JP2006028201A - Flame-retardant epoxy composition, prepreg, laminated sheet and printed wiring board - Google Patents

Flame-retardant epoxy composition, prepreg, laminated sheet and printed wiring board Download PDF

Info

Publication number
JP2006028201A
JP2006028201A JP2004204054A JP2004204054A JP2006028201A JP 2006028201 A JP2006028201 A JP 2006028201A JP 2004204054 A JP2004204054 A JP 2004204054A JP 2004204054 A JP2004204054 A JP 2004204054A JP 2006028201 A JP2006028201 A JP 2006028201A
Authority
JP
Japan
Prior art keywords
mass
epoxy resin
inorganic filler
solid content
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004204054A
Other languages
Japanese (ja)
Inventor
Toru Shimazu
徹 嶋津
Naoya Kitamura
直也 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2004204054A priority Critical patent/JP2006028201A/en
Publication of JP2006028201A publication Critical patent/JP2006028201A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a halogen-free epoxy resin composition for a metal clad laminated sheet, wherein the amount of a phosphorus compound added is limited, a flame retardance is imparted, copper foil release strength and glass transition temperature in an insulating layer can be increased and thermal expansion in the Z direction in the insulating layer can be decreased. <P>SOLUTION: The epoxy resin composition is substantially free of a halogen and contains (A) a polyfunctional epoxy resin with a functional value of at least 3, (B) a phenol novolak resin containing a nitrogen atom, (C) a non-reactive phosphorus compound containing an aromatic ring, (D) an inorganic filler and (E) a hardening accelerator which is a salt between an amine hardening accelerator and the phenol novolak resin. Here, the phosphorus content in the resin solid content is 0.6-1.5 mass%, and the inorganic filler content is 20-110 pts.mass, preferably 70-110 pts.mass against 100 pts.mass resin solid content. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、実質的にハロゲンを含まない難燃性エポキシ樹脂組成物に関する。また、このエポキシ樹脂組成物を用いたプリプレグ、積層板ないしは金属箔張り積層板、プリント配線板に関する。   The present invention relates to a flame retardant epoxy resin composition substantially free of halogen. The present invention also relates to a prepreg, a laminate or a metal foil-clad laminate, and a printed wiring board using this epoxy resin composition.

電子機器を組込むプリント配線板には、燃えにくいこと、燃え広がらないことといった安全性が求められている。そこで、プリント配線板の絶縁層を構成するエポキシ樹脂に臭素化エポキシ樹脂を選択し、或いは、エポキシ樹脂の硬化剤として臭素化フェノールノボラック樹脂やテトラブロモビスフェノールA等を使用して、難燃性を付与している。   Printed wiring boards incorporating electronic devices are required to have safety such as being difficult to burn and not spreading. Therefore, brominated epoxy resin is selected as the epoxy resin that constitutes the insulating layer of the printed wiring board, or brominated phenol novolac resin or tetrabromobisphenol A is used as a curing agent for the epoxy resin. Has been granted.

しかし、近年の環境安全意識の高まりより、ノンハロゲンで難燃性を付与するという方向に変わりつつあり、難燃性付与剤として、ハロゲン化合物に代わり、リン化合物を添加することが注目されている。   However, with the recent increase in environmental safety awareness, it is changing in the direction of imparting flame retardancy with non-halogens, and adding a phosphorus compound as a flame retardancy imparting agent instead of a halogen compound has attracted attention.

リン化合物を使用する技術として、
(1)エポキシ樹脂にその硬化反応に関与しない非反応性リン酸エステルを配合すること(特許文献1)。
(2)エポキシ樹脂にその硬化反応に関与する反応性リン酸エステルを配合すること(特許文献2、3)。
(3)エポキシ樹脂に反応性リン酸エステルで変性したリン変性エポキシ樹脂を配合すること(特許文献4)。
などがある。これらは、燃焼時の熱分解で生成するポリリン酸の炭化皮膜が酸素及び熱から樹脂を遮蔽することによって難燃効果を発揮する。
As a technology using phosphorus compounds,
(1) Mixing a non-reactive phosphate ester that does not participate in the curing reaction with an epoxy resin (Patent Document 1).
(2) Mixing a reactive phosphate ester involved in the curing reaction with the epoxy resin (Patent Documents 2 and 3).
(3) A phosphorus-modified epoxy resin modified with a reactive phosphate ester is blended in the epoxy resin (Patent Document 4).
and so on. These exhibit a flame retardant effect by the carbonized film of polyphosphoric acid produced by thermal decomposition during combustion shielding the resin from oxygen and heat.

