JP2003101210A - Electronic component mounting method and heat generating material - Google Patents

Electronic component mounting method and heat generating material

Info

Publication number
JP2003101210A
JP2003101210A JP2001291619A JP2001291619A JP2003101210A JP 2003101210 A JP2003101210 A JP 2003101210A JP 2001291619 A JP2001291619 A JP 2001291619A JP 2001291619 A JP2001291619 A JP 2001291619A JP 2003101210 A JP2003101210 A JP 2003101210A
Authority
JP
Japan
Prior art keywords
electronic component
substrate
solder
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001291619A
Other languages
Japanese (ja)
Inventor
Toshikazu Matsuo
俊和 松尾
Tadahiko Sakai
忠彦 境
Ken Maeda
憲 前田
Seiichi Yoshinaga
誠一 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001291619A priority Critical patent/JP2003101210A/en
Publication of JP2003101210A publication Critical patent/JP2003101210A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electronic component mounting method which can surely attain the reliability after the mounting and also to provide a heat generating material which is used for solder junction. SOLUTION: In the electronic component mounting method to mount an electronic component 1 to a substrate 5 by joining with solder a connection electrode 2 of the electronic component 1 to an electrode 5 of the substrate 5, a solder bump 3a is previously formed to the electronic component 1, and the electronic component 1 is mounted to the substrate 5 after an epoxy resin 7 which generates reaction heat with heat treatment is supplied to the range of substrate 5 including the electrode 6 corresponding to the solder bump 3a at the internal side of the electronic component 1. Thereafter, in the heat treatment with reflow, the epoxy region 7 generates heat with the thermosetting reaction to heat the part such as periphery of center area which is not easily heated up to the temperature higher than that raised only with the reflow. Accordingly, the solder can surely be fused to assure the reliability after the mounting of the part joined with the solder 3b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子部品を半田接
合によって基板に実装する電子部品実装方法および半田
接合に使用される発熱材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic component mounting method for mounting an electronic component on a substrate by soldering and a heat generating material used for soldering.

【0002】[0002]

【従来の技術】電子部品の基板への実装には、半田接合
による方法が広く用いられている。この方法は電子部品
の接続用電極を基板の電極に半田接合するものである。
近年鉛による環境汚染防止の観点から、従来用いられて
いたスズ・鉛系の半田に替えて、鉛を成分として含まな
い鉛フリー型半田が半田接合に用いられるようになって
いる。
2. Description of the Related Art A method by soldering is widely used for mounting electronic parts on a substrate. In this method, a connecting electrode of an electronic component is soldered to an electrode of a board.
From the viewpoint of preventing environmental pollution due to lead in recent years, a lead-free solder that does not contain lead as a component has been used for solder joining, instead of the tin-lead solder that has been conventionally used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この鉛
フリー型半田を電子部品の半田接合に用いた場合には、
以下に説明するような不具合が生じていた。一般に鉛フ
リー型半田は、従来のスズ・鉛の共晶半田と比較して融
点が高く、電子部品の耐熱温度と充分な温度差を確保す
ることが難しい。また鉛フリー型半田は、接合信頼性が
確保されるような組成にすると融点が高くなり、融点が
低くなるような組成を選択すると接合後の信頼性が低下
するという特性がある。このため、従来の電子部品に
は、リフロー時の電子部品の焼損を防止する目的で低融
点型の半田によって半田接合を行うと、実装後の信頼性
に難点があった。
However, when this lead-free type solder is used for solder joining of electronic parts,
There was a problem as described below. In general, lead-free solder has a higher melting point than conventional tin-lead eutectic solder, and it is difficult to secure a sufficient temperature difference from the heat resistant temperature of electronic components. Further, the lead-free solder has a characteristic that the melting point becomes high when the composition is such that the bonding reliability is secured, and the reliability after the bonding is lowered when the composition where the melting point is low is selected. Therefore, in the conventional electronic component, if soldering is performed with a low melting point type solder for the purpose of preventing the electronic component from being burnt out during reflow, there is a problem in reliability after mounting.

