JP5717056B2 - Ferrite porcelain manufacturing method - Google Patents

Ferrite porcelain manufacturing method Download PDF

Info

Publication number
JP5717056B2
JP5717056B2 JP2012500655A JP2012500655A JP5717056B2 JP 5717056 B2 JP5717056 B2 JP 5717056B2 JP 2012500655 A JP2012500655 A JP 2012500655A JP 2012500655 A JP2012500655 A JP 2012500655A JP 5717056 B2 JP5717056 B2 JP 5717056B2
Authority
JP
Japan
Prior art keywords
ferrite
mol
cuo
firing
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012500655A
Other languages
Japanese (ja)
Other versions
JPWO2011102452A1 (en
Inventor
山本 篤史
篤史 山本
中村 彰宏
彰宏 中村
大樹 小和田
大樹 小和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2012500655A priority Critical patent/JP5717056B2/en
Publication of JPWO2011102452A1 publication Critical patent/JPWO2011102452A1/en
Application granted granted Critical
Publication of JP5717056B2 publication Critical patent/JP5717056B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明はフェライト磁器の製造方法に関し、より詳しくは、少なくともNiO及びFeを含有したフェライト磁器の製造方法に関する。 The present invention relates to the production how ferrite porcelain, and more particularly to a method of manufacturing a ferrite ceramic containing at least NiO and Fe 2 O 3.

従来より、Ni−Cu−Zn系フェライト磁器は、単板コイル部品のコア部材(磁心)、積層インダクタ、複合積層部品等に広く使用されており、フェライト材料の開発も盛んに行なわれている。   Conventionally, Ni—Cu—Zn-based ferrite porcelain has been widely used for core members (magnetic cores) of single-plate coil parts, laminated inductors, composite laminated parts, and the like, and ferrite materials have been actively developed.

例えば、特許文献1には、Feが47.5mol%〜50.5mol%、NiOが18.0mol%〜34.0mol%、ZnOが12.0mol%〜28.0mol%、CuOが1.5mol%〜10.0mol%の組成を有し、焼結体グレインの平均円相当径が1μm〜5μmのノイズフィルタ用フェライトコアが提案されている。For example, Patent Document 1 discloses that Fe 2 O 3 is 47.5 mol% to 50.5 mol%, NiO is 18.0 mol% to 34.0 mol%, ZnO is 12.0 mol% to 28.0 mol%, and CuO is 1 A ferrite core for a noise filter having a composition of 0.5 mol% to 10.0 mol% and an average equivalent circle diameter of sintered grains of 1 μm to 5 μm has been proposed.

この特許文献1では、大気雰囲気で焼成することにより、比抵抗ρが10Ω・cm以上であり、かつ、室温の飽和磁化が440mT以上のフェライトコアを得ている。そして、特許文献1では、飽和磁化を向上させるためには、CuOの含有量を少なくするのが効果的であることが記載されている。In Patent Document 1, by firing in an air atmosphere, a ferrite core having a specific resistance ρ of 10 6 Ω · cm or more and a room temperature saturation magnetization of 440 mT or more is obtained. Patent Document 1 describes that it is effective to reduce the content of CuO in order to improve saturation magnetization.

すなわち、フェライト磁器をコア部材に使用したコイル部品では、大電流が通電された場合であっても安定したインダクタンスLが得られることが重要であり、そのためには、コイルに大きな直流電流を通電してもインダクタンスLの低下が抑制されるような直流重畳特性を有することが必要となる。そして、直流重畳特性が高磁界まで保てるような良好な直流重畳特性を得るためには、飽和磁化(飽和磁束密度Bs)を向上させる必要がある。   That is, in a coil component using a ferrite porcelain as a core member, it is important to obtain a stable inductance L even when a large current is applied. To that end, a large direct current is applied to the coil. However, it is necessary to have a DC superposition characteristic that suppresses a decrease in inductance L. In order to obtain good DC superposition characteristics that can maintain the DC superposition characteristics up to a high magnetic field, it is necessary to improve the saturation magnetization (saturation magnetic flux density Bs).

そして、特許文献1では、440mT以上の飽和磁化の高いフェライト材料を使用することにより、コイルに大電流を流したときでもインダクタンスが低下するのを抑制することができ、これにより大電流用途に適したフェライト磁器の実現を可能にしている。   And in patent document 1, by using a ferrite material with high saturation magnetization of 440 mT or more, it can suppress that an inductance falls even when a large current is sent through a coil, and this is suitable for a high current use. Ferrite porcelain can be realized.

また、特許文献2には、フェライト母体の原料組成が、Ni−Zn系フェライト100重量部に対し、PbO成分を0.3重量部以上5.0重量部以下の割合で添加した銅導体一体焼成型フェライト素子が提案されている。   Also, in Patent Document 2, the raw material composition of the ferrite base is a copper conductor integrated firing in which a PbO component is added in a proportion of 0.3 parts by weight or more and 5.0 parts by weight or less with respect to 100 parts by weight of Ni—Zn ferrite. Type ferrite elements have been proposed.

さらに、この特許文献2には、フェライト母体の原料組成が、Ni−Zn系フェライト100重量部に対し、PbO成分を0.3重量部以上5.0重量部以下、B成分を0.03重量部以上1.5重量部以下、SiO成分を0.03重量部以上1.5重量部以下の割合で添加した銅導体一体焼成型フェライト素子が提案されている。Further, in Patent Document 2, the raw material composition of the ferrite base is such that the PbO component is 0.3 to 5.0 parts by weight and the B 2 O 3 component is 0 with respect to 100 parts by weight of the Ni—Zn ferrite. A copper conductor-integrated sintered ferrite element to which 0.03 to 1.5 parts by weight and a SiO 2 component are added in a proportion of 0.03 to 1.5 parts by weight has been proposed.

この特許文献2では、フェライト材料にPbO、又はPbO、B、SiOの低融点のガラス成分を添加することにより、窒素雰囲気下、950〜1030℃の低温での焼成を可能としている。In Patent Document 2, by adding a low melting point glass component of PbO, PbO, B 2 O 3 , or SiO 2 to the ferrite material, firing at a low temperature of 950 to 1030 ° C. is possible in a nitrogen atmosphere. .

特開2002−343620号公報(請求項6、請求項4、表2)JP 2002-343620 A (Claim 6, Claim 4, Table 2) 特公平7−97525号公報(請求項1、請求項2、第(3)頁第5欄第7行目〜同頁同欄第8行目)Japanese Examined Patent Publication No. 7-97525 (Claim 1, Claim 2, (3), page 5, column 5 line 7 to page 8)

しかしながら、特許文献1では、CuOの含有量を減少させることにより、飽和磁化を向上させているものの、融点が1026℃と低いCuOの含有量を減少させてゆくと、焼成温度を例えば1050〜1250℃程度に上げざるを得ず、省エネルギーや低コスト化の観点から問題があった。   However, in Patent Document 1, although the saturation magnetization is improved by reducing the content of CuO, the firing temperature is set to, for example, 1050 to 1250 when the content of CuO having a melting point as low as 1026 ° C. is decreased. There was a problem from the viewpoint of energy saving and cost reduction because it had to be raised to about ℃.

また、特許文献2では、ガラス成分であるPbO、B、SiOを添加しているため、焼成処理中にこれらのガラス成分が異常粒成長を引き起こして透磁率の低下等を招き、このため所望の良好な磁気特性を得られないという問題があった。Further, in Patent Document 2, since glass components PbO, B 2 O 3 , and SiO 2 are added, these glass components cause abnormal grain growth during the firing process, resulting in a decrease in magnetic permeability, etc. Therefore, there has been a problem that desired good magnetic properties cannot be obtained.

しかも、この特許文献2では、フェライト中にPbOが含有されるため、環境負荷の面でも問題があった。   Moreover, in Patent Document 2, since PbO is contained in the ferrite, there is a problem in terms of environmental load.

本発明はこのような事情に鑑みなされたものであって、ガラス成分を添加しなくても、1000℃以下の低温焼成で焼結性や絶縁性が良好で、かつ直流重畳特性の良好なフェライト磁器の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is a ferrite having good sinterability and insulating property by low-temperature firing at 1000 ° C. or less and good DC superposition characteristics without adding a glass component. and its object is to provide a manufacturing how of porcelain.

本発明者らは、上記目的を達成するためにNi系フェライト材料を使用して鋭意研究を行ったところ、フェライト粉末中のCuOの含有量を0.5〜1.75mol%、ZnOの含有量を10〜28mol%とし、酸素濃度を0.001〜0.1体積%に雰囲気調整して焼成したところ、ガラス成分を添加しなくとも、1000℃以下の低温焼成で焼結性や絶縁性が良好で、かつ480mT以上の飽和磁束密度を有する直流重畳特性の良好なフェライト磁器を得ることができるという知見を得た。 In order to achieve the above object, the present inventors have conducted extensive research using a Ni-based ferrite material. The content of CuO in the ferrite powder is 0.5 to 1.75 mol%, and the content of ZnO. When the atmosphere was adjusted to an oxygen concentration of 0.001 to 0.1% by volume and baked without adding a glass component, sinterability and insulation were achieved at a low temperature firing of 1000 ° C. or lower. It was found that a ferrite ceramic having good DC superposition characteristics having a good saturation and a saturation magnetic flux density of 480 mT or more can be obtained.

