態の基板洗浄装置が提案されている(たとえば、特許文献2参照)。図13は基板洗浄装置100の構成を模式的に示す側面図である。図14は、基板洗浄装置100における基板Wの搬送姿勢を説明するための矢符103の方向から見た側面図である。基板洗浄装置100は、主に、液晶ディスプレイ、プラズマディスプレイなどの大型化に伴って要望される大型基板の洗浄を目的とするものであり、洗浄槽101内に、基板Wを矢符103の方向に搬送する搬送ローラ102と、基板W搬送方向の上流側から順に設けられ、基板Wに純水を噴射して基板Wを洗浄する洗浄部104,105,106,107,108と、基板Wの上方から基板Wに対して、その搬送路に交差するようにカーテン状の水流を噴射する水流噴射部109,110,111,112,113とを含んで構成される。洗浄部104は、基板Wの下面側に設けられ、基板Wをブラシ洗浄する洗浄ブラシ114と、低圧の純水を噴射する吐出部115,116,117とを含む。洗浄部105は、低圧の純水を噴射する吐出部118,119を含む。洗浄部106は、高圧の純水を噴射する吐出部120,121を含む。洗浄部107は、純水とエア(気体)との混合流体を噴射する吐出部122と、高圧の純水を噴射する吐出部123とを含む。洗浄部108は、純水を噴射する吐出部124,125を含む。図14に示すように、基板洗浄装置100において、基板Wは水平線130に対して一方の端部の方が他方の端部よりも離反距離が大きい傾斜姿勢で搬送ローラ102上に載置され、図14の紙面に対して垂直方向である矢符103の搬送方向に搬送される。   Another type of substrate cleaning apparatus that cleans a substrate using pure water has been proposed (see, for example, Patent Document 2). FIG. 13 is a side view schematically showing the configuration of the substrate cleaning apparatus 100. FIG. 14 is a side view seen from the direction of arrow 103 for explaining the transport posture of the substrate W in the substrate cleaning apparatus 100. The substrate cleaning apparatus 100 is mainly intended for cleaning a large substrate that is required in accordance with an increase in size of a liquid crystal display, a plasma display, and the like, and the substrate W is placed in a direction indicated by an arrow 103 in the cleaning tank 101. A cleaning roller 104, 105, 106, 107, and 108 for cleaning the substrate W by spraying pure water onto the substrate W; A water flow injection unit 109, 110, 111, 112, 113 that injects a curtain-like water flow to the substrate W from above so as to cross the conveyance path. The cleaning unit 104 is provided on the lower surface side of the substrate W, and includes a cleaning brush 114 that brush-cleans the substrate W, and discharge units 115, 116, and 117 that eject low-pressure pure water. The cleaning unit 105 includes discharge units 118 and 119 that inject low-pressure pure water. The cleaning unit 106 includes discharge units 120 and 121 that inject high-pressure pure water. The cleaning unit 107 includes a discharge unit 122 that jets a mixed fluid of pure water and air (gas), and a discharge unit 123 that jets high-pressure pure water. The cleaning unit 108 includes discharge units 124 and 125 that inject pure water. As shown in FIG. 14, in the substrate cleaning apparatus 100, the substrate W is placed on the transport roller 102 in an inclined posture in which one end with respect to the horizontal line 130 has a larger separation distance than the other end. It is conveyed in the conveying direction of an arrow 103 that is perpendicular to the paper surface of FIG.

基板洗浄装置100によれば、基板Wを搬送ローラ102に載置し、矢符103の方向に搬送して多段階洗浄を行うために、その搬送経路に水流噴射部109,110,111,112,113と洗浄部104,105,106,107,108とを交互に設け、基板Wに無加圧または加圧の純水水流を噴射し、物理的エネルギを利用して微粒子の除去を行う。基板洗浄装置100では、その微粒子除去性能を向上させるために、洗浄液である純水の噴射量ひいては基板Wの表面における純水の流量を増やすことで、微粒子に付加される物理的エネルギを増大させようとする。しかしながら、基板Wの表面で流量を増やすと、厚みのある純水液膜が形成され、この純水液膜が基板W表面の微粒子に物理的エネルギが加わるのを阻害することが多い。したがって、基板洗浄装置100を用いても、充分な微粒子除去効果を得ることは困難である。加えて、基板洗浄装置100では、基板Wだけでなく、高圧の純水を噴射する吐出部120,121も基板Wに平行になるように傾斜姿勢で配置される。このため、吐出部120,121から噴射される加圧された純水水流は、基板Wの表面に対してほぼ垂直に噴射されるので、それによって、前記した厚みのある純水液膜が生成し易くなり、その厚みも一層大きくなり易い。さらに、吐出部120,121は、いずれも複数の吐出孔を有するので、基板Wの表面で液膜を構成する純水の一方向の流れが発生し難く、各吐出部から吐出される液流同士の衝突による基板W表面での滞留も起こり易い。その場合には、一旦剥離された微粒子の基板Wへの再付着が起こることが多い。   According to the substrate cleaning apparatus 100, in order to place the substrate W on the transport roller 102 and transport it in the direction of the arrow 103 to perform multi-stage cleaning, the water jets 109, 110, 111, and 112 are disposed in the transport path. 113 and cleaning units 104, 105, 106, 107, and 108 are alternately provided, a non-pressurized or pressurized pure water stream is sprayed onto the substrate W, and particulates are removed using physical energy. In the substrate cleaning apparatus 100, the physical energy added to the fine particles is increased by increasing the injection amount of pure water that is a cleaning liquid and the flow rate of pure water on the surface of the substrate W in order to improve the fine particle removal performance. Try to. However, when the flow rate is increased on the surface of the substrate W, a thick pure water liquid film is formed, and this pure water liquid film often inhibits physical energy from being applied to the fine particles on the surface of the substrate W. Therefore, even if the substrate cleaning apparatus 100 is used, it is difficult to obtain a sufficient particle removal effect. In addition, in the substrate cleaning apparatus 100, not only the substrate W but also the discharge units 120 and 121 that eject high-pressure pure water are arranged in an inclined posture so as to be parallel to the substrate W. For this reason, since the pressurized pure water stream sprayed from the discharge units 120 and 121 is sprayed substantially perpendicularly to the surface of the substrate W, the above-described thick pure water liquid film is generated. And its thickness tends to be even greater. Furthermore, since each of the discharge units 120 and 121 has a plurality of discharge holes, it is difficult for one-way flow of pure water constituting the liquid film on the surface of the substrate W to occur, and the liquid flow discharged from each discharge unit Retention on the surface of the substrate W due to collision between each other easily occurs. In that case, re-adhesion of fine particles once peeled off to the substrate W often occurs.

特許第3323384号明細書Japanese Patent No. 3323384 特開2004−74021号公報Japanese Patent Laid-Open No. 2004-74021

本発明の目的は、基板表面に付着する基板汚染物である微粒子、金属粉末、金属化合物、有機物などを、高濃度の薬液ではなく純水のみを用い、しかも複数の薬液槽および純水吐出装置を用いることなく、かつ基板汚染物の基板表面からの剥離除去と排除とを連続して行い得る基板洗浄方法および基板洗浄装置を提供することである。   An object of the present invention is to use fine water, fine powder, metal powder, metal compound, organic matter, and the like, which are substrate contaminants adhering to the substrate surface, using only pure water instead of high-concentration chemical liquid, and a plurality of chemical liquid tanks and pure water discharge devices It is an object to provide a substrate cleaning method and a substrate cleaning apparatus that can continuously remove and remove substrate contaminants from and from the substrate surface without using the substrate.

本発明は、水平面に対して角度をなすように載置される基板の被洗浄面に、被洗浄面から間隔を開けた純水噴射位置から加圧状態にある純水を噴射し、純水の被洗浄面上における上部から下部への一方向の流れである液膜を発生させ、被洗浄面の基板汚染物を除去することを特徴とする基板洗浄方法である。   The present invention sprays pure water under pressure from a pure water injection position spaced from the surface to be cleaned onto a surface to be cleaned placed at an angle with respect to a horizontal plane, The substrate cleaning method is characterized in that a liquid film that is a one-way flow from the upper part to the lower part on the surface to be cleaned is generated to remove substrate contaminants on the surface to be cleaned.

また本発明の基板洗浄方法は、前述の基板汚染物が微粒子、金属粒子、金属化合物および有機物から選ばれる1種または2種以上であることを特徴とする。   The substrate cleaning method of the present invention is characterized in that the substrate contamination is one or more selected from fine particles, metal particles, metal compounds and organic substances.

さらに本発明の基板洗浄方法は、前述の、水平面に対して基板のなす角度が5度以上90度以下であることを特徴とする。   Furthermore, the substrate cleaning method of the present invention is characterized in that the angle formed by the substrate with respect to the horizontal plane is not less than 5 degrees and not more than 90 degrees.

さらに本発明の基板洗浄方法は、前述の液膜の厚みが1mm未満であることを特徴とする。   Furthermore, the substrate cleaning method of the present invention is characterized in that the thickness of the liquid film is less than 1 mm.

さらに本発明の基板洗浄方法は、前述の、基板の被洗浄面と純水噴射位置との間隔が1mm以上50mm以下であることを特徴とする。   Furthermore, the substrate cleaning method of the present invention is characterized in that the distance between the surface to be cleaned of the substrate and the pure water injection position is 1 mm or more and 50 mm or less.

また本発明は、水平面に対して角度をなすように載置される基板の被洗浄面上において、純水の被洗浄面上における上部から下部への一方向の流れである液膜を発生させ、基板の被洗浄面に付着する基板汚染物を除去する基板洗浄装置であって、
基板を、水平面に対して角度をなす姿勢で保持する基板保持手段と、
基板保持手段に保持される基板の被洗浄面に対して間隔を開けて設けられ、被洗浄面に加圧状態にある純水を噴射する純水噴射手段とを含むことを特徴とする基板洗浄装置である。
Further, the present invention generates a liquid film that is a unidirectional flow from the upper part to the lower part on the surface to be cleaned on the surface to be cleaned on the surface to be cleaned placed at an angle with respect to the horizontal plane. A substrate cleaning apparatus for removing substrate contaminants adhering to the surface to be cleaned of the substrate,
Substrate holding means for holding the substrate in a posture that makes an angle with respect to a horizontal plane;
Substrate cleaning characterized by comprising pure water spraying means for spraying pure water in a pressurized state onto the surface to be cleaned, which is provided at an interval with respect to the surface to be cleaned held by the substrate holding means Device.