また、上記リン化合物を使用する技術のほかに、
(4)エポキシ樹脂に窒素原子を含有する樹脂を配合したり、水酸化アルミニウム等の水酸化物を配合すること(特許文献5)。
などがある。これらは、燃焼時に発生する窒素ガスにより酸素遮蔽をしたり、燃焼時の熱分解により放出される水によって難燃効果を発揮する。
In addition to the technology using the above phosphorus compounds,
(4) A resin containing a nitrogen atom is blended with an epoxy resin, or a hydroxide such as aluminum hydroxide is blended (Patent Document 5).
and so on. These have an oxygen-shielding effect by nitrogen gas generated during combustion, and exhibit a flame-retardant effect by water released by thermal decomposition during combustion.

特開2002−80565号公報JP 2002-80565 A 特開2000−212391号公報JP 2000-212391 A 特開2002−249540号公報JP 2002-249540 A 特開平11−166035号公報JP-A-11-166035 特開2002−103518号公報JP 2002-103518 A

プリント配線板や多層プリント配線板は、部品実装のために、半田付やリフロー工程において高温に曝される。更に、環境問題の観点から、半田付には鉛フリー半田の採用が主流となりつつあり、このような場合には、プリント配線板や多層プリント配線板は、更に高温に曝されることになる。従って、プリント配線板や多層プリント配線板の絶縁層には、実装部品直下の銅箔ランドが高温により剥がれない銅箔引き剥がし強さが要求されるのは勿論のこと、Tgが高いことが要求される。
また、スルーホールを有するプリント配線板や多層プリント配線板には、常態温度と高温の繰り返し熱衝撃を受けても、スルーホールめっきの剥がれや層間の導通抵抗が増加しないように、絶縁層の膨張収縮によるZ方向(厚さ方向)の熱膨張率も同時に小さいことが要求される。
Printed wiring boards and multilayer printed wiring boards are exposed to high temperatures in soldering and reflow processes for component mounting. Furthermore, from the viewpoint of environmental problems, the use of lead-free solder is becoming mainstream for soldering. In such a case, the printed wiring board and the multilayer printed wiring board are further exposed to high temperatures. Accordingly, the insulating layer of a printed wiring board or multilayer printed wiring board is required to have a high Tg as well as a copper foil peeling strength that prevents the copper foil land directly under the mounted component from being peeled off at high temperatures. Is done.
In addition, for printed wiring boards and multilayer printed wiring boards with through-holes, expansion of the insulating layer is prevented so that peeling of through-hole plating and inter-layer conduction resistance do not increase even when subjected to repeated thermal shocks at normal and high temperatures. The coefficient of thermal expansion in the Z direction (thickness direction) due to shrinkage is also required to be small at the same time.

しかし、難燃性を付与するために添加する芳香族環を含む非反応性リン化合物は、アミン系硬化促進剤存在下では低温で加水分解してジメチルフェノールを生成し、当該ジメチルフェノールがエポキシ樹脂と優先的に反応することにより、エポキシ樹脂と硬化剤の本来の反応を阻害する。その結果、十分な架橋反応が起こらないため、絶縁層のガラス転移温度を高くできない。また、上記(2)にあるような反応性リン酸エステルを使用した場合にも、反応性リン酸エステルがエポキシ樹脂と優先的に反応し、硬化剤との反応架橋点が減少するため、ガラス転移温度を高くできない。   However, non-reactive phosphorus compounds containing aromatic rings added to impart flame retardancy are hydrolyzed at low temperatures in the presence of amine-based curing accelerators to produce dimethylphenol, which is an epoxy resin. By preferentially reacting, the original reaction between the epoxy resin and the curing agent is inhibited. As a result, the glass transition temperature of the insulating layer cannot be increased because sufficient crosslinking reaction does not occur. In addition, when a reactive phosphate ester as described in (2) above is used, the reactive phosphate ester reacts preferentially with the epoxy resin, and the reactive crosslinking point with the curing agent is reduced. The transition temperature cannot be increased.

このように、絶縁層をエポキシ樹脂で構成したプリント配線板や多層プリント配線板は、ノンハロゲンで難燃性を付与できたとしても、銅箔引き剥がし強さ及び絶縁層のガラス転移温度を上げ、絶縁層のZ方向熱膨張を小さくすることは容易でない。
本発明が解決しようとする課題は、リン化合物の添加量を制約しつつ、ノンハロゲンで難燃性を付与し、且つ、銅箔引き剥がし強さ及び絶縁層のガラス転移温度を上げ、絶縁層のZ方向熱膨張を小さくできるガラス繊維基材のプリプレグ、積層板ないしは金属張り積層板、プリント配線板ないしは多層プリント配線板を提供することである。
Thus, even if the printed wiring board or multilayer printed wiring board in which the insulating layer is composed of an epoxy resin can be imparted with non-halogen flame retardancy, the copper foil peeling strength and the glass transition temperature of the insulating layer are increased, It is not easy to reduce the thermal expansion in the Z direction of the insulating layer.
The problem to be solved by the present invention is to impart flame retardancy with non-halogen while restricting the amount of phosphorus compound added, and to increase the peel strength of the copper foil and the glass transition temperature of the insulating layer. It is to provide a prepreg of a glass fiber substrate, a laminated board or a metal-clad laminated board, a printed wiring board or a multilayer printed wiring board that can reduce the thermal expansion in the Z direction.

