JP2003113222A - Epoxy resin composition for impregnating into organic fiber substrate and prepreg, laminate and printed circuit board using the same - Google Patents

Epoxy resin composition for impregnating into organic fiber substrate and prepreg, laminate and printed circuit board using the same

Info

Publication number
JP2003113222A
JP2003113222A JP2001309554A JP2001309554A JP2003113222A JP 2003113222 A JP2003113222 A JP 2003113222A JP 2001309554 A JP2001309554 A JP 2001309554A JP 2001309554 A JP2001309554 A JP 2001309554A JP 2003113222 A JP2003113222 A JP 2003113222A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
organic fiber
prepreg
impregnating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2001309554A
Other languages
Japanese (ja)
Inventor
Toru Shimazu
徹 嶋津
Koichi Hiraoka
宏一 平岡
Manabu Ochita
学 落田
Shigeru Kurumaya
茂 車谷
Hiroichi Goto
博一 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2001309554A priority Critical patent/JP2003113222A/en
Publication of JP2003113222A publication Critical patent/JP2003113222A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new epoxy resin composition which can be combined with organic fiber substrates to form insulated layers that allow printed circuits to hold excellent adhesive forces and heat resistance. SOLUTION: This epoxy resin composition which is impregnated into organic fiber substrates to form insulated layers is characterized by comprising (a) a trifunctional epoxy resin, (b) a cresol novolak epoxy resin, and (c) a urethane structure-containing bifunctional epoxy resin, wherein a compounded weight ratio (a)/ (b) is 90/10 to 50/50, and the content of the component (c) in the solid resin is 5 to 30 wt.%. The organic fiber substrate to be impregnated with the epoxy resin composition is preferably a non-woven fabric form prepared by binding fibers containing poly-p-phenylene terephthalamide fibers as a main component with fibers obtained by fibrillating poly-m-phenylene isophthalamide fibers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有機繊維基材含浸
用のエポキシ樹脂組成物に関する。また、このエポキシ
樹脂組成物を適用したプリプレグ、積層板ないしは金属
箔張り積層板及びプリント配線板に関する。
TECHNICAL FIELD The present invention relates to an epoxy resin composition for impregnating an organic fiber base material. The present invention also relates to a prepreg, a laminated board or a metal foil-clad laminated board, and a printed wiring board to which the epoxy resin composition is applied.

【0002】[0002]

【従来の技術】電子機器の小型軽量化、高密度化に伴
い、プリント配線板には、表面実装方式により電子部品
を搭載することが主流となってきた。プリント配線板を
構成する絶縁層は、ガラス繊維織布とエポキシ樹脂を組
合せた絶縁層が殆どを占めている。プリント配線板に電
子部品を搭載する場合、電子部品とプリント配線板の熱
膨張係数をできるだけマッチングさせる必要があり、ガ
ラス繊維織布とエポキシ樹脂の組合せによる絶縁層で
は、プリント配線板と電子部品との熱膨張係数の差が大
きく、実装後の冷熱サイクルにより、電子部品の半田接
続部にクラックが生じる心配がある。このような観点か
ら、プリント配線板の絶縁層として、負の熱膨張係数を
有するアラミド繊維不織布とエポキシ樹脂を組合せた絶
縁層が着目されるようになってきた。
2. Description of the Related Art As electronic devices have become smaller and lighter and have a higher density, it has become mainstream to mount electronic components on a printed wiring board by a surface mounting method. Most of the insulating layers constituting the printed wiring board are insulating layers made of a combination of glass fiber woven cloth and epoxy resin. When mounting electronic components on a printed wiring board, it is necessary to match the thermal expansion coefficients of the electronic components and the printed wiring board as much as possible. The difference in the thermal expansion coefficient between the two is large, and there is a concern that cracks may occur in the solder connection portion of the electronic component due to the cooling / heating cycle after mounting. From such a viewpoint, an insulating layer in which an aramid fiber nonwoven fabric having a negative thermal expansion coefficient and an epoxy resin are combined has attracted attention as an insulating layer of a printed wiring board.

【0003】[0003]

【発明が解決しようとする課題】電子機器や電子部品の
小型化、それに伴うプリント配線パターンの細線化によ
り、プリント配線(銅箔)と絶縁層との接着性がこれま
で以上に要求されるようになってきた。しかし、アラミ
ド繊維不織布をはじめとする有機繊維基材にエポキシ樹
脂を含浸した絶縁層と銅箔との接着性は、プリント配線
パターンが細線化されると十分とはいえない情況にあ
る。また、環境への配慮から、鉛フリー半田による部品
実装が着目されるようになり、鉛フリー半田の使用にお
いてはリフロー温度が高くなり、プリント配線板や多層
プリント配線板の耐熱性もこれまで以上に要求されるよ
うになっている。
Due to the miniaturization of electronic devices and electronic parts and the resulting thinning of printed wiring patterns, the adhesiveness between the printed wiring (copper foil) and the insulating layer is required more than ever. Has become. However, the adhesiveness between an insulating layer obtained by impregnating an organic fiber base material such as an aramid fiber non-woven fabric with an epoxy resin and a copper foil is not sufficient when the printed wiring pattern is thinned. Also, due to environmental considerations, attention has been paid to component mounting using lead-free solder, the reflow temperature becomes higher when lead-free solder is used, and the heat resistance of printed wiring boards and multilayer printed wiring boards is higher than ever. Has been required by.