さらに本発明の基板洗浄装置は、前述の純水噴射手段が、複数の直径200μm以下の純水噴射孔を有し、かつ純水噴射孔が一直線上に配列するように形成されてなるノズルであることを特徴とする。   Furthermore, the substrate cleaning apparatus of the present invention is a nozzle in which the pure water injection means has a plurality of pure water injection holes having a diameter of 200 μm or less, and the pure water injection holes are arranged in a straight line. It is characterized by being.

さらに本発明の基板洗浄装置は、前述の純水噴射手段が、開口ギャップ200μm以下のスリットノズルであることを特徴とする。   Furthermore, the substrate cleaning apparatus of the present invention is characterized in that the pure water injection means is a slit nozzle having an opening gap of 200 μm or less.

さらに本発明の基板洗浄装置は、前述の純水噴射手段を、基板の被洗浄面に沿って上下動させる移動手段を含むことを特徴とする。   Further, the substrate cleaning apparatus of the present invention is characterized in that it includes a moving means for moving the pure water jetting means up and down along the surface to be cleaned of the substrate.

本発明によれば、水平面に対して一定の傾斜角度をなすように傾斜姿勢で保持される基板の被洗浄面に、該被洗浄面から間隔を開けて純水を高圧噴射することによって、被洗浄面上において、液膜を構成する純水の上部から下部への一方向の流れを発生させることができる。その結果、基板表面に付着する基板汚染物、たとえば微粒子、金属粒子、金属化合物、有機物などを完全に剥離除去できる。しかも、基板表面から剥離除去される基板汚染物は、一方向に流過する純水によって、剥離除去の後、直ちに基板外へ排除されるので、基板表面に再付着することがない。   According to the present invention, pure water is jetted onto the surface to be cleaned, which is held in an inclined posture so as to form a constant inclination angle with respect to the horizontal plane, at a distance from the surface to be cleaned. On the cleaning surface, it is possible to generate a unidirectional flow from the upper part to the lower part of pure water constituting the liquid film. As a result, substrate contaminants adhering to the substrate surface, such as fine particles, metal particles, metal compounds, and organic substances, can be completely removed. In addition, the substrate contaminants peeled and removed from the substrate surface are immediately removed from the substrate after the removal and removal by pure water flowing in one direction, so that they do not reattach to the substrate surface.

本発明の基板洗浄方法は洗浄力が強く、しかも、従来のように数種の薬剤を使用せず、純水のみを用いるだけ、微粒子だけでなく、金属粒子、金属化合物、有機物などをも完全に除去できる。したがって、複数の薬剤槽および使用後の薬剤を処理する設備を必要とせず、また単一の薬剤槽での薬剤の入れ換え作業などの繁雑な操作を必要としない。また、複数の純水吐出装置などを用いる多段階洗浄を行う必要もない。さらに本発明の基板洗浄方法は、特段の設備を必要とせず、基板を傾斜姿勢で保持する基板保持手段と、基板に純水を高圧噴射する純水噴射手段とがあれば実施可能なので、非常に簡易な設備で実施できるという長所がある。   The substrate cleaning method of the present invention has a strong cleaning power, and does not use several kinds of chemicals as in the prior art, but only pure water, and not only fine particles but also metal particles, metal compounds, organic substances, etc. Can be removed. Therefore, it does not require a plurality of medicine tanks and facilities for processing the medicine after use, and does not require complicated operations such as replacement of medicines in a single medicine tank. Further, it is not necessary to perform multi-stage cleaning using a plurality of pure water discharge devices. Furthermore, the substrate cleaning method of the present invention does not require any special equipment and can be carried out if there is a substrate holding means for holding the substrate in an inclined posture and a pure water injection means for high-pressure injection of pure water onto the substrate. It has the advantage that it can be implemented with simple equipment.

なお、本明細書において、微粒子とは、一般にパーティクルと呼ばれる有機または無機の塵埃であって、粒径が10μm以下のものを意味する。金属粒子とは、たとえば、重金属、貴金属などの金属原子、そのイオンなどを含む塊である微細粒子を意味する。金属化合物とは、基板表面に残存する酸化膜、自然酸化膜、酸化物などを意味する。有機物とは、ワックス、オイル、樹脂、ホトレジスト片などを意味する。   In the present specification, the fine particles mean organic or inorganic dust generally called particles and having a particle size of 10 μm or less. A metal particle means the fine particle which is a lump containing metal atoms, such as a heavy metal and a noble metal, its ion, etc., for example. The metal compound means an oxide film, a natural oxide film, an oxide, etc. remaining on the substrate surface. The organic substance means wax, oil, resin, photoresist piece and the like.

また本発明によれば、本発明の基板洗浄方法において、傾斜姿勢にある基板が水平面に対してなす角度が5〜90°の範囲にある場合には、基板の被洗浄面における、液膜を構成する純水の上部から下部への一方向への流れが一層安定し、基板汚染物の除去効率が向上する。   Further, according to the present invention, in the substrate cleaning method of the present invention, the liquid film on the surface to be cleaned is removed when the inclined substrate is in the range of 5 to 90 ° with respect to the horizontal plane. The flow of pure water constituting the unidirectional flow from the upper part to the lower part is further stabilized, and the substrate contaminant removal efficiency is improved.

また本発明によれば、本発明の基板洗浄方法において、液膜の厚みが1mm未満になるように、基板が水平面に対してなす角度、純水の噴射圧力および噴射量、基板に対する純水の噴射角度などを適宜選択することによって、基板汚染物の除去効率が一層向上する。   According to the invention, in the substrate cleaning method of the invention, the angle formed by the substrate with respect to the horizontal plane, the injection pressure and the injection amount of pure water, and the pure water with respect to the substrate so that the thickness of the liquid film is less than 1 mm. By appropriately selecting the injection angle and the like, the substrate contaminant removal efficiency is further improved.

また本発明によれば、本発明の基板洗浄方法において、基板の被洗浄面と純水噴射位置との間隔を1〜50mmの範囲に調整することによって、基板の被洗浄面における、液膜7を構成する純水の上部から下部への一方向の流れが発生し易くなり、基板汚染物の除去を安定的に再現性良く実施できる。   Further, according to the present invention, in the substrate cleaning method of the present invention, the liquid film 7 on the surface to be cleaned is adjusted by adjusting the distance between the surface to be cleaned and the pure water injection position in the range of 1 to 50 mm. It is easy to generate a one-way flow from the upper part to the lower part of the pure water constituting the substrate, and the substrate contaminants can be stably removed with good reproducibility.

また本発明によれば、本発明の基板洗浄方法を実施するための基板洗浄装置が提供される。該基板洗浄装置は、基板を傾斜姿勢に保持する基板保持手段および基板の被洗浄面に対して間隔を開けて設けられる純水噴射手段の2つの手段のみを必須とするものであり、従来の基板洗浄装置に比べて非常に簡易な構造を有し、基板汚染物の除去性能は勿論のこと、純水の使用量、洗浄後の汚水の回収性、操作性、ランニングコスト、製造コストなどの面でも優位性が高い。すなわち、純水の使用量が少なく、汚水をほぼ完全に回収でき、操作が簡単で、ランニングコストおよび該装置を製造するためのコストが低い。   Moreover, according to this invention, the board | substrate cleaning apparatus for enforcing the board | substrate cleaning method of this invention is provided. The substrate cleaning apparatus requires only two means: a substrate holding means for holding the substrate in an inclined posture and a pure water injection means provided at a distance from the surface to be cleaned of the substrate. Compared to a substrate cleaning device, it has a very simple structure, not only the performance of removing substrate contaminants, but also the amount of pure water used, recoverability of sewage after cleaning, operability, running cost, manufacturing cost, etc. Highly superior in terms. That is, the amount of pure water used is small, the sewage can be almost completely recovered, the operation is simple, and the running cost and the cost for manufacturing the apparatus are low.

また本発明によれば、本発明の基板洗浄装置において、純水噴射手段として、直径200μm以下である複数個の純水噴射孔が一直線上に配列されるように形成されるノズルまたは開口ギャップ200μm以下のスリットノズルを用いることによって、基板の被洗浄面において、液膜を構成する純水の上部から下部への一方向の流れを容易に発生させることができ、基板汚染物の除去効率が高まる。   Further, according to the present invention, in the substrate cleaning apparatus of the present invention, a nozzle or an opening gap of 200 μm formed as a plurality of pure water injection holes having a diameter of 200 μm or less is arranged as a pure water injection unit. By using the following slit nozzle, it is possible to easily generate a unidirectional flow from the upper part to the lower part of the pure water constituting the liquid film on the surface to be cleaned of the substrate, thereby increasing the substrate contamination removal efficiency. .

また本発明によれば、本発明の基板洗浄装置において、純水噴射手段を基板の被洗浄面に沿って上下動させる移動手段を設けることによって、特に大型基板の洗浄においても、一般的な基板の洗浄における基板汚染物の除去効率と同等の除去効率が得られる。   Further, according to the present invention, in the substrate cleaning apparatus of the present invention, by providing the moving means for moving the pure water jetting means up and down along the surface to be cleaned of the substrate, a general substrate can be used especially for cleaning a large substrate. The removal efficiency equivalent to the removal efficiency of the substrate contaminants in the cleaning is obtained.

図1は、本発明の基板洗浄方法を説明するための側面図である。図2は、本発明の基板洗浄方法を説明するための斜視図である。基板1は、図示しない基板保持手段により水平面2に対して傾斜角度θ1をなして傾斜姿勢で保持される。ここで、基板1の傾斜角度θ1は、好ましくは5〜90°、さらに好ましくは75〜90°である。5°未満または90°を超えると、基板1の被洗浄面1において、液膜7を構成する純水の上部から下部に向けての一方向の流れが充分に発生せず、基板汚染物の除去が不充分になるおそれがある。   FIG. 1 is a side view for explaining the substrate cleaning method of the present invention. FIG. 2 is a perspective view for explaining the substrate cleaning method of the present invention. The substrate 1 is held in an inclined posture at an inclination angle θ1 with respect to the horizontal plane 2 by a substrate holding means (not shown). Here, the inclination angle θ1 of the substrate 1 is preferably 5 to 90 °, more preferably 75 to 90 °. If the angle is less than 5 ° or exceeds 90 °, a unidirectional flow from the upper part to the lower part of the pure water constituting the liquid film 7 is not sufficiently generated on the surface to be cleaned 1 of the substrate 1, and substrate contamination Removal may be insufficient.