上記課題を達成するために、本発明に係る難燃性エポキシ樹脂組成物は、実質的にハロゲンを含まないものであって、
(A)3官能以上の多官能エポキシ樹脂
(B)窒素原子を含むフェノールノボラック樹脂
(C)芳香族環を含む非反応性リン化合物
(D)無機充填材
(E)アミン系硬化促進剤とフェノールノボラック樹脂の塩である硬化促進剤
を含む。そして、樹脂固形分中のリン含有量が0.6〜1.5質量%、無機充填材が、樹脂固形分100質量部に対して20〜110質量部であることを特徴とする。
無機充填材は、好ましくは、樹脂固形分100質量部に対して70〜110質量部である。
In order to achieve the above object, the flame-retardant epoxy resin composition according to the present invention is substantially free of halogen,
(A) Trifunctional or higher polyfunctional epoxy resin (B) Phenol novolac resin containing nitrogen atom (C) Non-reactive phosphorus compound containing aromatic ring (D) Inorganic filler (E) Amine-based curing accelerator and phenol A curing accelerator which is a salt of a novolak resin is included. And the phosphorus content in resin solid content is 0.6-1.5 mass%, and an inorganic filler is 20-110 mass parts with respect to 100 mass parts of resin solid content, It is characterized by the above-mentioned.
The inorganic filler is preferably 70 to 110 parts by mass with respect to 100 parts by mass of the resin solid content.

本発明に係るプリプレグは、上記難燃性エポキシ樹脂組成物をガラス繊維基材に含浸し乾燥してなるものである。   The prepreg according to the present invention is obtained by impregnating a glass fiber substrate with the flame retardant epoxy resin composition and drying it.

本発明に係る積層板は、上記プリプレグをプリプレグ層の一部ないし全部として加熱加圧成形してなるものである。   The laminate according to the present invention is obtained by heat-pressing the prepreg as a part or all of the prepreg layer.

本発明に係る金属箔張り積層板は、上記積層板の少なくとも片面に金属箔が一体化されているものである。   In the metal foil-clad laminate according to the present invention, the metal foil is integrated on at least one side of the laminate.

本発明に係るプリント配線板は、上記プリプレグの層を加熱加圧成形してなる絶縁層を備えたものである。   The printed wiring board according to the present invention includes an insulating layer formed by heat-pressing the prepreg layer.

既述のように、芳香族環を有する非反応性リン化合物は、アミン系硬化促進剤存在下の低温で加水分解しジメチルフェノールを生成する。このジメチルフェノールがエポキシ樹脂と優先的に反応し、エポキシ樹脂と硬化剤の本来の反応を阻害している。
しかし、本発明に係る難燃性樹脂組成物は、アミン系硬化促進剤とフェノールノボラック樹脂の塩を硬化促進剤としており、これは低温では硬化促進剤としては作用しない。前記塩は、高温になってフェノール樹脂とアミン系硬化促進剤とに分解し、この段階で初めて硬化促進剤として作用する。そして、この段階では、温度潜在性により、エポキシ樹脂と硬化剤の架橋反応が良好に進み、ガラス転移温度が十分に高いエポキシ樹脂硬化物とすることができる。
As described above, the non-reactive phosphorus compound having an aromatic ring is hydrolyzed at a low temperature in the presence of an amine curing accelerator to produce dimethylphenol. This dimethylphenol preferentially reacts with the epoxy resin and inhibits the original reaction between the epoxy resin and the curing agent.
However, the flame-retardant resin composition according to the present invention uses an amine curing accelerator and a salt of a phenol novolac resin as a curing accelerator, which does not act as a curing accelerator at low temperatures. The salt decomposes into a phenol resin and an amine curing accelerator at a high temperature and acts as a curing accelerator for the first time at this stage. At this stage, the epoxy resin and the curing agent undergo a good crosslinking reaction due to temperature potential, and a cured epoxy resin having a sufficiently high glass transition temperature can be obtained.

