JP2002003626A - Epoxy resin composition for impregnation of organic fiber base material and prepreg made of it, laminated plate and printed wiring board - Google Patents

Epoxy resin composition for impregnation of organic fiber base material and prepreg made of it, laminated plate and printed wiring board

Info

Publication number
JP2002003626A
JP2002003626A JP2000182718A JP2000182718A JP2002003626A JP 2002003626 A JP2002003626 A JP 2002003626A JP 2000182718 A JP2000182718 A JP 2000182718A JP 2000182718 A JP2000182718 A JP 2000182718A JP 2002003626 A JP2002003626 A JP 2002003626A
Authority
JP
Japan
Prior art keywords
epoxy resin
base material
printed wiring
resin composition
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000182718A
Other languages
Japanese (ja)
Inventor
Toru Shimazu
徹 嶋津
Koichi Hiraoka
宏一 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2000182718A priority Critical patent/JP2002003626A/en
Publication of JP2002003626A publication Critical patent/JP2002003626A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an epoxy resin composition that is suitable for a printed wiring board with organic fiber base material, does not cause increase of conductance-resistance of the through-hole conductor composed of copper, and secures flame-resistance and heat-resistance despite non-halogen. SOLUTION: The epoxy resin composition includes a bisphenol-F type-epoxy resin as a bi-functional epoxy resin, multi-functional (more than 3-functional) epoxy resin, phenolic novolak resin and phosphorus compound. The content of bisphenol-F type-epoxy resin and phosphorus in the resin solid content are 5-30 mass % and 1-2.6 mass %, respectively, but the content of phosphorus is preferably to be 2-2.6 mass %. A prepreg is prepared by impregnating the resin composition into an aramid-fiber non-woven-fabric base material and drying.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機繊維基材含浸
用の難燃性エポキシ樹脂組成物に関する。また、このエ
ポキシ樹脂組成物を用いたプリプレグ、積層板ないしは
金属箔張り積層板、プリント配線板に関する。
TECHNICAL FIELD The present invention relates to a flame-retardant epoxy resin composition for impregnating an organic fiber base material. In addition, the present invention relates to a prepreg, a laminate, a metal foil-clad laminate, and a printed wiring board using the epoxy resin composition.

【0002】[0002]

【従来の技術】電子機器に組込むエポキシ樹脂プリント
配線板には、燃えにくいこと、燃え広がりにくいことと
言った安全性が求められている。そこで、臭素化エポキ
シ樹脂やエポキシ樹脂の硬化剤として臭素付加フェノー
ルノボラック樹脂等を使用し、難燃性を付与している。
しかし、臭素・塩素のようなハロゲン含有材を高温下で
長時間使用するとハロゲン化物の解離の懸念があるし、
ハロゲン含有材を焼却処理すると有害なハロゲン化物発
生の心配がある。近年は、環境安全の面から、ノンハロ
ゲンで難燃性を付与するという方向に変わりつつある。
ハロゲン化合物に代わり、難燃性付与剤としてリン化合
物が注目されている。このリン化合物は、殆どがリン酸
エステル系で、低融点(80〜100℃)の化合物であ
るので、燃焼時の高温で容易に熱分解する。熱分解で生
成するポリリン酸の炭化皮膜が樹脂を酸素及び熱から遮
蔽することによって、難燃効果が発揮される。また、難
燃性付与剤として、上記のリン化合物のほかに、窒素を
含有した樹脂があり、リン/窒素の併用によりノンハロ
ゲンで難燃性を付与する技術が提案されている。
2. Description of the Related Art An epoxy resin printed wiring board to be incorporated in an electronic device is required to have safety such as being difficult to burn and difficult to spread. Therefore, a brominated epoxy resin or a bromine-added phenol novolak resin is used as a curing agent for the epoxy resin to impart flame retardancy.
However, when halogen-containing materials such as bromine and chlorine are used at high temperatures for a long time, there is a concern that halides may be dissociated.
When the halogen-containing material is incinerated, there is a concern that harmful halides are generated. In recent years, from the viewpoint of environmental safety, the direction of imparting non-halogen flame retardancy is changing.
Phosphorus compounds have attracted attention as flame retardants instead of halogen compounds. Most of the phosphorus compound is a phosphate ester compound having a low melting point (80 to 100 ° C.), so that it is easily thermally decomposed at a high temperature during combustion. The carbonized film of polyphosphoric acid generated by thermal decomposition shields the resin from oxygen and heat, thereby exhibiting a flame retardant effect. Further, as a flame retardant, in addition to the phosphorus compound, there is a resin containing nitrogen, and a technique for imparting flame retardancy without halogen by using a combination of phosphorus and nitrogen has been proposed.