【0004】本発明が解決しようとする課題は、新たな
エポキシ樹脂組成物の適用により、有機繊維基材とエポ
キシ樹脂の組合せによる絶縁層に、プリント配線との優
れた接着力及び耐熱性を保持させることである。
The problem to be solved by the present invention is to apply a new epoxy resin composition to an insulating layer formed by a combination of an organic fiber base material and an epoxy resin so as to maintain excellent adhesion and heat resistance to printed wiring. It is to let.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る有機繊維基材含浸用エポキシ樹脂組成
物は、(a)三官能エポキシ樹脂と、(b)フェノール
類ノボラック型エポキシ樹脂と、(c)ウレタン構造を
含む二官能エポキシ樹脂とを含む。そして、前記(a)
と(b)の配合質量比率(a)/(b)が90/10〜
50/50であり、樹脂固形分中の(c)の含有率が5
〜30質量%であることを特徴とする。プリプレグは、
上記エポキシ樹脂組成物を有機繊維基材に含浸し乾燥し
て構成する。このプリプレグの層を、プリプレグ層の一
部ないし全部として加熱加圧成形して積層板を構成す
る。前記加熱加圧成形に際し、必要に応じ片面または両
面に金属箔を一体化し金属箔張り積層板を構成する。プ
リント配線板は、前記プリプレグの層を加熱加圧成形し
てなる絶縁層を備えたものである。
In order to solve the above problems, an epoxy resin composition for impregnating an organic fiber base material according to the present invention comprises (a) a trifunctional epoxy resin and (b) a phenolic novolac type epoxy. It includes a resin and (c) a bifunctional epoxy resin containing a urethane structure. And the above (a)
And the blending mass ratio (a) / (b) of (b) is 90/10
50/50, the content of (c) in the resin solids is 5
It is characterized by being ˜30% by mass. Prepreg is
An organic fiber base material is impregnated with the above-mentioned epoxy resin composition and dried to form. This prepreg layer is heat-pressed as a part or the whole of the prepreg layer to form a laminated plate. In the heat and pressure molding, a metal foil is integrated on one side or both sides as necessary to form a metal foil-clad laminate. The printed wiring board is provided with an insulating layer formed by heating and pressing the prepreg layer.

【0006】我々は、プリント配線(銅箔)と絶縁層と
の接着性を向上させるために、ウレタン構造に着目し
た。ウレタン構造は、それに含有されるイソシアネート
基が、その高い極性と反応性によって、活性水素を含む
表面、例えば、銅箔表面との間に化学的二次結合を生じ
ると考えらる。また、ウレタン構造は、容易に水素結合
をもつため、機械的物理的接着力、化学的接着力に優れ
る(岩田敬治著「ポリウレタン樹脂」,第230頁〜2
31頁、日刊工業新聞社昭和44年発行)。そして、二
官能エポキシ樹脂をウレタン樹脂により変性することは
容易であり、このようなウレタン構造を含むエポキシ樹
脂は接着剤として使用されている。
We have focused on the urethane structure in order to improve the adhesion between the printed wiring (copper foil) and the insulating layer. It is believed that the urethane structure causes a chemical secondary bond between an isocyanate group contained in the urethane structure and a surface containing active hydrogen, for example, the surface of a copper foil due to its high polarity and reactivity. Further, since the urethane structure easily has a hydrogen bond, it has excellent mechanical and physical adhesive strength and chemical adhesive strength (Keiji Iwata, "Polyurethane Resin," pages 230-2.
31 pages, published by Nikkan Kogyo Shimbun in 1969). Further, it is easy to modify the bifunctional epoxy resin with a urethane resin, and the epoxy resin containing such a urethane structure is used as an adhesive.