本発明はこのような知見に基づきなされたものであって、本発明に係るフェライト磁器の製造方法は、少なくともFe及びNiOを含有したフェライト磁器の製造方法であって、ガラス成分を添加せず、前記Fe及び前記NiOに加え、CuOを0.5〜1.75mol%、ZnOを10〜28mol%の範囲で混合してフェライト粉末を作製し、該フェライト粉末を成形処理した後、酸素濃度が0.001〜0.1体積%の雰囲気で1000℃以下の焼成温度で焼成し、飽和磁束密度が480mT以上であり、かつ比抵抗が1.0×10 Ω・cm以上のフェライト磁器を製造することを特徴としている。 The present invention has been made on the basis of such knowledge, and the method for producing a ferrite porcelain according to the present invention is a method for producing a ferrite porcelain containing at least Fe 2 O 3 and NiO, wherein a glass component is added. Without adding Fe 2 O 3 and NiO, a ferrite powder was prepared by mixing CuO in a range of 0.5 to 1.75 mol% and ZnO in a range of 10 to 28 mol%, and the ferrite powder was molded. Thereafter, firing is performed at a firing temperature of 1000 ° C. or less in an atmosphere having an oxygen concentration of 0.001 to 0.1% by volume, a saturation magnetic flux density is 480 mT or more , and a specific resistance is 1.0 × 10 7 Ω · cm or more. It is characterized by the production of ferrite porcelain.

また、本発明者らの更なる鋭意研究の結果、フェライト粉末100重量部に対し1.3重量部以下の範囲でSnOを添加することにより、直流重畳特性の更なる向上を図ることができることが分かった。 Further, as a result of further diligent research by the present inventors, it is possible to further improve the DC superposition characteristics by adding SnO 2 in a range of 1.3 parts by weight or less with respect to 100 parts by weight of the ferrite powder. I understood.

すなわち、本発明のフェライト磁器の製造方法は、前記フェライト粉末100重量部に対し1.3重量部以下の範囲でSnOを添加するのが好ましい。 That is, in the method for producing a ferrite porcelain of the present invention, it is preferable to add SnO 2 in a range of 1.3 parts by weight or less with respect to 100 parts by weight of the ferrite powder.

また、本発明のフェライト磁器の製造方法は、前記Feの含有量が、44〜49.8mol%であるのが好ましい。In the method for manufacturing a ferrite porcelain of the present invention, the content of Fe 2 O 3 is preferably 44 to 49.8 mol%.

上記フェライト磁器の製造方法によれば、ガラス成分を添加せず、Fe及びNiOに加え、CuOを0.5〜1.75moll%、ZnOを10〜28mol%の範囲で混合してフェライト粉末を作製し、該フェライト粉末を成形処理した後、酸素濃度が0.001〜0.1体積%の雰囲気で1000℃以下の焼成温度で焼成し、飽和磁束密度が480mT以上であり、かつ比抵抗が1.0×10 Ω・cm以上のフェライト磁器を製造するので、フェライト組成中にガラス成分を含んでいなくても良好な焼結性を得ることができ、1000℃以下の低温で焼成しても良好な絶縁性を確保しつつ、飽和磁束密度Bsの高い直流重畳特性の良好なフェライト磁器を製造することができる。 According to the above method for producing a ferrite porcelain, a glass component is not added, but in addition to Fe 2 O 3 and NiO, CuO is mixed in a range of 0.5 to 1.75 mol% and ZnO is mixed in a range of 10 to 28 mol%. powder was prepared, after forming process the ferrite powder, the oxygen concentration is fired at a firing temperature of 1000 ° C. or less in an atmosphere of 0.001 to 0.1 vol%, the saturation magnetic flux density of not less than 480 mT, and the ratio Since a ferrite porcelain having a resistance of 1.0 × 10 7 Ω · cm or more is manufactured, good sinterability can be obtained even if the ferrite composition does not contain a glass component, and at a low temperature of 1000 ° C. or less. It is possible to manufacture a ferrite porcelain having a high saturation magnetic flux density Bs and a good direct current superposition characteristic while ensuring good insulation even when fired.

また、フェライト粉末中にガラス成分を含まないので、焼成中に異常粒成長を引き起こすこともなく、したがって透磁率の低下を招くこともなく、良好な磁気特性を確保することができる。しかも、ガラス成分としてのPb系成分を含んでいないので、環境汚染を招くこともない。   In addition, since no glass component is contained in the ferrite powder, it is possible to ensure good magnetic properties without causing abnormal grain growth during firing and hence without causing a decrease in magnetic permeability. And since it does not contain the Pb system component as a glass component, it does not cause environmental pollution.

さらに、前記フェライト粉末100重量部に対し1.3重量部以下の範囲でSnOを添加することにより、飽和磁束密度がより一層向上し、これにより直流重畳特性が更に向上した所望のフェライト磁器を製造することができる。 Further, by adding SnO 2 in a range of 1.3 parts by weight or less with respect to 100 parts by weight of the ferrite powder, the saturation magnetic flux density is further improved, and thereby a desired ferrite porcelain having further improved direct current superposition characteristics is obtained. Can be manufactured.

本発明のフェライト磁器の製造方法を使用して製造されたコイル部品の一実施の形態を示す断面図である。It is sectional drawing which shows one Embodiment of the coil components manufactured using the manufacturing method of the ferrite porcelain of this invention. 大気雰囲気で焼成した場合のCuOの含有量と焼結密度との関係を示す図である。It is a figure which shows the relationship between content of CuO at the time of baking in air | atmosphere atmosphere, and a sintered density. 大気雰囲気で焼成した場合のCuOの含有量と比抵抗との関係を示す図である。It is a figure which shows the relationship between content of CuO at the time of baking in an atmospheric condition, and specific resistance. 酸素濃度0.1体積%の雰囲気で焼成した場合のCuOの含有量と焼結密度との関係を示す図である。It is a figure which shows the relationship between content of CuO at the time of baking in the atmosphere of oxygen concentration 0.1 volume%, and a sintering density. 図4の要部拡大図である。It is a principal part enlarged view of FIG. 酸素濃度0.1体積%の雰囲気で焼成した場合のCuOの含有量と比抵抗との関係を示す図である。It is a figure which shows the relationship between content of CuO at the time of baking in the atmosphere of oxygen concentration 0.1 volume%, and a specific resistance. CuOの含有量と飽和磁束密度との関係を示す図である。It is a figure which shows the relationship between content of CuO, and a saturation magnetic flux density. CuOの含有量と飽和磁束密度の増加率との関係を示す図である。It is a figure which shows the relationship between content of CuO, and the increase rate of saturation magnetic flux density.

次に、本発明の実施の形態を詳説する。   Next, an embodiment of the present invention will be described in detail.

本発明の一実施の形態としてのフェライト磁器は、Fe、NiO、ZnO、及びCuOを含有したNi−Zn−Cu系フェライト材料で形成されている。The ferrite porcelain as one embodiment of the present invention is formed of a Ni—Zn—Cu based ferrite material containing Fe 2 O 3 , NiO, ZnO, and CuO.

そして、本実施の形態では、フェライト組成中のCuOの含有量が、0.5〜1.75mol%となるように配合されている。 And in this Embodiment, it mix | blends so that content of CuO in a ferrite composition may be 0.5-1.75 mol% .

ここで、上述のようにフェライト組成中のCuOの含有量を、0.5〜1.75mol%としたのは以下の理由による。 Here, the reason why the content of CuO in the ferrite composition is set to 0.5 to 1.75 mol% as described above is as follows.

フェライト磁器をコア材料に使用したコイル部品では、直流重畳特性が高磁界まで保てるような良好な直流重畳特性を有することが要請される。そのためにはフェライト磁器が高い飽和磁束密度Bsを有する必要がある。そして、特許文献1にも記載されているように飽和磁束密度Bsを高くするためには、CuOの含有量を低くすることが効果的である。   A coil component using a ferrite porcelain as a core material is required to have good DC superposition characteristics such that the DC superposition characteristics can be maintained up to a high magnetic field. For this purpose, the ferrite porcelain needs to have a high saturation magnetic flux density Bs. As described in Patent Document 1, in order to increase the saturation magnetic flux density Bs, it is effective to reduce the CuO content.

しかしながら、CuOの含有量が1.75mol%を超えると、十分に高い飽和磁束密度Bsを得ることができなくなる。一方、CuOの含有量が0.5mol%未満になると、950℃の低温で焼成すると、焼結密度が5.10g/cm 以下に低下し、焼結性の低下を招くおそれがある。 However, when the CuO content exceeds 1.75 mol%, a sufficiently high saturation magnetic flux density Bs cannot be obtained. On the other hand, when the CuO content is less than 0.5 mol%, if sintered at a low temperature of 950 ° C., the sintered density is reduced to 5.10 g / cm 3 or less, which may cause a decrease in sinterability.

そこで、本実施の形態では、CuOの含有量が0.5〜1.75mol%となるように組成成分を配合している。 Therefore, in the present embodiment, the composition components are blended so that the CuO content is 0.5 to 1.75 mol% .

さらに、本実施の形態では、フェライト組成中のZnOの含有量が、10〜28mol%となるように配合されている。ZnOの含有量が、10mol%未満になると、透磁率の低下を招くおそれがあり、一方28mol%を超えると飽和磁束密度Bsの低下を招くおそれがある。Furthermore, in this Embodiment, it mix | blends so that content of ZnO in a ferrite composition may be 10-28 mol%. If the ZnO content is less than 10 mol%, the magnetic permeability may be reduced, while if it exceeds 28 mol%, the saturation magnetic flux density Bs may be reduced.