基板1の被洗浄面1aを臨み、間隔d1を開けて純水噴射手段3が設けられる。純水噴射手段3は、その内部に図示しない耐圧構造を有し、その先端に、基板1の被洗浄面1aに対して加圧された状態の純水(以後「加圧純水」と称す)を噴射する噴射孔5を有する耐圧ノズル4と、耐圧ノズル4に加圧純水を供給する耐圧配管6と、図示しない純水加圧供給手段とを含んで構成される。   The pure water injection means 3 is provided facing the surface 1a to be cleaned of the substrate 1 and with a gap d1. The pure water injection means 3 has a pressure-resistant structure (not shown) in its interior, and pure water in a state of being pressurized against the surface to be cleaned 1 a of the substrate 1 (hereinafter referred to as “pressurized pure water”). ), And a pressure-resistant pipe 6 for supplying pressurized pure water to the pressure-resistant nozzle 4, and a pure water pressure supply means (not shown).

なお、被洗浄面1aと噴射孔5との並び方向は、略平行であることが望ましい。
ここで、被洗浄面1aと噴射孔5との並び方向は、略平行である場合、間隔d1は、噴射孔5から被洗浄面1aへの垂線の長さであり、好ましくは1〜50mm、さらに好ましくは1〜10mmである。1mm未満または50mmを超えると、基板1の被洗浄面1において、液膜7を構成する純水の上部から下部に向けての一方向の流れが充分に発生せず、基板汚染物の除去が不充分になるおそれがある。
Note that it is desirable that the alignment direction of the surface to be cleaned 1a and the injection holes 5 is substantially parallel.
Here, when the alignment direction of the to-be-cleaned surface 1a and the injection hole 5 is substantially parallel, the space | interval d1 is the length of the perpendicular to the to-be-cleaned surface 1a from the injection hole 5, Preferably it is 1-50 mm, More preferably, it is 1-10 mm. If the thickness is less than 1 mm or exceeds 50 mm, the surface 1 to be cleaned of the substrate 1 does not sufficiently generate a unidirectional flow from the upper part to the lower part of the pure water constituting the liquid film 7, thereby removing substrate contaminants. May be insufficient.

純水噴射手段3から噴射される純水は、比抵抗値が10MΩcm以上のものが好ましく、18MΩcm以上のもの(すなわち超純水)が特に好ましい。また、純水は、本発明の基板洗浄方法の好ましい利点を損なわない範囲で、水素、アンモニアなどの、従来の基板洗浄用薬液の有効成分を含むことができる。   The pure water ejected from the pure water ejecting means 3 preferably has a specific resistance value of 10 MΩcm or more, and particularly preferably 18 MΩcm or more (that is, ultrapure water). Moreover, the pure water can contain the active ingredient of the conventional chemical | medical solution for board | substrate cleanings, such as hydrogen and ammonia, in the range which does not impair the preferable advantage of the board | substrate cleaning method of this invention.

耐圧ノズル4には、直径200μm以上の円形の噴射孔5であって、複数の噴射孔5が一直線上に一列に配列される耐圧ノズルが使用できる。また、噴射孔5がスリット状に形成され、スリットの開口ギャップが200μm以下である耐圧スリットノズルも使用できる。耐圧配管6は、耐圧性および柔軟性を有する材料からなり、上下左右に移動可能に設けられる。図示しない純水加圧供給手段は、たとえば、純水製造装置により製造される純水を貯留する純水貯留槽と、純水貯留槽内の純水を加圧しながら耐圧配管6に供給する加圧ポンプとを含んで構成される。   As the pressure-resistant nozzle 4, a pressure-resistant nozzle that is a circular injection hole 5 having a diameter of 200 μm or more and in which a plurality of injection holes 5 are arranged in a line on a straight line can be used. A pressure-resistant slit nozzle in which the injection holes 5 are formed in a slit shape and the slit opening gap is 200 μm or less can also be used. The pressure-resistant piping 6 is made of a material having pressure resistance and flexibility, and is provided so as to be movable up and down and left and right. The deionized water pressure supply means (not shown) includes, for example, a deionized water storage tank that stores deionized water produced by a deionized water production apparatus, and a pressure supply pipe 6 that supplies the deionized water in the deionized water storage tank while pressurizing the deionized water. And a pressure pump.

純水噴射手段3は、図示しない移動手段により、間隔d1を保持しながら被洗浄面1aに沿って上下動可能に支持される。本発明の基板洗浄方法では、基板1の被洗浄面1aにおいて、純水噴射手段3から噴射される純水が到達する地点およびその近傍の液流7中に、図6に示す高圧領域16が発生する。この高圧領域16の下端よりも下部の液膜領域8(以後「洗浄実行領域8」と称す)は特に洗浄力が高い領域である。純水噴射手段3の上下動、好ましくは上部から下部への移動を行うことによって、洗浄実行領域8を被洗浄面1a上で移動させることができるので、大型基板であっても、基板全面を洗浄できる。   The pure water injection means 3 is supported by a moving means (not shown) so as to be movable up and down along the surface to be cleaned 1a while maintaining the distance d1. In the substrate cleaning method of the present invention, the high pressure region 16 shown in FIG. 6 is present in the liquid flow 7 in the vicinity of the point where the pure water jetted from the pure water jetting means 3 reaches the surface 1a to be cleaned of the substrate 1. appear. The liquid film region 8 below the lower end of the high pressure region 16 (hereinafter referred to as “cleaning execution region 8”) is a region having particularly high cleaning power. By moving the pure water injection means 3 up and down, preferably from the upper part to the lower part, the cleaning execution region 8 can be moved on the surface to be cleaned 1a. Can be washed.

なお、基板洗浄を効率良く行うには、洗浄実行領域8を、高圧領域16の下端から少なくとも0〜5cmが好ましく、さらに好ましくは0〜10cmの範囲にするのがよい。そのためには、基板1の傾斜角度θ1、洗浄液として用いられる純水の比抵抗値、純水の被洗浄面1aへの噴射圧力などの各種条件を適宜変更すれば良い。   In order to perform substrate cleaning efficiently, the cleaning execution region 8 is preferably at least 0 to 5 cm, more preferably 0 to 10 cm from the lower end of the high-pressure region 16. For this purpose, various conditions such as the inclination angle θ1 of the substrate 1, the specific resistance value of pure water used as the cleaning liquid, and the jet pressure of pure water onto the surface to be cleaned 1a may be appropriately changed.

また、純水噴射手段3から噴射される純水が、放物線状ではなく、直線状の軌跡を保持して被洗浄面1aに到達する場合、その純水の軌跡と基板1とがなす角度θ2が鋭角になることが好ましい。これによって、噴射される純水が被洗浄面1aに衝突する際に、被洗浄面1a上に生成する液膜7の厚みを小さくし、基板汚染物の除去に有効な膜厚の小さい液膜7が形成され易くなり、被洗浄面1aにおいて、液膜7を構成する純水の上部から下部への一方向の流れを発生させることが一層容易になる。なお、液膜7の厚みについては後に説明する。   Further, when the pure water ejected from the pure water ejecting means 3 reaches the surface to be cleaned 1a while maintaining a linear trajectory instead of a parabolic shape, an angle θ2 formed by the pure water trajectory and the substrate 1 is formed. Is preferably an acute angle. As a result, when the injected pure water collides with the surface to be cleaned 1a, the thickness of the liquid film 7 formed on the surface to be cleaned 1a is reduced, and the liquid film with a small film thickness that is effective for removing substrate contaminants. 7 is easily formed, and it becomes easier to generate a one-way flow from the upper part to the lower part of the pure water constituting the liquid film 7 on the surface to be cleaned 1a. The thickness of the liquid film 7 will be described later.

図1および図2に示すように、水平面2にθ1の角度をなすように傾斜姿勢で保持される基板1の被洗浄面1aに、基板1の被洗浄面1aに対して間隔d1を開けて配置される純水噴射手段3の耐圧ノズル4の噴射孔5から、超純水が噴射されると、被洗浄面1a上には液膜7が発生し、液膜7を構成する純水は、被洗浄面1aにおける上部から下部への一方向の流れになって、被洗浄面1a上を流過し、被洗浄面1a上に付着する図示しない基板汚染物を剥離除去する。   As shown in FIGS. 1 and 2, the surface to be cleaned 1a held in an inclined posture so as to form an angle θ1 with respect to the horizontal plane 2 is spaced from the surface to be cleaned 1a by a distance d1. When ultrapure water is injected from the injection hole 5 of the pressure-resistant nozzle 4 of the pure water injection means 3 disposed, a liquid film 7 is generated on the surface to be cleaned 1a, and the pure water constituting the liquid film 7 is Then, the surface to be cleaned 1a flows in one direction from the top to the bottom, and flows over the surface to be cleaned 1a to peel and remove substrate contaminants (not shown) adhering to the surface to be cleaned 1a.

図3は洗浄実行領域8における液膜流れの状態を模式的に示す断面図である。図4は洗浄実行領域8において微粒子が除去される機構を模式的に示す断面図である。なお、微粒子の除去には純水として超純水が好ましく用いられ、かつ図4は微粒子の除去に関するので、図3および図4の説明においては、純水として超純水を用いるものとする。以後、同様にして、微粒子の除去に関する説明においては、超純水を用いるものとする。   FIG. 3 is a cross-sectional view schematically showing the state of the liquid film flow in the cleaning execution region 8. FIG. 4 is a cross-sectional view schematically showing a mechanism for removing fine particles in the cleaning execution region 8. Note that ultrapure water is preferably used as pure water for removing fine particles, and FIG. 4 relates to the removal of fine particles. Therefore, in the description of FIGS. 3 and 4, ultrapure water is used as pure water. Hereinafter, in the same manner, in the explanation regarding the removal of the fine particles, ultrapure water is used.

図3において、矢符は液膜7内での液流を意味し、かつ矢符の長さは液流の流速を意味する。矢符が長い程、流速が大きいことを意味する。また、洗浄実行領域8をさらに細かい4つの第1〜第4小領域9,10,11,12に分け、それぞれの小領域間には液膜表面7aを基準にして等しい長さになる間隙を設ける。さらに、4つの第1〜第4小領域9,10,11,12において、液流を示す矢符の頂点を結んだ線を第1〜第4流速線9x,10x,11x,12xとする。   In FIG. 3, an arrow means a liquid flow in the liquid film 7 and a length of the arrow means a flow velocity of the liquid flow. The longer the arrow, the higher the flow velocity. Further, the cleaning execution area 8 is further divided into four first to fourth small areas 9, 10, 11 and 12, and a gap having an equal length with respect to the liquid film surface 7a is provided between the small areas. Provide. Further, in the four first to fourth small regions 9, 10, 11, and 12, the lines connecting the vertices of the arrows indicating the liquid flow are defined as first to fourth flow velocity lines 9x, 10x, 11x, and 12x.

