JP2003109813A - Low loss oxide magnetic material and its manufacturing method - Google Patents

Low loss oxide magnetic material and its manufacturing method

Info

Publication number
JP2003109813A
JP2003109813A JP2001302732A JP2001302732A JP2003109813A JP 2003109813 A JP2003109813 A JP 2003109813A JP 2001302732 A JP2001302732 A JP 2001302732A JP 2001302732 A JP2001302732 A JP 2001302732A JP 2003109813 A JP2003109813 A JP 2003109813A
Authority
JP
Japan
Prior art keywords
loss
magnetic material
oxide magnetic
partial pressure
oxygen partial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001302732A
Other languages
Japanese (ja)
Inventor
Koichi Kondo
幸一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2001302732A priority Critical patent/JP2003109813A/en
Publication of JP2003109813A publication Critical patent/JP2003109813A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oxide magnetic material having high resistivity and low loss. SOLUTION: A method for manufacturing the low loss oxide magnetic material containing Fe2 O3 , NiO, ZnO, and CuO as main components is characterized in that the oxygen partial pressure of the atmosphere of a temperature rising part and a temperature keeping part is 10% or lower and the oxygen partial pressure of a cooling part is 10% or more in a baking step.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電源トランスまた
はチョークコイルに用いられる低損失酸化物磁性材料に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low loss oxide magnetic material used for a power transformer or a choke coil.

【0002】[0002]

【従来の技術】携帯機器をはじめとして、近年、電子機
器の小型化が急速に進歩している。電源の中でトランス
は体積的にも、電力損失においても大きな位置を占める
ため、その小型化、高効率化が求められている。トラン
ス用材料の損失が大きいと電源としての効率が悪いだけ
でなく、自己発熱が生じる。
2. Description of the Related Art In recent years, electronic devices such as portable devices have been rapidly reduced in size. Since the transformer occupies a large position in the power source in terms of volume and power loss, downsizing and high efficiency are required. If the loss of the material for the transformer is large, not only the efficiency as a power source is poor, but also self-heating occurs.

【0003】電源トランス用材料としては、主に比較的
飽和磁束密度が高く電力損失が小さいMn−Znフェラ
イトが用いられている。Mn−Zn系フェライトは、直
流比抵抗が10〜10Ωcmと低い。そこで、短絡等
の不具合をなくすため通常これらの磁芯にボビンを介し
て巻線を行っており、小型化、軽量化及び低コスト化を
進める上での障害となっている。
As a power transformer material, Mn-Zn ferrite, which has a relatively high saturation magnetic flux density and a small power loss, is mainly used. Mn-Zn-based ferrite has a low DC specific resistance of 10 to 10 3 Ωcm. Therefore, in order to eliminate problems such as a short circuit, windings are usually wound around these magnetic cores via a bobbin, which is an obstacle to further miniaturization, weight reduction and cost reduction.

【0004】一方、Ni−Zn系フェライトは、一般
に、直流比抵抗が10〜1010Ωcmと高く、巻線
をする際にボビンを必要としないが、電力損失がMn−
Zn系フェライトに比べて著しく高い。その結果、Ni
−Zn系フェライトを用いると発熱が多く、周辺の回路
部品の寿命を短くするなどの不具合が発生する可能性が
あり、信頼性が低い。また、電力効率を低下させるため
電気製品の省エネルギー化の障害となりうる。
On the other hand, Ni--Zn type ferrite generally has a high DC specific resistance of 10 8 to 10 10 Ωcm and does not require a bobbin for winding, but has a power loss of Mn-.
Remarkably higher than Zn-based ferrite. As a result, Ni
When a Zn-based ferrite is used, a large amount of heat is generated, and there is a possibility that problems such as shortening the life of peripheral circuit parts may occur, and the reliability is low. In addition, it lowers power efficiency, which may be an obstacle to energy saving of electric products.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の課題
を解決し、比抵抗が高く、損失が小さい酸化物磁性材料
を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and provide an oxide magnetic material having a high specific resistance and a low loss.