【0007】(c)ウレタン構造を含む二官能エポキシ
樹脂を樹脂固形分中に5質量%以上配合した本発明に係
るエポキシ樹脂組成物は、この樹脂組成物を適用した絶
縁層とプリント配線との接着強度を大きくすることがで
きる。しかし、(c)は、分子直鎖が長く、メチル基を
多く有するので、燃えやすい。従って、(c)は、樹脂
固形分中の含有量が30質量%以下になるように配合す
る。前記燃えやすいという問題だけに限れば、この問題
は、Br含有化合物を一緒に配合することにより容易に
解決可能である。しかし、難燃性付与のためにBr含有
樹脂を多量に配合すると、プリント配線板が半田リフロ
ー時等の高温にさらされたとき、Brガスが発生しやす
くなり、環境上、好ましくない。Br含有樹脂の配合を
抑えながら難燃性を付与させるために、(c)の樹脂固
形分中における含有量を30質量%以下に抑えるのであ
る。また、(c)は、エポキシ基が両末端にしかない。
このようなエポキシ樹脂を多量に配合すると、樹脂硬化
物の架橋密度が小さくなり、耐熱性が低下するので、こ
の点からも、(c)の樹脂固形分中における含有量を3
0質量%以下にする。
(C) An epoxy resin composition according to the present invention in which a bifunctional epoxy resin containing a urethane structure is mixed in a resin solid content in an amount of 5% by mass or more is obtained by combining the insulating layer to which the resin composition is applied and the printed wiring. The adhesive strength can be increased. However, since (c) has a long molecular straight chain and has many methyl groups, it is easily burned. Therefore, (c) is blended so that the content in the resin solid content is 30% by mass or less. Limiting only to the problem of flammability, this problem can be easily solved by blending Br-containing compounds together. However, when a large amount of Br-containing resin is blended for imparting flame retardancy, Br gas is likely to be generated when the printed wiring board is exposed to a high temperature such as during solder reflow, which is not environmentally preferable. In order to impart flame retardancy while suppressing the blending of the Br-containing resin, the content of (c) in the resin solid content is suppressed to 30% by mass or less. Further, in (c), the epoxy groups are present only at both ends.
If a large amount of such an epoxy resin is blended, the cross-linking density of the resin cured product will be low and the heat resistance will decrease. From this point as well, the content of (c) in the resin solid content is 3%.
It is 0 mass% or less.

【0008】さらに、本発明に係るエポキシ樹脂組成物
において、(a)三官能エポキシ樹脂と(b)フェノー
ル類ノボラック型エポキシ樹脂の配合質量比率(a)/
(b)を90/10〜50/50に制限したのは、次の
理由による。すなわち、(b)を配合することにより、
これの代わりにビスフェノールA型エポキシ樹脂やビス
フェノールF型エポキシ樹脂等の二官能エポキシ樹脂を
用いた場合に比べて、樹脂硬化物の架橋密度が大きくな
るので、耐熱性が向上する。しかし、(b)は、メチル
基を多く含むので、難燃性の観点から、多量に配合する
ことは避けるべきであり、上記のように制限する。
Furthermore, in the epoxy resin composition according to the present invention, the compounding mass ratio of (a) trifunctional epoxy resin and (b) phenolic novolac type epoxy resin (a) /
The reason for limiting (b) to 90/10 to 50/50 is as follows. That is, by blending (b),
As compared with the case where a bifunctional epoxy resin such as a bisphenol A type epoxy resin or a bisphenol F type epoxy resin is used instead of this, the cross-linking density of the resin cured product is increased, so that the heat resistance is improved. However, since (b) contains a large amount of methyl groups, blending in a large amount should be avoided from the viewpoint of flame retardancy, and the above-mentioned limitation is imposed.

【0009】有機繊維基材プリント配線板に適用するエ
ポキシ樹脂組成物においては、上記のような配合組成
(特にウレタン構造を含む二官能エポキシ樹脂の配合)
にすることにより初めてプリント配線と絶縁層との接着
性が向上し、しかも、耐熱性も保持するという効果を奏
する。
In the epoxy resin composition applied to the organic fiber-based printed wiring board, the compounding composition as described above (particularly the compounding of a bifunctional epoxy resin containing a urethane structure)
Only then, the adhesiveness between the printed wiring and the insulating layer is improved, and the heat resistance is maintained.

【0010】上記エポキシ樹脂組成物を含浸してプリプ
レグを構成する有機繊維基材としてアラミド繊維不織布
を選択する場合、当該アラミド繊維不織布は、ポリ−m
−フェニレンイソフタラミド繊維をフィブリル化した繊
維により、ポリ−p−フェニレンテレフタラミド繊維を
主成分とする繊維を結着した不織布形態が望ましい。
When an aramid fiber non-woven fabric is selected as the organic fiber base material that is impregnated with the above epoxy resin composition to form a prepreg, the aramid fiber non-woven fabric is poly-m.
-A non-woven fabric form in which fibers having poly-p-phenylene terephthalamide fiber as a main component are bound by fibrillated fibers of phenylene isophthalamide fiber is preferable.

【0011】不織布を構成するために、繊維同士を結着
する手段としてエポキシ樹脂等の熱硬化性樹脂バインダ
を適用してもよいが、この場合、その熱硬化性樹脂バイ
ンダの影響により、難燃性の付与が難しくなってくる。
上記のように、繊維同士を結着する手段としてポリ−m
−フェニレンイソフタラミド繊維をフィブリル化した繊
維を適用することにより、熱硬化性樹脂バインダを適用
する場合に比べて難燃性の付与が有利となる。
A thermosetting resin binder such as an epoxy resin may be applied as a means for binding the fibers to each other to form the non-woven fabric. In this case, due to the influence of the thermosetting resin binder, the flame retardant resin is used. It becomes difficult to impart sex.
As described above, poly-m is used as a means for binding fibers together.
-By applying fibrillated phenylene isophthalamide fibers, it is advantageous to impart flame retardancy as compared with the case where a thermosetting resin binder is applied.