洗浄実行領域8において、純水噴射手段3から噴射される超純水が到達する地点の最も直下にあたる第1小領域9では、被洗浄面1a近傍の液流9a、液膜7の厚さ方向の中央部における液流9b,9c,9dおよび液膜面7a近傍の液流9eが全てほぼ同じ流速を有し、ほぼ直線状の流速線9xが得られる。液流9a〜9eは、そのまま下方に向かって流過するけれども、超純水の粘性に基因して被洗浄面1aからせん断力を受け、被洗浄面1aに近いほど流速が減速される。したがって、第1小領域9よりも液膜流れ方向の下流側に想定される第2小領域10においては、被洗浄面1aの近傍を流過する液流10aは減速され、液流10bも僅かに減速される。一方、被洗浄面1aとは相対的に離反する位置にある他の液流10c,10d,10eは殆ど減速されず、第2流速線10xは放物線状になる。   In the cleaning execution region 8, in the first small region 9 that is located immediately below the point where the ultrapure water ejected from the pure water ejecting means 3 arrives, the liquid flow 9 a near the surface to be cleaned 1 a and the thickness direction of the liquid film 7 The liquid flows 9b, 9c, 9d in the central portion of the liquid and the liquid flow 9e near the liquid film surface 7a all have substantially the same flow velocity, and a substantially linear flow velocity line 9x is obtained. Although the liquid flows 9a to 9e flow downward as they are, they receive a shearing force from the surface to be cleaned 1a due to the viscosity of ultrapure water, and the flow velocity is reduced as the surface is closer to the surface to be cleaned 1a. Therefore, in the second small region 10 assumed downstream of the first small region 9 in the liquid film flow direction, the liquid flow 10a flowing near the surface to be cleaned 1a is decelerated, and the liquid flow 10b is slightly increased. Will be slowed down. On the other hand, the other liquid flows 10c, 10d, and 10e located at positions relatively separated from the surface to be cleaned 1a are hardly decelerated, and the second flow velocity line 10x has a parabolic shape.

さらに、第3小領域11では被洗浄面1a近傍における、せん断力による液流の減速傾向が一層顕著になり、被洗浄面1aに最も近い液流11aは洗浄実行領域8における最初の流速(液流9aの流速)の1/2程度になり、液流11b〜11dも被洗浄面1aとの距離に応じて減速され、液流面7a近傍の液流11eのみが減速を受けない。その結果、第3流速線11xは、第2流速線10xよりも、曲線部分の曲率が大きい放物線状になり、液膜7における厚さ方向の位置によって液流の流速に大きな差が生じることが判る。   Further, in the third small region 11, the tendency of the liquid flow to decelerate due to the shearing force in the vicinity of the surface to be cleaned 1a becomes more prominent, and the liquid flow 11a closest to the surface to be cleaned 1a The liquid flows 11b to 11d are also decelerated according to the distance from the surface to be cleaned 1a, and only the liquid flow 11e in the vicinity of the liquid flow surface 7a is not decelerated. As a result, the third flow velocity line 11x has a parabolic shape with a larger curvature at the curved portion than the second flow velocity line 10x, and a large difference in the flow velocity of the liquid flow may occur depending on the position in the thickness direction of the liquid film 7. I understand.

洗浄実行領域8において最も下部に想定される第4小領域12では、被洗浄面1aに最も近い液流12aはさらに減速を受け、殆ど「0」に近くなる。液流12b〜12dもそれぞれ減速を受けるけれども、被洗浄面1aから最も離反する位置を流過する液流12eは、殆ど減速を受けない。そして、得られる第4流速線12xは、曲率がさらに大きい放物線状になるけれども、洗浄実行領域8において、液膜表面7a近傍の液流は、被洗浄面1aとの接触によるせん断力を殆ど受けることがなく、ほぼ同じ流速を保持する。この液膜表面7a近傍の液流が、被洗浄面1aから剥離する図示しない基板汚染物の再付着防止に非常に有効である。   In the fourth small region 12 assumed at the lowermost part in the cleaning execution region 8, the liquid flow 12 a closest to the surface to be cleaned 1 a is further decelerated and becomes almost “0”. Although the liquid flows 12b to 12d are also decelerated, the liquid flow 12e flowing through the position farthest away from the surface to be cleaned 1a is hardly decelerated. The obtained fourth flow velocity line 12x has a parabolic shape with a larger curvature, but in the cleaning execution region 8, the liquid flow in the vicinity of the liquid film surface 7a is almost subjected to shearing force due to contact with the surface to be cleaned 1a. And keep approximately the same flow rate. This liquid flow in the vicinity of the liquid film surface 7a is very effective in preventing re-adhesion of substrate contaminants (not shown) that peel off from the surface to be cleaned 1a.

第1〜第4小領域9〜12で得られる第1〜第4流速線9x〜12xのうち、第1〜第3流速線9x〜11xを持つ液流は、被洗浄面1aに付着する基板汚染物の剥離除去に特に有効である。すなわち、図4に示すように、被洗浄面1aに付着する微粒子13aは、被洗浄面1a近傍の液流9a,9bなどによる応力14を受けて被洗浄面1aから剥離して浮上し、被洗浄面1a近傍を流過する微粒子13bになる。微粒子13bは、さらに液流9b〜9e、特に液流9eによる応力を受けて液膜7内を液膜面7aに向けてさらに浮上し、液膜面7a近傍を流過する微粒子13cになり、基板1の外部に排出される。   Of the first to fourth flow velocity lines 9x to 12x obtained in the first to fourth small regions 9 to 12, the liquid flow having the first to third flow velocity lines 9x to 11x adheres to the surface to be cleaned 1a. It is particularly effective for removing contaminants. That is, as shown in FIG. 4, the fine particles 13a adhering to the surface to be cleaned 1a are separated from the surface to be cleaned 1a due to the stress 14 caused by the liquid flows 9a and 9b in the vicinity of the surface to be cleaned 1a, and floated. The fine particles 13b flow around the cleaning surface 1a. The fine particles 13b are further subjected to the stresses of the liquid flows 9b to 9e, particularly the liquid flow 9e, and further float in the liquid film 7 toward the liquid film surface 7a, and become fine particles 13c that flow around the liquid film surface 7a. It is discharged outside the substrate 1.

次に、本発明の基板洗浄方法において、基板1の被洗浄面1aから微粒子を除去するにあたり、被洗浄面1aに超純水を噴射する際に生じる液膜の厚みが微粒子の除去に及ぼす影響について、図5および図6に基づいて説明する。図5は、水平面に載置される基板1の被洗浄面1aに生じる液膜15の状態を模式的に示す断面図である。図6は、本発明の基板洗浄方法において、基板1の被洗浄面1aに生じる液膜7の状態を模式的に示す断面図である。   Next, in removing the fine particles from the surface to be cleaned 1a of the substrate 1 in the substrate cleaning method of the present invention, the influence of the thickness of the liquid film generated when the ultrapure water is sprayed on the surface to be cleaned 1a on the removal of the fine particles. Will be described with reference to FIGS. FIG. 5 is a cross-sectional view schematically showing the state of the liquid film 15 generated on the surface to be cleaned 1a of the substrate 1 placed on a horizontal plane. FIG. 6 is a cross-sectional view schematically showing the state of the liquid film 7 generated on the surface to be cleaned 1a of the substrate 1 in the substrate cleaning method of the present invention.

図5では、基板1は、図示しない水平面に載置される。基板1の被洗浄面1aに対し、被洗浄面1aの上方に間隔を空けて配置される純水噴射手段の耐圧ノズル4から、加圧状態の超純水を噴射すると、被洗浄面1aが水平であるため、超純水が被洗浄面1a上に滞留し、膜厚の大きな液膜15が形成される。液膜15の厚みt1は、超純水の噴射量、噴射圧力などによって変化するけれども、超純水が耐圧ノズル4から被洗浄面1aに向けて直線状の軌跡で噴射される場合には、1mm以上に成長する。また、超純水が被洗浄面1aに到達する地点およびその近傍には、超純水が該地点に到達するのとほぼ同時に、超純水に付加されている高圧が保持される高圧領域16が形成される。その後に噴射される超純水は、高圧領域16を迂回するように流過するので、超純水は基板1の被洗浄面1aまで達することなく、液膜面15aの近傍において超純水の流れ(主流)17が発生する。その結果、被洗浄面1a近傍における超純水の流速はほぼ「0」になり、図示しない微粒子が被洗浄面1aに付着していても、被洗浄面1aから除去することは困難である。   In FIG. 5, the board | substrate 1 is mounted in the horizontal surface which is not shown in figure. When the pressurized ultra-pure water is jetted from the pressure-resistant nozzle 4 of the pure water jetting means arranged at a distance above the surface to be cleaned 1a with respect to the surface to be cleaned 1a of the substrate 1, the surface to be cleaned 1a becomes Since it is horizontal, ultrapure water stays on the surface to be cleaned 1a, and a liquid film 15 having a large film thickness is formed. Although the thickness t1 of the liquid film 15 varies depending on the injection amount, injection pressure, and the like of the ultrapure water, when the ultrapure water is jetted from the pressure-resistant nozzle 4 toward the surface to be cleaned 1a in a linear locus, Grows to 1 mm or more. Further, at and near the point where the ultrapure water reaches the surface to be cleaned 1a, the high pressure region 16 in which the high pressure added to the ultrapure water is maintained almost simultaneously with the arrival of the ultrapure water. Is formed. Since the ultrapure water sprayed thereafter flows so as to bypass the high pressure region 16, the ultrapure water does not reach the surface 1a to be cleaned of the substrate 1 and is near the liquid film surface 15a. A flow (main flow) 17 is generated. As a result, the flow rate of ultrapure water in the vicinity of the surface to be cleaned 1a is substantially “0”, and even if fine particles not shown adhere to the surface to be cleaned 1a, it is difficult to remove from the surface to be cleaned 1a.