【0003】[0003]

【発明が解決しようとする課題】プリント配線板や多層
プリント配線板は、部品実装のための半田付や270℃
程度のリフロー工程で高温にさらされる。難燃性付与の
ために低融点のリン化合物を多く添加しておくと、前記
工程でリン化合物が熱分解し、プリント配線と樹脂の界
面でのふくれが発生する。従って、プリント配線板や多
層プリント配線板に難燃性を付与するためにリン化合物
を添加する場合は、その添加によって耐熱性低下のない
ことが併せて要求される。プリント配線板や多層プリン
ト配線板は、ガラス繊維織布やガラス繊維不織布を絶縁
層の基材に使用したものが多用されているが、これらに
対しては、リン化合物を少量添加するだけで難燃性を付
与できる。不燃のガラス繊維が多く存在するからであ
る。しかし、有機繊維基材エポキシ樹脂プリント配線板
は、基材自体が燃えやすいために、ノンハロゲンで難燃
性を付与するための樹脂組成には特別の工夫を要する。
また、スルーホールやIVHにより絶縁層間のプリント
配線を接続するために銅めっきや銅ペーストで構成され
る導体を採用する場合、その絶縁層に窒素原子を含有す
る樹脂が添加されていると、窒素原子による吸湿、銅の
酸化反応の促進により、スルーホールやIVH導体の導
通抵抗が大きくなることが判った。
The printed wiring board and the multilayer printed wiring board are soldered at 270.degree.
Exposure to high temperatures in a moderate reflow process. If a large amount of a low-melting phosphorus compound is added in order to impart flame retardancy, the phosphorus compound is thermally decomposed in the above step, and blistering occurs at the interface between the printed wiring and the resin. Therefore, when a phosphorus compound is added to impart flame retardancy to a printed wiring board or a multilayer printed wiring board, it is also required that the addition does not cause a decrease in heat resistance. For printed wiring boards and multilayer printed wiring boards, those using glass fiber woven fabric or glass fiber nonwoven fabric as a base material of an insulating layer are often used, but it is difficult to add a small amount of a phosphorus compound to these. Flammability can be imparted. This is because there are many non-combustible glass fibers. However, an organic fiber-based epoxy resin printed wiring board requires special measures for a resin composition for imparting flame retardancy with no halogen, because the substrate itself is liable to burn.
When a conductor made of copper plating or copper paste is used to connect printed wiring between insulating layers by through holes or IVH, if a resin containing nitrogen atoms is added to the insulating layer, nitrogen It has been found that the conduction resistance of the through-hole and the IVH conductor increases due to the promotion of the moisture absorption and the oxidation reaction of copper by the atoms.

【0004】このように、有機繊維基材エポキシ樹脂プ
リント配線板や多層プリント配線板は、ノンハロゲンで
難燃性を付与できたとしても、耐熱性を満足し、且つ、
銅で構成されるスルーホールやIVH導体の導通抵抗が
大きくなるのを回避することは容易でない。本発明が解
決しようとする課題は、リン化合物の添加量を制約しつ
つ、ノンハロゲンで難燃性を付与し、且つ、耐熱性を満
足しスルーホールやIVH導体の導通抵抗増大も回避す
る、有機繊維基材プリント配線板に適したエポキシ樹脂
組成物を提供することである。また、このエポキシ樹脂
組成物を適用した有機繊維基材のプリプレグ、積層板な
いしは金属箔張り積層板、プリント配線板ないしは多層
プリント配線板を提供することを課題とする。
[0004] As described above, an organic fiber-based epoxy resin printed wiring board and a multilayer printed wiring board satisfy heat resistance even if flame retardancy can be imparted by using a halogen-free material.
It is not easy to avoid an increase in the conduction resistance of a through-hole made of copper or an IVH conductor. The problem to be solved by the present invention is to provide an organic compound which imparts flame retardancy with a non-halogen while restricting the amount of a phosphorus compound added, satisfies heat resistance, and avoids an increase in conduction resistance of through holes and IVH conductors. An object of the present invention is to provide an epoxy resin composition suitable for a fiber-based printed wiring board. Another object of the present invention is to provide a prepreg, a laminate or a metal foil-clad laminate, a printed wiring board or a multilayer printed wiring board of an organic fiber substrate to which the epoxy resin composition is applied.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る有機繊維基材含浸用エポキシ樹脂組成
物は、窒素原子を含有する樹脂を実質的に含まない。そ
して、二官能エポキシ樹脂としてビスフェノールF型エ
ポキシ樹脂と、三官能以上の多官能エポキシ樹脂と、さ
らには、リン化合物を含む。樹脂固形分中のビスフェノ
ールF型エポキシ樹脂含有量を5〜30質量%とし、樹
脂固形分中のリン含有量を1〜2.6質量%とし、より
好ましくは、2〜2.6質量%とする。
In order to solve the above problems, the epoxy resin composition for impregnating an organic fiber substrate according to the present invention contains substantially no resin containing a nitrogen atom. And it contains a bisphenol F type epoxy resin as a bifunctional epoxy resin, a trifunctional or higher polyfunctional epoxy resin, and further contains a phosphorus compound. The bisphenol F type epoxy resin content in the resin solid content is 5 to 30% by mass, and the phosphorus content in the resin solid content is 1 to 2.6% by mass, more preferably 2 to 2.6% by mass. I do.