樹脂固形分中のリン含有量は、少ないと難燃効果を十分に発揮することはできず、多いとガラス転移温度を十分に高くすることができない。従って、上記0.6〜1.5質量%の範囲とする。
無機充填材は、熱による振動がない。従って、エポキシ樹脂硬化物中に存在する無機充填材は、積層板(絶縁層)のZ方向熱膨張を抑制する作用をする。樹脂固形分中の無機充填材が少ないと全体への分散が均一にならないため、部位による熱膨張のばらつきが大きくなる。一方、樹脂固形分中の無機充填材が多いと積層板(絶縁層)の弾性率が高くなり、金属箔と樹脂界面の接着力が低くなる。従って、上記20〜110質量部の範囲とする。好ましくは、70〜110質量部の範囲とする。
If the phosphorus content in the resin solid content is small, the flame retardant effect cannot be sufficiently exhibited, and if it is large, the glass transition temperature cannot be sufficiently increased. Accordingly, the range is 0.6 to 1.5% by mass.
Inorganic fillers do not vibrate due to heat. Therefore, the inorganic filler present in the cured epoxy resin acts to suppress the Z-direction thermal expansion of the laminate (insulating layer). If the amount of the inorganic filler in the resin solid content is small, the dispersion to the whole is not uniform, and the variation in thermal expansion due to the site becomes large. On the other hand, when there are many inorganic fillers in resin solid content, the elasticity modulus of a laminated board (insulating layer) will become high, and the adhesive force of metal foil and a resin interface will become low. Accordingly, the range is 20 to 110 parts by mass. Preferably, it is set as the range of 70-110 mass parts.

このように、本発明に係るエポキシ樹脂組成物を用いることにより、ノンハロゲンで十分な難燃性を確保でき、且つ、高いガラス転移温度と小さい熱膨張係数を満足するプリント配線板を提供できる。   Thus, by using the epoxy resin composition according to the present invention, it is possible to provide a printed wiring board that can ensure sufficient flame retardancy with non-halogen and satisfy a high glass transition temperature and a small thermal expansion coefficient.

本発明に係る難燃性エポキシ樹脂組成物において、窒素原子を含むフェノールノボラック樹脂は、アミノトリアジン変性フェノールノボラック樹脂やメラミン変性フェノールノボラック樹脂等である。しかし、特に、制約するものではない。
芳香族環を含む非反応性リン化合物は、大八化学製「PX−200」に代表される縮合型リン酸エステル、トリフェニルホスフェ−ト、トリクレシジルホスフェ−ト、クレジルジフェニルホスフェ−ト、オクチルジフェニルホスフェ−ト等である。これらは、特に制約することなく、単独又は2種以上を組合せて用いることができる。但し、十分な難燃性の付与とガラス転移温度を低下させないことを考慮し、樹脂固形分中のリン含有量が0.6〜1.5質量%の範囲となる量で配合する。
無機充填材は、タルク、シリカ、アルミナ、水酸化アルミニウム、水酸化マグネシウム、ホウ酸亜鉛等である。特に、水酸化アルミニウム、水酸化マグネシウムは、燃焼時の熱で分解して水を放出し消火を促進するので、難燃性を付与する上で好ましい。これらの無機充填材は、単独又は2種以上を組合せて用いることができる。但し、積層板(絶縁層)のZ方向熱膨張係数を小さくすることと弾性率を大きくしすぎない(金属箔と樹脂界面の接着力を確保する)ことを考慮し、樹脂固形分100質量部に対する無機充填材量が20〜110質量部、好ましくは、70〜110質量部の範囲となる量で配合する。
In the flame-retardant epoxy resin composition according to the present invention, the phenol novolak resin containing a nitrogen atom is an aminotriazine-modified phenol novolak resin, a melamine-modified phenol novolak resin, or the like. However, there is no particular limitation.
Non-reactive phosphorus compounds containing an aromatic ring include condensed phosphate esters represented by Daihachi Chemical's “PX-200”, triphenyl phosphate, tricresidyl phosphate, cresyl diphenyl phosphate. Fate, octyl diphenyl phosphate and the like. These can be used alone or in combination of two or more without any particular limitation. However, in consideration of imparting sufficient flame retardancy and not lowering the glass transition temperature, the phosphorus content in the resin solid content is blended in an amount ranging from 0.6 to 1.5 mass%.
The inorganic filler is talc, silica, alumina, aluminum hydroxide, magnesium hydroxide, zinc borate or the like. In particular, aluminum hydroxide and magnesium hydroxide are preferable for imparting flame retardancy because they are decomposed by heat during combustion to release water and promote fire extinguishing. These inorganic fillers can be used alone or in combination of two or more. However, in consideration of reducing the coefficient of thermal expansion in the Z direction of the laminate (insulating layer) and not increasing the elastic modulus too much (to ensure the adhesive force between the metal foil and the resin interface), the resin solid content is 100 parts by mass. The amount of the inorganic filler is 20 to 110 parts by mass, preferably 70 to 110 parts by mass.