【0012】[0012]

【発明の実施の形態】本発明に係るエポキシ樹脂組成物
は、(a)フェノール類ノボラック型エポキシ樹脂の種
類を特に限定するものではなく、クレゾールノボラック
型エポキシ樹脂、フェノールノボラック型エポキシ樹脂
等を適宜選択できる。フェノールノボラック型エポキシ
樹脂は、クレゾールノボラック型エポキシ樹脂に比べメ
チル基が少ない分、難燃性付与の点で有利である。エポ
キシ樹脂の硬化剤としては、フェノール類ノボラック樹
脂を選択することができる。また、硬化促進剤として、
2−エチル4−メチルイミダゾール等を配合する。
BEST MODE FOR CARRYING OUT THE INVENTION The epoxy resin composition according to the present invention is not particularly limited to the kind of (a) phenolic novolac type epoxy resin, and may be cresol novolac type epoxy resin, phenol novolac type epoxy resin or the like. You can choose. The phenol novolac type epoxy resin is advantageous in that it has less methyl groups than the cresol novolac type epoxy resin and thus imparts flame retardancy. As the curing agent for the epoxy resin, phenolic novolac resin can be selected. Also, as a curing accelerator,
2-Ethyl 4-methylimidazole or the like is added.

【0013】プリプレグは、本発明に係るエポキシ組成
物を有機繊維基材に含浸し加熱乾燥して製造する。プリ
ント配線板は、まず、前記プリプレグの層に金属箔を重
ね、これらを加熱加圧成形して金属箔張り積層板とし、
金属箔を所定の配線パターンにエッチング加工して製造
する。多層プリント配線板は、前記プリント配線板にプ
リプレグを介して金属箔を重ね加熱加圧成形により一体
化し、金属箔を所定の配線パターンにエッチング加工し
て製造する。さらに表面にプリプレグを介して金属箔を
重ね加熱加圧成形により一体化し、その金属箔を所定の
配線パターンにエッチング加工して、配線層数を増やす
こともできる。別の方法では、複数枚のプリント配線板
の間にプリプレグを介在させ、表面にはプリプレグを介
して金属箔を重ね、これらを加熱加圧成形により一体化
し、表面の金属箔を所定の配線パターンにエッチング加
工する。積層板やプリント配線板は、本発明に係るプリ
プレグと他のプリプレグ、例えば、ガラス繊維基材プリ
プレグを組合せて使用し、構成してもよい。
The prepreg is produced by impregnating the organic fiber base material with the epoxy composition according to the present invention and heating and drying. The printed wiring board, first, a metal foil is laminated on the layer of the prepreg, and these are heat-pressed to form a metal foil-clad laminate,
It is manufactured by etching a metal foil into a predetermined wiring pattern. The multilayer printed wiring board is manufactured by stacking a metal foil on the printed wiring board via a prepreg to integrate them by heat and pressure molding, and etching the metal foil into a predetermined wiring pattern. Further, it is possible to increase the number of wiring layers by stacking a metal foil on the surface via a prepreg and integrating them by heat and pressure molding, and etching the metal foil into a predetermined wiring pattern. In another method, a prepreg is interposed between a plurality of printed wiring boards, a metal foil is overlaid on the surface via the prepreg, these are integrated by heat and pressure molding, and the surface metal foil is etched into a predetermined wiring pattern. To process. The laminated board and the printed wiring board may be configured by using a combination of the prepreg according to the present invention and another prepreg, for example, a glass fiber base material prepreg.

【0014】[0014]

【実施例】以下に、実施例を説明する。以下には、プリ
ント配線板については具体的に説明していないが、その
構成ならびに製造法は上記のとおりであるので、説明を
省略する。プリント配線板のプリント配線剥離強度及び
耐熱性、そして、絶縁層の難燃性を確認するために、以
下の例では、便宜上、プリプレグ5枚を重ねた両側に1
8μm厚の銅箔を配し加熱加圧成形した銅張り積層板
(0.5mm厚)を製造し、試験に供した。
EXAMPLES Examples will be described below. Although the printed wiring board is not specifically described below, its configuration and manufacturing method are as described above, and thus the description thereof is omitted. In order to confirm the printed wiring peeling strength and heat resistance of the printed wiring board, and the flame retardancy of the insulating layer, in the following example, for the sake of convenience, 1 is placed on each side of 5 prepregs.
A copper-clad laminate (0.5 mm thick) in which a copper foil having a thickness of 8 μm was placed and heat-pressed was manufactured and subjected to a test.