【0006】リン化合物は、熱分解でポリリン酸の炭化
皮膜を生成し、これが樹脂を酸素及び熱から遮蔽するこ
とによって難燃効果を発揮する。耐熱性を確保するため
に、樹脂固形分中のリン含有量を上記のように少なく制
限しており、これだけでは難燃性の確保が不十分である
ので、ここに、二官能エポキシ樹脂として、側鎖が少な
い分子構造であるビスフェノールF型エポキシ樹脂を組
合せることにより、難燃性のレベルアップを図ってい
る。ビスフェノールF型エポキシ樹脂含有量が少なくて
も多くても難燃性のレベルアップを図ることができず、
上記の範囲とすることが必要である。有機繊維基材プリ
ント配線板に適用するエポキシ樹脂組成物においては、
上記のような配合組成にすることにより初めてノンハロ
ゲンで良好な難燃性を付与することができ、しかも、耐
熱性を低下させず、スルーホールやIVH導体の導通抵
抗増大も回避するという顕著な効果を奏する。
[0006] The phosphorus compound produces a carbonized film of polyphosphoric acid by thermal decomposition, which exerts a flame-retardant effect by shielding the resin from oxygen and heat. In order to ensure heat resistance, the phosphorus content in the resin solid content is limited to a small amount as described above, and this alone is insufficient to ensure flame retardancy, so here, as a bifunctional epoxy resin, By combining a bisphenol F-type epoxy resin having a molecular structure with few side chains, the level of flame retardancy is improved. Even if the bisphenol F type epoxy resin content is low or high, the flame retardancy cannot be improved,
It is necessary to be within the above range. In the epoxy resin composition applied to the organic fiber base printed wiring board,
By adopting the above composition, good flame retardancy can be imparted for the first time without halogen, and further, a remarkable effect of avoiding an increase in conduction resistance of through holes and IVH conductors without lowering heat resistance. To play.

【0007】本発明に係るプリプレグは、上記エポキシ
樹脂組成物を有機繊維基材に含浸・乾燥したものであ
り、積層板は、前記プリプレグの層を一部ないし全部と
して加熱加圧成形してなり、金属箔張り積層板は、前記
加熱加圧成形に際し表面に金属箔を一体化したものであ
る。また、本発明に係るプリント配線板は、前記プリプ
レグの層を加熱加圧成形してなる絶縁層を備えたもので
ある。
A prepreg according to the present invention is obtained by impregnating the above-mentioned epoxy resin composition into an organic fiber base material and drying the same, and a laminate is formed by heating and pressing a part or all of the prepreg layer. The metal foil-clad laminate is one in which a metal foil is integrated with the surface during the heating and pressing. Further, a printed wiring board according to the present invention includes an insulating layer formed by heating and pressing the prepreg layer.

【0008】[0008]

【発明の実施の形態】本発明に係るエポキシ樹脂組成物
において、三官能エポキシ樹脂や多官能エポキシ樹脂の
選択は、耐熱性を向上させる。二官能エポキシ樹脂は、
多用されているビスフェノールA型エポキシ樹脂ではな
く、ビスフェノールF型エポキシ樹脂を選択する。側鎖
が少ない分子構造であるビスフェノールS型エポキシ樹
脂を併用してもよい。ビスフェノールF型エポキシ樹脂
に代えてビスフェノールS型エポキシ樹脂を採用しても
難燃性はレベルアップする。フェノール類ノボラック樹
脂はエポキシ樹脂の硬化剤として作用する。フェノール
ノボラック樹脂を選択することができる。また、硬化促
進剤として、2−エチル4−メチルイミダゾール等を配
合する。樹脂組成物の成分であるリン化合物は、リン系
ポリオール、エポキシ樹脂と反応しない添加型リン酸エ
ステル、エポキシ樹脂と反応する反応型リン酸エステル
等である。反応型リン酸エステルは、エポキシ樹脂と反
応し、硬化剤であるフェノール類ノボラック樹脂とエポ
キシ樹脂の架橋反応を妨げるので、好ましくは、添加型
リン酸エステルを選択する。
BEST MODE FOR CARRYING OUT THE INVENTION In the epoxy resin composition according to the present invention, selection of a trifunctional epoxy resin or a polyfunctional epoxy resin improves heat resistance. Bifunctional epoxy resin is
A bisphenol F type epoxy resin is selected instead of a frequently used bisphenol A type epoxy resin. A bisphenol S-type epoxy resin having a molecular structure with few side chains may be used in combination. Even if a bisphenol S-type epoxy resin is used instead of the bisphenol F-type epoxy resin, the flame retardancy is improved. Phenolic novolak resins act as curing agents for epoxy resins. A phenol novolak resin can be selected. Moreover, 2-ethyl 4-methylimidazole or the like is blended as a curing accelerator. The phosphorus compound which is a component of the resin composition is, for example, a phosphorus-based polyol, an addition-type phosphate ester that does not react with an epoxy resin, or a reactive phosphate ester that reacts with an epoxy resin. Since the reactive phosphate ester reacts with the epoxy resin and hinders the crosslinking reaction between the phenolic novolak resin as the curing agent and the epoxy resin, the addition type phosphate ester is preferably selected.