これに対し、図6に示すように、本発明の基板洗浄方法では、基板1が水平面2に対して角度θ1をなして傾斜保持される。これによって、基板1の被洗浄面1aに超純水を吐出すると、超純水は被洗浄面1a上で滞留することなく、主に重力の作用を受けて、基板1の下方に排出される。このため、基板1の被洗浄面1a上に形成される液膜7の厚みt2は、1mmよりも著しく薄くなる。具体的には、100〜500μm程度になる。また、基板1を水平面2に載置する場合と同様に、この場合でも、耐圧ノズル4から噴射される超純水が基板1の被洗浄面1aに到達する地点およびその近傍には、高圧領域16が形成される。しかしながら、基板1が水平面2に対して傾斜保持されることなどから、高圧領域16は、図5の場合と比べて、相対的に小さなものとなる。したがって、高圧領域16が形成された後に、被洗浄面1aに向けて噴射される超純水は、高圧領域16が障害物にならず、高圧領域を迂回することがないので、被洗浄面1a近傍を流過し、被洗浄面1a近傍を流過する主流17が発生する。よって、被洗浄面1aに付着する図示しない微粒子は、主流17によって除去される。ここで、液膜厚みt2は、主に、水平面2に対する基板1の傾斜角度θ1に依存するので、被洗浄面1aに付着する微粒子の除去効果を一層向上させるには、傾斜角度θ1を90°に近づけるのが好ましい。傾斜角度θ1が90°に近いほど、液膜厚みt2が小さくなり、微粒子が主流17による応力を受け易くなる。また、液膜厚みt2が極めて小さいことから、主流17は図6において便宜上一つの液流として示されるけれども、図3、図4および図7〜9に示されるように、実際にはさらに細かな液流に分けられる。   On the other hand, as shown in FIG. 6, in the substrate cleaning method of the present invention, the substrate 1 is held at an angle θ <b> 1 with respect to the horizontal plane 2. As a result, when ultrapure water is discharged onto the surface to be cleaned 1a of the substrate 1, the ultrapure water does not stay on the surface to be cleaned 1a, but is discharged under the substrate 1 mainly under the action of gravity. . For this reason, the thickness t2 of the liquid film 7 formed on the surface 1a to be cleaned of the substrate 1 is significantly thinner than 1 mm. Specifically, the thickness is about 100 to 500 μm. Further, as in the case where the substrate 1 is placed on the horizontal surface 2, in this case as well, there is a high-pressure region at a point where the ultrapure water sprayed from the pressure-resistant nozzle 4 reaches the surface to be cleaned 1 a of the substrate 1 and in the vicinity thereof. 16 is formed. However, since the substrate 1 is tilted and held with respect to the horizontal plane 2, the high-pressure region 16 is relatively small compared to the case of FIG. Accordingly, after the high pressure region 16 is formed, the ultrapure water sprayed toward the surface to be cleaned 1a does not obstruct the high pressure region 16 and does not bypass the high pressure region. A main flow 17 that flows in the vicinity and flows in the vicinity of the surface to be cleaned 1a is generated. Therefore, fine particles (not shown) adhering to the surface to be cleaned 1 a are removed by the main flow 17. Here, since the liquid film thickness t2 mainly depends on the inclination angle θ1 of the substrate 1 with respect to the horizontal plane 2, in order to further improve the effect of removing fine particles adhering to the surface to be cleaned 1a, the inclination angle θ1 is set to 90 °. It is preferable to approach. The closer the inclination angle θ1 is to 90 °, the smaller the liquid film thickness t2 and the fine particles are more likely to be subjected to stress due to the main flow 17. In addition, since the liquid film thickness t2 is extremely small, the main flow 17 is shown as one liquid flow for convenience in FIG. 6, but actually, as shown in FIG. 3, FIG. 4 and FIGS. Divided into liquid streams.

次いで、基板1の被洗浄面1aに付着する基板汚染物が金属粒子である場合について、図1および図7に基づいて説明する。図7は基板1の被洗浄面1aの洗浄実行領域8において金属粒子18aが除去される機構を模式的に示す断面図である。なお、金属粒子の除去には、純水の中でも特に亜臨界状態まで加圧された亜臨界超純水が好ましいので、図7に関する説明では、亜臨界超純水を用いたものとする。耐圧ノズル4内で加圧される亜臨界超純水を、水平面2に対して傾斜角度θ1をなすように傾斜姿勢で保持される基板1の被洗浄面1aに噴射すると、洗浄実行領域8の最上部である第1小領域9において、液膜7中に、液流9a,9b,9c,9d,9eが発生する。なお、これらの液流は便宜上5つの流れとして表されるけれども、これらの液流を合わせて1つの液流(主流)と表すことができ、また、6以上の液流に細分化することも可能である。被洗浄面1aに付着する金属粒子18aは、被洗浄面1aの近傍を流過する液流9a,9bなどによる応力を受けると、金属粒子18aを構成する金属原子間の結合19が部分的に切断され、金属粒子18bとして液膜7中に溶出する。金属粒子18bは、さらに液流9c,9d,9eなどの応力を受けて、金属粒子18cのように、液膜7の厚さ方向の中央部から液膜面7aまでの液膜7中を流過し、基板1の下方に排出される。このとき、金属粒子17cの大部分が被洗浄面1aの近傍を流過しないので、被洗浄面1aへの再付着が防止される。このように、基板1の被洗浄面1aに付着する金属粒子18aを除去するには、被洗浄面1a近傍を流過する、亜臨界超純水の液流が必要になる。また、液膜7の厚みを小さくすると、亜臨界超純水の液流が被洗浄面1aのさらに近傍を流過し、金属粒子18aの除去性能が向上する。液膜7の厚みを小さくするには、図6に関する説明でも述べたように、基板1の水平面2に対する傾斜角度θ1を90°に近づけるのが好ましい。   Next, the case where the substrate contaminant adhering to the surface to be cleaned 1a of the substrate 1 is metal particles will be described with reference to FIGS. FIG. 7 is a cross-sectional view schematically showing a mechanism for removing the metal particles 18 a in the cleaning execution region 8 of the surface 1 a to be cleaned of the substrate 1. In addition, since the subcritical ultrapure water pressurized to the subcritical state is particularly preferable among the pure water for removing the metal particles, the subcritical ultrapure water is used in the description regarding FIG. When subcritical ultrapure water pressurized in the pressure-resistant nozzle 4 is sprayed onto the surface to be cleaned 1a of the substrate 1 held in an inclined posture so as to form an inclination angle θ1 with respect to the horizontal plane 2, the cleaning execution region 8 In the first small region 9 which is the uppermost portion, liquid flows 9a, 9b, 9c, 9d and 9e are generated in the liquid film 7. Although these liquid flows are expressed as five flows for convenience, these liquid flows can be combined and expressed as one liquid flow (main flow), or can be subdivided into six or more liquid flows. Is possible. When the metal particles 18a adhering to the surface to be cleaned 1a are subjected to stress due to the liquid flows 9a and 9b flowing through the vicinity of the surface to be cleaned 1a, the bonds 19 between the metal atoms constituting the metal particles 18a are partially formed. It is cut and eluted into the liquid film 7 as metal particles 18b. The metal particles 18b are further subjected to stress such as the liquid flows 9c, 9d, and 9e, and flow in the liquid film 7 from the central portion in the thickness direction of the liquid film 7 to the liquid film surface 7a like the metal particles 18c. And discharged below the substrate 1. At this time, since most of the metal particles 17c do not flow through the vicinity of the surface to be cleaned 1a, reattachment to the surface to be cleaned 1a is prevented. Thus, in order to remove the metal particles 18a adhering to the surface to be cleaned 1a of the substrate 1, a liquid flow of subcritical ultrapure water that flows in the vicinity of the surface to be cleaned 1a is required. Further, when the thickness of the liquid film 7 is reduced, the liquid flow of subcritical ultrapure water flows through the vicinity of the surface to be cleaned 1a, and the removal performance of the metal particles 18a is improved. In order to reduce the thickness of the liquid film 7, it is preferable to make the inclination angle θ1 of the substrate 1 with respect to the horizontal plane 2 close to 90 °, as described in the explanation with reference to FIG.

次いで、基板1の被洗浄面1aに付着する基板汚染物が金属化合物である場合について、図1および図8に基づいて説明する。図8は基板1の被洗浄面1aの洗浄実行領域8において金属化合物が除去される機構を模式的に示す断面図である。なお、金属化合物の除去にも、金属粒子の場合と同様に亜臨界超純水が好ましい。したがって、図8に関する説明においても、亜臨界超純水を用いるものとする。基板1の被洗浄面1aに付着する金属化合物を除去する場合でも、被洗浄面1a近傍を流過する、亜臨界超純水の液流が必要である。すなわち、水平面2に対して傾斜角度θ1をなすように傾斜保持される基板1の被洗浄面1aに、耐圧ノズル4内で加圧される亜臨界超純水を噴射すると、液膜7中に、液流9a,9b,9c,9d,9eが発生する。被洗浄面1aに付着する金属化合物20aは、図7に示すのと同様にして、金属化合物20a同士の結合21が切断され、金属化合物20bとして液膜7中に溶出し、さらに液膜7の厚み方向の中央部から液膜面7aまでの液膜7中を流過し、基板1の下方に排出される。また、液膜7の厚みを小さくするのが好ましいのは、図7に示す金属粒子18aの除去の場合と同様であり、そのためには、やはり基板1の水平面2に対する傾斜角度θ1を90°に近づけるのがよい。   Next, the case where the substrate contaminant adhering to the surface to be cleaned 1a of the substrate 1 is a metal compound will be described with reference to FIGS. FIG. 8 is a cross-sectional view schematically showing a mechanism for removing the metal compound in the cleaning execution region 8 of the surface to be cleaned 1 a of the substrate 1. For the removal of the metal compound, subcritical ultrapure water is preferable as in the case of the metal particles. Therefore, subcritical ultrapure water is also used in the description related to FIG. Even when the metal compound adhering to the surface to be cleaned 1a of the substrate 1 is removed, a liquid flow of subcritical ultrapure water that flows near the surface to be cleaned 1a is required. That is, when subcritical ultrapure water pressurized in the pressure-resistant nozzle 4 is sprayed onto the surface to be cleaned 1 a of the substrate 1 that is tilted and held so as to form the tilt angle θ 1 with respect to the horizontal plane 2, Liquid flows 9a, 9b, 9c, 9d, and 9e are generated. In the same manner as shown in FIG. 7, the metal compound 20a adhering to the surface to be cleaned 1a is cut in the bond 21 between the metal compounds 20a and eluted into the liquid film 7 as the metal compound 20b. It flows through the liquid film 7 from the central part in the thickness direction to the liquid film surface 7 a and is discharged below the substrate 1. Further, it is preferable to reduce the thickness of the liquid film 7 as in the case of the removal of the metal particles 18a shown in FIG. 7, and for this purpose, the inclination angle θ1 of the substrate 1 with respect to the horizontal plane 2 is also set to 90 °. It is better to approach.