また、フェライト組成中のFe 、及びNiOの含有量は、特に限定されるものではないが、所望特性を得る観点からは、Fe :44〜49.8mol%、NiO:残部となるように配合するのが好ましい。Feの含有量が、44mol%未満になると、透磁率の低下を招くおそれがあり、一方49.8mol%を超えると焼結性の低下を招くおそれがある。 Further, the contents of Fe 2 O 3 and NiO in the ferrite composition are not particularly limited, but from the viewpoint of obtaining desired characteristics, Fe 2 O 3 : 44 to 49.8 mol%, NiO: the balance It is preferable to blend so that. When the content of Fe 2 O 3 is less than 44 mol%, the magnetic permeability may be decreased, and when it exceeds 49.8 mol%, the sinterability may be decreased.

さらに、本発明は、上記フェライト粉末にSnOを添加するのも好ましく、直流重畳特性がより一層向上したフェライト磁器を得ることが可能となる。この場合、所望の特性向上を得るためには、SnOは、フェライト粉末100重量部に対し少なくとも0.3重量部以上添加する必要がある。ただし、フェライト粉末100重量部に対し1.3重量部を超えると、透磁率の大幅な低下を招く。このためSnOを添加する場合は、フェライト粉末100重量部に対し0・3〜1.3重量部が好ましい。Furthermore, in the present invention, it is also preferable to add SnO 2 to the ferrite powder, and it becomes possible to obtain a ferrite porcelain with further improved direct current superposition characteristics. In this case, in order to obtain a desired property improvement, SnO 2 needs to be added at least 0.3 parts by weight or more with respect to 100 parts by weight of the ferrite powder. However, when the amount exceeds 1.3 parts by weight with respect to 100 parts by weight of the ferrite powder, the magnetic permeability is significantly reduced. Thus when adding SnO 2 is from 0 · 3 to 1.3 parts by weight based on the ferrite powder 100 parts by weight is preferred.

そして、上記フェライト磁器は、酸素濃度が0.1体積%以下の窒素雰囲気中で焼成されており、これにより1000℃以下の低温で焼成しても焼結性や絶縁性が良好で、直流重畳特性の良好なフェライト磁器を得ることができる。   The ferrite porcelain is fired in a nitrogen atmosphere having an oxygen concentration of 0.1% by volume or less, so that it has good sinterability and insulation even when fired at a low temperature of 1000 ° C. or less, and direct current superposition. A ferrite porcelain having good characteristics can be obtained.

次に、上記フェライト磁器の製造方法を詳述する。   Next, the manufacturing method of the ferrite porcelain will be described in detail.

まず、セラミック素原料として、Fe、ZnO、NiO、及びCuOを用意し、例えばFe:44〜49.8mol%、ZnO:10〜28mol%、CuO:0.5〜1.75mol%、NiO:残部となるようにこれらセラミック素原料を秤量し、更に必要に応じSnOを所定量秤量する。 First, as ceramic raw materials, Fe 2 O 3, ZnO, prepared NiO, and CuO, for example, Fe 2 O 3: 44~49.8mol%, ZnO: 10~28mol%, CuO: 0.5~1. 75 mol%, NiO: These ceramic raw materials are weighed so as to be the balance, and a predetermined amount of SnO 2 is weighed if necessary.

次いで、これら秤量物を純水及びPSZ(Partial Stabilized Zirconia ; 部分安定化ジルコニア)ボール等の玉石と共にボールミルに入れ、湿式で十分に混合粉砕し、蒸発乾燥させた後、700〜800℃の温度で所定時間仮焼し、仮焼物を得る。   Next, these weighed materials are put into a ball mill together with pure water and cobblestones such as PSZ (Partial Stabilized Zirconia) balls, sufficiently mixed and pulverized wet, evaporated and dried, and then at a temperature of 700 to 800 ° C. Calcination is performed for a predetermined time to obtain a calcined product.

次いで、この仮焼物を再びボールミル内で十分に湿式粉砕し、ポリビニルアルコール等の有機バインダを適量添加し、加圧プレス等を使用して成形加工し、セラミック成形体を得る。   Next, the calcined product is sufficiently wet pulverized again in a ball mill, an appropriate amount of an organic binder such as polyvinyl alcohol is added, and is molded using a pressure press or the like to obtain a ceramic molded body.

次いで、得られたセラミック成形体を酸素濃度0.1体積%以下に調整されたN−O混合ガス雰囲気下、950〜1000℃の温度で2〜3時間焼成し、これによりフェライト磁器を作製することができる。Next, the obtained ceramic molded body was fired at a temperature of 950 to 1000 ° C. for 2 to 3 hours in an N 2 —O 2 mixed gas atmosphere adjusted to an oxygen concentration of 0.1% by volume or less. Can be produced.

ここで、焼成雰囲気を酸素濃度0.1体積%以下としたのは以下の理由による。   Here, the reason for setting the firing atmosphere to an oxygen concentration of 0.1% by volume or less is as follows.

焼成時の酸素濃度を低くすることで、結晶構造中に酸素欠陥が形成され、結晶中に存在するFe、Ni、Cu、Znの相互拡散が促進され、低温焼結性を高めることができる。   By reducing the oxygen concentration during firing, oxygen defects are formed in the crystal structure, and interdiffusion of Fe, Ni, Cu, and Zn present in the crystal is promoted, and low-temperature sinterability can be enhanced.

しかしながら、焼成雰囲気の酸素濃度が0.1体積%を超えると、結晶構造中の酸素欠陥の形成が不十分となり、低温での焼成が困難になる。   However, if the oxygen concentration in the firing atmosphere exceeds 0.1% by volume, formation of oxygen defects in the crystal structure becomes insufficient, and firing at low temperatures becomes difficult.

そこで、本実施の形態では、焼成雰囲気の酸素濃度を0.1体積%以下に調整している。   Therefore, in the present embodiment, the oxygen concentration in the firing atmosphere is adjusted to 0.1% by volume or less.

そして、このように焼成雰囲気の酸素濃度を0.1体積%以下とすることにより、Cu−CuOの平衡酸素濃度の関係から950〜1000℃の低温で焼成してもCuOがCuに還元されるのを極力回避することができ、したがって比抵抗ρが低下することもなく所望の絶縁性を確保することができる。   And by making the oxygen concentration of the firing atmosphere 0.1 volume% or less in this way, CuO is reduced to Cu even when fired at a low temperature of 950 to 1000 ° C. due to the equilibrium oxygen concentration of Cu—CuO. Can be avoided as much as possible, and therefore the desired insulation can be ensured without lowering the specific resistance ρ.

また、上述したように焼成雰囲気の酸素濃度を0.001〜0.1体積%とし、かつCuOの含有量を0.5〜1.75mol%の範囲に低減することにより、焼結性の向上と相俟って飽和磁束密度Bsを向上させることができ、これにより直流重畳特性を向上させることができる。 Further, as described above, the oxygen concentration in the firing atmosphere is set to 0.001 to 0.1% by volume , and the CuO content is reduced to the range of 0.5 to 1.75 mol%. Combined with the improvement, the saturation magnetic flux density Bs can be improved, and thereby the DC superimposition characteristics can be improved.

ただし、酸素濃度が0.001体積%未満になると、酸素欠陥が必要以上に形成され、その結果フェライト磁器の比抵抗ρの低下を招くおそれがある。したがって酸素濃度は0.001体積%以上が好ましい。   However, when the oxygen concentration is less than 0.001% by volume, oxygen defects are formed more than necessary, and as a result, the specific resistance ρ of the ferrite porcelain may be lowered. Therefore, the oxygen concentration is preferably 0.001% by volume or more.

このように本実施の形態では、ガラス成分を添加せず、Fe 、NiOに加え、CuOを0.5〜1.75mol%、ZnOを10〜28mol%の範囲で混合してフェライト粉末を作製し、該フェライト粉末を成形処理した後、酸素濃度が0.001〜0.1体積%の雰囲気で1000℃以下の焼成温度で焼成し、480mT以上の磁束飽和密度を有するフェライト磁器を製造しているので、フェライト組成中にガラス成分を含まなくても、1000℃以下の低温で焼成することができる良好な焼結性を得ることができ、かつ絶縁性が良好で直流重畳特性の良好なフェライト磁器を得ることができる。 In this manner, in the present embodiment, without adding a glass component, in addition to Fe 2 O 3, N iO, a mixture of CuO 0.5~1.75mol%, the ZnO in the range of 10~28Mol% ferrite After producing the powder and molding the ferrite powder , a ferrite porcelain having a magnetic flux saturation density of 480 mT or more is fired at a firing temperature of 1000 ° C. or less in an atmosphere having an oxygen concentration of 0.001 to 0.1% by volume. Since it is manufactured, even if it does not contain a glass component in the ferrite composition, it can obtain good sinterability that can be fired at a low temperature of 1000 ° C. or less, and has good insulation and direct current superposition characteristics. A good ferrite porcelain can be obtained.