【0009】本発明に係るエポキシ樹脂組成物は、水酸
化アルミニウムや水酸化マグネシウム等の無機化合物粉
末を配合して難燃性を高めることができる。しかし、配
合量が多量にならないように配慮すべきである。無機化
合物粉末の配合量が多いと、プリプレグの表面に無機化
合物粉末が残り、金属箔(プリント配線)と樹脂の界面
の接着性が低下する。接着性を低下させない程度の量で
あれば、難燃性付与のために、水酸化アルミニウムや水
酸化マグネシウム等の無機化合物粉末を配合することを
妨げるものではない。上記のエポキシ樹脂組成物を含浸
する有機繊維基材は、芳香族ポリアミド繊維を主成分と
する不織布が好ましい。この不織布は、水中に分散した
繊維をシート状に抄造して製造される。抄造した不織布
に、エマルジョン形態の樹脂バインダをスプレーし加熱
乾燥して樹脂バインダを硬化させ、十分な強度を保持し
た不織布とする。プリント配線板や多層プリント配線板
には、半田付により実装した電子部品の半田接続信頼性
の向上が求められている。このためには、絶縁層の低熱
膨張化が必須であり、不織布を構成する有機繊維とし
て、負の熱膨張係数を有する芳香族ポリアミド繊維を選
択することは好ましい態様である。芳香族ポリアミド繊
維にはパラ系とメタ系があるが、好ましくは、不織布を
構成する繊維のうち、パラ系芳香族ポリアミド繊維の含
有量を50質量%以上にする。パラ系芳香族ポリアミド
繊維の選択は、低熱膨張化に一層有利であり、耐熱性・
耐湿性にも優れるからである。さらなる難燃性を付与す
るために、有機繊維基材として、全芳香族ポリエステル
(溶融液晶ポリマ)を選択することも可能である。
The epoxy resin composition according to the present invention can enhance flame retardancy by blending an inorganic compound powder such as aluminum hydroxide or magnesium hydroxide. However, care should be taken not to increase the blending amount. If the amount of the inorganic compound powder is large, the inorganic compound powder remains on the surface of the prepreg, and the adhesiveness at the interface between the metal foil (printed wiring) and the resin decreases. As long as the amount does not decrease the adhesiveness, it does not prevent blending of an inorganic compound powder such as aluminum hydroxide or magnesium hydroxide for imparting flame retardancy. The organic fiber base material impregnated with the epoxy resin composition is preferably a nonwoven fabric mainly composed of aromatic polyamide fibers. This nonwoven fabric is manufactured by forming fibers dispersed in water into a sheet. The resin binder in the form of an emulsion is sprayed on the paper-made nonwoven fabric and dried by heating to harden the resin binder, thereby obtaining a nonwoven fabric having sufficient strength. For printed wiring boards and multilayer printed wiring boards, it is required to improve the solder connection reliability of electronic components mounted by soldering. For this purpose, it is essential to reduce the thermal expansion of the insulating layer, and it is a preferable embodiment to select an aromatic polyamide fiber having a negative coefficient of thermal expansion as the organic fiber constituting the nonwoven fabric. The aromatic polyamide fibers are classified into para-based and meta-based. Preferably, the content of the para-based aromatic polyamide fiber in the fibers constituting the nonwoven fabric is set to 50% by mass or more. The selection of para aromatic polyamide fiber is more advantageous for lowering the thermal expansion,
This is because it has excellent moisture resistance. In order to impart further flame retardancy, it is also possible to select a wholly aromatic polyester (molten liquid crystal polymer) as the organic fiber base material.

【0010】プリプレグは、上記不織布に上記エポキシ
組成物を含浸・乾燥して製造する。プリント配線板は、
まず、前記プリプレグの層に金属箔を重ね、これらを加
熱加圧成形して金属箔張り積層板とし、金属箔を所定の
配線パターンにエッチング加工して製造する。多層プリ
ント配線板は、前記プリント配線板にプリプレグを介し
て金属箔を重ね加熱加圧成形により一体化し、金属箔を
所定の配線パターンにエッチング加工して製造する。さ
らに表面にプリプレグを介して金属箔を重ね加熱加圧成
形により一体化し、表面の金属箔を所定の配線パターン
にエッチング加工して、配線層数を増やすこともでき
る。別の方法では、複数枚のプリント配線板の間にプリ
プレグを介在させ、表面にはプリプレグを介して金属箔
を重ね、これらを加熱加圧成形により一体化し、表面の
金属箔を所定の配線パターンにエッチング加工する。積
層板やプリント配線板は、本発明に係るプリプレグと他
のプリプレグ、例えば、ガラス繊維基材プリプレグを組
合せて使用し、構成してもよい。
The prepreg is produced by impregnating the above nonwoven fabric with the above epoxy composition and drying it. Printed wiring boards
First, a metal foil is superimposed on the prepreg layer, and these are heated and pressed to form a metal foil-clad laminate, and the metal foil is etched into a predetermined wiring pattern to be manufactured. A multilayer printed wiring board is manufactured by laminating a metal foil on the printed wiring board via a prepreg by heat and pressure molding, and etching the metal foil into a predetermined wiring pattern. Further, the number of wiring layers can be increased by laminating a metal foil on the surface via a prepreg and integrating them by heating and pressing, and etching the metal foil on the surface into a predetermined wiring pattern. In another method, a prepreg is interposed between a plurality of printed wiring boards, a metal foil is overlaid on the surface via the prepreg, these are integrated by heating and pressing, and the metal foil on the surface is etched into a predetermined wiring pattern. Process. The laminate and the printed wiring board may be configured by using a combination of the prepreg according to the present invention and another prepreg, for example, a glass fiber base material prepreg.