次いで、基板1の被洗浄面1aに付着する基板汚染物が有機物である場合について、図1および図9に基づいて説明する。図9は基板1の被洗浄面1aの洗浄実行領域8において有機物22aが除去される機構を模式的に示す断面図である。なお、有機物22aの除去にも、金属粒子18aおよび金属化合物20aの除去の場合と同様に、亜臨界超純水が好ましい。したがって、図9に関する説明においても、亜臨界超純水を用いるものとする。有機物22aは、図7に示す金属粒子18aおよび図8に示す金属化合物20aと同様にして除去される。すなわち、角度θ1で傾斜保持される基板1の被洗浄面1aに、加圧された亜臨界超純水を耐圧ノズル4から噴射すると、被洗浄面1a上に亜臨界超純水の液膜7が形成され、液膜7中には液流9a,9b,9c,9d,9eが発生する。これらのうち、特に被洗浄面1a近傍を流過する液流9a,9bなどが、被洗浄面1aに付着する有機物22aに応力を付与する。その結果、有機物22a中の炭素結合23が切断され、有機物片である有機物22bが液膜7中に溶出する。有機物22bは、さらに液流9c,9d,9eなどの応力を受け、液膜7の厚み方向の中央部を流過する有機物22cになる。有機物22cは、最終的に、基板1の下方に排出される。有機物22aの除去効率を高めるには、ここでも、基板1の水平面2に対する傾斜角度θ1を可能な限り90°に近づけ、液膜7の厚みを小さくすることが有効である。   Next, the case where the substrate contaminant that adheres to the surface to be cleaned 1a of the substrate 1 is an organic material will be described with reference to FIGS. FIG. 9 is a cross-sectional view schematically showing a mechanism for removing the organic matter 22a in the cleaning execution region 8 of the surface 1a to be cleaned of the substrate 1. FIG. For the removal of the organic matter 22a, subcritical ultrapure water is preferable as in the case of the removal of the metal particles 18a and the metal compound 20a. Therefore, subcritical ultrapure water is also used in the description related to FIG. The organic matter 22a is removed in the same manner as the metal particles 18a shown in FIG. 7 and the metal compound 20a shown in FIG. That is, when pressurized subcritical ultrapure water is sprayed from the pressure-resistant nozzle 4 onto the surface to be cleaned 1a of the substrate 1 held at an angle θ1, the liquid film 7 of subcritical ultrapure water is applied onto the surface to be cleaned 1a. And the liquid flows 9a, 9b, 9c, 9d and 9e are generated in the liquid film 7. Among these, the liquid flows 9a and 9b flowing especially near the surface to be cleaned 1a give stress to the organic matter 22a adhering to the surface to be cleaned 1a. As a result, the carbon bond 23 in the organic substance 22 a is cut, and the organic substance 22 b that is an organic substance piece is eluted in the liquid film 7. The organic matter 22b is further subjected to stress such as the liquid flow 9c, 9d, 9e, and becomes the organic matter 22c that flows through the central portion of the liquid film 7 in the thickness direction. The organic matter 22c is finally discharged below the substrate 1. In order to increase the removal efficiency of the organic matter 22a, it is effective to reduce the thickness of the liquid film 7 by making the inclination angle θ1 of the substrate 1 with respect to the horizontal plane 2 as close to 90 ° as possible.

図10は、本発明の別の実施形態である基板洗浄装置25の構成を模式的に示す側面図である。基板洗浄装置25は、基板1を水平面2に対して傾斜角度θ1をなすように傾斜保持する図示しない基板保持手段と、基板1の被洗浄面1aに純水を噴射する純水噴射手段26とを含んで構成される。   FIG. 10 is a side view schematically showing a configuration of a substrate cleaning apparatus 25 according to another embodiment of the present invention. The substrate cleaning apparatus 25 includes a substrate holding unit (not shown) that tilts and holds the substrate 1 so as to form an inclination angle θ1 with respect to the horizontal plane 2, and a pure water injection unit 26 that sprays pure water onto the surface to be cleaned 1a of the substrate 1. It is comprised including.

基板保持手段は図示されないけれども、たとえば、基板1を載置する金属製または合成樹脂製の板状部材と、水平面2を基準にして該板状部材を角変位可能に支持する板状部材支持手段とを含む装置により実現できる。さらに、板状部材には、基板1を固定する保持具を設けることができる。板状部材の表面に基板1を載置し、板状部材支持手段にて板状部材を角変位させ、板状部材が水平面2に対してなす角度を適宜調整することによって、基板1の水平面2に対してなす角度θ1を決定できる。   Although the substrate holding means is not shown, for example, a plate member made of metal or synthetic resin on which the substrate 1 is placed, and a plate member support means for supporting the plate member so that the plate member can be angularly displaced with respect to the horizontal plane 2. It is realizable with the apparatus containing these. Furthermore, the plate-like member can be provided with a holder for fixing the substrate 1. The substrate 1 is placed on the surface of the plate-like member, the plate-like member is angularly displaced by the plate-like member supporting means, and the angle formed by the plate-like member with respect to the horizontal plane 2 is appropriately adjusted, whereby the horizontal plane of the substrate 1 is obtained. 2 can be determined.

純水噴射手段26は、基板1の被洗浄面1aに純水を噴射する耐圧ノズル4と、耐圧ノズル4を角変位可能に支持するアーム27と、アーム27を支持しかつ基板1に対して平行に配置されるガイド29に沿って移動可能に設けられるスライダ28と、図示しない純水供給手段とを含んで構成される。ガイド29とスライダ28は、たとえば、モータで回転駆動されるボールねじと、ボールねじに螺合するめねじ部材とによって実現される。   The pure water injection means 26 includes a pressure-resistant nozzle 4 that sprays pure water onto the surface to be cleaned 1 a of the substrate 1, an arm 27 that supports the pressure-resistant nozzle 4 so as to be angularly displaceable, and supports the arm 27 and supports the substrate 1. The slider 28 is configured to be movable along a guide 29 arranged in parallel, and includes pure water supply means (not shown). The guide 29 and the slider 28 are realized by, for example, a ball screw that is rotationally driven by a motor and a female screw member that is screwed into the ball screw.

図11(a)は、耐圧ノズル4の外観を示す斜視図である。図11(b)は、耐圧ノズル4における純水噴射面30の構成を模式的に示す平面図である。耐圧ノズル4の純水噴射面30には、複数の円形噴射孔31が直線状に一列に形成される。円形噴射孔31の直径d2は、基板1の被洗浄面1a上に形成される純水の液膜7の厚みを1mm未満にし、基板汚染物の除去性能を向上させるためには、200μm以下が好ましく、10μm〜
100μmが特に好ましい。また、隣り合う円形噴射孔31の中心間隔すなわち形成ピッチd3は、次の式(1)を満たすことが好ましい。
2×d2≦d3≦3×d2 …(1)
FIG. 11A is a perspective view showing the appearance of the pressure-resistant nozzle 4. FIG. 11B is a plan view schematically showing the configuration of the pure water injection surface 30 in the pressure-resistant nozzle 4. A plurality of circular injection holes 31 are formed in a straight line on the pure water injection surface 30 of the pressure-resistant nozzle 4. The diameter d2 of the circular injection hole 31 is 200 μm or less in order to reduce the thickness of the pure water liquid film 7 formed on the surface 1a to be cleaned of the substrate 1 to less than 1 mm and improve the substrate contaminant removal performance. Preferably, from 10 μm
100 μm is particularly preferable. Moreover, it is preferable that the center space | interval of the adjacent circular injection hole 31, ie, formation pitch d3, satisfy | fills following Formula (1).
2 × d2 ≦ d3 ≦ 3 × d2 (1)

具体的には、たとえば、円形噴射孔31の直径d2が30μm、円形噴射孔31の形成ピッチd3が60μmである耐圧ノズルが挙げられる。該耐圧ノズルに供給する純水が4MPaに加圧される場合、基板1の被洗浄面1aにおける純水衝突点から20mm下流で発生する液膜7の厚みは100〜150μmと極めて小さくなる。このとき、基板1の被洗浄面1a上を流過する超純水は、平均速度で秒速10m以上である。ただし、上記の、耐圧ノズル4の構成を示す数値および式(1)は、基板1の被洗浄面1a上で液膜7を発生させるための一例であって、本発明において液膜7により基板汚染物を除去するにあたり、耐圧ノズル4の構成を限定するものではない。   Specifically, for example, there is a pressure-resistant nozzle in which the diameter d2 of the circular injection holes 31 is 30 μm and the formation pitch d3 of the circular injection holes 31 is 60 μm. When the pure water supplied to the pressure-resistant nozzle is pressurized to 4 MPa, the thickness of the liquid film 7 generated 20 mm downstream from the pure water collision point on the surface to be cleaned 1a of the substrate 1 is as extremely small as 100 to 150 μm. At this time, the ultrapure water flowing over the surface 1a to be cleaned of the substrate 1 has an average speed of 10 m / s or more. However, the numerical value and the formula (1) indicating the configuration of the pressure-resistant nozzle 4 are examples for generating the liquid film 7 on the surface to be cleaned 1a of the substrate 1, and in the present invention, the substrate is formed by the liquid film 7. In removing contaminants, the configuration of the pressure-resistant nozzle 4 is not limited.

耐圧ノズル4から、水平面2に対して傾斜角度θ1をなして傾斜保持される基板1の被洗浄面1aに純水を噴射すると、被洗浄面1a上に純水の液膜7が形成される。   When pure water is sprayed from the pressure-resistant nozzle 4 onto the surface to be cleaned 1a of the substrate 1 held at an inclination angle θ1 with respect to the horizontal plane 2, a pure water liquid film 7 is formed on the surface to be cleaned 1a. .

図12(a)は、別形態の耐圧ノズル32の外観を示す斜視図である。図12(b)は、耐圧ノズル32における純水噴射面33の構成を模式的に示す平面図である。耐圧ノズル32の純水噴射面33には、スリット状噴射孔34が形成される。スリット状噴射孔34のギャップd4は、基板1の被洗浄面1a上に形成される純水の液膜7の厚みを1mm未満にし、基板汚染物の除去性能を向上させるためには、200μm以下が好ましく、10μm〜100μmが特に好ましい。具体的には、たとえば、スリット状噴射孔34のギャップd4が30μmである耐圧ノズルが挙げられる。該耐圧ノズルに供給する超純水が4MPaに加圧される場合、基板1の被洗浄面1aにおける超純水衝突点から20mm下流で発生する液膜7の厚みは100〜150μmと極めて薄い。このとき、基板1の被洗浄面1a上を流過する超純水は、平均速度で秒速10m以上である。ただし、上記の、耐圧ノズル32の構成を示す数値は、基板1の被洗浄面1a上で液膜7を発生させるための一例であって、本発明において液膜7により基板汚染物を除去するにあたり、耐圧ノズル32の構成を限定するものではない。   FIG. 12A is a perspective view showing the appearance of another embodiment of the pressure-resistant nozzle 32. FIG. 12B is a plan view schematically showing the configuration of the pure water ejection surface 33 in the pressure-resistant nozzle 32. A slit-like injection hole 34 is formed in the pure water injection surface 33 of the pressure-resistant nozzle 32. The gap d4 of the slit-shaped injection hole 34 is 200 μm or less in order to reduce the thickness of the pure water liquid film 7 formed on the surface 1a to be cleaned of the substrate 1 to less than 1 mm and improve the substrate contaminant removal performance. Is preferable, and 10 μm to 100 μm is particularly preferable. Specifically, for example, a pressure-resistant nozzle in which the gap d4 of the slit-like injection hole 34 is 30 μm can be mentioned. When the ultrapure water supplied to the pressure-resistant nozzle is pressurized to 4 MPa, the thickness of the liquid film 7 generated 20 mm downstream from the ultrapure water collision point on the surface to be cleaned 1a of the substrate 1 is as extremely thin as 100 to 150 μm. At this time, the ultrapure water flowing over the surface 1a to be cleaned of the substrate 1 has an average speed of 10 m / s or more. However, the numerical value indicating the configuration of the pressure-resistant nozzle 32 is an example for generating the liquid film 7 on the surface 1a to be cleaned of the substrate 1, and the substrate contaminants are removed by the liquid film 7 in the present invention. In this case, the configuration of the pressure-resistant nozzle 32 is not limited.