本発明に係るプリプレグ、積層板ならびにプリント配線板は、次のようにして製造し得る。
プリプレグは、ガラス繊維織布に上記エポキシ樹脂組成物のワニスを含浸し加熱乾燥して、エポキシ樹脂の硬化を半硬化状態まで進める。
積層板は、上記プリプレグをプリプレグ層の一部ないし全部として使用し、加熱加圧成形して製造する。この場合、所定厚みの金属箔(例えば銅箔)をプリプレグ層の片面又は両面に載置して加熱加圧成形することにより、金属箔張り積層板とすることができる。
プリント配線板は、上記プリプレグの層を加熱加圧成形した絶縁層を備えるものである。例えば、上記金属箔張り積層板の金属箔をエッチング加工して回路形成をしたプリント配線板、さらには、このプリント配線板の片面又は両面にプリプレグを介して金属箔を載置して加熱加圧成形により一体化し、表面の金属箔をエッチング加工して回路形成をした多層構造のプリント配線板等である。
The prepreg, laminate and printed wiring board according to the present invention can be produced as follows.
The prepreg impregnates the glass fiber woven fabric with the varnish of the epoxy resin composition and heat-drys to advance the epoxy resin to a semi-cured state.
The laminate is produced by using the prepreg as part or all of the prepreg layer, and heating and pressing. In this case, a metal foil-clad laminate can be obtained by placing a metal foil (for example, copper foil) having a predetermined thickness on one or both sides of the prepreg layer and performing heat-pressure molding.
The printed wiring board includes an insulating layer obtained by heat-pressing the prepreg layer. For example, a printed wiring board in which a circuit is formed by etching the metal foil of the metal foil-clad laminate, and further, the metal foil is placed on one or both sides of the printed wiring board via a prepreg and heated and pressed. It is a printed wiring board having a multilayer structure in which a circuit is formed by etching and processing a metal foil on the surface.

以下、本発明に係る実施例を説明する。
実施例1〜7、比較例1〜2
ガラス繊維織布(厚さ:200μm,単位質量:215g/m,旭シュエーベル製「#7628」)に含浸する難燃性エポキシ樹脂組成物として、以下を準備した。
3官能エポキシ樹脂(ジャパンエポキシレジン製「E1032」)、アミノトリアジン変性フェノールノボラック樹脂(大日本インキ化学工業製「LA7052」)、縮合型リン酸エステル(大八化学製「PX−200」)、アミン系硬化促進剤として、1,5−ジアザビシクロ(4,3,0)ノネン−5のフェノールノボラック樹脂塩(サンアプロ製「U−CAT881」)をメチルエチルケトンに溶解し、エポキシ樹脂ワニスを調整した。
上記エポキシ樹脂ワニスの樹脂固形分中のリン含有量(以下「リン含有量」という)を、各例毎に表1に示した量となるよう調整した。また、このエポキシ樹脂ワニスには、水酸化アルミニウム(昭和電工製「HS−330」)を配合してホモミキサで分散し、樹脂固形分100質量部に対する無機充填材の量(以下「無機充填材量」という)を、各例毎に表1に示した量となるよう調整した。
上記エポキシ樹脂ワニスをガラス繊維織布に含浸し、150℃で5分間乾燥して、プリプレグを得た。樹脂の含有量は、45質量%である。このプリプレグを5枚重ね、その両面に18μmの銅箔を配し、温度190℃、圧力3.9MPaの条件で、90分間加熱加圧し、銅張り積層板を得た。
Examples according to the present invention will be described below.
Examples 1-7, Comparative Examples 1-2
The following was prepared as a flame retardant epoxy resin composition to be impregnated into a glass fiber woven fabric (thickness: 200 μm, unit mass: 215 g / m 2 , “# 7628” manufactured by Asahi Schwer).
Trifunctional epoxy resin (Japan Epoxy Resin “E1032”), aminotriazine-modified phenol novolac resin (Dainippon Ink and Chemicals “LA7052”), condensed phosphate ester (Daihachi Chemical “PX-200”), amine As a system curing accelerator, 1,5-diazabicyclo (4,3,0) nonene-5 phenol novolac resin salt ("U-CAT881" manufactured by San Apro) was dissolved in methyl ethyl ketone to prepare an epoxy resin varnish.
The phosphorus content (hereinafter referred to as “phosphorus content”) in the resin solid content of the epoxy resin varnish was adjusted to the amount shown in Table 1 for each example. In addition, this epoxy resin varnish was mixed with aluminum hydroxide (“HS-330” manufactured by Showa Denko) and dispersed with a homomixer, and the amount of inorganic filler relative to 100 parts by mass of resin solids (hereinafter “inorganic filler amount”). Was adjusted to the amount shown in Table 1 for each example.
A glass fiber woven fabric was impregnated with the epoxy resin varnish and dried at 150 ° C. for 5 minutes to obtain a prepreg. The resin content is 45% by mass. Five prepregs were stacked, 18 μm copper foils were placed on both sides thereof, and heated and pressurized for 90 minutes under the conditions of a temperature of 190 ° C. and a pressure of 3.9 MPa to obtain a copper-clad laminate.

Figure 2006028201
Figure 2006028201

実施例8〜17、比較例3〜4
リン含有量と無機充填材量を各例毎に表2及び表3のとおりとなるよう調整したエポキシ樹脂ワニスを使用した以外は、上記実施例と同様にして銅張り積層板を得た。
Examples 8-17, Comparative Examples 3-4
A copper-clad laminate was obtained in the same manner as in the above example except that an epoxy resin varnish was used in which the phosphorus content and the inorganic filler amount were adjusted for each example as shown in Tables 2 and 3.

