JP2000167770A - Machining method by high speed shear stream - Google Patents

Machining method by high speed shear stream

Info

Publication number
JP2000167770A
JP2000167770A JP10347596A JP34759698A JP2000167770A JP 2000167770 A JP2000167770 A JP 2000167770A JP 10347596 A JP10347596 A JP 10347596A JP 34759698 A JP34759698 A JP 34759698A JP 2000167770 A JP2000167770 A JP 2000167770A
Authority
JP
Japan
Prior art keywords
workpiece
processing
pressure nozzle
ultrapure water
speed shear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10347596A
Other languages
Japanese (ja)
Other versions
JP3860352B2 (en
Inventor
Yuzo Mori
勇藏 森
Toshio Ishikawa
俊夫 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP34759698A priority Critical patent/JP3860352B2/en
Publication of JP2000167770A publication Critical patent/JP2000167770A/en
Application granted granted Critical
Publication of JP3860352B2 publication Critical patent/JP3860352B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a machining tank compact, prevent organic contamination of machining liquid, stabilize flow, control a gap easily, eliminate external disturbance due to influencing of coarse particles in machining liquid, and perform high quality machining with high efficiency by generating shear stream having controlled scope and distribution and speed gradient exceeding a fixed speed gradient along a surface of a workpiece without using a rotor. SOLUTION: A workpiece 2 and a high pressure nozzle 1 are arranged at a predetermined interval in a machining tank containing ultra-pure water mostly to generate high speed shear stream of ultra-pure water injected from the high pressure nozzle in the vicinity of a surface of the workpiece. Minute particles chemically reactive to the workpiece are supplied to the surface of the workpiece due to flow of ultra-pure water, and minute particles chemically combined with the workpiece are removed by high speed shear stream to remove atoms on the surface of the workpiece and promote machining.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被加工物の加工面
に微粒子を流動接触させて歪み、クラック及び熱変質等
を全く生じさせずに加工を進行させる高速剪断流による
加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a processing method using a high-speed shear flow in which fine particles are brought into flow contact with a processing surface of a workpiece to perform processing without causing distortion, cracks, thermal deterioration and the like at all.

【0002】[0002]

【従来の技術】従来、粒径10-9〜10-6mの微粒子を分散
した懸濁液からなる加工液を被加工物の加工面に沿って
流動させて、該微粒子を加工面上に略無荷重の状態で接
触させ、その際の微粒子と加工面界面での相互作用(一
種の化学結合)により、加工面原子を原子単位に近いオ
ーダで除去して加工する、いわゆるEEM(Elastic Em
ission Machining) による超精密鏡面加工は、本発明者
によって開発され既に知られている。このEEMは、結
晶学的には化学エッチングと同等の優れた表面が得られ
且つ加工制御性を有するという特徴を備えている。
2. Description of the Related Art Conventionally, a working fluid comprising a suspension in which fine particles having a particle size of 10 -9 to 10 -6 m are dispersed is caused to flow along a processing surface of a workpiece to deposit the fine particles on the processing surface. The so-called EEM (elastic emulation) process, in which contact is made with almost no load, and the fine particles and the interaction at the interface of the processing surface (a kind of chemical bond) at that time removes the processing surface atoms in the order of atomic units.
Ultra-precision mirror finishing by ission Machining has been developed by the present inventors and is already known. This EEM is characterized in that an excellent surface crystallographically equivalent to that of chemical etching can be obtained and that it has processing controllability.

【0003】従来のEEMを使った加工では、ポリウレ
タン製等の低弾性率高分子材料からなる加工用球体又は
円柱体(回転体)を、被加工物の加工面に対して微小ギ
ャップを保ちながら回転させて加工面近傍に加工液流を
発生させ、そして球体の場合には該球体を加工面全面に
走査して、加工面上の微小領域に形成されるポイント状
加工痕を連続させて、全面を精密に自由曲面加工し、円
柱体の場合には該円柱体の軸方向を基準として所定角度
傾斜した方向へ前記被加工物を相対的に平行移動させ、
又は前記円柱体を相対的に軸方向へ往復移動させ且つ被
加工物を該円柱体の軸方向と略直交する方向へ相対的に
平行移動させて微粒子と加工面界面での相互作用により
面加工を進行する超精密鏡面加工方法を既に提案してい
る。つまり、これまでのEEMでは、被加工物表面に対
向した回転体が作る弾性流体潤滑流れによって、被加工
物表面に粉末粒子を供給していた。
In conventional processing using EEM, a processing sphere or cylindrical body (rotating body) made of a low elastic modulus polymer material such as polyurethane is formed while maintaining a small gap with respect to a processing surface of a workpiece. Rotate to generate a machining fluid flow in the vicinity of the processing surface, and in the case of a sphere, scan the sphere over the entire processing surface to continue the point-like processing marks formed in the minute area on the processing surface, The entire surface is precisely processed into a free-form surface, and in the case of a cylindrical body, the workpiece is relatively translated in a direction inclined at a predetermined angle with respect to the axial direction of the cylindrical body,
Alternatively, the cylindrical body is reciprocated relatively in the axial direction, and the workpiece is relatively translated in a direction substantially perpendicular to the axial direction of the cylindrical body. Have already proposed an ultra-precision mirror finishing method. That is, in the conventional EEM, the powder particles are supplied to the surface of the workpiece by the elastic fluid lubrication flow generated by the rotating body facing the surface of the workpiece.

【0004】しかし、従来のEEMでは以下に示すよう
な問題点を有している。先ず、回転体と被加工物との間
の微小ギャップに一様な流れを作るためには、回転体の
周囲で発生する不要な流れが影響を与えないように加工
槽を大型化する必要があった。また、回転体の材質にポ
リウレタン製等の低弾性率高分子材料を使用する必要が
あったため、寸法精度や耐久性が劣るばかりでなく、加
工液の有機汚染が発生し、更に水による膨潤滑のため回
転体が変形し、流れの安定性が得られないといった欠点
を有する。更に別の問題点として、球体の回転体では非
対称なポイント状加工痕しか得られないこと、微小ギャ
ップが1μm程度のため加工液中の粗粒の影響による外
乱を受け易いこと、加工能率が低いことが挙げられる。
[0004] However, the conventional EEM has the following problems. First, in order to create a uniform flow in the minute gap between the rotating body and the workpiece, it is necessary to increase the size of the processing tank so that unnecessary flow generated around the rotating body does not affect the flow. there were. Also, since it was necessary to use a low-elastic modulus polymer material such as polyurethane for the material of the rotating body, not only was the dimensional accuracy and durability inferior, but also organic contamination of the working fluid occurred, and swelling and lubrication caused by water Therefore, there is a disadvantage that the rotating body is deformed and flow stability cannot be obtained. Still other problems are that only asymmetrical point-like machining marks can be obtained with a spherical rotating body, that the minute gap is about 1 μm, so that it is easily affected by the influence of coarse particles in the working fluid, and that the machining efficiency is low. It is mentioned.