耐圧ノズル32から、水平面2に対して傾斜角度θ1をなして傾斜保持される基板1の被洗浄面1aに純水を噴射すると、被洗浄面1a上に純水の液膜7が形成される。   When pure water is sprayed from the pressure-resistant nozzle 32 onto the surface to be cleaned 1a of the substrate 1 held at an inclination angle θ1 with respect to the horizontal plane 2, a pure water liquid film 7 is formed on the surface to be cleaned 1a. .

図10に戻り、アーム27は、耐圧ノズル4を角変位可能に支持する。したがって、基板1の被洗浄面1aに対する耐圧ノズル4の純水噴射角度θ2を適宜調整できる。また、アーム27はスライダ28によって支持され、スライダ28はガイド29に沿って移動可能に配置される。ガイド29は、基板1の被処理面1aに対して平行に配置されるので、アーム27ひいては耐圧ノズル4は、スライダ28によって、基板1の被処理面1aに平行に上下動可能に支持されることになる。   Returning to FIG. 10, the arm 27 supports the pressure-resistant nozzle 4 so as to be angularly displaceable. Therefore, the pure water injection angle θ2 of the pressure-resistant nozzle 4 with respect to the surface to be cleaned 1a of the substrate 1 can be adjusted as appropriate. The arm 27 is supported by a slider 28, and the slider 28 is disposed so as to be movable along a guide 29. Since the guide 29 is arranged in parallel to the surface 1a to be processed of the substrate 1, the arm 27 and thus the pressure-resistant nozzle 4 are supported by the slider 28 so as to move up and down in parallel to the surface 1a to be processed of the substrate 1. It will be.

純水供給手段には、たとえば、純水を貯留する純水貯留槽と、一端が純水貯留槽に接続され、他端が耐圧ノズル4に接続される耐圧性ホースと、純水を加圧して送給する加圧ポンプとを含んで構成される。勿論、この構成に限定されることなく、ノズルに液体を供給する一般的な方法を採用することができる。   The pure water supply means includes, for example, a pure water storage tank that stores pure water, a pressure-resistant hose that has one end connected to the pure water storage tank and the other end connected to the pressure-resistant nozzle 4, and pressurizes pure water. And a pressurizing pump for feeding. Of course, the present invention is not limited to this configuration, and a general method for supplying a liquid to the nozzle can be employed.

基板洗浄装置25によれば、たとえば、次のようにして、基板1の被洗浄面1aの洗浄が行われる。まず、耐圧ノズル4から噴射される純水の到達する地点が、基板1の鉛直方向の最上部になるようにスライダ28を移動させ、耐圧ノズル4の位置合わせを行う。次いで、耐圧ノズル4から加圧されている純水35の噴射を開始し、基板1の被洗浄面1a上に膜厚が薄い液膜7を形成する。液膜7中の液流は、純水自体の粘度、被洗浄面1aとの摩擦などによって、基板1の下方になるほど減速し、それとともに液膜7の膜厚が大きくなる。そして、被洗浄面1aにおける純水35の到達する地点の直下から下方数cmまでの領域である洗浄実行領域8では、被洗浄面1aに付着する基板汚染物が除去される。したがって、耐圧ノズル4を下方に移動させると、基板1の下方に向けて洗浄実行領域8を連続的に発生させることができ、基板1全体を洗浄できる。また、耐圧ノズル4を基板1の上方から下方へ移動することにより、被洗浄面1aから剥離し、液膜7中に溶出する基板汚染物を再付着させることなく、基板1の外に効率的に排出できる。最後に、基板1の被洗浄面1aの最下部まで洗浄実行領域8が及んだ時点で、耐圧ノズル4による純水の噴射を停止し、基板1の洗浄が終了する。   According to the substrate cleaning apparatus 25, for example, the surface to be cleaned 1a of the substrate 1 is cleaned as follows. First, the position of the pressure-resistant nozzle 4 is adjusted by moving the slider 28 so that the point where the pure water jetted from the pressure-resistant nozzle 4 reaches the top of the substrate 1 in the vertical direction. Next, injection of pure water 35 pressurized from the pressure-resistant nozzle 4 is started, and a thin liquid film 7 is formed on the surface to be cleaned 1 a of the substrate 1. The liquid flow in the liquid film 7 decelerates toward the lower side of the substrate 1 due to the viscosity of the pure water itself, friction with the surface to be cleaned 1a, and the like, and the film thickness of the liquid film 7 increases accordingly. Then, in the cleaning execution area 8 which is an area from a position directly below the point where the pure water 35 reaches on the surface 1a to be cleaned to several centimeters below, substrate contaminants attached to the surface 1a to be cleaned are removed. Therefore, when the pressure-resistant nozzle 4 is moved downward, the cleaning execution region 8 can be continuously generated downward toward the substrate 1 and the entire substrate 1 can be cleaned. Further, by moving the pressure-resistant nozzle 4 from the upper side to the lower side of the substrate 1, the substrate is peeled from the surface to be cleaned 1 a, and the substrate contaminants eluted in the liquid film 7 are not reattached to the substrate 1. Can be discharged. Finally, when the cleaning execution area 8 reaches the lowest part of the surface 1a to be cleaned of the substrate 1, the injection of pure water by the pressure-resistant nozzle 4 is stopped, and the cleaning of the substrate 1 is completed.

本発明の基板洗浄方法を説明するための側面図である。It is a side view for demonstrating the board | substrate cleaning method of this invention. 本発明の基板洗浄方法を説明するための斜視図である。It is a perspective view for demonstrating the board | substrate cleaning method of this invention. 洗浄実行領域における液膜の状態を模式的に示す断面図である。It is sectional drawing which shows typically the state of the liquid film in a cleaning execution area | region. 洗浄実行領域において微粒子が除去される機構を模式的に示す断面図である。It is sectional drawing which shows typically the mechanism in which microparticles | fine-particles are removed in the washing | cleaning execution area | region. 水平面に載置される基板の被洗浄面に生じる液膜の状態を模式的に示す断面図である。It is sectional drawing which shows typically the state of the liquid film which arises on the to-be-cleaned surface of the board | substrate mounted in a horizontal surface. 本発明の方法における基板の被洗浄面に生じる液膜の状態を模式的に示す断面図である。It is sectional drawing which shows typically the state of the liquid film which arises on the to-be-cleaned surface of the board | substrate in the method of this invention. 本発明の方法により金属粒子を除去する機構を模式的に示す断面図である。It is sectional drawing which shows typically the mechanism which removes a metal particle by the method of this invention. 本発明の方法により金属化合物を除去する機構を模式的に示す断面図である。It is sectional drawing which shows typically the mechanism which removes a metal compound with the method of this invention. 本発明の方法により有機物を除去する機構を模式的に示す断面図である。It is sectional drawing which shows typically the mechanism which removes organic substance by the method of this invention. 本発明の実施の別形態である基板洗浄装置の構成を模式的に示す側面図である。It is a side view which shows typically the structure of the board | substrate cleaning apparatus which is another form of implementation of this invention. 図11(a)は、耐圧ノズルの外観を示す斜視図である。図11(b)は、耐圧ノズルにおける純水噴射面の構成を模式的に示す平面図である。FIG. 11A is a perspective view showing the appearance of the pressure-resistant nozzle. FIG.11 (b) is a top view which shows typically the structure of the pure water injection surface in a pressure | voltage resistant nozzle. 図12(a)は、別形態の耐圧ノズルの外観を示す斜視図である。図12(b)は、別形態の耐圧ノズルにおける純水噴射面の構成を模式的に示す平面図である。Fig.12 (a) is a perspective view which shows the external appearance of the pressure | voltage resistant nozzle of another form. FIG.12 (b) is a top view which shows typically the structure of the pure water injection surface in the pressure-resistant nozzle of another form. 従来技術の基板洗浄装置の構成を模式的に示す側面図である。It is a side view which shows typically the structure of the board | substrate cleaning apparatus of a prior art. 従来技術の基板洗浄装置における基板の搬送姿勢を示す側面図である。It is a side view which shows the conveyance attitude | position of the board | substrate in the board | substrate cleaning apparatus of a prior art.

符号の説明Explanation of symbols

1 基板
1a 被洗浄面
2 水平面
3 純水噴射手段
4,32 耐圧ノズル
5 噴射孔
6 耐圧配管
7,15 液膜
7a,15a 液膜表面
8 洗浄実行領域
9,10,11,12 領域
9a,9b,9c,9d,9e 液流
10a,10b,10c,10d 液流
11a,11b,11c,11d 液流
12a,12b,12c,12d 液流
9x,10x,11x,12x 流速線
13a,13b,13c 微粒子
14 応力
16 高圧領域
17 主流
18a,18b,18c 金属粒子
19 金属原子間結合
20a,20b,20c 金属化合物
21 金属化合物間結合
22a,22b,22c 有機物
23 炭素結合
25 基板洗浄装置
26 純水噴射手段
27 アーム
28 スライダ
29 ガイド
30,33 純水噴射面
31 円形噴射孔
34 スリット状噴射孔
35 純水
DESCRIPTION OF SYMBOLS 1 Substrate 1a Surface to be cleaned 2 Horizontal surface 3 Pure water injection means 4, 32 Pressure resistant nozzle 5 Injection hole 6 Pressure resistant piping 7, 15 Liquid film 7a, 15a Liquid film surface 8 Cleaning execution area 9, 10, 11, 12 area 9a, 9b , 9c, 9d, 9e Liquid flow 10a, 10b, 10c, 10d Liquid flow 11a, 11b, 11c, 11d Liquid flow 12a, 12b, 12c, 12d Liquid flow 9x, 10x, 11x, 12x Velocity lines 13a, 13b, 13c Fine particles DESCRIPTION OF SYMBOLS 14 Stress 16 High-pressure area | region 17 Main stream 18a, 18b, 18c Metal particle 19 Metal atom bond 20a, 20b, 20c Metal compound 21 Metal compound bond 22a, 22b, 22c Organic substance 23 Carbon bond 25 Substrate cleaning apparatus 26 Pure water injection means 27 Arm 28 Slider 29 Guide 30, 33 Pure water injection surface 31 Circular injection hole 34 Slit shape Injection hole 35 Pure water