【0015】従来例 有機繊維基材として、ポリ−p−フェニレンテレフタラ
ミド繊維チョップ95質量%とポリ−m−フェニレンイ
ソフタラミド繊維のフィブリル化繊維5質量%を抄造し
て構成したアラミド繊維不織布(単位質量72g/
)を使用する。これに含浸するエポキシ樹脂組成物
として、三官能エポキシ樹脂(東都化成(株)製「VG3
101M80」)25質量部、クレゾールノボラック型
エポキシ樹脂(東都化成(株)製「YDCN704EK7
5」)25質量部、硬化剤としてフェノールノボラック
樹脂(大日本インキ(株)製「LF−6161」)20質
量部及び臭素化ビスフェノールA(ブロモケムファーイ
ースト(株)製「TBBA」,Br含有率:58質量%)
30質量部、硬化促進剤として2−エチル4−メチルイ
ミダゾール0.02質量部をメチルエチルケトン30質
量部に溶解し、ワニスを調製した。樹脂固形分中のBr
含有率17.4質量%である。このワニスを上記不織布
に含浸し、150℃−5分間乾燥してプリプレグを得
た。プリプレグの樹脂含有量は、53質量%である。上
記プリプレグを用いて、上述した銅張り積層板を製造し
た。成形条件は、温度170℃,圧力4.9MPaの条件
で60分間加熱加圧成形である。
Conventional Example As an organic fiber base material, an aramid fiber non-woven fabric made by paper-making 95% by mass of poly-p-phenylene terephthalamide fiber chop and 5% by mass of fibrillated fiber of poly-m-phenylene isophthalamide fiber. (Unit mass 72g /
m 2 ) is used. As an epoxy resin composition impregnated therein, a trifunctional epoxy resin (“VG3 manufactured by Toto Kasei Co., Ltd.”
101M80 ") 25 parts by mass, cresol novolac type epoxy resin (" YDCN704EK7 "manufactured by Tohto Kasei Co., Ltd.)
5 "), 25 parts by mass, 20 parts by mass of phenol novolak resin (" LF-6161 "manufactured by Dainippon Ink and Chemicals, Inc.) as a curing agent, and brominated bisphenol A (" TBBA ", Br manufactured by Bromochem Far East Co., Ltd.). Rate: 58% by mass)
30 parts by mass and 0.02 parts by mass of 2-ethyl 4-methylimidazole as a curing accelerator were dissolved in 30 parts by mass of methyl ethyl ketone to prepare a varnish. Br in resin solids
The content rate is 17.4% by mass. The nonwoven fabric was impregnated with this varnish and dried at 150 ° C. for 5 minutes to obtain a prepreg. The resin content of the prepreg is 53% by mass. The copper-clad laminate described above was manufactured using the prepreg. The molding conditions are heating and pressure molding for 60 minutes at a temperature of 170 ° C. and a pressure of 4.9 MPa.

【0016】実施例1〜11、比較例1〜4 (a)三官能エポキシ樹脂(東都化成(株)製「VG31
01M80」) (b)クレゾールノボラック型エポキシ樹脂(東都化成
(株)製「YDCN704EK75」) (c)ウレタン構造を含む二官能エポキシ樹脂としてウ
レタン変性エポキシ樹脂(旭チバ(株)製「XAC415
1」) フェノールノボラック樹脂(大日本インキ(株)製「LF
−6161」) 臭素化ビスフェノールA(ブロモケムファーイースト
(株)製「TBBA」)を、樹脂固形分中のBr含有率1
5質量%(従来例より少量である)で、上記(a)と
(b)の配合質量比率(a)/(b)及び樹脂固形分中
の(c)含有率が、表1〜表2に示した各配合となるよ
うにワニスを調製した。これら各ワニスを使用し、その
他は、従来例1と同様にして銅張り積層板を製造した。
Examples 1 to 11 and Comparative Examples 1 to 4 (a) Trifunctional epoxy resin ("VG31" manufactured by Tohto Kasei Co., Ltd.)
01M80 ”) (b) Cresol novolac type epoxy resin (Tohto Kasei
(YDCN704EK75 manufactured by Co., Ltd.) (c) Urethane-modified epoxy resin as a bifunctional epoxy resin containing a urethane structure (“XAC415 manufactured by Asahi Chiba Co., Ltd.”)
1 ”) Phenol novolac resin (Dainippon Ink and Co., Ltd.“ LF
-6161 ") Brominated bisphenol A (Bromochem Far yeast
"TBBA" manufactured by Co., Ltd.) with a Br content of 1 in the resin solid content.
The compounding mass ratio (a) / (b) of (a) and (b) and the content rate of (c) in the resin solid content at 5 mass% (less than the conventional example) are shown in Tables 1 and 2. Varnishes were prepared so as to have the respective formulations shown in. A copper clad laminate was manufactured in the same manner as in Conventional Example 1 except that these varnishes were used.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】比較例5〜10 (a)三官能エポキシ樹脂(東都化成(株)製「VG31
01M80」) (b)クレゾールノボラック型エポキシ樹脂(東都化成
(株)製「YDCN704EK75」) (c’)二官能エポキシ樹脂としてビスフェノールA型
エポキシ樹脂(ジャパンエポキシレジン(株)製「Ep−
828」) フェノールノボラック樹脂(大日本インキ(株)製「LF
−6161」) 臭素化ビスフェノールA(ブロモケムファーイースト
(株)製「TBBA」)を、樹脂固形分中のBr含有率1
5質量%で、上記(a)と(b)の配合質量比率(a)
/(b)及び樹脂固形分中の(c’)含有率が、表3に
示した各配合となるようにワニスを調整した。これら各
ワニスを使用し、その他は、従来例1と同様にして銅張
り積層板を製造した。
Comparative Examples 5 to 10 (a) Trifunctional epoxy resin ("VG31" manufactured by Tohto Kasei Co., Ltd.)
01M80 ”) (b) Cresol novolac type epoxy resin (Tohto Kasei
(YDCN704EK75 manufactured by KK) (c ') Bisphenol A type epoxy resin as a bifunctional epoxy resin ("Ep-" manufactured by Japan Epoxy Resins Co., Ltd.)
828 ”) Phenol novolac resin (Dainippon Ink and Co., Ltd.“ LF
-6161 ") Brominated bisphenol A (Bromochem Far yeast
"TBBA" manufactured by Co., Ltd.) with a Br content of 1 in the resin solid content.
The compounding mass ratio (a) of the above (a) and (b) at 5 mass%.
The varnish was adjusted so that / (b) and the content of (c ') in the resin solids were in the respective formulations shown in Table 3. A copper clad laminate was manufactured in the same manner as in Conventional Example 1 except that these varnishes were used.