【0006】[0006]

【課題を解決するための手段】Fe、NiO、Z
nO、CuOを主成分とするNi−Zn−Cu系フェラ
イトは、一般的に大気中(酸素分圧=約20%)で焼成
される。種々の検討を行った結果、本発明者は、Fe
、NiO、ZnO、CuOを主成分とするNi−Z
n−Cu系フェライトの焼成工程において、昇温部及び
温度保持部の雰囲気の酸素分圧が10%以下であり、か
つ冷却部の酸素分圧が10%以上とすることにより、焼
結体の切断面内の粒内ポア数が8000個/mm以下
である低損失酸化物磁性材料が得られ、上記の問題点を
解決できることを見出した。
Means for Solving the Problems Fe 2 O 3 , NiO, Z
The Ni-Zn-Cu-based ferrite containing nO and CuO as the main components is generally fired in the air (oxygen partial pressure = about 20%). As a result of various studies, the present inventors have found that Fe 2
O 3, NiO, ZnO, Ni -Z mainly composed of CuO
In the firing process of the n-Cu ferrite, the oxygen partial pressure of the atmosphere of the temperature raising part and the temperature holding part is 10% or less, and the oxygen partial pressure of the cooling part is 10% or more. It has been found that a low loss oxide magnetic material having an intragranular pore number in the cut surface of 8000 / mm 2 or less can be obtained, and the above problems can be solved.

【0007】即ち、本発明は、Fe、NiO、Z
nO、CuOを主成分とする低損失酸化物磁性材料の製
造方法において、焼成工程における昇温部及び温度保持
部の雰囲気の酸素分圧が10%以下であり、かつ冷却部
の酸素分圧が10%以上であることを特徴とする低損失
酸化物磁性材料の製造方法である。
That is, according to the present invention, Fe 2 O 3 , NiO, Z
In the method for producing a low-loss oxide magnetic material containing nO or CuO as a main component, the oxygen partial pressure of the atmosphere of the temperature raising portion and the temperature holding portion in the firing step is 10% or less, and the oxygen partial pressure of the cooling portion is It is a method for producing a low-loss oxide magnetic material, which is 10% or more.

【0008】また、本発明は、焼結体の切断面内の粒内
ポア数が8000個/mm以下であることを特徴とす
る上記の低損失酸化物磁性材料である。
Further, the present invention is the above-mentioned low-loss oxide magnetic material, characterized in that the number of pores in the grains in the cut surface of the sintered body is 8000 / mm 2 or less.

【0009】また、本発明は、飽和磁束密度が450m
T以上であり、かつ50kHz、150mT、80℃に
おける損失が270kW/m以下であることを特徴と
する上記の低損失酸化物磁性材料である。
Further, according to the present invention, the saturation magnetic flux density is 450 m.
The above low-loss oxide magnetic material is characterized in that it is T or more and the loss at 50 kHz, 150 mT and 80 ° C. is 270 kW / m 3 or less.

【0010】フェライトの磁気損失(Pcv)は、ヒス
テリシス損失、渦電流損失及び残留損失からなる。Ni
−Zn系フェライトは、一般に、直流比抵抗が10
10 10Ωcmと高く、渦電流損失は無視できるほど小
さい。ヒステリシス損失は、主に結晶組織と結晶磁気異
方性エネルギー(K)に依存し磁壁移動に起因する損
失である。結晶粒内に存在する気孔(粒内ポア)は磁壁
移動の障害となり、ヒステリシス損失を劣化させると考
えられる。
The magnetic loss (Pcv) of ferrite is
It consists of a loss of teresis, an eddy current loss and a residual loss. Ni
In general, a Zn-based ferrite has a DC specific resistance of 108~
10 10Ωcm is high, and eddy current loss is negligible.
Sai. Hysteresis loss is mainly due to the difference between crystal structure and crystal magnetic
Directional energy (K1) And the loss due to domain wall motion
It is a loss. The pores (intragranular pores) existing in the crystal grains are domain walls.
It is considered to hinder the movement and deteriorate the hysteresis loss.
available.