【0005】[0005]

【発明が解決しようとする課題】EEMでは、超純水の
流れを利用して、被加工物と化学的な反応性のある微粒
子を被加工物表面に供給し、被加工物・微粒子表面間で
化学結合が生じた後に、更に流れによって微粒子が被加
工物表面から取り除かれる際、被加工物表面の原子を微
粒子が持ち去ることによって加工が進行する。本発明者
は、被加工物表面に化学結合を伴って付着した微粒子を
取り除くためには、被加工物表面上に所定の強さ以上の
剪断流が必要であることを、理論的に予測し、実験にお
いて確認したのである。つまり、回転体による加工痕の
形状と、回転体による剪断流の速度勾配分布を対応さ
せ、加工には剪断流の一定の速度勾配以上が必要である
ことを見出したのである。
In the EEM, fine particles chemically reactive with the workpiece are supplied to the surface of the workpiece by using the flow of ultrapure water, and the surface of the workpiece and the fine particles are separated. When the fine particles are further removed from the surface of the workpiece by the flow after the chemical bonding occurs in the above, the fine particles carry away the atoms on the surface of the workpiece, whereby the processing proceeds. The present inventor theoretically predicts that a shear flow having a predetermined strength or more is required on the surface of the workpiece in order to remove fine particles attached to the surface of the workpiece with chemical bonding. This was confirmed in an experiment. In other words, the shape of the processing mark by the rotating body is made to correspond to the velocity gradient distribution of the shear flow by the rotating body, and it has been found that the processing requires a certain velocity gradient of the shear flow or more.

【0006】そこで、本発明が前述の状況に鑑み、解決
しようとするところは、回転体を用いずに、制御された
範囲及び分布を有する一定の速度勾配以上の剪断流を被
加工物表面に沿って発生させることによって、前述の問
題点を一挙に解決し、高品質の加工を高能率で行うこと
が可能な高速剪断流による加工方法を提供する点にあ
る。
[0006] In view of the above situation, the present invention aims to solve the problem by applying a shear flow having a controlled range and distribution over a predetermined velocity gradient to the surface of a workpiece without using a rotating body. Accordingly, it is an object of the present invention to provide a processing method using a high-speed shear flow, which can solve the above-mentioned problems at once, and can perform high-quality processing with high efficiency.

【0007】[0007]

【課題を解決するための手段】本発明は、前述の課題解
決のために、超純水を主体とした加工槽内に被加工物と
高圧力ノズルとを所定の間隔を置いて配設し、被加工物
の表面近傍に高圧力ノズルから噴射した超純水の高速剪
断流を発生させるとともに、超純水の流れによって被加
工物と化学的な反応性のある微粒子を被加工物表面に供
給し、被加工物と化学結合した微粒子を高速剪断流にて
取り除いて被加工物表面の原子を除去し、加工を進行さ
せてなる高速剪断流による加工方法を確立した。
According to the present invention, in order to solve the above-mentioned problems, a workpiece and a high-pressure nozzle are arranged at a predetermined interval in a processing tank mainly composed of ultrapure water. In addition to generating a high-speed shear flow of ultrapure water injected from a high-pressure nozzle near the surface of the workpiece, the flow of ultrapure water causes fine particles chemically reactive with the workpiece to flow to the surface of the workpiece. A high-speed shearing flow method was developed in which the fine particles supplied and chemically bonded to the workpiece were removed by a high-speed shear flow to remove atoms on the surface of the workpiece, and the processing was advanced.

【0008】ここで、前記高圧力ノズルの噴出口が円孔
であるとポイント加工ができ、被加工物表面を任意形状
に加工することが可能であり、またスリット孔であると
ライン加工ができ、被加工物表面を広い面積にわたり平
面形状又は波形形状に加工することが可能である。
Here, when the high pressure nozzle has a circular hole, point processing can be performed, and the surface of the workpiece can be processed into an arbitrary shape. When the nozzle is a slit hole, line processing can be performed. In addition, the surface of the workpiece can be processed into a planar shape or a corrugated shape over a wide area.

【0009】また、本発明の加工方法では、前記高圧力
ノズルから超純水に微粒子を分散させた加工液を噴射す
るか、或いは前記高圧力ノズルから超純水を噴射し、該
高圧力ノズル近傍に配した微粒子供給ノズルから微粒子
を分散させた濃縮加工液を吐出させるか、或いは加工槽
内に超純水に微粒子を分散させた加工液を満たし、前記
高圧力ノズルから超純水を噴射するのである。更に、前
記高圧力ノズルによって発生した高速剪断流の後流側に
回収手段を配設し、加工液を回収することもより好まし
い。
Further, in the processing method of the present invention, the high-pressure nozzle jets a processing liquid in which fine particles are dispersed in ultrapure water, or jets ultrapure water from the high-pressure nozzle. Either a concentrated processing liquid in which fine particles are dispersed is discharged from a fine particle supply nozzle arranged in the vicinity, or a processing tank is filled with a processing liquid in which fine particles are dispersed in ultrapure water, and ultrapure water is injected from the high-pressure nozzle. You do it. Further, it is more preferable to arrange a collecting means on the downstream side of the high-speed shear flow generated by the high-pressure nozzle to collect the working fluid.