【0011】[0011]

【実施例】以下に、実施例を説明する。以下には、プリ
ント配線板については具体的に説明していないが、その
構成ならびに製造法は上記のとおりであるので、説明を
省略する。プリント配線板の絶縁層の難燃性、耐熱性及
びプリント配線板のスルーホール導体の導通抵抗を確認
するために、以下の例では、便宜上、プリプレグ5枚を
重ねた両側に18μm厚の銅箔を配し加熱加圧成形した
銅張り積層板(0.5mm厚)を製造し、試験に供した。
Embodiments will be described below. Hereinafter, the printed wiring board is not specifically described, but the configuration and the manufacturing method are as described above, and thus the description is omitted. In order to confirm the flame retardancy and heat resistance of the insulating layer of the printed wiring board and the conduction resistance of the through-hole conductor of the printed wiring board, in the following example, for convenience, a copper foil of 18 μm thickness is provided on both sides where five prepregs are stacked. And a copper-clad laminate (0.5 mm thick) formed by heating and pressing was manufactured and subjected to a test.

【0012】従来例1 パラ系芳香族ポリアミド繊維チョップ(帝人(株)製「テ
クノーラ」)を水中に分散させ、シート状に抄造した。
これに、ビスフェノールA型エポキシ樹脂とイソシアネ
ート樹脂の配合よりなる樹脂バインダを水分散媒のエマ
ルジョン形態でスプレーし、160℃−30分間乾燥し
て、60g/m2の不織布とした。樹脂バインダの付着
量は、8質量%である。上記不織布を基材とし、これに
含浸するエポキシ樹脂組成物として、ビスフェノールA
型エポキシ樹脂(油化シェルエポキシ(株)製「Ep−8
28」)31質量部、三官能エポキシ樹脂(東都化成
(株)製「VG3101M80」)20質量部、硬化剤と
してフェノールノボラック樹脂(大日本インキ(株)製
「LF−6161」)19質量部及び臭素化フェノール
ノボラック樹脂(ブロモケムファーイースト(株)製「T
BBA」)30質量部、硬化促進剤として2−エチル4
−メチルイミダゾール0.2質量部をメチルエチルケト
ン30質量部に溶解し、ワニスを調製した。このワニス
を上記不織布基材に含浸し、150℃−5分間乾燥して
プリプレグを得た。樹脂の含有量は、52質量%であ
る。上記プリプレグを用いて、上述した銅張り積層板を
製造した。成形条件は、温度170℃,圧力4.9MPa
の条件で60分間加熱加圧成形である。
Conventional Example 1 A para-aromatic polyamide fiber chop ("Technola" manufactured by Teijin Limited) was dispersed in water and formed into a sheet.
A resin binder comprising a mixture of a bisphenol A type epoxy resin and an isocyanate resin was sprayed in the form of an emulsion of an aqueous dispersion medium, and dried at 160 ° C. for 30 minutes to obtain a nonwoven fabric of 60 g / m 2 . The adhesion amount of the resin binder is 8% by mass. Bisphenol A is used as an epoxy resin composition impregnated with the above nonwoven fabric as a base material.
Type epoxy resin ("Ep-8" manufactured by Yuka Shell Epoxy Co., Ltd.)
28 ") 31 parts by mass, trifunctional epoxy resin (Toto Kasei
20 parts by mass of "VG3101M80", 19 parts by mass of a phenol novolak resin ("LF-6161" manufactured by Dainippon Ink Co., Ltd.) as a curing agent and a brominated phenol novolak resin (manufactured by Bromochem Far East Co., Ltd.) "T
BBA ") 30 parts by mass, 2-ethyl 4 as a curing accelerator
A varnish was prepared by dissolving 0.2 parts by mass of methyl imidazole in 30 parts by mass of methyl ethyl ketone. The varnish was impregnated into the nonwoven fabric substrate and dried at 150 ° C. for 5 minutes to obtain a prepreg. The content of the resin is 52% by mass. Using the prepreg, the above-mentioned copper-clad laminate was manufactured. The molding conditions were as follows: temperature 170 ° C, pressure 4.9MPa
Under the conditions of the above for 60 minutes.