【0020】[0020]

【表3】 [Table 3]

【0021】実施例12〜17 エポキシ樹脂組成物を含浸させる基材として、ポリ−p
−フェニレンテレフタラミド繊維チョップを抄造し、こ
の抄造物に熱硬化性樹脂バインダををスプレーして加熱
乾燥し不織布を構成した(単位質量72g/m,熱硬
化性樹脂バインダ付着量8質量%)。前記熱硬化性樹脂
バインダは、エポキシ樹脂エマルジョン(大日本インキ
化学工業(株)製「VコートA」)と硬化剤としてブロッ
クイソシアネート樹脂(大日本インキ化学工業(株)製
「CR−60B」)を主成分とし、エポキシ樹脂の質量
10に対しブロックイソシアネート樹脂の配合質量を1
としたものである。上記アラミド繊維不織布に実施例1
〜6におけるエポキシ樹脂組成物をそれぞれ適用して、
その他は、従来例1と同様にして銅張り積層板を製造し
た。
Examples 12 to 17 Poly-p was used as the base material to be impregnated with the epoxy resin composition.
-A phenylene terephthalamide fiber chop was made into a paper, a thermosetting resin binder was sprayed onto this paper and dried by heating to form a nonwoven fabric (unit mass 72 g / m 2 , thermosetting resin binder adhesion amount 8% by mass). ). The thermosetting resin binder is an epoxy resin emulsion (“V coat A” manufactured by Dainippon Ink and Chemicals, Inc.) and a blocked isocyanate resin (“CR-60B” manufactured by Dainippon Ink and Chemicals, Inc.) as a curing agent. With 10 parts by mass of epoxy resin and 1 part by mass of block isocyanate resin.
It is what Example 1 for the above aramid fiber nonwoven fabric
Applying the epoxy resin composition in ~ 6 respectively,
A copper clad laminate was manufactured in the same manner as in Conventional Example 1 except for the above.

【0022】上記各例の銅張り積層板について、銅箔剥
離強度及び耐熱性、そして、難燃性の評価結果を表4〜
表7に示した。表中に示した各特性は、次のように評価
した。銅箔剥離強度は、JISに基づき測定した。耐熱
性は、試料として、250×250mmサイズの銅張り積
層板を準備し、これを85℃−85%RHの恒温恒湿槽
に48時間放置後に取り出し、280℃の半田槽に浮か
べ、表面に膨れが発生するまでの時間(分)を測定し
た。難燃性は、UL−94試験法に基づき残炎時間
(秒)を測定した。
With respect to the copper-clad laminates of the above examples, the evaluation results of copper foil peel strength, heat resistance, and flame retardancy are shown in Tables 4 to 4.
The results are shown in Table 7. Each property shown in the table was evaluated as follows. The copper foil peeling strength was measured based on JIS. For heat resistance, prepare a copper clad laminate of 250 x 250 mm size as a sample, leave it in a constant temperature / humidity bath at 85 ° C-85% RH for 48 hours, then take it out and float it in a solder bath at 280 ° C to leave it on the surface. The time (minutes) until blistering occurred was measured. For flame retardancy, the afterflame time (seconds) was measured based on the UL-94 test method.