【0010】[0010]

【発明の実施の形態】先ず、被加工物表面に化学結合を
伴って付着した微粒子を取り除くためには、被加工物表
面上にどの程度の剪断流の強さ(速度勾配)が必要であ
るかを見積もった。粒径0.1μmのZrO2 微粒子を
Si(100)表面に超純水中で吸着させ、この表面上
に様々な強さの超純水の剪断流を作用させた時、微粒子
がSi表面から除去される様子を光学顕微鏡により観察
した。その結果、5m/sec ・μm程度の速度勾配を越
えると効果的な微粒子の除去が進行することが分かっ
た。一方、従来のEEMにおいて、回転体による加工痕
の形状と、シミュレーションによって得られた剪断流の
速度勾配が5m/sec ・μm程度以上の領域の形状とが
略一致した。この両者の結果から、加工には一定の速度
勾配以上の剪断流が必要であることが判ったが、その下
限は被加工物の材質と、微粒子の種類及び粒径によって
変わることが予想される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, in order to remove fine particles adhering to a workpiece surface along with a chemical bond, a shear flow intensity (velocity gradient) is required on the workpiece surface. Or estimated. When ZrO 2 fine particles having a particle size of 0.1 μm are adsorbed on the Si (100) surface in ultrapure water, and a shear flow of ultrapure water of various strengths acts on this surface, the fine particles are removed from the Si surface. The state of removal was observed with an optical microscope. As a result, it was found that when the velocity gradient exceeded about 5 m / sec · μm, effective removal of fine particles proceeded. On the other hand, in the conventional EEM, the shape of the processing trace due to the rotating body and the shape of the region where the velocity gradient of the shear flow obtained by the simulation was about 5 m / sec · μm or more substantially matched. From these results, it was found that the processing required a shear flow of a certain speed gradient or higher, but the lower limit is expected to vary depending on the material of the workpiece and the type and particle size of the fine particles. .

【0011】本発明は、高圧力ノズルから超純水又は超
純水と加工用微粒子との懸濁液(加工液)を被加工物の
加工面に噴射し、加工面に沿った剪断流を作り、微粒子
と被加工物表面原子との化学結合力を利用して、被加工
物表面から微粒子が表面原子を取り去ることによって加
工を進行させるものである。そこで、高圧力ノズルから
噴射した超純水又は加工液の流れが、ノズル直下近傍で
どのようになるかを流体解析モデルを用いて数値計算し
た。
According to the present invention, a high-pressure nozzle sprays ultrapure water or a suspension of ultrapure water and processing fine particles (processing liquid) onto a processing surface of a workpiece to generate a shear flow along the processing surface. In this method, the fine particles remove surface atoms from the surface of the workpiece by utilizing the chemical bonding force between the fine particles and the surface atoms of the workpiece. Therefore, the flow of the ultrapure water or the machining fluid injected from the high-pressure nozzle was calculated in the vicinity of the nozzle directly using a fluid analysis model.

【0012】解析モデルはノズルを被加工物表面に対し
て直角な軸対称とし、非圧縮性流体近似の基でナビエ・
ストークスの運動方程式を差分法によって数値的に解い
た。計算は、ノズルの穴径を0.1mmφ、外径を2m
mφとし、ノズル先端と被加工物表面間のギャップを1
mm及び2mmの場合について行った。また、ノズルへ
の流体の供給圧力は1000気圧とした。それぞれのギ
ャップにおいて圧力分布、ノズル穴方向(Z軸方向)及
び半径方向(R方向)の流れ分布を出した。図1にギャ
ップが1mmの場合、図2にギャップが2mmの場合の
結果を示している。
In the analysis model, the nozzle is axially symmetrical at right angles to the surface of the workpiece, and Navier's
Stokes equation of motion was solved numerically by the difference method. The calculation is as follows: the hole diameter of the nozzle is 0.1 mmφ, the outer diameter is 2 m
mφ, and the gap between the nozzle tip and the surface of the workpiece is 1
mm and 2 mm. The supply pressure of the fluid to the nozzle was 1000 atm. At each gap, a pressure distribution, a flow distribution in a nozzle hole direction (Z-axis direction) and a radial direction (R direction) were obtained. FIG. 1 shows the results when the gap is 1 mm, and FIG. 2 shows the results when the gap is 2 mm.

【0013】この計算結果より、解析領域における流体
の粘性による圧力損失は約50気圧程度であることが分
かる。流入部では、約950気圧の動圧に相当するノズ
ル穴方向の流れ(約450m/sec )が発生しており
(図1(a) 参照)、この流れは被加工物の表面近傍(被
加工物表面から約75μm)までほぼ直進した後、減速
する。その際、被加工物の表面近傍で動圧が静圧に変換
され、約950気圧の静圧が発生した後(図1(b) 参
照)、半径方向の流れとして動圧に再変換される(図1
(c) 参照)。半径方向の流れは、被加工物表面に沿って
極めて薄く層状に発生しており(被加工物表面から約2
5μmの範囲)、EEMにおいて必要となる被加工物表
面上の剪断流れを非常に効果的に発生できることが分か
った。また、ギャップ1mmの場合と2mmの場合で
は、ほぼ同等の流れが発生しており、このことはギャッ
プ制御が極めて容易であることを示している。本条件で
は、ギャップ1mmと2mmの場合とも、被加工物表面
上の最大速度勾配は、100m/sec ・μm程度が得ら
れている。
From this calculation result, it is understood that the pressure loss due to the viscosity of the fluid in the analysis region is about 50 atm. At the inflow portion, a flow (about 450 m / sec) in the direction of the nozzle hole corresponding to a dynamic pressure of about 950 atm is generated (see FIG. 1 (a)), and this flow is generated in the vicinity of the surface of the workpiece (the workpiece). The vehicle decelerates after traveling almost straight to about 75 μm from the object surface. At that time, the dynamic pressure is converted to static pressure in the vicinity of the surface of the workpiece, and after a static pressure of about 950 atm is generated (see FIG. 1 (b)), the dynamic pressure is converted back to dynamic pressure as a radial flow. (Figure 1
(c)). The radial flow occurs in a very thin layer along the surface of the workpiece (approximately 2
(In the range of 5 μm), it has been found that the shear flow on the workpiece surface required in EEM can be generated very effectively. In addition, in the case of the gap of 1 mm and the case of 2 mm, almost the same flow occurs, which indicates that the gap control is extremely easy. Under this condition, the maximum velocity gradient on the workpiece surface is about 100 m / sec · μm even when the gap is 1 mm or 2 mm.