具体的には、焼結密度が5.10g/cm以上の良好な焼結性と、比抵抗ρが10 Ω・cm以上の良好な絶縁性を有し、かつ480mT以上の高い飽和磁束密度Bsを有する直流重畳特性が良好なフェライト磁器を1000℃以下の低温焼成で得ることができる。そしてこれにより、大電流を通電してもインダクタンスLの低下が抑制されたフェライト磁器を省エネルギーかつ低コストで得ることができる。 Specifically, it has good sinterability with a sintered density of 5.10 g / cm 3 or more, good insulation with a specific resistance ρ of 10 7 Ω · cm or more , and high saturation of 480 mT or more. A ferrite porcelain having a magnetic flux density Bs and good DC superposition characteristics can be obtained by low-temperature firing at 1000 ° C. or lower. As a result, a ferrite porcelain in which the decrease in the inductance L is suppressed even when a large current is applied can be obtained at low energy and cost.

しかも、フェライト組成中にガラス成分(PbO、SiO、B等)を含んでいないので、焼成中に異常粒成長を引き起こすこともなく、透磁率の低下を招くのを回避することができ、良好な磁気特性を確保することができる。特に、ガラス成分としてのPb系成分を含んでいないので、環境汚染を招くこともない。Moreover, since the ferrite composition does not contain glass components (PbO, SiO 2 , B 2 O 3, etc.), it does not cause abnormal grain growth during firing, and avoids a decrease in magnetic permeability. And good magnetic properties can be secured. In particular, since it does not contain a Pb-based component as a glass component, it does not cause environmental pollution.

また、フェライト粉末に所定量のSnOを添加することにより、飽和磁束密度Bsの更なる向上を図ることができ、直流重畳特性がより一層向上したフェライト磁器を得ることができる。Further, by adding a predetermined amount of SnO 2 to the ferrite powder, the saturation magnetic flux density Bs can be further improved, and a ferrite porcelain with further improved DC superposition characteristics can be obtained.

図1は上記フェライト磁器を使用して製造されたコイル部品の一実施の形態を示す断面図である。   FIG. 1 is a cross-sectional view showing an embodiment of a coil component manufactured using the ferrite porcelain.

このコイル部品は、外観が円板状に形成されると共に、軸芯部1と該軸芯部1の両端に連接された一対の鍔部2a、2bとからなるコア部材3を備えている。そして、巻線4は前記軸芯部1に巻回され、さらに該巻線4はエポキシ樹脂等の熱硬化樹脂を主成分とする保護部材5で外装されている。また、コア部材3の一方の主面に実装用電極6a、6bが形成されている。そして、前記コア部材3が、上記フェライト磁器で形成されている。   The coil component is formed in a disk shape and includes a core member 3 including a shaft core portion 1 and a pair of flange portions 2 a and 2 b connected to both ends of the shaft core portion 1. And the coil | winding 4 is wound around the said axial center part 1, and this coil | winding 4 is further armored by the protective member 5 which has thermosetting resins, such as an epoxy resin, as a main component. In addition, mounting electrodes 6 a and 6 b are formed on one main surface of the core member 3. The core member 3 is formed of the ferrite porcelain.

このように上記コイル部品は、コア部材3が本発明のフェライト磁器で形成されているので、絶縁性が良好でかつ直流重畳特性が高磁界まで保てるような良好な直流重畳特性を有することができ、したがって大きな直流電流を通電してもインダクタンスLの低下を抑制できる大電流用途に適したコイル部品を得ることができる。   As described above, since the core member 3 is formed of the ferrite porcelain of the present invention, the coil component can have good DC superposition characteristics such that the insulation property is good and the DC superposition characteristics can be maintained up to a high magnetic field. Therefore, it is possible to obtain a coil component suitable for high current use that can suppress a decrease in inductance L even when a large direct current is applied.

尚、本発明は上記実施の形態に限定されるものではない。上記実施の形態では、本発明のフェライト磁器をコア部材に使用した場合について説明したが、積層インダクタや積層LC部品のような積層複合部品の磁性層に使用できるのはいうまでもない。   The present invention is not limited to the above embodiment. In the above embodiment, the case where the ferrite porcelain of the present invention is used for the core member has been described, but it goes without saying that it can be used for a magnetic layer of a multilayer composite component such as a multilayer inductor or a multilayer LC component.

次に、本発明の実施例を具体的に説明する。   Next, examples of the present invention will be specifically described.

〔試料の作製〕
セラミック素原料として、Fe、ZnO、NiO、及びCuOを用意し、表1のような組成となるように、これらセラミック素原料を秤量した。次いで、これら秤量物を純水及びPSZボールと共にボールミルに入れ、湿式で16時間混合粉砕し、蒸発乾燥させた後、750℃の温度で2時間仮焼した。
[Sample preparation]
Fe 2 O 3 , ZnO, NiO, and CuO were prepared as ceramic raw materials, and these ceramic raw materials were weighed so as to have the composition shown in Table 1. Next, these weighed materials were put in a ball mill together with pure water and PSZ balls, mixed and pulverized in a wet manner for 16 hours, evaporated to dryness, and calcined at a temperature of 750 ° C. for 2 hours.

これら仮焼物を再びボールミル内で10時間湿式粉砕し、適量のポリビニルアルコール(有機バインダ)を添加した後、加圧プレスを使用し、外径が20mm、内径が12mm、厚みが1mmのリング状試料を作製した。また同様に加圧プレスを使用し、直径10mm、厚み1mmの円板状試料を作製した。   These calcined materials are wet-ground again in a ball mill for 10 hours, an appropriate amount of polyvinyl alcohol (organic binder) is added, and then a pressure press is used to form a ring-shaped sample having an outer diameter of 20 mm, an inner diameter of 12 mm, and a thickness of 1 mm. Was made. Similarly, a pressure press was used to prepare a disk-shaped sample having a diameter of 10 mm and a thickness of 1 mm.

そして、得られた各試料を大気雰囲気中、又は酸素濃度が0.1体積%に調整されたN−Oの混合ガス雰囲気中、950〜1100℃の温度で2時間焼成させ、試料番号1〜10のリング状試料及び円板状試料を作製した。Then, each sample obtained was fired for 2 hours at a temperature of 950 to 1100 ° C. in an air atmosphere or in a mixed gas atmosphere of N 2 —O 2 in which the oxygen concentration was adjusted to 0.1% by volume. 1 to 10 ring-shaped samples and disk-shaped samples were prepared.

〔試料の評価〕
(焼結性及び絶縁性)
試料番号1〜10の各リング状試料について、アルキメデス法を使用し、焼結密度(g/cm)を求め、焼結性を評価した。
(Sample evaluation)
(Sinterability and insulation)
About each ring-shaped sample of sample numbers 1-10, the Archimedes method was used, the sintering density (g / cm < 3 >) was calculated | required, and sinterability was evaluated.

また、試料番号1〜10の各円板状試料について、両面に銀を塗布し、焼き付けて電極を形成し、直流電圧50Vを印加して絶縁抵抗(IR)を測定し、この測定値と試料寸法とから比抵抗logρ(Ω・cm)を求めた。そして、焼結密度が5.0g/cm以上、好ましくは5.10g/cm以上を焼結性「良」と評価し、比抵抗logρが5.0以上、好ましくは7.0以上を絶縁性「良」と評価した。 In addition, for each of the disk-shaped samples of sample numbers 1 to 10, silver was applied to both sides and baked to form electrodes, and a DC voltage of 50 V was applied to measure insulation resistance (IR). The specific resistance logρ (Ω · cm) was determined from the dimensions. The sintered density is 5.0 g / cm 3 or more, preferably 5.10 g / cm 3 or more is evaluated as “sinterability”, and the specific resistance logρ is 5.0 or more, preferably 7.0 or more. Was evaluated as “good”.

表1は、試料番号1〜10の各試料のフェライト組成、焼成温度、各焼成雰囲気(大気及び酸素濃度0.1体積%)における焼結密度及び比抵抗logρを示している。   Table 1 shows the ferrite composition, the firing temperature, the sintering density and the specific resistance logρ in each firing atmosphere (atmosphere and oxygen concentration 0.1 volume%) of each sample of sample numbers 1 to 10.

Figure 0005717056
Figure 0005717056

a.大気雰囲気で焼成した場合
試料番号1〜6のようにフェライト組成中のCuOの含有量が0〜1.75mol%と少ない場合は、950〜1050℃又は1100℃の各温度で焼成しても、焼結密度が5.0g/cm未満となり、焼結性に劣ることが確認された。
a. When firing in an air atmosphere When the content of CuO in the ferrite composition is as low as 0 to 1.75 mol% as in sample numbers 1 to 6, even if firing at each temperature of 950 to 1050 ° C or 1100 ° C, The sintered density was less than 5.0 g / cm 3, and it was confirmed that the sinterability was poor.

試料番号7は、フェライト組成中のCuOの含有量を2.5mol%に増量したため、1100℃の温度で焼成した場合に焼結密度が5.22g/cmに向上し、比抵抗logρも9.3と良好となったが、焼成温度が高く、所望の低温焼成を行うことができなかった。In sample No. 7, the content of CuO in the ferrite composition was increased to 2.5 mol%, so that when sintered at a temperature of 1100 ° C., the sintered density improved to 5.22 g / cm 3 and the specific resistance logρ was 9 However, the firing temperature was high and the desired low-temperature firing could not be performed.