【0013】実施例1〜13、比較例1〜4 ビスフェノールF型エポキシ樹脂(東都化成(株)製「Y
DF−170」)、三官能エポキシ樹脂(東都化成(株)
製「VG3101M80」)、フェノールノボラック樹
脂(大日本インキ(株)製「TD−2090」)、縮合型
リン酸エステル(大八化学工業(株)製「PX−20
0」)、2−エチル4−メチルイミダゾールをメチルエ
チルケトンに溶解し、樹脂固形分中のリン含有質量%
(P質量%)と樹脂固形分中のビスフェノールF型エポ
キシ樹脂含有質量%(ビスFエポ質量%)が表1〜表2
に示した各配合となるようにワニスを調製した。その他
は、従来例1と同様にして銅張り積層板を製造した。
Examples 1 to 13 and Comparative Examples 1 to 4 Bisphenol F type epoxy resin ("Y" manufactured by Toto Kasei Co., Ltd.)
DF-170 "), trifunctional epoxy resin (Toto Kasei Co., Ltd.)
“VG3101M80”, phenol novolak resin (“TD-2090”, manufactured by Dainippon Ink and Chemicals, Inc.), and condensed phosphate ester (“PX-20” manufactured by Daihachi Chemical Industry Co., Ltd.)
0 "), 2-ethyl 4-methylimidazole was dissolved in methyl ethyl ketone, and the phosphorus content in the resin solid content was% by mass.
(P mass%) and bisphenol F type epoxy resin content mass% (bisF epoxy mass%) in the resin solid content are shown in Tables 1-2.
A varnish was prepared so as to have the respective compositions shown in (1). Otherwise, a copper-clad laminate was manufactured in the same manner as in Conventional Example 1.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】比較例5〜7 ビスフェノールF型エポキシ樹脂(東都化成(株)製「Y
DF−170」)、三官能エポキシ樹脂(東都化成(株)
製「VG3101M80」)、フェノールノボラック樹
脂(大日本インキ(株)製「TD−2090」)、メラミ
ン変性フェノールノボラック樹脂(大日本インキ(株)製
「LF−6161」)、縮合型リン酸エステル(大八化
学工業(株)製「PX−200」)、2−エチル4−メチ
ルイミダゾールをメチルエチルケトンに溶解し、実施例
4と同様のビスフェノールF型エポキシ樹脂、リン酸エ
ステルの配合量で、樹脂固形分中の窒素含有質量%(N
質量%)が表3に示した各配合となるようにワニスを調
製した。その他は、従来例1と同様にして銅張り積層板
を製造した。この窒素含有は、メラミン変性フェノール
ノボラック樹脂の配合に基づくものである。
Comparative Examples 5 to 7 Bisphenol F type epoxy resin ("Y" manufactured by Toto Kasei Co., Ltd.)
DF-170 "), trifunctional epoxy resin (Toto Kasei Co., Ltd.)
"VG3101M80", a phenol novolak resin ("TD-2090", manufactured by Dainippon Ink and Chemicals, Inc.), a melamine-modified phenol novolak resin ("LF-6161" manufactured by Dainippon Ink, Inc.), and a condensed phosphate ( "PX-200" manufactured by Daihachi Chemical Industry Co., Ltd.), 2-ethyl 4-methylimidazole was dissolved in methyl ethyl ketone, and the same amount of bisphenol F type epoxy resin and phosphoric acid ester as in Example 4 was used. % Nitrogen content in the
The varnish was prepared so that each of the varnishes had the composition shown in Table 3. Otherwise, a copper-clad laminate was manufactured in the same manner as in Conventional Example 1. This nitrogen content is based on the formulation of the melamine-modified phenol novolak resin.

【0017】[0017]

【表3】 [Table 3]

【0018】上記各例の銅張り積層板について、難燃
性、プリント配線加工したスルーホール導体の導通抵抗
を評価した結果を表4〜表6に示した。表中に示した各
特性は、次のように評価した。難燃性は、UL−94試
験法に基づき残炎時間(秒)を測定した。スルーホール
導体の導通抵抗は、ランド径2mmで穴径0.4mmのスル
ーホールに25μm厚の銅めっき施した試験片を用意
し、最高温度270℃のリフロー装置に各試験片を表裏
それぞれ5回ずつ通した後にスルーホール導体の導通抵
抗を測定した。
Tables 4 to 6 show the results of evaluating the flame retardancy and the conduction resistance of the through-hole conductor processed by printed wiring for the copper-clad laminates of the above examples. Each characteristic shown in the table was evaluated as follows. The flame retardancy was measured by a residual flame time (sec) based on the UL-94 test method. For the conduction resistance of the through-hole conductor, prepare a test piece with a 2mm land diameter and a 0.4mm hole diameter through-hole plated with copper with a thickness of 25μm. Then, the conduction resistance of the through-hole conductor was measured.