【0014】次に、本発明の詳細を添付した図面に基づ
き更に説明する。図3〜図5は、高圧力ノズルの概念的
構造を示しており、高圧力ノズル1の先端より加工液又
は超純水を噴出し、被加工物2の表面上に所定の剪断流
を作る。ここで、高圧力ノズル1から超純水のみを噴き
出す場合、超純水の流れに合わせて別口より加工液を供
給する。又は、予め加工槽内に超純水に微粒子を分散さ
せた加工液を満たしておき、この加工液内に高圧力ノズ
ルから超純水を噴射し、同様に被加工物2の表面上に所
定の剪断流を作る。
Next, the details of the present invention will be further described with reference to the accompanying drawings. FIGS. 3 to 5 show a conceptual structure of the high-pressure nozzle, in which a working fluid or ultrapure water is jetted from the tip of the high-pressure nozzle 1 to form a predetermined shear flow on the surface of the workpiece 2. . Here, when only the ultrapure water is jetted from the high-pressure nozzle 1, the processing liquid is supplied from another port in accordance with the flow of the ultrapure water. Alternatively, a processing liquid in which fine particles are dispersed in ultrapure water is filled in a processing tank in advance, and ultrapure water is sprayed from a high-pressure nozzle into the processing liquid, and a predetermined amount of water is similarly applied onto the surface of the workpiece 2. Make a shear flow.

【0015】図3は、高圧力ノズル1の噴出口3から超
純水と加工用微粒子を混合した加工液を噴射する構造で
あり、図3(a) は噴出口3の方向を被加工物2の表面と
直角に配した垂直入射タイプであり、図3(b) は噴出口
3の方向を被加工物2の表面に対して傾斜させた斜め入
射タイプである。ここで、前記噴出口3が円孔の場合に
は、加工面上の微小領域に形成されるポイント状加工痕
を連続させて、被加工物2の表面を精密に自由曲面加工
することが可能であり、また前記噴出口3がスリット孔
である場合には、加工面上にライン状加工痕が形成さ
れ、被加工物2の表面を平坦に鏡面加工することが可能
である。
FIG. 3 shows a structure in which a machining liquid in which ultrapure water and fine particles for processing are mixed is ejected from the ejection port 3 of the high-pressure nozzle 1, and FIG. FIG. 3B shows an oblique incidence type in which the direction of the ejection port 3 is inclined with respect to the surface of the workpiece 2. Here, when the injection port 3 is a circular hole, the surface of the workpiece 2 can be precisely free-curved by continuously forming point-like processing marks formed in a minute area on the processing surface. When the jet port 3 is a slit hole, a linear processing mark is formed on the processing surface, and the surface of the workpiece 2 can be flat and mirror-finished.

【0016】図4は、高圧力ノズル1の噴出口3から超
純水のみを噴出し、加工用微粒子を超純水で流動化した
濃縮加工液を供給管4から供給するものであり、図4
(a) は垂直入射タイプの高圧力ノズル1の噴出口3の内
部に供給管4を通して、先端で該噴出口3から噴出した
超純水と濃縮加工液とを混合して被加工物2の表面に加
工液を供給する構造であり、図4(b) は斜め入射タイプ
の高圧力ノズル1の側方からギャップを臨む位置に供給
管4を配し、噴出口3から噴出した超純水に濃縮加工液
を巻き込ませる構造である。更に図示しないが、図3
(a) の垂直入射タイプの高圧力ノズル1の側方からギャ
ップを臨む位置に供給管4を配する構造、図3(b) の斜
め入射タイプの高圧力ノズル1の噴出口3の内部に供給
管4を通した構造も可能である。ここで、何れの場合も
高圧力ノズル1の噴出口3は、円孔とスリット孔があ
り、噴出口3がスリット孔の場合には前記供給管4は偏
平管とするか又は細い円管を複数列設したものとするこ
とが必要である。
FIG. 4 shows a case in which only ultrapure water is jetted from the jet port 3 of the high-pressure nozzle 1 and a concentrated processing liquid in which fine particles for processing are fluidized with ultrapure water is supplied from a supply pipe 4. 4
(a) shows a case where the ultrapure water spouted from the spout 3 at the tip and the concentrated processing liquid are mixed through the supply pipe 4 into the spout 3 of the high-pressure nozzle 1 of the vertical incidence type to form the workpiece 2. FIG. 4B shows a structure in which a supply pipe 4 is arranged at a position facing a gap from the side of the high-pressure nozzle 1 of the oblique incidence type, and ultrapure water spouted from the spout 3 is shown in FIG. This is a structure in which a concentrated processing liquid is involved. Although not shown, FIG.
FIG. 3A shows a structure in which a supply pipe 4 is arranged at a position facing a gap from the side of a normal incidence type high-pressure nozzle 1, and the inside of the injection port 3 of the oblique incidence type high-pressure nozzle 1 shown in FIG. A structure through the supply pipe 4 is also possible. In any case, the ejection port 3 of the high-pressure nozzle 1 has a circular hole and a slit hole, and when the ejection port 3 is a slit hole, the supply pipe 4 is a flat tube or a thin circular tube. It is necessary to provide a plurality of rows.

【0017】また、高圧力ノズル1の噴出口3から噴射
した加工液又は供給管4から吐出した濃縮加工液が噴出
口3から噴射した超純水と混合した後の加工液を、直ち
に効率良く回収することも可能である。この概念図を図
5に示している。図5(a) は、回収手段として、垂直入
射タイプの高圧力ノズル1の先端部周囲に一定の間隔を
置いて環状の回収板5を配置し、高圧力ノズル1と回収
板5の間に加工液が流れるようにしたものである。ま
た、図5(b) は、回収手段として、斜め入射タイプの高
圧力ノズル1の加工液の下流側に一定の間隔を置いて部
分的に回収板5を配置したものである。
Further, the machining fluid ejected from the ejection port 3 of the high pressure nozzle 1 or the concentrated machining fluid ejected from the supply pipe 4 is mixed with the ultrapure water ejected from the ejection port 3 immediately and efficiently. It is also possible to collect. This conceptual diagram is shown in FIG. FIG. 5A shows a recovery means in which a ring-shaped recovery plate 5 is arranged at a fixed interval around the tip of a high-pressure nozzle 1 of a vertical incidence type, and is disposed between the high-pressure nozzle 1 and the recovery plate 5. The working fluid is allowed to flow. FIG. 5B shows a collecting means in which a collecting plate 5 is partially disposed at a predetermined interval downstream of the processing liquid of the oblique incidence type high pressure nozzle 1.