【0011】本発明において、Fe、NiO、Z
nO、CuOを主成分とするNi−Zn−Cu系フェラ
イト焼成工程において、昇温部及び温度保持部の雰囲気
の酸素分圧を10%以下、かつ冷却部の酸素分圧を10
%以上とすることによって、粒内ポア数が従来材よりも
少ない結晶組織を有する低損失酸化物磁性材料が得られ
る。昇温部及び温度保持部の雰囲気の酸素分圧を10%
以下としたのは、それを超えた酸素分圧では粒内ポア数
及び損失が従来品と大差ないためである。冷却部の酸素
分圧を10%以上としたのは、10%未満であると比抵
抗が著しく低下するためである。
In the present invention, Fe 2 O 3 , NiO, Z
In the Ni—Zn—Cu-based ferrite firing process containing nO and CuO as the main components, the oxygen partial pressure in the atmosphere of the temperature raising portion and the temperature holding portion is 10% or less, and the oxygen partial pressure in the cooling portion is 10% or less.
% Or more, a low-loss oxide magnetic material having a crystal structure in which the number of intragranular pores is smaller than that of conventional materials can be obtained. Oxygen partial pressure of the atmosphere of the temperature rising part and the temperature holding part is 10%
The reason for this is that the oxygen partial pressure exceeding that value does not make much difference in the number of intragranular pores and loss with the conventional product. The oxygen partial pressure in the cooling part is set to 10% or more because the specific resistance is significantly reduced when the oxygen partial pressure is less than 10%.

【0012】本発明において、損失が低下した原因は明
らかではないが、粒内ポア数が減少したことが原因であ
る可能性がある。本発明ではFe、NiO、Zn
O、CuOを主成分としたが、Fe、NiO、Z
nOを主成分とするNi−Zn系フェライトにおいても
同様の効果が得られる。
In the present invention, the cause of the decrease in loss is not clear, but it may be caused by the decrease in the number of pores in the grain. In the present invention, Fe 2 O 3 , NiO, Zn
O, CuO was the main component, but Fe 2 O 3 , NiO, Z
The same effect can be obtained with a Ni-Zn ferrite containing nO as a main component.

【0013】[0013]

【発明の実施の形態】以下に、本発明の実施の形態を説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0014】主成分組成として49mo1%のFe
、19mo1%のNiO、25mo1%のZnO、b
alCuOを所定の量秤量し、アトライターを用いて2
時間混合した。混合の後、スプレードライアーで造粒し
た。造粒した粉末をロータリーキルンで仮焼した。得ら
れた粉末をアトライターを用いて解砕した。解砕後、ス
プレードライアーにて造粒し、トロイダル形状にプレス
し、900〜1050℃で焼成した。
Fe 2 O containing 49 mol 1% as a main component composition
3 , 19mo1% NiO, 25mo1% ZnO, b
Weigh a predetermined amount of alCuO and use an attritor to
Mixed for hours. After mixing, it was granulated with a spray dryer. The granulated powder was calcined in a rotary kiln. The obtained powder was crushed using an attritor. After crushing, it was granulated with a spray dryer, pressed into a toroidal shape, and fired at 900 to 1050 ° C.

【0015】表1に、焼成保持温度が900、950、
1000、1050℃、冷却部の酸素分圧が20%の場
合に昇温部及び保持部の酸素分圧を0.01〜15%ま
で変化させた時の平均結晶粒径、焼結体の切断面の単位
面積あたりの粒内ポア数、50kHz、150mT、8
0℃の損失(Pcv)、比抵抗及び飽和磁束密度(B
s)を示す。
In Table 1, the firing holding temperatures are 900, 950,
1000, 1050 ° C., average crystal grain size when the oxygen partial pressure of the temperature rising part and the holding part was changed to 0.01 to 15% when the oxygen partial pressure of the cooling part was 20%, cutting of the sintered body Number of pores in the grain per unit area of the surface, 50 kHz, 150 mT, 8
Loss at 0 ° C (Pcv), resistivity and saturation magnetic flux density (B
s) is shown.