【0023】[0023]

【表4】 [Table 4]

【0024】[0024]

【表5】 [Table 5]

【0025】[0025]

【表6】 [Table 6]

【0026】[0026]

【表7】 [Table 7]

【0027】従来例、実施例1〜6及び比較例1〜2の
対照から、樹脂固形分中の(c)の含有率を5〜30質
量%にすることにより、銅箔剥離強度が大きくなること
を理解できる。比較例1は、(c)含有率が5質量%に
満たないと銅箔剥離強度が小さいことを示し、比較例2
は、(c)含有率が30質量%を越えると難燃性が不十
分であることを示している。
From the control of the conventional example, Examples 1 to 6 and Comparative examples 1 and 2, the content of (c) in the resin solid content is set to 5 to 30 mass% to increase the copper foil peeling strength. I can understand that. Comparative Example 1 shows that the copper foil peeling strength is small when the content of (c) is less than 5% by mass.
Indicates that the flame retardancy is insufficient when the content of (c) exceeds 30 mass%.

【0028】また、従来例、実施例7〜11と比較例3
〜4の対照から、難燃性及び耐熱性を確保するために
は、(a)/(b)を90/10〜50/50の範囲に
することが必須であることを理解できる。
Further, the conventional example, Examples 7 to 11 and Comparative example 3
From the controls of ~ 4, it can be understood that (a) / (b) is required to be in the range of 90/10 to 50/50 in order to secure flame retardancy and heat resistance.

【0029】実施例1〜6と比較例5〜11の対照か
ら、ウレタン構造を含む二官能エポキシ樹脂を配合した
場合とウレタン構造を含まない二官能エポキシ樹脂を配
合した場合の銅箔剥離強度の差を改めて理解できる。
From the comparisons of Examples 1 to 6 and Comparative Examples 5 to 11, the copper foil peeling strengths when the bifunctional epoxy resin containing the urethane structure and the bifunctional epoxy resin not containing the urethane structure were blended were measured. I can understand the difference again.

【0030】実施例1〜6と実施例12〜17との対照
から、アラミド不織布の選択の違いにより、銅箔剥離強
度及び耐熱性には差がないが、難燃性には差ができるこ
とを理解できる。不織布を構成するために繊維同士を結
着する手段として熱硬化性樹脂樹脂バインダを選択しな
い方が、より高いレベルの難燃性を確保できる。
From the comparison between Examples 1 to 6 and Examples 12 to 17, it can be seen that there is no difference in the copper foil peel strength and heat resistance, but there is a difference in flame retardancy due to the difference in selection of the aramid nonwoven fabric. It can be understood. A higher level of flame retardancy can be secured by not selecting a thermosetting resin-resin binder as a means for binding fibers to each other to form a nonwoven fabric.

【0031】[0031]

【発明の効果】上述のように、有機繊維基材に対して、
本発明に係るエポキシ樹脂組成物を適用することによ
り、プリント配線(銅箔)の接着強度と耐熱性に優れ、
難燃性を保持したプリント配線板を提供できる。
As described above, with respect to the organic fiber base material,
By applying the epoxy resin composition according to the present invention, the printed wiring (copper foil) is excellent in adhesive strength and heat resistance,
A printed wiring board that retains flame retardancy can be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 車谷 茂 東京都中央区日本橋本町2丁目8番7号 新神戸電機株式会社内 (72)発明者 後藤 博一 東京都中央区日本橋本町2丁目8番7号 新神戸電機株式会社内 Fターム(参考) 4F072 AA01 AA04 AB06 AB29 AD23 AD27 AD30 AG03 AH21 AL09 AL13 4J036 AA01 AA04 AA06 AF06 AJ17 DC40 FB07 JA08    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shigeru Kurumaya             2-8-7 Nihonbashihonmachi, Chuo-ku, Tokyo             Inside Shin-Kobe Electric Machinery Co., Ltd. (72) Inventor Hirokazu Goto             2-8-7 Nihonbashihonmachi, Chuo-ku, Tokyo             Inside Shin-Kobe Electric Machinery Co., Ltd. F-term (reference) 4F072 AA01 AA04 AB06 AB29 AD23                       AD27 AD30 AG03 AH21 AL09                       AL13                 4J036 AA01 AA04 AA06 AF06 AJ17                       DC40 FB07 JA08