【0019】[0019]

【表4】 [Table 4]

【0020】[0020]

【表5】 [Table 5]

【0021】[0021]

【表6】 [Table 6]

【0022】実施例1〜7と比較例1〜2の対照から、
樹脂固形分中のリン含有量を1〜2.6質量%にするこ
とにより、難燃性を確保できることを理解できる。ま
た、さらなる難燃性を付与するには、2〜2.6質量%
が好ましいことが判る。比較例1はリン含有量が1質量
%に満たないと難燃性不十分であることを示し、比較例
2はリン含有量が2.6質量%を越えると耐熱性が低下
する、すなわち、縮合型リン酸エステル(融点95℃)
がリフロー装置の高温度で遊離し、その結果、スルーホ
ール導体の導通抵抗を増大させることを示す。また、実
施例8〜13と比較例3〜4の対照から、難燃性を確保
には、樹脂固形分中のビスフェノールF型エポキシ樹脂
含有量を5〜30質量%にすることが必須であることを
理解できる。さらに、比較例5〜7は、窒素原子含有に
より難燃性確保は可能であっても、スルーホール導体の
導通抵抗を増大させてしまい、銅で構成した導体に対し
ては窒素原子含有樹脂の配合による難燃性確保が適切で
ないことを示している。プリプレグを製造するために基
材に含浸するエポキシ樹脂組成物には、窒素原子含有樹
脂を配合をしないことが必要である。
From the controls of Examples 1 to 7 and Comparative Examples 1 and 2,
It can be understood that the flame retardancy can be secured by setting the phosphorus content in the resin solid content to 1 to 2.6% by mass. Further, in order to impart further flame retardancy, 2 to 2.6% by mass
Is preferable. Comparative Example 1 shows that the flame retardancy is insufficient when the phosphorus content is less than 1% by mass, and Comparative Example 2 lowers the heat resistance when the phosphorus content exceeds 2.6% by mass. Condensed phosphate ester (melting point 95 ° C)
Are released at the high temperature of the reflow device, thereby increasing the conduction resistance of the through-hole conductor. Further, from the comparison between Examples 8 to 13 and Comparative Examples 3 and 4, in order to ensure flame retardancy, it is essential that the bisphenol F type epoxy resin content in the resin solid content be 5 to 30% by mass. I can understand that. Further, Comparative Examples 5 to 7 increase the conduction resistance of the through-hole conductor even if the flame retardancy can be ensured by the nitrogen atom content. This indicates that ensuring the flame retardancy by blending is not appropriate. It is necessary not to mix a nitrogen atom-containing resin in the epoxy resin composition impregnated in the base material in order to manufacture the prepreg.

【0023】[0023]

【発明の効果】上述のように、有機繊維基材に対しては
本発明に係るエポキシ樹脂組成物を適用することによ
り、ノンハロゲンで充分な難燃性を確保でき、且つ、耐
熱性を満足し、銅で構成されるスルーホールやIVH導
体の導通抵抗増大を招かないプリント配線板を提供でき
る。
As described above, by applying the epoxy resin composition according to the present invention to an organic fiber base material, it is possible to secure sufficient flame retardancy with no halogen and satisfy heat resistance. Thus, it is possible to provide a printed wiring board which does not cause an increase in conduction resistance of a through hole made of copper or an IVH conductor.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F072 AA07 AB06 AD15 AD28 AE01 AE07 AF15 AF19 AG03 AH02 AH21 AJ04 AK14 AL12 AL13 4J002 CC03Y CD00X CD05W CF16Z CL06Z EW046 FA04Z FD01Z FD010 FD136 FD14Y GF00 GQ01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4F072 AA07 AB06 AD15 AD28 AE01 AE07 AF15 AF19 AG03 AH02 AH21 AJ04 AK14 AL12 AL13 4J002 CC03Y CD00X CD05W CF16Z CL06Z EW046 FA04Z FD01Z FD010 FD136 FD14Y GF00 G01

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】有機繊維基材含浸用のエポキシ樹脂組成物
であって、二官能エポキシ樹脂としてビスフェノールF
型エポキシ樹脂と、三官能以上の多官能エポキシ樹脂
と、フェノール類ノボラック樹脂と、さらにはリン化合
物を含み、 樹脂固形分中のビスフェノールF型エポキシ樹脂含有量
が5〜30質量%であり、 樹脂固形分中のリン含有量が、1〜2.6質量%である
ことを特徴とする有機繊維基材含浸用エポキシ樹脂組成
物。
An epoxy resin composition for impregnating an organic fiber base material, wherein bisphenol F is used as a bifunctional epoxy resin.
Epoxy resin, a polyfunctional epoxy resin having three or more functional groups, a phenolic novolak resin, and a phosphorus compound. The content of bisphenol F type epoxy resin in the resin solid content is 5 to 30% by mass. An epoxy resin composition for impregnating an organic fiber base material, wherein the phosphorus content in the solid content is 1 to 2.6% by mass.
【請求項2】請求項1記載のエポキシ樹脂組成物であっ
て、樹脂固形分中のリン含有量が、2〜2.6質量%で
あることを特徴とする有機繊維基材含浸用エポキシ樹脂
組成物。
2. The epoxy resin composition according to claim 1, wherein the content of phosphorus in the solid content of the resin is from 2 to 2.6% by mass. Composition.
【請求項3】請求項1〜2記載のエポキシ樹脂組成物を
有機繊維基材に含浸・乾燥してなることを特徴とするプ
リプレグ。
3. A prepreg obtained by impregnating and drying an organic fiber base material with the epoxy resin composition according to claim 1.
【請求項4】有機繊維基材が芳香族ポリアミド繊維を主
成分とする不織布基材である請求項3記載のプリプレ
グ。
4. The prepreg according to claim 3, wherein the organic fiber base material is a nonwoven fabric base material containing an aromatic polyamide fiber as a main component.
【請求項5】請求項3又は4記載のプリプレグの層を一
部ないし全部として加熱加圧成形してなることを特徴と
する積層板。
5. A laminate obtained by heating and pressing a part or all of the prepreg layer according to claim 3 or 4.
【請求項6】請求項5記載の積層板の少なくとも片面に
金属箔が一体化されている金属箔張り積層板。
6. A metal foil-clad laminate in which a metal foil is integrated on at least one surface of the laminate according to claim 5.
【請求項7】請求項3又は4記載のプリプレグの層を加
熱加圧成形してなる絶縁層を備えたことを特徴とするプ
リント配線板。
7. A printed wiring board comprising an insulating layer formed by heating and pressing the prepreg layer according to claim 3 or 4.
【請求項8】絶縁層のスルーホール導体が銅で構成され
る請求項7記載のプリント配線板。
8. The printed wiring board according to claim 7, wherein the through-hole conductor of the insulating layer is made of copper.
JP2000182718A 2000-06-19 2000-06-19 Epoxy resin composition for impregnation of organic fiber base material and prepreg made of it, laminated plate and printed wiring board Pending JP2002003626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000182718A JP2002003626A (en) 2000-06-19 2000-06-19 Epoxy resin composition for impregnation of organic fiber base material and prepreg made of it, laminated plate and printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000182718A JP2002003626A (en) 2000-06-19 2000-06-19 Epoxy resin composition for impregnation of organic fiber base material and prepreg made of it, laminated plate and printed wiring board