試料番号8は、フェライト組成中のCuOの含有量を5.0mol%に増量したため、1050℃の温度で焼成した場合に焼結密度が5.20g/cmに向上し、比抵抗logρも9.3と良好となった。すなわち、CuOの含有量を5.0mol%とすることにより、試料番号7よりも低温で焼結させることができるものの、焼成温度は未だ高く、所望の低温焼成を行うことができなかった。In Sample No. 8, the content of CuO in the ferrite composition was increased to 5.0 mol%, so that when sintered at a temperature of 1050 ° C., the sintered density was improved to 5.20 g / cm 3 and the specific resistance logρ was 9 .3 and good. That is, by setting the content of CuO to 5.0 mol%, it was possible to sinter at a temperature lower than that of Sample No. 7, but the firing temperature was still high and the desired low temperature firing could not be performed.

試料番号9は、フェライト組成中のCuOの含有量が7.0mol%と多いため、950℃の低温で焼成しても焼結密度が5.05g/cmとなって低温焼成が可能となり、比抵抗logρも6.4と良好であった。しかしながら、この場合は、後述するように所望の高い飽和磁束密度Bsを得ることができなかった。Sample No. 9 has a high CuO content of 7.0 mol% in the ferrite composition, so that even when fired at a low temperature of 950 ° C., the sintered density becomes 5.05 g / cm 3 and low temperature firing is possible. The specific resistance logρ was also good at 6.4. However, in this case, a desired high saturation magnetic flux density Bs could not be obtained as will be described later.

試料番号10は、フェライト組成中のCuOの含有量が9.0mol%と多いため、試料番号9と同様、950℃の低温で焼成しても5.0g/cm以上の焼結密度と5.0以上の比抵抗logρを確保できるが、この場合も、試料番号9と同様、所望の高い飽和磁束密度Bsを得ることができなかった。Sample No. 10 has a CuO content of as high as 9.0 mol% in the ferrite composition, so that, similarly to Sample No. 9, a sintered density of 5.0 g / cm 3 or higher and 5% even when fired at a low temperature of 950 ° C. A specific resistance logρ of 0.0 or more can be secured, but in this case as well as the sample number 9, a desired high saturation magnetic flux density Bs could not be obtained.

図2は、CuOの含有量と焼結密度の関係を示す図であり、横軸がCuOの含有量(mol%)、縦軸が焼結密度(g/cm)である。図中、◇印は焼成温度950℃、△印は焼成温度1000℃、□印は焼成温度1050℃、○印は焼成温度1100℃を示している。FIG. 2 is a graph showing the relationship between the CuO content and the sintered density, where the horizontal axis represents the CuO content (mol%) and the vertical axis represents the sintered density (g / cm 3 ). In the figure, ◇ indicates a firing temperature of 950 ° C., Δ indicates a firing temperature of 1000 ° C., □ indicates a firing temperature of 1050 ° C., and ○ indicates a firing temperature of 1100 ° C.

この図2から明らかなように、焼成温度を上昇させることにより、またCuOの含有量を増量させることにより、焼結密度が大きくなり、焼結性が向上する。特にCuOの含有量が7.0mol%以上になると、950〜1000℃の温度で焼成しても5.0g/cm以上の焼結密度を確保できる。ただし、後述するように大気雰囲気で焼成した場合は、所望の直流重畳特性を満足するような十分に高い飽和磁束密度Bsを得ることができなかった。As apparent from FIG. 2, the sintering density is increased and the sinterability is improved by increasing the firing temperature and increasing the CuO content. In particular, when the CuO content is 7.0 mol% or more, a sintered density of 5.0 g / cm 3 or more can be ensured even when firing at a temperature of 950 to 1000 ° C. However, when firing in an air atmosphere as will be described later, a sufficiently high saturation magnetic flux density Bs that satisfies the desired DC superposition characteristics could not be obtained.

図3は、CuOの含有量と比抵抗logρの関係を示す図であり、横軸がCuOの含有量(mol%)、縦軸が比抵抗logρ(Ω・cm)である。図中、◇印は焼成温度950℃、△印は焼成温度1000℃、□印は焼成温度1050℃、○印は焼成温度1100℃を示している。   FIG. 3 is a graph showing the relationship between the CuO content and the specific resistance logρ, where the horizontal axis represents the CuO content (mol%) and the vertical axis represents the specific resistance logρ (Ω · cm). In the figure, ◇ indicates a firing temperature of 950 ° C., Δ indicates a firing temperature of 1000 ° C., □ indicates a firing temperature of 1050 ° C., and ○ indicates a firing temperature of 1100 ° C.

この図3から明らかなように、大気雰囲気で焼成した場合は、焼成温度を上げることにより、比抵抗logρも上昇傾向となり、また、950〜1000℃の低温で焼成しても比抵抗logρは5.0以上を確保できた。しかしながら、後述するように大気雰囲気で焼成した場合は、所望の直流重畳特性を満足するような高い飽和磁束密度Bsを得ることができなかった。   As is apparent from FIG. 3, when firing in an air atmosphere, the specific resistance logρ tends to increase by raising the firing temperature, and the specific resistance logρ is 5 even when firing at a low temperature of 950 to 1000 ° C. 0.0 or more could be secured. However, when firing in an air atmosphere as will be described later, a high saturation magnetic flux density Bs that satisfies the desired DC superposition characteristics could not be obtained.

b.酸素濃度0.1体積%で焼成した場合
試料番号1〜10のいずれにおいても、950〜1100℃の温度範囲で焼成することにより、5.00g/cm以上の焼結密度を確保することができ、良好な焼結性を得ることができた。これは焼成時の酸素濃度が0.1体積%と低いので、結晶構造中に酸素欠陥が形成され、結晶中に存在するFe、Ni、Cu、Znの相互拡散が促進され、焼結性を高めることができたものと思われる。ただし、CuOの含有量が0.5mol%を下廻って0.2mol%以下になると、950℃で焼成した場合、焼結密度が5.10g/cm 未満に低下することも分かった。
b. When firing at an oxygen concentration of 0.1% by volume In any of sample numbers 1 to 10, firing at a temperature range of 950 to 1100 ° C. can ensure a sintered density of 5.00 g / cm 3 or more. And good sinterability could be obtained. This is because the oxygen concentration at the time of firing is as low as 0.1% by volume, oxygen defects are formed in the crystal structure, interdiffusion of Fe, Ni, Cu, Zn present in the crystal is promoted, and sinterability is improved. It seems that we were able to increase it. However, when the content of CuO is less than 0.2 mol% with Shitamawa' a 0.5 mol%, when fired at 950 ° C., sintered density was also found to decrease to less than 5.10 g / cm 3.

しかしながら、試料番号9は、フェライト組成中のCuOの含有量が7.0mol%と多すぎるため、比抵抗logρが5.0未満に低下し、絶縁性が低下した。これはCuOの含有量が多いため、Cuに還元されるCuOが増加し、このため比抵抗logρが低下したものと思われる。   However, in Sample No. 9, since the content of CuO in the ferrite composition was too large, 7.0 mol%, the specific resistance logρ was reduced to less than 5.0, and the insulation was reduced. This is because the CuO content is large, so that the amount of CuO reduced to Cu is increased, and the specific resistance logρ is therefore decreased.

試料番号10は、フェライト組成中のCuOの含有量が9.0mol%と多すぎるため、試料番号9と同様の理由から、比抵抗logρが5.0未満に低下し、絶縁性が低下した。   In Sample No. 10, since the content of CuO in the ferrite composition was too large, 9.0 mol%, for the same reason as Sample No. 9, the specific resistance logρ was reduced to less than 5.0, and the insulating property was reduced.

また、試料番号1、5で焼成温度を1100℃に設定した場合は、比抵抗logρが5.0未満に低下した。これは、CuOの含有量は0mol%又は1.0mol%CuOと少ないものの、1100℃におけるCu−CuOの平衡酸素濃度の関係から、焼成雰囲気が還元雰囲気となってCuOの還元が促進され、比抵抗logρの低下を招いたものと思われる。   In addition, when the firing temperature was set to 1100 ° C. for sample numbers 1 and 5, the specific resistance logρ decreased to less than 5.0. This is because the CuO content is as low as 0 mol% or 1.0 mol% CuO, but due to the relationship of the equilibrium oxygen concentration of Cu—CuO at 1100 ° C., the firing atmosphere becomes a reducing atmosphere and the reduction of CuO is promoted. This seems to have caused a decrease in the resistance logρ.

試料番号6〜8で焼成温度を1050℃〜1100℃に設定した場合も、比抵抗logρがいずれも5.0未満に低下した。これは、CuOの含有量は1.75mol%〜5mol%と少ないものの、1050℃〜1100℃におけるCu−CuOの平衡酸素濃度の関係から、焼成雰囲気が還元雰囲気となってCuOの還元が促進され、上述と同様、比抵抗logρの低下を招いたものと思われる。   When the firing temperature was set to 1050 ° C. to 1100 ° C. with sample numbers 6 to 8, the specific resistance log ρ decreased to less than 5.0. This is because the CuO content is as low as 1.75 mol% to 5 mol%, but due to the relationship of the equilibrium oxygen concentration of Cu—CuO at 1050 ° C. to 1100 ° C., the firing atmosphere becomes a reducing atmosphere and the reduction of CuO is promoted. Like the above, it seems that the specific resistance logρ was lowered.

また、試料番号7、8は、1000℃で焼成すると、比抵抗logρが7.0以下となった。In addition, when the sample numbers 7 and 8 were fired at 1000 ° C., the specific resistance logρ was 7.0 or less.