【0018】ここで、被加工物の材質と加工用微粒子の
材質について若干説明する。本発明における加工原理
は、加工用微粒子と被加工物表面との界面での一種の化
学結合による相互作用により、微粒子が表面原子と結合
し、それを高速剪断流で表面から取り去ることによって
微粒子と共に表面原子を除去して加工を進行させるの
で、被加工物の材質と加工用微粒子の材質の組み合わせ
は、加工速度に大きく影響を及ぼすのである。被加工物
としてシリコンウエハ(Si)を選択した場合、SiO
2 の粉体よりもZrO2 の粉体を用いる方が加工速度は
速いのである。
Here, the material of the workpiece and the material of the fine particles for processing will be described briefly. The processing principle in the present invention is based on the interaction of a kind of chemical bond at the interface between the fine particles for processing and the surface of the workpiece, whereby the fine particles are bonded to the surface atoms, and are removed from the surface by a high-speed shear flow, whereby the fine particles are removed together with the fine particles. Since processing proceeds by removing surface atoms, the combination of the material of the workpiece and the material of the processing fine particles greatly affects the processing speed. If a silicon wafer (Si) is selected as the workpiece,
The processing speed is higher when the ZrO 2 powder is used than when the ZrO 2 powder is used.

【0019】次に、前記高圧力ノズル1へ高圧力の超純
水を供給するシステムを図6に基づいて簡単に説明す
る。圧力発生用のポンプ10には、プランジャーポンプ
を使用する。また、加工用の超純水を直接ポンプで加圧
すると、ポンプ内の摺動部で発生するパーティクル等の
汚染が問題となるため、PTFE又はSUS製のダイヤ
フラム又はブローズを介して加工用超純水を加圧するシ
ステムを採用している。超純水の加圧部11,12は2
連となっており、一台のプランジャーポンプ10により
市水を所定圧力に加圧し、それをレギュレータ13で2
流路に分岐し、それぞれバルブ14,15を介して前記
加圧部11,12に接続している。一方、加工用超純水
は、超純水供給装置16から各加圧部11,12にそれ
ぞれバルブ17,18を介して接続している。そして、
前記各加圧部11,12は、内部をPTFE又はSUS
製の隔膜19,20で市水と超純水が分離されており、
該隔膜19,20を通じて市水の圧力で超純水を加圧
し、各加圧部11,12で加圧された超純水はバルブ2
1,22を介して合流して前記高圧力ノズル1に供給さ
れる。また、前記バルブ14と加圧部11との間には排
水用バルブ23が、前記バルブ15と加圧部12との間
には排水用バルブ24が設けられている。これら全バル
ブは、電磁バルブを採用しコンピュータで開閉制御でき
るようになっている。
Next, a system for supplying high-pressure ultrapure water to the high-pressure nozzle 1 will be briefly described with reference to FIG. A plunger pump is used as the pressure generating pump 10. Also, if the ultrapure water for processing is directly pressurized by a pump, contamination of particles and the like generated in sliding parts in the pump becomes a problem, so the ultrapure water for processing is passed through a diaphragm or blow made of PTFE or SUS. The system which pressurizes water is adopted. Pressurizing parts 11 and 12 of ultrapure water are 2
The city water is pressurized to a predetermined pressure by one plunger pump 10 and the pressure is
It branches into a flow path and is connected to the pressurizing units 11 and 12 via valves 14 and 15, respectively. On the other hand, the ultrapure water for processing is connected from the ultrapure water supply device 16 to the pressurizing units 11 and 12 via valves 17 and 18, respectively. And
Each of the pressurizing parts 11 and 12 has a PTFE or SUS inside.
City water and ultrapure water are separated by diaphragms 19 and 20 made of
Ultrapure water is pressurized by the pressure of city water through the diaphragms 19 and 20, and the ultrapure water pressurized by the pressurizing units 11 and 12 is supplied to the valve 2.
The two are merged via the nozzles 1 and 22 and supplied to the high-pressure nozzle 1. A drain valve 23 is provided between the valve 14 and the pressurizing unit 11, and a drain valve 24 is provided between the valve 15 and the pressurizing unit 12. All these valves employ electromagnetic valves and can be opened and closed by a computer.

【0020】そして、この高圧力の超純水供給システム
の運転は以下のようになっている。先ず、前記超純水供
給装置16では、大気圧とほぼ同じ圧力の超純水が製造
される。この超純水を連続的に加圧することは困難であ
るので、前述のシステムでは二つの加圧部11,12で
交互に超純水を大気圧から所定の圧力まで加圧し、高圧
力ノズル1に連続的に高圧力の超純水を供給するように
なっている。つまり、一方の加圧部11の系統では、バ
ルブ14、21を開き、バルブ17、23を閉じて加圧
した市水を加圧部11内に供給し、該加圧部11内で隔
膜19を介して加圧された超純水が高圧力ノズル1へ供
給され、他方の加圧部12の系統では、バルブ15、2
2を閉じ、バルブ18、24を開き、加圧部12から市
水を排水しながら超純水供給装置16から加圧部12内
へ超純水を供給する。ここで、バルブ24を開いて加圧
部12内を大気圧に戻した後に、バルブ18を開き、超
純水供給装置16が圧力破壊しないようにしている。次
に、バルブ18、24を閉じ、バルブ15を開いて加圧
部12内に加圧した市水を供給し、超純水を加圧して供
給圧力に達すると、バルブ22を開き、バルブ21、1
4を閉じ、バルブ23を開いて加圧部11内の市水を排
水して加圧部11内が大気圧になった後、バルブ17を
開いて市水を排水しながら超純水供給装置16から超純
水を加圧部11内に供給するのである。以後は、この繰
り返しであり、各バルブの開閉タイミングはコンピュー
タ制御され、連続的に高圧力の超純水が高圧力ノズル1
に供給されるのである。
The operation of the high-pressure ultrapure water supply system is as follows. First, the ultrapure water supply device 16 produces ultrapure water having substantially the same pressure as the atmospheric pressure. Since it is difficult to continuously pressurize the ultrapure water, in the above-described system, the ultrapure water is alternately pressurized from atmospheric pressure to a predetermined pressure by the two pressurizing units 11 and 12, and the high-pressure nozzle 1 is pressurized. , High-pressure ultrapure water is continuously supplied. That is, in the system of one pressurizing unit 11, the valves 14 and 21 are opened, and the valves 17 and 23 are closed to supply pressurized city water into the pressurizing unit 11, and the diaphragm 19 in the pressurizing unit 11 is supplied. The pressurized ultrapure water is supplied to the high-pressure nozzle 1 through the
2 is closed, valves 18 and 24 are opened, and ultrapure water is supplied from the ultrapure water supply device 16 into the pressurizing unit 12 while draining city water from the pressurizing unit 12. Here, after opening the valve 24 to return the inside of the pressurizing section 12 to the atmospheric pressure, the valve 18 is opened so that the ultrapure water supply device 16 does not break down under pressure. Next, the valves 18 and 24 are closed, the valve 15 is opened to supply the pressurized city water into the pressurizing section 12, and the ultrapure water is pressurized to reach the supply pressure. , 1
4, the valve 23 is opened to drain the city water in the pressurizing unit 11 and the inside of the pressurizing unit 11 is brought to the atmospheric pressure. From 16, ultrapure water is supplied into the pressurizing section 11. Thereafter, this is a repetition, and the opening / closing timing of each valve is controlled by a computer, and high-pressure ultrapure water is continuously supplied to the high-pressure nozzle 1.
It is supplied to.