Figure 2006028201
Figure 2006028201

Figure 2006028201
Figure 2006028201

比較例5〜11
アミン系硬化促進剤として、2−エチル4−メチルイミダゾ−ル(四国化成製「キュアゾール2E4MZ」)を使用した以外は、実施例1〜7と同様にして、銅張り積層板を得た。
Comparative Examples 5-11
A copper-clad laminate was obtained in the same manner as in Examples 1 to 7 except that 2-ethyl 4-methylimidazole (“Cureazole 2E4MZ” manufactured by Shikoku Kasei) was used as the amine curing accelerator.

上記の各実施例と比較例における銅張り積層板について、難燃性、ガラス転移温度、熱膨張係数及び吸湿させた銅張り積層板のリフロー工程におけるふくれについて評価した結果を表4〜表6に示した。
表中に示した各特性は、次のようにして評価した。
Tables 4 to 6 show the results of evaluating the blistering in the reflow process of the flame-retardant, glass transition temperature, coefficient of thermal expansion, and moisture absorption of the copper-clad laminates in the above Examples and Comparative Examples. Indicated.
Each characteristic shown in the table was evaluated as follows.

難燃性:銅箔を全面エッチングにより除去した積層板について、UL−94試験方法に基づき残炎時間(秒)を測定した。
ガラス転移温度及び熱膨張係数:Dupont TMA 2940型(TAインスツルメンツ製)により、室温〜260℃まで、10℃/分の速度の昇温を2サイクル繰り返して、2サイクル目の膨張量の変曲点をガラス転移温度(℃)とした。また、30〜80℃までの温度に対するZ方向の膨張量を熱膨張係数(ppm/℃)とした。いずれも試料数n=3の平均値とばらつき(R)で示した。
ふくれ:50×50mmに裁断した銅張り積層板をエッチングして、幅10mmの銅箔を10mm間隔で残した試料(n=10)を準備し、これをプレッシャークッカー(121℃,0.2MPa)に6時間投入する。その後、前記試料をリフロー装置(ライン速度0.5m/分,最高温度265℃−10秒間になるよう調整)に通し、銅箔表面にふくれが発生した試料数を確認した。
Flame retardancy: The residual flame time (seconds) was measured based on the UL-94 test method for the laminated board from which the copper foil was removed by whole surface etching.
Glass transition temperature and coefficient of thermal expansion: Using DuPont TMA 2940 (TA Instruments), the temperature increase at a rate of 10 ° C./min was repeated for 2 cycles from room temperature to 260 ° C., and the inflection point of the expansion amount in the second cycle Was the glass transition temperature (° C.). Moreover, the expansion amount of the Z direction with respect to the temperature of 30-80 degreeC was made into the thermal expansion coefficient (ppm / degreeC). All were shown by the average value and variation (R) of the number of samples n = 3.
Blowing: A copper clad laminate cut to 50 × 50 mm is etched to prepare a sample (n = 10) in which a copper foil having a width of 10 mm is left at intervals of 10 mm, and this is pressure cooker (121 ° C., 0.2 MPa) For 6 hours. Thereafter, the sample was passed through a reflow apparatus (adjusted so that the line speed was 0.5 m / min and the maximum temperature was 265 ° C. for 10 seconds), and the number of samples in which blistering occurred on the copper foil surface was confirmed.

Figure 2006028201
Figure 2006028201

Figure 2006028201
Figure 2006028201

Figure 2006028201
Figure 2006028201

実施例1〜7と比較例1〜2の対照から、樹脂固形分中のリン含有量を0.6〜1.5質量%の範囲にすることにより、難燃性、ガラス転移温度、Z方向の熱膨張係数が良好になり、且つ、吸湿後リフロー工程によるふくれが少ないことを理解できる。比較例1ではリン含有量が少ないために難燃性が不十分であり、一方、比較例2ではリン含有量が多いためにガラス転移温度が下がり、また、吸湿後リフロー工程によるふくれが多くなることを理解できる。   From the control of Examples 1 to 7 and Comparative Examples 1 and 2, by setting the phosphorus content in the resin solid content in the range of 0.6 to 1.5 mass%, flame retardancy, glass transition temperature, Z direction It can be understood that the coefficient of thermal expansion of the film becomes good, and there is little blistering due to the reflow process after moisture absorption. In Comparative Example 1, since the phosphorus content is low, the flame retardancy is insufficient. On the other hand, in Comparative Example 2, the glass transition temperature is lowered because of the high phosphorus content, and more blistering occurs due to the reflow process after moisture absorption. I understand that.