Claims (9)

水平面に対して角度をなすように載置される基板の被洗浄面に、被洗浄面から間隔を開けた純水噴射位置から加圧状態にある純水を噴射し、純水の被洗浄面上における上部から下部への一方向の流れである液膜を発生させ、被洗浄面の基板汚染物を除去することを特徴とする基板洗浄方法。   Pure water in a pressurized state is sprayed from the pure water injection position spaced from the surface to be cleaned onto the surface to be cleaned placed at an angle with respect to the horizontal plane, A substrate cleaning method comprising: generating a liquid film that is a one-way flow from the upper part to the lower part of the upper part to remove substrate contaminants on the surface to be cleaned. 基板汚染物が微粒子、金属粒子、金属化合物および有機物から選ばれる1種または2種以上であることを特徴とする請求項1記載の基板洗浄方法。   2. The substrate cleaning method according to claim 1, wherein the substrate contaminant is one or more selected from fine particles, metal particles, metal compounds and organic substances. 水平面に対して基板のなす角度が5度以上90度以下であることを特徴とする請求項1または2記載の基板洗浄方法。   3. The substrate cleaning method according to claim 1, wherein an angle formed by the substrate with respect to the horizontal plane is 5 degrees or more and 90 degrees or less. 液膜の厚みが1mm未満であることを特徴とする請求項1〜3のいずれか1つに記載の基板洗浄方法。   The substrate cleaning method according to claim 1, wherein the thickness of the liquid film is less than 1 mm. 基板の被洗浄面と純水噴射位置との間隔が1mm以上50mm以下であることを特徴とする請求項1〜4のいずれか1つに記載の基板洗浄方法。   The substrate cleaning method according to claim 1, wherein a distance between the surface to be cleaned and the pure water injection position is 1 mm or more and 50 mm or less. 水平面に対して角度をなすように載置される基板の被洗浄面上において、純水の被洗浄面上における上部から下部への一方向の流れである液膜を発生させ、基板の被洗浄面に付着する基板汚染物を除去する基板洗浄装置であって、
基板を、水平面に対して角度をなす姿勢で保持する基板保持手段と、
基板保持手段に保持される基板の被洗浄面に対して間隔を開けて設けられ、被洗浄面に加圧状態にある純水を噴射する純水噴射手段とを含むことを特徴とする基板洗浄装置。
A substrate is cleaned by generating a liquid film that flows in one direction from the top to the bottom on the surface to be cleaned on the surface to be cleaned placed at an angle with respect to the horizontal plane. A substrate cleaning apparatus for removing substrate contaminants adhering to a surface,
Substrate holding means for holding the substrate in a posture that makes an angle with respect to a horizontal plane;
Substrate cleaning characterized by comprising pure water spraying means for spraying pure water in a pressurized state onto the surface to be cleaned, which is provided at an interval with respect to the surface to be cleaned held by the substrate holding means apparatus.
純水噴射手段が、複数の直径200μm以下の純水噴射孔を有し、かつ純水噴射孔が一直線上に配列するように形成されてなるノズルであることを特徴とする請求項6記載の基板洗浄装置。   The pure water injection means is a nozzle having a plurality of pure water injection holes having a diameter of 200 μm or less and formed so that the pure water injection holes are arranged in a straight line. Substrate cleaning device. 純水噴射手段が、開口ギャップ200μm以下のスリットノズルであることを特徴とする請求項6記載の基板洗浄装置。   7. The substrate cleaning apparatus according to claim 6, wherein the pure water injection means is a slit nozzle having an opening gap of 200 [mu] m or less. 純水噴射手段を、基板の被洗浄面に沿って上下動させる移動手段を含むことを特徴とする請求項6〜8のいずれか1つに記載の基板洗浄装置。   The substrate cleaning apparatus according to claim 6, further comprising a moving unit that moves the pure water injection unit up and down along the surface to be cleaned of the substrate.
JP2004312740A 2004-10-27 2004-10-27 Substrate washing method and substrate washing apparatus Pending JP2006122784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004312740A JP2006122784A (en) 2004-10-27 2004-10-27 Substrate washing method and substrate washing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004312740A JP2006122784A (en) 2004-10-27 2004-10-27 Substrate washing method and substrate washing apparatus

Publications (1)

Publication Number Publication Date
JP2006122784A true JP2006122784A (en) 2006-05-18

Family

ID=36718021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004312740A Pending JP2006122784A (en) 2004-10-27 2004-10-27 Substrate washing method and substrate washing apparatus

Country Status (1)

Country Link
JP (1) JP2006122784A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075571A1 (en) * 2006-12-20 2008-06-26 Rosecc Co., Ltd. Method and device for cutting, cleaning, and drying workpiece
WO2010116691A1 (en) * 2009-04-07 2010-10-14 カワサキプラントシステムズ株式会社 Apparatus and method for cleaning thin film solar cell panel by jetting high-pressure liquid
TWI421966B (en) * 2006-07-27 2014-01-01 Shibaura Mechatronics Corp Substrate processing device
JPWO2017170714A1 (en) * 2016-03-29 2018-08-30 新日鐵住金株式会社 Liquid removal apparatus and liquid removal method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196884A (en) * 1989-12-26 1991-08-28 Nordson Kk Washing method
JPH09323060A (en) * 1996-06-05 1997-12-16 Dainippon Screen Mfg Co Ltd Substrate processing device
JP2001205205A (en) * 2000-01-31 2001-07-31 Sharp Corp Ultrasonic cleaning method
JP2001235718A (en) * 2000-02-23 2001-08-31 Mitsuo Kamiwano Method for recycling treatment of liquid crystal panel and system for recycling treatment
JP2003086488A (en) * 2001-09-11 2003-03-20 Tokyo Electron Ltd Liquid treatment apparatus and method, and development processing system
JP2004153033A (en) * 2002-10-31 2004-05-27 Dainippon Screen Mfg Co Ltd Substrate processing apparatus
JP2004237218A (en) * 2003-02-06 2004-08-26 Toda Constr Co Ltd Method of washing building material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196884A (en) * 1989-12-26 1991-08-28 Nordson Kk Washing method
JPH09323060A (en) * 1996-06-05 1997-12-16 Dainippon Screen Mfg Co Ltd Substrate processing device
JP2001205205A (en) * 2000-01-31 2001-07-31 Sharp Corp Ultrasonic cleaning method
JP2001235718A (en) * 2000-02-23 2001-08-31 Mitsuo Kamiwano Method for recycling treatment of liquid crystal panel and system for recycling treatment
JP2003086488A (en) * 2001-09-11 2003-03-20 Tokyo Electron Ltd Liquid treatment apparatus and method, and development processing system
JP2004153033A (en) * 2002-10-31 2004-05-27 Dainippon Screen Mfg Co Ltd Substrate processing apparatus
JP2004237218A (en) * 2003-02-06 2004-08-26 Toda Constr Co Ltd Method of washing building material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI421966B (en) * 2006-07-27 2014-01-01 Shibaura Mechatronics Corp Substrate processing device
WO2008075571A1 (en) * 2006-12-20 2008-06-26 Rosecc Co., Ltd. Method and device for cutting, cleaning, and drying workpiece
JPWO2008075571A1 (en) * 2006-12-20 2010-04-08 株式会社Rosecc Work cutting / cleaning / drying method and apparatus
WO2010116691A1 (en) * 2009-04-07 2010-10-14 カワサキプラントシステムズ株式会社 Apparatus and method for cleaning thin film solar cell panel by jetting high-pressure liquid
JP2010245344A (en) * 2009-04-07 2010-10-28 Kawasaki Plant Systems Ltd High-pressure liquid injection cleaning device for thin film solar cell panel
CN102355960A (en) * 2009-04-07 2012-02-15 川崎重工业株式会社 Apparatus and method for cleaning thin film solar cell panel by jetting high-pressure liquid
TWI459578B (en) * 2009-04-07 2014-11-01 Kawasaki Heavy Ind Ltd Thin film solar cell panel high pressure liquid jet cleaning device and method
CN102355960B (en) * 2009-04-07 2015-05-06 川崎重工业株式会社 Apparatus and method for cleaning thin film solar cell panel by jetting high-pressure liquid
US9079226B2 (en) 2009-04-07 2015-07-14 Kawasaki Jukogyo Kabushiki Kaisha High-pressure liquid jet cleaner and high-pressure liquid jet cleaning method for cleaning thin film solar cell panel
JPWO2017170714A1 (en) * 2016-03-29 2018-08-30 新日鐵住金株式会社 Liquid removal apparatus and liquid removal method

Similar Documents

Publication Publication Date Title
KR100227018B1 (en) Cleaning apparatus and method for semiconductor process
JP5252861B2 (en) Substrate processing equipment
TWI581867B (en) Substrate processing apparatus, substrate processing method, and nozzle
JPH10156229A (en) Binary fluid jet nozzle for washing and washing device
US20070234951A1 (en) Methods and apparatus for cleaning a substrate
JP2007136275A (en) Washing device
JP5656245B2 (en) Cleaning method and cleaning device
JP2012200712A (en) Piping washing method
JP2013248582A (en) Device and method for cleaning article such as substrate for electronic materials
JP6292615B2 (en) Plate cleaning device
JP2011190167A (en) Fluid applicator and glass cleaning process
JP2006122784A (en) Substrate washing method and substrate washing apparatus
JP2002011419A (en) Cleaning method and cleaning device used for the same
JP2006187707A (en) Two-fluid nozzle for cleaning and cleaning method and apparatus
JP2009246000A (en) Processing equipment and method of substrate
JP5837788B2 (en) Nozzle, substrate processing apparatus, and substrate processing method
JP2012035166A (en) Fluid ejecting nozzle and washing device using the same
JP4036724B2 (en) Cleaning device and cleaning method
JP2009302406A (en) Apparatus and method for processing substrate
JP2007201186A (en) Substrate cleaning device and substrate cleaning method
JP2504916B2 (en) Substrate cleaning equipment
JP2894451B2 (en) Jet scrubber
JP2007098361A (en) Substrates processing apparatus
JP4621051B2 (en) Substrate cleaning device
JP2002159922A (en) Ultrasonic cleaning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A977 Report on retrieval

Effective date: 20090507

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330