【0021】次に、本発明の高速剪断流による加工方法
を採用した加工装置の例を図7に示している。この加工
装置100は、上部に超純水を満たした加工槽101を
有し、下部にX−Y−θ駆動系を内蔵した駆動機構部1
02を有し、加工槽101と駆動機構部102とは非磁
性体の隔壁103で区画され、駆動系の摺動部から発生
するパーティクル等によって加工槽101内が汚染され
ないようになっている。前記加工槽101内には、上部
にZ軸駆動系104に接続された高圧力ノズル1を設
け、下部に超純水静圧支持によって水平移動且つ回転可
能に設けた試料台105を設け、それに被加工物2を固
定し、前記高圧力ノズル1に対向させている。前記駆動
機構部102には、X軸駆動系106とY軸駆動系10
7によって水平移動可能に設けたXYテーブル108を
有し、該XYテーブル108にθ軸駆動系109を設け
ている。そして、前記試料台105の下面に固定した永
久磁石110とθ軸駆動系109に固定した永久磁石1
11とを前記隔壁103を介して対面させて磁気的に結
合し、X−Y−θ駆動系による変位を永久磁石111、
永久磁石110を介して試料台105に伝達している。
このように、各駆動系によって高圧力ノズル1と被加工
物2とはX−Y−Z−θ軸方向に相対的に変位可能とな
り、高圧力ノズル1によって被加工物2を所定の形状に
加工ができるようになっている。
Next, FIG. 7 shows an example of a processing apparatus adopting the processing method by high-speed shear flow of the present invention. The processing apparatus 100 has a processing tank 101 filled with ultrapure water in an upper part, and a driving mechanism unit 1 having a built-in XY-θ driving system in a lower part.
2, the processing tank 101 and the drive mechanism 102 are partitioned by a non-magnetic partition wall 103 so that the inside of the processing tank 101 is not contaminated by particles or the like generated from a sliding portion of the drive system. In the processing tank 101, a high-pressure nozzle 1 connected to a Z-axis drive system 104 is provided at the upper part, and a sample table 105 provided horizontally and rotatably by ultrapure water static pressure support is provided at a lower part. The workpiece 2 is fixed and faces the high-pressure nozzle 1. The drive mechanism 102 includes an X-axis drive system 106 and a Y-axis drive system 10.
7 has an XY table 108 which is provided so as to be horizontally movable, and the XY table 108 is provided with a θ-axis drive system 109. The permanent magnet 110 fixed to the lower surface of the sample stage 105 and the permanent magnet 1 fixed to the θ-axis drive system 109
11 are opposed to each other via the partition 103 and are magnetically coupled to each other, and the displacement by the XY-θ drive system is changed by the permanent magnet 111,
The light is transmitted to the sample stage 105 via the permanent magnet 110.
As described above, the high-pressure nozzle 1 and the workpiece 2 can be relatively displaced in the XYZ-θ-axis directions by the respective driving systems, and the workpiece 2 is formed into a predetermined shape by the high-pressure nozzle 1. It can be processed.

【0022】そして、本加工装置100では、高圧力ノ
ズル1から噴射される超純水と、試料台105の超純水
静圧支持部から加工槽101内に流入する超純水と同量
の超純水を加工槽101から液相分離して抜き取るシス
テムが備えられ、抜き取られた超純水は精製装置によ
り、不純物濃度を極限まで低減させた後、再度静圧支持
部に送られる。本システムにより、加工槽101内の構
造物から溶出する極微量の金属イオン等の除去までが可
能になっている。
In the processing apparatus 100, the same amount of ultrapure water injected from the high-pressure nozzle 1 and ultrapure water flowing into the processing tank 101 from the ultrapure water static pressure support of the sample stage 105 is used. A system for separating and extracting ultrapure water from the processing tank 101 by liquid phase separation is provided. The extracted ultrapure water is sent to the static pressure support unit again after the impurity concentration is reduced to the limit by a purification device. This system makes it possible to remove even trace amounts of metal ions and the like eluted from structures in the processing tank 101.

【0023】[0023]

【発明の効果】以上にしてなる本発明の高速剪断流によ
る加工方法によれば、必要な領域のみに所定の流れを発
生できるため、加工装置の小型化が可能であり、また高
分子材料を使用しないので、加工液が有機物に汚染され
ることがなく、十分に大きなギャップでの加工が可能で
あるので、流れを安定させるためのギャップ制御が極め
て容易であり、また粗粒混入等の外乱に対して安定であ
る。
According to the processing method using high-speed shear flow of the present invention as described above, a predetermined flow can be generated only in a necessary area, so that a processing apparatus can be downsized and a polymer material can be used. Since it is not used, the processing liquid is not contaminated by organic substances, and processing can be performed with a sufficiently large gap, so that gap control for stabilizing the flow is extremely easy, and disturbance such as mixing of coarse particles Stable against

【図面の簡単な説明】[Brief description of the drawings]

【図1】高圧ノズルから被加工物表面に1mmのギャッ
プで直角に超純水を噴出した場合の圧力と速度成分のシ
ミュレーション結果を示し、(a) はZ方向速度成分、
(b) は圧力分布、(c) はR方向速度成分をそれぞれ示し
ている。
FIG. 1 shows a simulation result of a pressure and a velocity component when ultrapure water is jetted at a right angle from a high-pressure nozzle to a surface of a workpiece with a gap of 1 mm, and FIG.
(b) shows the pressure distribution, and (c) shows the velocity component in the R direction.