実施例1〜7と比較例5〜11の対照から、より高いガラス転移温度を得るためには、硬化促進剤として、アミン系硬化促進剤とフェノールノボラック樹脂との塩を使用すべきであることを理解できる。   In order to obtain a higher glass transition temperature from the controls of Examples 1 to 7 and Comparative Examples 5 to 11, a salt of an amine curing accelerator and a phenol novolac resin should be used as a curing accelerator. Can understand.

実施例8〜17と比較例3〜4の対照から、樹脂固形分100質量部に対し、水酸化アルミニウムを20〜110質量部の範囲とすることにより、難燃性、ガラス転移温度、熱膨張係数が良好で、且つ、吸湿後リフロー工程によるふくれが少ないことを理解でき、更に小さい熱膨張係数を得るには、水酸化アルミニウムを70〜110質量部の範囲にすれば良いことを理解できる。   From the controls of Examples 8 to 17 and Comparative Examples 3 to 4, flame retardancy, glass transition temperature, and thermal expansion are achieved by setting aluminum hydroxide in the range of 20 to 110 parts by mass with respect to 100 parts by mass of resin solids. It can be understood that the coefficient is good and that there is little blistering due to the reflow process after moisture absorption. In order to obtain a smaller thermal expansion coefficient, it can be understood that aluminum hydroxide should be in the range of 70 to 110 parts by mass.

図1は、実施例1〜7と比較例5〜11の積層板について、芳香族環を含む非反応性リン化合物に起因した樹脂固形分中のリン含有量と積層板のガラス転移温度との関係を示したものである。
図1からも、硬化促進剤として、アミン系硬化促進剤とフェノールノボラック樹脂との塩を使用することにより、高いガラス転移温度を得られることを理解できる。好ましいリン含有量は、0.6〜1質量%であることも理解できる。
FIG. 1 shows the relationship between the phosphorus content in the resin solid content and the glass transition temperature of the laminate due to the non-reactive phosphorus compound containing an aromatic ring for the laminates of Examples 1 to 7 and Comparative Examples 5 to 11. It shows the relationship.
It can be understood from FIG. 1 that a high glass transition temperature can be obtained by using a salt of an amine-based curing accelerator and a phenol novolac resin as the curing accelerator. It can also be understood that the preferable phosphorus content is 0.6 to 1% by mass.

実施例1〜7と比較例5〜11の積層板について、芳香族環を含む非反応性リン化合物に起因した樹脂固形分中のリン含有量と積層板のガラス転移温度との関係を示した曲線図である。About the laminated board of Examples 1-7 and Comparative Examples 5-11, the relationship between the phosphorus content in the resin solid content resulting from the non-reactive phosphorus compound containing an aromatic ring and the glass transition temperature of the laminated board was shown. FIG.

Claims (6)

実質的にハロゲンを含まない難燃性エポキシ樹脂組成物であって、
(A)3官能以上の多官能エポキシ樹脂
(B)窒素原子を含むフェノールノボラック樹脂
(C)芳香族環を含む非反応性リン化合物
(D)無機充填材
(E)アミン系硬化促進剤とフェノールノボラック樹脂の塩である硬化促進剤
を含み、
樹脂固形分中のリン含有量が、0.6〜1.5質量%、
無機充填材が、樹脂固形分100質量部に対して20〜110質量部であることを特徴とする難燃性エポキシ樹脂組成物。
A flame retardant epoxy resin composition substantially free of halogen,
(A) Trifunctional or higher polyfunctional epoxy resin (B) Phenol novolac resin containing nitrogen atom (C) Non-reactive phosphorus compound containing aromatic ring (D) Inorganic filler (E) Amine-based curing accelerator and phenol A curing accelerator that is a salt of a novolak resin,
The phosphorus content in the resin solid content is 0.6 to 1.5% by mass,
The flame retardant epoxy resin composition, wherein the inorganic filler is 20 to 110 parts by mass with respect to 100 parts by mass of the resin solid content.
無機充填材が、樹脂固形分100質量部に対して70〜110質量部であることを特徴とする請求項1記載の難燃性エポキシ樹脂組成物。   The flame retardant epoxy resin composition according to claim 1, wherein the inorganic filler is 70 to 110 parts by mass with respect to 100 parts by mass of the resin solid content. 請求項1又は2記載の難燃性エポキシ樹脂組成物をガラス繊維基材に含浸し乾燥してなることを特徴とするプリプレグ。   A prepreg comprising a glass fiber substrate impregnated with the flame retardant epoxy resin composition according to claim 1 or 2 and dried. 請求項3記載のプリプレグの層を一部ないし全部として加熱加圧成形してなることを特徴とする積層板。   A laminate comprising the prepreg layer according to claim 3 which is partly or entirely heated and pressed. 請求項4記載の積層板の少なくとも片面に金属箔が一体化されている金属箔張り積層板。   A metal foil-clad laminate in which a metal foil is integrated on at least one side of the laminate according to claim 4. 請求項3記載のプリプレグの層を加熱加圧成形してなる絶縁層を備えたことを特徴とするプリント配線板。   A printed wiring board comprising an insulating layer formed by heating and pressing the prepreg layer according to claim 3.
JP2004204054A 2004-07-12 2004-07-12 Flame-retardant epoxy composition, prepreg, laminated sheet and printed wiring board Pending JP2006028201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004204054A JP2006028201A (en) 2004-07-12 2004-07-12 Flame-retardant epoxy composition, prepreg, laminated sheet and printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004204054A JP2006028201A (en) 2004-07-12 2004-07-12 Flame-retardant epoxy composition, prepreg, laminated sheet and printed wiring board