【0016】[0016]

【表1】 [Table 1]

【0017】表1より、本発明品は、従来品と比べ、焼
結体の切断面の単位面積あたりの粒内ポア数が少なく、
損失が低く、比抵抗と飽和磁束密度(Bs)の変化も実
用上は無視できるレベルであることがわかる。また、本
発明品の切断面内に存在する粒内ポア数は、8000個
/mm以下であることがわかる。900℃焼成では損
失が高いがその原因は結晶粒成長が充分ではないためと
考えられる。1050℃焼成では損失が高いがその原因
は異常組成長が起こったためと考えられる。
From Table 1, the product of the present invention has a smaller number of pores in the grain per unit area of the cut surface of the sintered body than the conventional product,
It can be seen that the loss is low, and the changes in the specific resistance and the saturation magnetic flux density (Bs) are practically negligible. Further, it can be seen that the number of intragranular pores present in the cut surface of the product of the present invention is 8000 / mm 2 or less. Although the loss is high at 900 ° C firing, it is considered that the cause is that the crystal grain growth is not sufficient. Although the loss is high at 1050 ° C. firing, it is considered that the cause is an abnormal composition length.

【0018】表2に、保持温度が1000℃の場合に冷
却部の酸素分圧を変化させた場合の平均結晶粒径、焼結
体の切断面の単位面積あたりの粒内ポア数、50kH
z、150mT、80℃の損失(Pcv)、比抵抗及び
飽和磁束密度(Bs)を示す。
In Table 2, the average crystal grain size when the oxygen partial pressure in the cooling part is changed when the holding temperature is 1000 ° C., the number of intragranular pores per unit area of the cut surface of the sintered body, 50 kH
z, 150 mT, loss at 80 ° C. (Pcv), specific resistance and saturation magnetic flux density (Bs) are shown.

【0019】[0019]

【表2】 [Table 2]

【0020】表2より、本発明品は、従来品と比べ、焼
結体の切離面の単位面積あたりの粒内ポア数が少なく、
損失が低く、比抵抗と飽和磁束密度(Bs)の変化も実
用上は無視できるレベルであることがわかる。また、本
発明品の切断面内に存在する粒内ポア数は、8000個
/mm以下であることがわかる。酸素分圧が10%よ
り低い場合に比抵抗が低いのは、Fe2+が多く残存し
て電気伝導に寄与しているためと考えられる。
From Table 2, the product of the present invention has a smaller number of pores in the grain per unit area of the cut surface of the sintered body than the conventional product,
It can be seen that the loss is low, and the changes in the specific resistance and the saturation magnetic flux density (Bs) are practically negligible. Further, it can be seen that the number of intragranular pores present in the cut surface of the product of the present invention is 8000 / mm 2 or less. The reason why the specific resistance is low when the oxygen partial pressure is lower than 10% is considered to be that a large amount of Fe 2+ remains and contributes to electric conduction.

【0021】図1に、従来品と発明品7の50kHz、
150mTの損失の温度特性を示す。図1より、本発明
品は、従来品と比べ実用的な温度範囲内で損失が低いこ
とがわかる。
FIG. 1 shows 50 kHz of the conventional product and the invention product 7,
The temperature characteristic of a loss of 150 mT is shown. It can be seen from FIG. 1 that the product of the present invention has a lower loss in a practical temperature range than the conventional product.

【0022】よって、本発明品は、従来のMn−Zn系
フェライトと比較し、比抵抗が著しく高いため、巻線の
直巻きが可能でありボビン等の巻線用部品が不要であり
コストの低減が図れる。また、比抵抗が高いことより磁
性体との一体焼成が可能であり、限りない小型化が可能
である。また、従来のNi−Znフェライトと比較し低
損失である。
Therefore, since the product of the present invention has a remarkably high specific resistance as compared with the conventional Mn-Zn type ferrite, it is possible to directly wind the winding, and the bobbin and other winding parts are not required, and the cost is reduced. It can be reduced. In addition, since it has a high specific resistance, it can be integrally fired with a magnetic material, and can be infinitely downsized. Further, it has a low loss as compared with the conventional Ni-Zn ferrite.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
比抵抗が高く、損失が小さい酸化物磁性材料を提供する
ことができた。
As described above, according to the present invention,
It was possible to provide an oxide magnetic material having high specific resistance and low loss.

【図面の簡単な説明】[Brief description of drawings]

【図1】発明品7と従来品の50kHz、150mTの
損失の温度特性を示す。
FIG. 1 shows temperature characteristics of the invention product 7 and a conventional product with loss of 50 kHz and 150 mT.