Publications (1)

Publication Number Publication Date
JP2002003626A true JP2002003626A (en) 2002-01-09

Family

ID=18683424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000182718A Pending JP2002003626A (en) 2000-06-19 2000-06-19 Epoxy resin composition for impregnation of organic fiber base material and prepreg made of it, laminated plate and printed wiring board

Country Status (1)

Country Link
JP (1) JP2002003626A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001726A1 (en) * 2011-06-28 2013-01-03 住友ベークライト株式会社 Prepreg, laminated plate, semiconductor package, and method for producing laminated plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001726A1 (en) * 2011-06-28 2013-01-03 住友ベークライト株式会社 Prepreg, laminated plate, semiconductor package, and method for producing laminated plate
JPWO2013001726A1 (en) * 2011-06-28 2015-02-23 住友ベークライト株式会社 Prepreg, laminated board, semiconductor package, and laminated board manufacturing method

Similar Documents

Publication Publication Date Title
KR100228047B1 (en) Halogen-free flame-retardant epoxy resin composition as well as prepreg and laminate containing the same
JP3434808B2 (en) Copper foil with resin and printed wiring board using the copper foil with resin
JP2008214427A (en) Flame-retardant epoxy resin composition, and prepreg, laminated plate and printed wiring board
JP4027560B2 (en) Flame retardant resin composition, prepreg and laminate using the same
JP3500465B2 (en) Flame retardant epoxy resin composition, prepreg and laminated product
JP3650090B2 (en) Halogen-free flame-retardant epoxy resin composition, and prepreg, laminate, copper-clad laminate and printed wiring board containing the same
JP3176356B2 (en) Flame retardant epoxy resin composition, prepreg and laminated product
JP2000007898A (en) Flame-retardant resin composition and prepreg and laminate using the same
JP3620425B2 (en) Prepreg, laminate and printed wiring board using flame retardant epoxy resin composition
JP3620426B2 (en) Prepreg, laminate and printed wiring board using flame retardant epoxy resin composition
JP2006182991A (en) Resin composition for printed wiring board, resin varnish, prepreg and laminated plate using it
JP3315082B2 (en) Flame-retardant resin composition, prepreg and laminate using the same
JP4000754B2 (en) Flame retardant epoxy resin composition and prepreg, laminate and printed wiring board using the same
JP2002003626A (en) Epoxy resin composition for impregnation of organic fiber base material and prepreg made of it, laminated plate and printed wiring board
JP2002060590A (en) Epoxy resin composition for imprregnating glass fiber substrate and prepreg, laminated sheet and printed wiring board using the same
KR100887923B1 (en) Non-halogenated flame-retarding epoxy resin composition, resin coated copper foil produced with the same, and copper clad laminate
JP2005015510A (en) Flame-retardant resin composition and lamination-related product
JP4075300B2 (en) Composite laminate and printed wiring board
JP2006036936A (en) Epoxy resin composition, prepreg, and multilayer printed wiring board
JP4320986B2 (en) Epoxy resin composition for impregnating glass fiber substrate and prepreg, laminate and printed wiring board using the same
JP4568937B2 (en) Flame retardant resin composition, prepreg and laminate using the same
JP2001335651A (en) Epoxy resin composition for impregnation of organic fiber substrate, and prepreg, laminated sheet and printed wiring board using the same
JP2006028201A (en) Flame-retardant epoxy composition, prepreg, laminated sheet and printed wiring board
JPH10166501A (en) Manufacture of glass epoxy copper-clad laminate
JP4005384B2 (en) Epoxy resin composition for impregnating organic fiber substrate and prepreg, laminate and printed wiring board using the same