Publications (1)

Publication Number Publication Date
JP2006028201A true JP2006028201A (en) 2006-02-02

Family

ID=35894949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004204054A Pending JP2006028201A (en) 2004-07-12 2004-07-12 Flame-retardant epoxy composition, prepreg, laminated sheet and printed wiring board

Country Status (1)

Country Link
JP (1) JP2006028201A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205374A (en) * 2007-02-22 2008-09-04 Sumitomo Bakelite Co Ltd Resin composition, insulator with support base, and metal-clad laminate for printed circuit board
JP2008227202A (en) * 2007-03-14 2008-09-25 Sumitomo Bakelite Co Ltd Resin composition, insulating material with support base material, and metal-clad laminated plate for printed circuit board
CN109486108A (en) * 2018-10-16 2019-03-19 徐致伟 A kind of high-temperature insulation material and preparation method thereof
CN111133051A (en) * 2017-09-29 2020-05-08 日铁化学材料株式会社 Curable epoxy resin composition and fiber-reinforced composite material using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205374A (en) * 2007-02-22 2008-09-04 Sumitomo Bakelite Co Ltd Resin composition, insulator with support base, and metal-clad laminate for printed circuit board
JP2008227202A (en) * 2007-03-14 2008-09-25 Sumitomo Bakelite Co Ltd Resin composition, insulating material with support base material, and metal-clad laminated plate for printed circuit board
CN111133051A (en) * 2017-09-29 2020-05-08 日铁化学材料株式会社 Curable epoxy resin composition and fiber-reinforced composite material using same
CN109486108A (en) * 2018-10-16 2019-03-19 徐致伟 A kind of high-temperature insulation material and preparation method thereof

Similar Documents

Publication Publication Date Title
TWI449749B (en) Epoxy resin composition, prepreg, metal-clad laminate and print wiring board
JP4830748B2 (en) Flame retardant epoxy resin composition, resin film, prepreg and multilayer printed wiring board
JP2001151991A (en) Epoxy resin composition, prepreg, and multi-layer printed wiring board
JP5259580B2 (en) Epoxy resin composition, resin film, prepreg, and multilayer printed wiring board
JP2002359444A (en) Copper foil with resin and printed wiring board using the same
JP2008214427A (en) Flame-retardant epoxy resin composition, and prepreg, laminated plate and printed wiring board
JP2001019930A (en) Flame-retardant adhesive composition, flexible copper- clad laminate, cover lay and adhesive film
JP2007059838A (en) Epoxide resin composition for prepreg, prepreg and multilayer printed wiring board
JP2006028201A (en) Flame-retardant epoxy composition, prepreg, laminated sheet and printed wiring board
JP2008127530A (en) Epoxy resin composition, prepreg, metal-clad laminate, printed wiring board and multilayer printed wiring board
JP3620425B2 (en) Prepreg, laminate and printed wiring board using flame retardant epoxy resin composition
JP2006028274A (en) Epoxy resin composition and prepreg using the same
JP2002020715A (en) Flame retardant adhesive composition and flexible printed wiring board-related product
JP2006182991A (en) Resin composition for printed wiring board, resin varnish, prepreg and laminated plate using it
JP4479079B2 (en) Prepreg and laminate
JP2006036936A (en) Epoxy resin composition, prepreg, and multilayer printed wiring board
JP3620426B2 (en) Prepreg, laminate and printed wiring board using flame retardant epoxy resin composition
JP2010254757A (en) Halogen-free flame-retardant epoxy resin composition and flame-retardant adhesive composition as well as flexible copper-clad laminated board using the same adhesive composition, cover lay, adhesive film and printed wiring board
JP4000754B2 (en) Flame retardant epoxy resin composition and prepreg, laminate and printed wiring board using the same
JP2005015510A (en) Flame-retardant resin composition and lamination-related product
JP4568937B2 (en) Flame retardant resin composition, prepreg and laminate using the same
JP2008214560A (en) Adhesive composition, and adhesive sheet, cover-lay film and copper-clad laminate each using the same
JP4470260B2 (en) Laminated board
JP4320986B2 (en) Epoxy resin composition for impregnating glass fiber substrate and prepreg, laminate and printed wiring board using the same
JP2002060590A (en) Epoxy resin composition for imprregnating glass fiber substrate and prepreg, laminated sheet and printed wiring board using the same