【図2】高圧ノズルから被加工物表面に2mmのギャッ
プで直角に超純水を噴出した場合の圧力と速度成分のシ
ミュレーション結果を示し、(a) はZ方向速度成分、
(b) は圧力分布、(c) はR方向速度成分をそれぞれ示し
ている。
FIG. 2 shows a simulation result of a pressure and a velocity component when ultrapure water is jetted at a right angle from a high-pressure nozzle to a surface of a workpiece with a gap of 2 mm, and (a) shows a velocity component in a Z direction;
(b) shows the pressure distribution, and (c) shows the velocity component in the R direction.

【図3】加工液を直接噴射する高圧力ノズルの概念を示
す簡略断面図であり、(a) は垂直入射タイプ、(b) は斜
め入射タイプをそれぞれ示している。
FIGS. 3A and 3B are simplified cross-sectional views showing the concept of a high-pressure nozzle for directly injecting a working fluid, wherein FIG. 3A shows a vertical incidence type and FIG. 3B shows an oblique incidence type.

【図4】高圧力ノズルから超純水のみ噴射し、別に設け
た供給管から吐出した濃縮加工液を混合するタイプの概
念を示す簡略断面図であり、(a) は高圧力ノズルの噴出
口内に供給管を設けたタイプ、(b) は高圧力ノズルの先
端側方に供給管を設けたタイプをそれぞれ示している。
FIG. 4 is a simplified cross-sectional view showing a concept of a type in which only ultrapure water is injected from a high-pressure nozzle and mixed with a concentrated processing liquid discharged from a separately provided supply pipe, and FIG. (B) shows a type in which a supply pipe is provided on the tip side of the high-pressure nozzle.

【図5】加工液を回収する機能を備えたノズル構造を示
した簡略断面図であり、(a) は垂直入射タイプの高圧力
ノズルの周囲に回収板を配した構造、(b) は斜め入射タ
イプの高圧力ノズルの下流側に回収板を配した構造をそ
れぞれ示している。
FIGS. 5A and 5B are simplified cross-sectional views showing a nozzle structure having a function of recovering a working fluid, wherein FIG. 5A is a structure in which a recovery plate is arranged around a high-pressure nozzle of a vertical incidence type, and FIG. The structure in which a collecting plate is arranged downstream of the incident type high pressure nozzle is shown.

【図6】高圧力の超純水供給システムの簡略配管図であ
る。
FIG. 6 is a simplified piping diagram of a high-pressure ultrapure water supply system.

【図7】本発明の方法を採用した加工装置を一部破断し
て示した簡略斜視図である。
FIG. 7 is a simplified perspective view showing a processing apparatus employing the method of the present invention, partially cut away.

【符号の説明】[Explanation of symbols]

1 高圧力ノズル 2 被加工物 3 噴出口 4 供給管 5 回収板(回収手段) 10 ポンプ 11,12 加圧部 13 レギュレータ 14,15,17,18,21,22,23,24 バ
ルブ 16 超純水供給装置 19,20 隔膜 100 加工装置 101 加工槽 102 駆動機構部 103 隔壁 104 Z軸駆動系 105 試料台 106 X軸駆動系 107 Y軸駆動系 108 XYテーブル 109 θ軸駆動系 110,111 永久磁石
DESCRIPTION OF SYMBOLS 1 High-pressure nozzle 2 Workpiece 3 Injection port 4 Supply pipe 5 Recovery plate (recovery means) 10 Pump 11,12 Pressurizing part 13 Regulator 14,15,17,18,21,22,23,24 Valve 16 Ultra pure Water supply device 19, 20 diaphragm 100 processing device 101 processing tank 102 drive mechanism unit 103 partition wall 104 Z-axis drive system 105 sample stage 106 X-axis drive system 107 Y-axis drive system 108 XY table 109 θ-axis drive system 110, 111 permanent magnet

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 超純水を主体とした加工槽内に被加工物
と高圧力ノズルとを所定の間隔を置いて配設し、被加工
物の表面近傍に高圧力ノズルから噴射した超純水の高速
剪断流を発生させるとともに、超純水の流れによって被
加工物と化学的な反応性のある微粒子を被加工物表面に
供給し、被加工物と化学結合した微粒子を高速剪断流に
て取り除いて被加工物表面の原子を除去し、加工を進行
させてなることを特徴とする高速剪断流による加工方
法。
1. A workpiece and a high-pressure nozzle are disposed at a predetermined interval in a processing tank mainly composed of ultrapure water, and the ultrapure nozzle sprayed from the high-pressure nozzle near the surface of the workpiece. A high-speed shear flow of water is generated, and fine particles chemically reactive with the work are supplied to the surface of the work by the flow of ultrapure water, and the fine particles chemically bonded to the work are converted into a high-speed shear flow. A processing method using a high-speed shear flow, characterized in that the processing is carried out by removing the atoms on the surface of the workpiece by removal.
【請求項2】 前記高圧力ノズルの噴出口が円孔である
請求項1記載の高速剪断流による加工方法。
2. The processing method by high-speed shear flow according to claim 1, wherein the ejection port of the high-pressure nozzle is a circular hole.
【請求項3】 前記高圧力ノズルの噴出口がスリット孔
である請求項1記載の高速剪断流による加工方法。
3. The processing method according to claim 1, wherein the ejection port of the high-pressure nozzle is a slit hole.
【請求項4】 前記高圧力ノズルから超純水に微粒子を
分散させた加工液を噴射してなる請求項1〜3何れかに
記載の高速剪断流による加工方法。
4. The processing method according to claim 1, wherein a processing liquid in which fine particles are dispersed in ultrapure water is jetted from the high-pressure nozzle.
【請求項5】 前記高圧力ノズルから超純水を噴射し、
該高圧力ノズル近傍に配した微粒子供給ノズルから微粒
子を分散させた濃縮加工液を吐出させてなる請求項1〜
3何れかに記載の高速剪断流による加工方法。
5. Injecting ultrapure water from the high pressure nozzle,
A concentrated processing liquid in which fine particles are dispersed is discharged from a fine particle supply nozzle disposed near the high pressure nozzle.
3. The processing method using a high-speed shear flow according to any one of 3.
【請求項6】 加工槽内に超純水に微粒子を分散させた
加工液を満たし、前記高圧力ノズルから超純水を噴射し
てなる請求項1〜3何れかに記載の高速剪断流による加
工方法。
6. A high-speed shear flow according to claim 1, wherein the processing tank is filled with a processing liquid in which fine particles are dispersed in ultrapure water, and ultrapure water is injected from the high-pressure nozzle. Processing method.
【請求項7】 前記高圧力ノズルによって発生した高速
剪断流の後流側に回収手段を配設し、加工液を回収して
なる請求項1〜6何れかに記載の高速剪断流による加工
方法。
7. The processing method using a high-speed shear flow according to claim 1, wherein a recovery means is disposed downstream of the high-speed shear flow generated by the high-pressure nozzle to recover the processing liquid. .
JP34759698A 1998-12-07 1998-12-07 EEM processing method by high-speed shear flow Expired - Lifetime JP3860352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34759698A JP3860352B2 (en) 1998-12-07 1998-12-07 EEM processing method by high-speed shear flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34759698A JP3860352B2 (en) 1998-12-07 1998-12-07 EEM processing method by high-speed shear flow