これに対し試料番号4〜6は、CuOの含有量が0.5〜1.75mol%と本発明範囲内であるので、950℃〜1000℃の焼成温度で焼成しても、比抵抗logρがいずれも7.0以上となり、かつ、焼結密度は5.10g/cmOn the other hand, since the sample numbers 4 to 6 have a CuO content of 0.5 to 1.75 mol% and are within the scope of the present invention, the specific resistance log ρ is not limited even when firing at a firing temperature of 950 to 1000 ° C. Both are 7.0 or more, and the sintered density is 5.10 g / cm. 3 以上を確保でき、1000℃以下の低温で焼成しても良好な絶縁性の得られることが分かった。The above can be secured, and it has been found that good insulation can be obtained even when firing at a low temperature of 1000 ° C. or lower.

図4は、CuOの含有量と焼結密度の関係を示す図であり、図5は図4の要部拡大図である。尚、横軸はCuOの含有量(mol%)、縦軸が焼結密度(g/cm)である。また、図中、◇印は焼成温度950℃、□印は焼成温度1000℃、△印は焼成温度1050℃を示している。FIG. 4 is a view showing the relationship between the CuO content and the sintered density, and FIG. 5 is an enlarged view of the main part of FIG. The horizontal axis represents the CuO content (mol%), and the vertical axis represents the sintered density (g / cm 3 ). Further, in the figure, ◇ indicates a firing temperature of 950 ° C., □ indicates a firing temperature of 1000 ° C., and Δ indicates a firing temperature of 1050 ° C.

この図4及び図5から明らかなように、酸素濃度を0.1体積%に設定して焼成した場合は、5.0g/cm以上の焼結密度を確保できることが分かった。As is clear from FIGS. 4 and 5, it was found that when the oxygen concentration was set to 0.1% by volume, a sintered density of 5.0 g / cm 3 or more could be secured.

図6は、CuOの含有量と比抵抗logρの関係を示す図であり、横軸がCuOの含有量(mol%)、縦軸が比抵抗logρ(Ω・cm)である。図中、◇印は焼成温度950℃、△印は焼成温度1000℃、□印は焼成温度1050℃を示している。   FIG. 6 is a diagram illustrating the relationship between the CuO content and the specific resistance logρ, where the horizontal axis represents the CuO content (mol%) and the vertical axis represents the specific resistance logρ (Ω · cm). In the figure, ◇ indicates a firing temperature of 950 ° C., Δ indicates a firing temperature of 1000 ° C., and □ indicates a firing temperature of 1050 ° C.

この図6から明らかなように焼成温度を上げてゆくと、Cu−CuOの平衡酸素濃度の関係からCuOが還元されてCuとなりやすく比抵抗logρは低下傾向となる。   As apparent from FIG. 6, when the firing temperature is raised, CuO is easily reduced to Cu due to the equilibrium oxygen concentration of Cu—CuO, and the specific resistance logρ tends to decrease.

また、CuOの含有量を1.75mol%以下とし、かつ1000℃以下の温度で焼成した場合は、比抵抗logρは7.0以上の良好な絶縁性を得ることができた。 Further, when the CuO content was 1.75 mol% or less and firing was carried out at a temperature of 1000 ° C. or less, the specific resistance logρ was able to obtain a good insulating property of 7.0 or more.

一方、CuOの含有量が7mol%以上になると、比抵抗logρは5.0以下に低下し、絶縁性を損なう結果となった。   On the other hand, when the CuO content was 7 mol% or more, the specific resistance log ρ was lowered to 5.0 or less, resulting in a loss of insulation.

(直流重畳特性)
試料番号1〜10の各リング状試料について、1000℃の温度で焼成させた場合の飽和磁束密度Bs(mT)を測定し、また、飽和磁束密度Bsの増加率(%)を算出し、直流重畳特性を評価した。
(DC superposition characteristics)
About each ring-shaped sample of sample numbers 1-10, saturation magnetic flux density Bs (mT) at the time of baking at the temperature of 1000 degreeC is measured, and increase rate (%) of saturation magnetic flux density Bs is calculated, and direct current | flow The superposition characteristics were evaluated.

ここで、飽和磁束密度Bsは、振動試料型磁力計(東英工業株式会社製、VSM−5−15)を使用し、1Tの磁束密度で飽和磁化を測定し、その測定値と焼結密度とから算出した。   Here, the saturation magnetic flux density Bs is measured by using a vibrating sample magnetometer (manufactured by Toei Kogyo Co., Ltd., VSM-5-15), measuring saturation magnetization at a magnetic flux density of 1T, and the measured value and sintered density. And calculated from

また、飽和磁束密度Bsの増加率は、CuOの含有量が9mol%で大気雰囲気で焼成した場合(試料番号10)の飽和磁束密度Bsを基準(100%)として算出した。   The increase rate of the saturation magnetic flux density Bs was calculated using the saturation magnetic flux density Bs when the CuO content was 9 mol% and fired in the air atmosphere (sample number 10) as a reference (100%).

表2は、試料番号1〜10の各試料のフェライト組成、焼成温度、各焼成雰囲気(大気及び酸素濃度0.1体積%)における飽和磁束密度Bs、飽和磁束密度Bsの増加率(%)を示している。   Table 2 shows the ferrite composition, firing temperature, saturation magnetic flux density Bs in each firing atmosphere (atmosphere and oxygen concentration 0.1% by volume), and increasing rate (%) of the saturation magnetic flux density Bs for each sample Nos. 1 to 10. Show.

Figure 0005717056
Figure 0005717056

この表2から明らかなように、大気雰囲気で焼成した場合は飽和磁束密度Bsが349〜462mTと低かった。これは、試料番号1〜8では、1000℃の温度で焼成した場合、融点の低いCuOの含有量が5mol%以下と少ないため、5.0g/cm以上の焼結密度を得ることができず、焼結性の低下を招いたためと思われる。また試料番号9、10では、CuOの含有量が7mol%又は9mol%と多すぎることから(表1参照)、所望の高い飽和磁束密度Bsを得ることができなかったものと思われる。As is clear from Table 2, the saturation magnetic flux density Bs was as low as 349 to 462 mT when fired in an air atmosphere. In Sample Nos. 1 to 8, when sintered at a temperature of 1000 ° C., the content of CuO having a low melting point is as low as 5 mol% or less, so that a sintered density of 5.0 g / cm 3 or more can be obtained. This seems to have caused a decrease in sinterability. In Sample Nos. 9 and 10, since the CuO content is too high as 7 mol% or 9 mol% (see Table 1), it seems that the desired high saturation magnetic flux density Bs could not be obtained.

一方、酸素濃度を0.1体積%とした場合であっても、試料番号9、10のように、CuOの含有量が7mol%又は9mol%と多すぎると、飽和磁束密度Bsは480mT未満となって所望の高い飽和磁束密度Bsを得ることができなかった。   On the other hand, even when the oxygen concentration is 0.1% by volume, if the CuO content is too high as 7 mol% or 9 mol% as in sample numbers 9 and 10, the saturation magnetic flux density Bs is less than 480 mT. Thus, the desired high saturation magnetic flux density Bs could not be obtained.

これに対し酸素濃度を0.1体積%とし、かつCuOの含有量を5mol%以下とした場合は、試料番号1〜8のように飽和磁束密度Bsは480mT以上となり、大気雰囲気で焼成した試料番号10に対し5%以上の増加率を得ることができた。特にCuOの含有量を0〜1.75mol%の試料番号1〜6は、飽和磁束密度Bsの増加率は10%以上に向上した。   On the other hand, when the oxygen concentration is 0.1 vol% and the CuO content is 5 mol% or less, the saturated magnetic flux density Bs is 480 mT or more as in sample numbers 1 to 8, and the sample fired in the atmosphere. An increase rate of 5% or more with respect to No. 10 could be obtained. In particular, in Sample Nos. 1 to 6 having a CuO content of 0 to 1.75 mol%, the increase rate of the saturation magnetic flux density Bs was improved to 10% or more.

図7は、CuOの含有量と飽和磁束密度Bsの関係を示す図であり、横軸がCuOの含有量(mol%)、縦軸が飽和磁束密度Bs(mT)である。図中、○印が酸素濃度を0.1体積%の雰囲気下で焼成した場合、●印が大気雰囲気下で焼成した場合を示している。   FIG. 7 is a graph showing the relationship between the CuO content and the saturation magnetic flux density Bs, where the horizontal axis represents the CuO content (mol%) and the vertical axis represents the saturation magnetic flux density Bs (mT). In the figure, a circle indicates a case where firing is performed in an atmosphere having an oxygen concentration of 0.1% by volume, and a circle indicates a case where firing is performed in an air atmosphere.

この図7から明らかなように大気雰囲気ではCuOの含有量を減少させると焼結性が低下して所望の高い飽和磁束密度Bsを得ることはできず、一方でCuOの含有量を増量させると焼結性は向上するが、飽和磁束密度Bsを高くすることはできない。   As is apparent from FIG. 7, when the CuO content is reduced in the air atmosphere, the sinterability is lowered and the desired high saturation magnetic flux density Bs cannot be obtained. On the other hand, when the CuO content is increased. Although the sinterability is improved, the saturation magnetic flux density Bs cannot be increased.