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】有機繊維基材含浸用のエポキシ樹脂組成物
であって、 (a)三官能エポキシ樹脂と、(b)フェノール類ノボ
ラック型エポキシ樹脂と、(c)ウレタン構造を含む二
官能エポキシ樹脂とを含み、 前記(a)と(b)の配合質量比率(a)/(b)が9
0/10〜50/50であり、樹脂固形分中の(c)の
含有率が5〜30質量%であることを特徴とする有機繊
維基材含浸用エポキシ樹脂組成物。
1. An epoxy resin composition for impregnating an organic fiber substrate, comprising: (a) a trifunctional epoxy resin, (b) a phenolic novolac type epoxy resin, and (c) a bifunctional epoxy containing a urethane structure. Resin, and the compounding mass ratio (a) / (b) of (a) and (b) is 9
The epoxy resin composition for impregnating an organic fiber base material, which has a content of (c) in the resin solid content of 5/10 to 50/50.
【請求項2】請求項1記載のエポキシ樹脂組成物を以下
の有機繊維基材に含浸し乾燥してなることを特徴とする
プリプレグ。ポリ−m−フェニレンイソフタラミド繊維
をフィブリル化した繊維により、ポリ−p−フェニレン
テレフタラミド繊維を主成分とする繊維を結着した不織
布形態の有機繊維基材。
2. A prepreg obtained by impregnating the following organic fiber base material with the epoxy resin composition according to claim 1 and drying. An organic fiber substrate in the form of a non-woven fabric, in which a fiber containing poly-p-phenylene terephthalamide fiber as a main component is bound by a fiber obtained by fibrillating poly-m-phenylene isophthalamide fiber.
【請求項3】請求項2記載のプリプレグの層を、プリプ
レグ層の一部ないし全部として加熱加圧成形してなるこ
とを特徴とする積層板。
3. A laminate comprising the prepreg layer according to claim 2 and a part of or the whole of the prepreg layer, which is heated and pressed.
【請求項4】請求項3記載の積層板の少なくとも片面に
金属箔が一体化されている金属箔張り積層板。
4. A metal foil-clad laminate in which a metal foil is integrated on at least one surface of the laminate according to claim 3.
【請求項5】請求項2記載のプリプレグの層を加熱加圧
成形してなる絶縁層を備えたことを特徴とするプリント
配線板。
5. A printed wiring board comprising an insulating layer formed by heating and pressing the layer of the prepreg according to claim 2.
JP2001309554A 2001-10-05 2001-10-05 Epoxy resin composition for impregnating into organic fiber substrate and prepreg, laminate and printed circuit board using the same Abandoned JP2003113222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001309554A JP2003113222A (en) 2001-10-05 2001-10-05 Epoxy resin composition for impregnating into organic fiber substrate and prepreg, laminate and printed circuit board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001309554A JP2003113222A (en) 2001-10-05 2001-10-05 Epoxy resin composition for impregnating into organic fiber substrate and prepreg, laminate and printed circuit board using the same

Publications (1)

Publication Number Publication Date
JP2003113222A true JP2003113222A (en) 2003-04-18

Family

ID=19128680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001309554A Abandoned JP2003113222A (en) 2001-10-05 2001-10-05 Epoxy resin composition for impregnating into organic fiber substrate and prepreg, laminate and printed circuit board using the same

Country Status (1)

Country Link
JP (1) JP2003113222A (en)

Similar Documents

Publication Publication Date Title
JP5353241B2 (en) Multilayer printed wiring board and semiconductor device
JP2003246849A (en) Epoxy resin composition, and prepreg, laminate board and printed wiring board using the same
JPH06100707A (en) Production of laminated sheet
JP3125582B2 (en) Manufacturing method of metal foil-clad laminate
JP2003113222A (en) Epoxy resin composition for impregnating into organic fiber substrate and prepreg, laminate and printed circuit board using the same
JP3818208B2 (en) Prepreg, laminated board and printed wiring board
JPH08176324A (en) Production of prepreg
JPH08283436A (en) Prepreg and copper-clad laminate board
JP2002060590A (en) Epoxy resin composition for imprregnating glass fiber substrate and prepreg, laminated sheet and printed wiring board using the same
JPH05309789A (en) Production of composite copper clad laminated sheet
JPH10166501A (en) Manufacture of glass epoxy copper-clad laminate
JP2002060587A (en) Flame-retardant epoxy resin composition and prepreg, laminated sheet and printed wiring board using the same
JP2002003700A (en) Flame retardant epoxy resin composition, and prepreg, laminated sheet and printed wiring board using the same
JP2005002226A (en) Flame-retardant epoxy resin composition and laminated plate-related product using the same
JP2002088175A (en) Prepreg and laminate
JP2935329B2 (en) Manufacturing method of metal foil clad laminate
JP3883727B2 (en) Aramid fiber base insulation board and printed wiring board
JPH11228669A (en) Epoxy resin composition, prepreg, copper-clad laminate and multilayer laminate
JP2003119346A (en) Epoxy resin composition for impregnating organic fabric base, prepreg using the same, laminated board and printed circuit board
JP2001335651A (en) Epoxy resin composition for impregnation of organic fiber substrate, and prepreg, laminated sheet and printed wiring board using the same
JPH08165334A (en) Production of prepreg
JPH10138381A (en) Laminate
JPH08103984A (en) Copper-clad laminated plate
JP2002003626A (en) Epoxy resin composition for impregnation of organic fiber base material and prepreg made of it, laminated plate and printed wiring board
JP2001081214A (en) Resin composition for impegnating nonwoven fabric made of aramid fiber, prepreg, insulating layer and metal clad laminated board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050511

A131 Notification of reasons for refusal

Effective date: 20050726

Free format text: JAPANESE INTERMEDIATE CODE: A131

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20050921