Publications (2)

Publication Number Publication Date
JP2000167770A true JP2000167770A (en) 2000-06-20
JP3860352B2 JP3860352B2 (en) 2006-12-20

Family

ID=18391294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34759698A Expired - Lifetime JP3860352B2 (en) 1998-12-07 1998-12-07 EEM processing method by high-speed shear flow

Country Status (1)

Country Link
JP (1) JP3860352B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006159379A (en) * 2004-12-10 2006-06-22 Yuzo Mori High-speed machining method using coagulated fine particles
WO2007018117A1 (en) 2005-08-05 2007-02-15 Yuzo Mori Electron beam assisted eem method
US7776228B2 (en) 2006-04-11 2010-08-17 Ebara Corporation Catalyst-aided chemical processing method
EP2381008A2 (en) 2006-08-28 2011-10-26 Osaka University Catalyst-aided chemical processing method and apparatus
CN103331685A (en) * 2013-07-01 2013-10-02 浙江工业大学 Machining device based on non-Newtonian fluid shear thickening mechanism polishing method
US8734661B2 (en) 2007-10-15 2014-05-27 Ebara Corporation Flattening method and flattening apparatus
JP2014226731A (en) * 2013-05-20 2014-12-08 株式会社ジェイテック Eem process using flow-collecting nozzle and its apparatus
CN113324731A (en) * 2021-05-17 2021-08-31 哈尔滨工程大学 Experimental device for be used for research of underwater shear flow field electric spark bubble

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006159379A (en) * 2004-12-10 2006-06-22 Yuzo Mori High-speed machining method using coagulated fine particles
WO2007018117A1 (en) 2005-08-05 2007-02-15 Yuzo Mori Electron beam assisted eem method
US8235769B2 (en) 2005-08-05 2012-08-07 Yuzo Mori Electron-beam-assisted EEM method
JP5018479B2 (en) * 2005-08-05 2012-09-05 勇蔵 森 Electron beam assisted EEM method
US7776228B2 (en) 2006-04-11 2010-08-17 Ebara Corporation Catalyst-aided chemical processing method
US8679286B2 (en) 2006-04-11 2014-03-25 Ebara Corporation Catalyst-aided chemical processing method
EP2381008A2 (en) 2006-08-28 2011-10-26 Osaka University Catalyst-aided chemical processing method and apparatus
US10297475B2 (en) 2007-10-15 2019-05-21 Ebara Corporation Flattening method and flattening apparatus
US10916455B2 (en) 2007-10-15 2021-02-09 Ebara Corporation Flattening method and flattening apparatus
US8734661B2 (en) 2007-10-15 2014-05-27 Ebara Corporation Flattening method and flattening apparatus
JP2014226731A (en) * 2013-05-20 2014-12-08 株式会社ジェイテック Eem process using flow-collecting nozzle and its apparatus
CN103331685B (en) * 2013-07-01 2016-05-18 浙江工业大学 Based on the processing unit (plant) of non-newtonian fluid shear thickening mechanism finishing method
CN103331685A (en) * 2013-07-01 2013-10-02 浙江工业大学 Machining device based on non-Newtonian fluid shear thickening mechanism polishing method
CN113324731A (en) * 2021-05-17 2021-08-31 哈尔滨工程大学 Experimental device for be used for research of underwater shear flow field electric spark bubble

Also Published As

Publication number Publication date
JP3860352B2 (en) 2006-12-20

Similar Documents

Publication Publication Date Title
CN110026908B (en) Ultrasonic cavitation auxiliary jet polishing system and polishing method
JP5219224B2 (en) Surface treatment method and apparatus
JP5252861B2 (en) Substrate processing equipment
CN103857475A (en) Device for generating a pulsating fluid jet subjected to pressure
JP2000167770A (en) Machining method by high speed shear stream
EP0886300A3 (en) Apparatus and method of separating sample and substrate fabrication method
US20040012104A1 (en) Gas dissolved water producing apparatus and method thereof and ultrasonic cleaning equipment and method thereof
CN113732515B (en) Controllable liquid flow-vibration coupling auxiliary laser milling and polishing processing method and system
CN101361167A (en) Apparatus and method for cleaning of objects, in particular of thin discs
JP4919446B2 (en) Fine groove machining method and apparatus
US20050252352A1 (en) Liquid jet machining apparatus
Han et al. Material removal characteristics in submerged pulsating air jet polishing process
JP2000167714A (en) Working method by hydroxide ion in ultra-pure water
CN104772168B (en) The micro-fluidic chip of a kind of microfluid spontaneous vasomotion and manufacture method, priming device
JP2013111713A (en) Device and method of feeding cutting water
CN102974563B (en) For the apparatus and method of movable megasonic wafer probe
JP2000173965A (en) Cleaning method by high-speed shear flow
JP4365254B2 (en) Cleaning method
JP3635951B2 (en) Cleaning method with hydroxide ions in ultrapure water
JP2894451B2 (en) Jet scrubber
CN113118132B (en) Ultrasonic drive control micro-droplet cluster cleaning method
CN114473880A (en) Ultrasonic-assisted fluid cavitation grinding equipment
CN209717409U (en) A kind of glass micro hole inner wall flow shooting and polishing device
JP2005262344A (en) Ultra-precisely polishing method and its device
Bhowmik et al. Electrorheological Fluid-Assisted Micro-USM

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term