これに対し酸素濃度0.1%で焼成させた場合は、焼結性が良好であるためCuOの含有量が5mol%以下の領域で480mT以上の飽和磁束密度Bsを得ることができる。特に、CuOの含有量が1.75mol%以下に抑制した場合は、500mT以上の良好な飽和磁束密度Bsを得ることができる。   On the other hand, when fired at an oxygen concentration of 0.1%, since the sinterability is good, a saturation magnetic flux density Bs of 480 mT or more can be obtained in a region where the CuO content is 5 mol% or less. In particular, when the CuO content is suppressed to 1.75 mol% or less, a satisfactory saturation magnetic flux density Bs of 500 mT or more can be obtained.

図8は、CuOの含有量と飽和磁束密度Bsの増加率の関係を示す図であり、横軸がCuOの含有量(mol%)、縦軸が飽和磁束密度Bs(mT)である。図中、○印が酸素濃度を0.1体積%の雰囲気下で焼成した場合、●印が大気雰囲気下で焼成した場合を示している。   FIG. 8 is a diagram showing the relationship between the CuO content and the increase rate of the saturation magnetic flux density Bs, where the horizontal axis represents the CuO content (mol%) and the vertical axis represents the saturation magnetic flux density Bs (mT). In the figure, a circle indicates a case where firing is performed in an atmosphere having an oxygen concentration of 0.1% by volume, and a circle indicates a case where firing is performed in an air atmosphere.

この図8から明らかなように、大気雰囲気下、1000℃で焼成した場合、CuOの含有量が5mol%以下の領域では焼結性に劣るため、CuOの減少と共に飽和磁束密度Bsも減少傾向にある。   As is apparent from FIG. 8, when sintered at 1000 ° C. in an air atmosphere, since the sinterability is inferior in the region where the CuO content is 5 mol% or less, the saturation magnetic flux density Bs tends to decrease as the CuO content decreases. is there.

これに対し酸素濃度0.1%で焼成した場合は、大気雰囲気で焼成した試料番号10に比べ、飽和磁束密度Bsは増加している。そして、CuOの含有量を5mol%以下とすることにより、飽和磁束密度Bsは5%以上増加し、特にCuOの含有量を1.75mol%以下とすることにより、飽和磁束密度Bsは10%以上増加することが分かった。   On the other hand, when firing at an oxygen concentration of 0.1%, the saturation magnetic flux density Bs is increased compared to Sample No. 10 fired in the air atmosphere. When the CuO content is 5 mol% or less, the saturation magnetic flux density Bs is increased by 5% or more. In particular, when the CuO content is 1.75 mol% or less, the saturation magnetic flux density Bs is 10% or more. It turned out to increase.

(総合評価)
以上より大気雰囲気で焼成した場合は、CuOの含有量を増量させ、かつ1050℃以上の高温で焼成しないと十分に焼結させることができない。また1050℃の高温で焼結できたとしてもCuOの含有量が多いため、所望の高い飽和磁束密度Bsを得ることができず、良好な直流重畳特性を得ることができない。
(Comprehensive evaluation)
From the above, when firing in an air atmosphere, the content of CuO cannot be increased and sintering cannot be performed without firing at a high temperature of 1050 ° C. or higher. Even if sintering can be performed at a high temperature of 1050 ° C., since the content of CuO is large, a desired high saturation magnetic flux density Bs cannot be obtained, and good DC superposition characteristics cannot be obtained.

これに対しフェライト組成中のCuOの含有量を5.0mol%以下とし、酸素濃度を0.1%に雰囲気調整した場合は、焼結密度が5.0g/cm以上の高い焼結性を得ることができ、1000℃の温度で焼成しても比抵抗logρが5.0以上の良好な絶縁性を確保したまま、480mT以上で増加率が5%以上の良好な飽和磁束密度Bsを得ることができることが分かった。On the other hand, when the content of CuO in the ferrite composition is 5.0 mol% or less and the atmosphere is adjusted to an oxygen concentration of 0.1%, a high sinterability with a sintering density of 5.0 g / cm 3 or more is obtained. Even when baked at a temperature of 1000 ° C., a good saturation magnetic flux density Bs with an increase rate of 5% or more is obtained at 480 mT or more while maintaining good insulation with a specific resistance logρ of 5.0 or more. I found out that I could do it.

特に、フェライト組成中のCuOの含有量を0.5〜1.75mol%とし、酸素濃度を0.1%に設定した雰囲気下では、950℃の温度で焼成しても焼結密度が5.10g/cm以上の高い焼結性を得ることができると共に、比抵抗logρが7.0以上の良好な絶縁性を有し、かつ500mT以上で増加率が10%以上の良好な飽和磁束密度Bsを得ることができることが分かった。 In particular, in an atmosphere in which the content of CuO in the ferrite composition is 0.5 to 1.75 mol% and the oxygen concentration is set to 0.1%, the sintered density is 5. High saturation sinterability of 10 g / cm 3 or more, good insulation with a specific resistance logρ of 7.0 or more, and a good saturation magnetic flux of 10% or more at 500 mT or more It was found that the density Bs can be obtained.

Fe、ZnO、NiO、及びCuOの含有量が表3のような組成となるように、これらセラミック素原料を秤量し、その後は実施例1と同様の方法・手順で、外径が20mm、内径が12mm、厚みが1mmのリング状試料を作製した。These ceramic raw materials are weighed so that the contents of Fe 2 O 3 , ZnO, NiO, and CuO are as shown in Table 3, and then the outer diameter is the same as in Example 1 in the same manner and procedure. A ring-shaped sample having a diameter of 20 mm, an inner diameter of 12 mm, and a thickness of 1 mm was produced.

そして、得られた試料を酸素濃度が0.1体積%に調整されたN−Oの混合ガス雰囲気中、1000℃の温度で2時間焼成し、試料番号11〜20の試料を作製した。And the obtained sample was baked at a temperature of 1000 ° C. for 2 hours in a mixed gas atmosphere of N 2 —O 2 in which the oxygen concentration was adjusted to 0.1% by volume, and samples Nos. 11 to 20 were produced. .

次に、試料番号11〜20の各試料について、軟銅線を20ターン巻回し、インピーダンスアナライザ(アジレント・テクノロジー社製、E4991A)を使用し、周波数1MHzでのインダクタンスを測定し、測定値から透磁率μを求めた。   Next, about each sample of sample numbers 11-20, an annealed copper wire is wound for 20 turns, an impedance analyzer (E4991A, manufactured by Agilent Technologies) is used to measure inductance at a frequency of 1 MHz, and magnetic permeability is measured from the measured value. μ was determined.

また、試料番号11〜20の各試料について、実施例1と同様の方法・手順で磁束飽和密度Bsを求めた。   Moreover, the magnetic flux saturation density Bs was calculated | required by the method and procedure similar to Example 1 about each sample of the sample numbers 11-20.

表3は、試料番号11〜20の各試料のフェライト組成、焼成温度及び透磁率μを示している。   Table 3 shows the ferrite composition, firing temperature, and magnetic permeability μ of each sample Nos. 11-20.

Figure 0005717056
Figure 0005717056

この表3から明らかなように、Fe:44〜49.8mol%、ZnO:10〜28mol%の範囲で、磁束飽和密度Bsを損なうこともなく、透磁率μは100以上となり、実用上有効な値を確保できることが分かった。As is apparent from Table 3, the magnetic permeability μ is 100 or more without impairing the magnetic flux saturation density Bs within the range of Fe 2 O 3 : 44 to 49.8 mol% and ZnO: 10 to 28 mol%. It was found that an effective value can be secured.

Fe:49.0mol%、NiO:26.0mol%、ZnO:24.0mol%、及びCuO:1.0mol%となるように、これらセラミック素原料を秤量し、さらに、SnOの含有量が、フェライト粉末100重量部に対し、表4に示す重量部となるようにSnOを秤量した。These ceramic raw materials were weighed so as to be Fe 2 O 3 : 49.0 mol%, NiO: 26.0 mol%, ZnO: 24.0 mol%, and CuO: 1.0 mol%, and further containing SnO 2 SnO 2 was weighed so that the amount was 100 parts by weight of ferrite powder and the parts shown in Table 4.

そしてその後は実施例1と同様の方法・手順で、外径が20mm、内径が12mm、厚みが1mmのリング状試料を作製した。   Then, a ring-shaped sample having an outer diameter of 20 mm, an inner diameter of 12 mm, and a thickness of 1 mm was produced by the same method and procedure as in Example 1.

得られた試料を酸素濃度が0.1体積%に調整されたN−Oの混合ガス雰囲気中、1000℃の温度で2時間焼成し、試料番号31〜35の試料を作製した。The obtained sample was baked for 2 hours at a temperature of 1000 ° C. in a mixed gas atmosphere of N 2 —O 2 with an oxygen concentration adjusted to 0.1% by volume, thereby preparing samples Nos. 31 to 35.

次いで、試料番号31〜35の各試料について、実施例3と同様の方法・手順でインダクタンスの初期値L0を測定し、この初期値L0から透磁率μを求めた。次いで、これらの試料について、JIS規格のC2560−2に準拠し、磁界が500A/mとなるように直流電流を重畳し、インダクタンスLを測定した。そしてこのインダクタンスLとインダクタンスの初期値L0とに基づいてインダクタンス変化率を求め、直流重畳特性を評価した。   Next, the initial value L0 of the inductance was measured for each of the samples Nos. 31 to 35 by the same method and procedure as in Example 3, and the magnetic permeability μ was obtained from the initial value L0. Next, in accordance with JIS standard C2560-2, a direct current was superimposed on these samples so that the magnetic field was 500 A / m, and the inductance L was measured. The inductance change rate was obtained based on the inductance L and the initial value L0 of the inductance, and the DC superposition characteristics were evaluated.