【符号の説明】[Explanation of symbols]

A 発明品7 B 従来品 A invention 7 B Conventional product

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Fe、NiO、ZnO、CuOを
主成分とする低損失酸化物磁性材料の製造方法におい
て、焼成工程における昇温部及び温度保持部の雰囲気の
酸素分圧が10%以下であり、かつ冷却部の酸素分圧が
10%以上であることを特徴とする低損失酸化物磁性材
料の製造方法。
1. A method for producing a low-loss oxide magnetic material containing Fe 2 O 3 , NiO, ZnO, and CuO as a main component, wherein the oxygen partial pressure in the atmosphere of the temperature raising portion and the temperature holding portion in the firing step is 10%. The method for producing a low-loss oxide magnetic material is the following, and the oxygen partial pressure in the cooling part is 10% or more.
【請求項2】 焼結体の切断面内の粒内ポア数が800
0個/mm以下であることを特徴とする請求項1記載
の低損失酸化物磁性材料。
2. The number of intragranular pores in the cut surface of the sintered body is 800.
The low loss oxide magnetic material according to claim 1, wherein the number is 0 / mm 2 or less.
【請求項3】 飽和磁束密度が450mT以上であり、
かつ50kHz、150mT、80℃における損失が2
70kW/m以下であることを特徴とする請求項1ま
たは2記載の低損失酸化物磁性材料。
3. The saturation magnetic flux density is 450 mT or more,
And the loss at 50kHz, 150mT, 80 ℃ is 2
The low loss oxide magnetic material according to claim 1 or 2, wherein the magnetic loss is 70 kW / m 3 or less.
JP2001302732A 2001-09-28 2001-09-28 Low loss oxide magnetic material and its manufacturing method Pending JP2003109813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001302732A JP2003109813A (en) 2001-09-28 2001-09-28 Low loss oxide magnetic material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001302732A JP2003109813A (en) 2001-09-28 2001-09-28 Low loss oxide magnetic material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003109813A true JP2003109813A (en) 2003-04-11

Family

ID=19122925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001302732A Pending JP2003109813A (en) 2001-09-28 2001-09-28 Low loss oxide magnetic material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003109813A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5717056B2 (en) * 2010-02-19 2015-05-13 株式会社村田製作所 Ferrite porcelain manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5717056B2 (en) * 2010-02-19 2015-05-13 株式会社村田製作所 Ferrite porcelain manufacturing method

Similar Documents

Publication Publication Date Title
JP2005132715A (en) Ni-Cu-Zn SYSTEM FERRITE MATERIAL AND ITS MANUFACTURING METHOD
JP2007204349A (en) Manufacturing method of low-loss oxide magnetic material
JPH06310320A (en) Oxide magnetic substance material
JPH113813A (en) Ferrite material
JP5137275B2 (en) High saturation magnetic flux density ferrite material and ferrite core using the same
JP2004247370A (en) MnZn FERRITE
JP2000299215A (en) Low loss oxide magnetic material
JP2001044016A (en) Ferrite material of high saturation-magnetic-flux density, and ferrite core using the material
JP2003109813A (en) Low loss oxide magnetic material and its manufacturing method
JPH08148322A (en) Oxide magnetic material and switching power supply employing the same
JP2002246221A (en) Low loss oxide magnetic material
JP2001006916A (en) Low loss oxide magnetic material
JPH04361501A (en) Low loss oxide magnetic material for magnetic element used for high frequency power source
JP2007031210A (en) Mn-Zn FERRITE
JPH10270229A (en) Mn-ni ferrite material
JPH0661033A (en) Low-loss oxide magnetic material
JP2001076923A (en) Low-loss oxide magnetic material
JP2002343621A (en) Low-loss oxide magnetic material and manufacturing method therefor
JP3654303B2 (en) Low loss magnetic material
JPH10270231A (en) Mn-ni ferrite material
JP2005187247A (en) Manufacturing method of low-loss oxide magnetic material
JP4799808B2 (en) Ferrite composition, magnetic core and electronic component
JP2000335961A (en) Oxide magnetic material and its production
JP2003257724A (en) Mn-Zn-BASED FERRITE
JP2002321971A (en) Ni-BASED FERRITE