表4は、試料番号31〜35の各試料のフェライト組成、SnOの含有量、焼成温度、透磁率μ、インダクタンス変化率を示している。Table 4 shows the ferrite composition, the content of SnO 2 , the firing temperature, the magnetic permeability μ, and the inductance change rate of each sample of sample numbers 31 to 35.

Figure 0005717056
Figure 0005717056

試料番号31と試料番号32〜35との対比から明らかなように、SnOを添加することにより、インダクタンス変化率が低減し、直流重畳特性が向上することが分かった。また、SnOの添加量が増加するに伴い、インダクタンス変化率も低減し、直流重畳特性が向上することも分かった。すなわち、SnOの添加が直流重畳特性の向上に寄与し、しかも添加量が増えるに従い、直流重畳特性も向上することが確認された。As is clear from the comparison between sample number 31 and sample numbers 32-35, it was found that by adding SnO 2 , the inductance change rate was reduced and the DC superposition characteristics were improved. It was also found that as the amount of SnO 2 added increases, the rate of change in inductance also decreases and the DC superposition characteristics improve. That is, it was confirmed that the addition of SnO 2 contributes to the improvement of the DC superposition characteristics, and that the DC superposition characteristics improve as the addition amount increases.

1000℃以下の低温で焼成しても、焼結性及び絶縁性が良好で、良好な直流重畳特性を有する大電流用途に適したフェライト磁器及びコイル部品を実現できる。   Even when fired at a low temperature of 1000 ° C. or lower, it is possible to realize a ferrite porcelain and a coil component suitable for a large current application having good sinterability and insulation and good DC superposition characteristics.

1 軸芯
2a、2b 鍔部
3 コア部材
4 巻線
1 Axle core 2a, 2b collar 3 core member 4 winding

Claims (3)

少なくともFe及びNiOを含有したフェライト磁器の製造方法であって、
ガラス成分を添加せず、前記Fe及び前記NiOに加え、CuOを0.5〜1.75mol%、ZnOを10〜28mol%の範囲で混合してフェライト粉末を作製し、該フェライト粉末を成形処理した後、酸素濃度が0.001〜0.1体積%の雰囲気で1000℃以下の焼成温度で焼成し、飽和磁束密度が480mT以上であり、かつ比抵抗が1.0×10 Ω・cm以上のフェライト磁器を製造することを特徴とするフェライト磁器の製造方法。
A method for producing a ferrite porcelain containing at least Fe 2 O 3 and NiO,
Without adding a glass component, in addition to the Fe 2 O 3 and the NiO, a ferrite powder is prepared by mixing CuO in a range of 0.5 to 1.75 mol% and ZnO in a range of 10 to 28 mol%. After being molded, firing was performed at a firing temperature of 1000 ° C. or less in an atmosphere having an oxygen concentration of 0.001 to 0.1% by volume, a saturation magnetic flux density of 480 mT or more , and a specific resistance of 1.0 × 10 7. A method for producing a ferrite porcelain, characterized by producing a ferrite porcelain of Ω · cm or more .
前記フェライト粉末100重量部に対し1.3重量部以下の範囲でSnOを添加することを特徴とする請求項1記載のフェライト磁器の製造方法。 The method for producing a ferrite porcelain according to claim 1 , wherein SnO 2 is added in an amount of 1.3 parts by weight or less with respect to 100 parts by weight of the ferrite powder. 前記Feの含有量は、44〜49.8mol%であることを特徴とする請求項1又は請求項2記載のフェライト磁器の製造方法。 3. The method for manufacturing a ferrite porcelain according to claim 1, wherein the content of Fe 2 O 3 is 44 to 49.8 mol%.
JP2012500655A 2010-02-19 2011-02-18 Ferrite porcelain manufacturing method Active JP5717056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012500655A JP5717056B2 (en) 2010-02-19 2011-02-18 Ferrite porcelain manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010034504 2010-02-19
JP2010034504 2010-02-19
JP2012500655A JP5717056B2 (en) 2010-02-19 2011-02-18 Ferrite porcelain manufacturing method
PCT/JP2011/053479 WO2011102452A1 (en) 2010-02-19 2011-02-18 Ferrite porcelain production method, ferrite porcelain, and coil part

Publications (2)

Publication Number Publication Date
JPWO2011102452A1 JPWO2011102452A1 (en) 2013-06-17
JP5717056B2 true JP5717056B2 (en) 2015-05-13

Family

ID=44483037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012500655A Active JP5717056B2 (en) 2010-02-19 2011-02-18 Ferrite porcelain manufacturing method

Country Status (2)

Country Link
JP (1) JP5717056B2 (en)
WO (1) WO2011102452A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022061825A (en) * 2020-10-07 2022-04-19 株式会社村田製作所 Ferrite sintered body and wire-wound coil component

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122510A (en) * 1973-03-30 1974-11-22
JPH0461203A (en) * 1990-06-28 1992-02-27 Murata Mfg Co Ltd Ferrite element integrally baked with copper-conductor
JPH05175032A (en) * 1991-12-20 1993-07-13 Tdk Corp Sintered material of ni-cu-zn ferrite and laminated inductor, composite laminated part and magnetic core using the same
JPH10226568A (en) * 1997-02-12 1998-08-25 Sung-Yong Hong Electromagnetic wave absorber composition and its production
JP2000327411A (en) * 1999-05-21 2000-11-28 Kawasaki Steel Corp Production of nickel - zinc based ferrite
JP2003109813A (en) * 2001-09-28 2003-04-11 Nec Tokin Corp Low loss oxide magnetic material and its manufacturing method
JP2003272912A (en) * 2002-03-15 2003-09-26 Murata Mfg Co Ltd Oxide magnetic material and laminated electronic component using the same
JP2007169115A (en) * 2005-12-22 2007-07-05 Hitachi Metals Ltd Ferrite sintered compact

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122510A (en) * 1973-03-30 1974-11-22
JPH0461203A (en) * 1990-06-28 1992-02-27 Murata Mfg Co Ltd Ferrite element integrally baked with copper-conductor
JPH05175032A (en) * 1991-12-20 1993-07-13 Tdk Corp Sintered material of ni-cu-zn ferrite and laminated inductor, composite laminated part and magnetic core using the same
JPH10226568A (en) * 1997-02-12 1998-08-25 Sung-Yong Hong Electromagnetic wave absorber composition and its production
JP2000327411A (en) * 1999-05-21 2000-11-28 Kawasaki Steel Corp Production of nickel - zinc based ferrite
JP2003109813A (en) * 2001-09-28 2003-04-11 Nec Tokin Corp Low loss oxide magnetic material and its manufacturing method
JP2003272912A (en) * 2002-03-15 2003-09-26 Murata Mfg Co Ltd Oxide magnetic material and laminated electronic component using the same
JP2007169115A (en) * 2005-12-22 2007-07-05 Hitachi Metals Ltd Ferrite sintered compact

Also Published As

Publication number Publication date
WO2011102452A1 (en) 2011-08-25
JPWO2011102452A1 (en) 2013-06-17

Similar Documents

Publication Publication Date Title
JP6222618B2 (en) Multilayer coil parts
KR101475129B1 (en) Ceramic electronic component and method for producing ceramic electronic component
JP5748112B2 (en) Multilayer coil component and method for manufacturing the multilayer coil component
JP2010018482A (en) Ferrite, and manufacturing method thereof
US9296659B2 (en) Ferrite ceramic composition, ceramic electronic component, and method for manufacturing ceramic electronic component
JP2018035027A (en) Ferrite composition, ferrite sintered body, electronic component and chip coil
TWI704121B (en) Ferrite composition and multilayer electronic component
JP5900501B2 (en) Multilayer coil component and manufacturing method thereof
JP3971766B2 (en) Ferrite material and electronic parts using the same
TWI594273B (en) Magnetic Oxide Compositions and Electronic Components
US8562851B2 (en) Ferrite material and electronic component
WO2010038890A1 (en) Composite electronic component
JP5717056B2 (en) Ferrite porcelain manufacturing method
JPWO2013115064A1 (en) Wire-wound coil component having a magnetic material and a core formed using the same
JP2007273725A (en) Magnetic substance, method of manufacturing magnetic substance, winding coil, and method of manufacturing winding coil
JP2007063123A (en) Ferrite material and electronic component using the same
JP4711147B2 (en) Multilayer ferrite component and method for manufacturing multilayer ferrite component
JP4074440B2 (en) Magnetic oxide sintered body and high-frequency circuit component using the same
JP6205149B2 (en) Nonmagnetic material and method for producing nonmagnetic porcelain composition
JP2006151742A (en) Ferrite material and electronic component using the same
WO2013002143A1 (en) Ferrite material and noise absorption part
JP4449091B2 (en) Magnetic ferrite materials, multilayer chip ferrite components, composite multilayer components and magnetic cores
JP6442251B2 (en) Magnetic material and magnetic porcelain composition
JP2006151741A (en) Ferrite material and electronic component using the same
JP3696016B2 (en) Method for manufacturing magnetic ferrite and method for manufacturing multilayer ferrite component

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150223

R150 Certificate of patent or registration of utility model

Ref document number: 5717056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150308