【0004】そこで本発明は、実装後の信頼性を確保す
ることができる電子部品実装方法および半田接合に使用
される発熱材料を提供することを目的とする。
Therefore, an object of the present invention is to provide an electronic component mounting method capable of ensuring reliability after mounting and a heat generating material used for soldering.

【0005】[0005]

【課題を解決するための手段】請求項1記載の電子部品
実装方法は、電子部品の接続用電極を基板の電極に半田
接合することにより前記接続用電極と基板の電極とを導
通させてこの電子部品を基板に実装する電子部品実装方
法であって、前記電子部品または基板に予め半田を供給
する半田供給工程と、半田が供給された電子部品または
基板の所定部位に加熱によって反応熱を発生する発熱材
料を供給する発熱材料供給工程と、この電子部品を基板
に搭載する搭載工程と、電子部品が搭載された基板を加
熱手段によって加熱する加熱工程とを含み、前記加熱工
程において前記発熱材料が発熱することにより前記所定
部位を前記加熱手段のみによる昇温温度よりも高い温度
まで昇温させる。
According to a first aspect of the present invention, there is provided an electronic component mounting method, wherein a connecting electrode of an electronic component is soldered to an electrode of a substrate to electrically connect the connecting electrode and the electrode of the substrate. An electronic component mounting method for mounting an electronic component on a substrate, comprising: a solder supplying step of supplying solder to the electronic component or the substrate in advance; and a reaction heat generated by heating a predetermined portion of the electronic component or the substrate to which the solder is supplied. Heat generating material supplying step of supplying a heat generating material, a mounting step of mounting the electronic component on a substrate, and a heating step of heating the substrate on which the electronic component is mounted by a heating means. Generates heat, the temperature of the predetermined portion is raised to a temperature higher than the temperature raised by only the heating means.

【0006】請求項2記載の電子部品実装方法は、前記
発熱材料は、酸無水物およびアミン系硬化剤を含む硬化
剤を混入したエポキシ樹脂であり、前記加熱工程の後に
熱硬化して前記電子部品と基板との間を封止する封止樹
脂を兼ねる。
According to a second aspect of the present invention, there is provided an electronic component mounting method, wherein the heat generating material is an epoxy resin mixed with a curing agent containing an acid anhydride and an amine type curing agent. It also serves as a sealing resin that seals between the component and the substrate.

【0007】請求項3記載の発熱材料は、電子部品の接
続用電極を基板の電極に半田接合する際に電子部品と基
板との間に存在し、半田接合時の加熱によって反応熱を
発生する発熱材料であって、酸無水物およびアミン系硬
化剤を含む硬化剤を混入したエポキシ樹脂より成り、前
記アミン系硬化剤の含有量が1.5〜5重量%である。
The heat-generating material according to claim 3 is present between the electronic component and the substrate when the connection electrode of the electronic component is soldered to the electrode of the substrate, and generates heat of reaction by heating during the soldering. It is an exothermic material and is made of an epoxy resin mixed with a curing agent containing an acid anhydride and an amine curing agent, and the content of the amine curing agent is 1.5 to 5% by weight.

【0008】本発明によれば、電子部品または基板の所
定部位に加熱によって反応熱を発生する発熱材料を供給
しておき、電子部品が搭載された基板を加熱手段によっ
て加熱する加熱工程において発熱材料が発熱することに
より、電子部品の中心部周辺などの昇温しにくい所定部
位を加熱手段のみによる昇温温度よりも高い温度まで昇
温させることができ、半田の溶融を確実にして半田接合
部の実装後の信頼性を確保することができる。
According to the present invention, an exothermic material that generates reaction heat by heating is supplied to a predetermined portion of the electronic component or the substrate, and the exothermic material is heated in the heating step of heating the substrate on which the electronic component is mounted by the heating means. As a result of the heat generation, the temperature of a predetermined portion such as the central portion of the electronic component, which is difficult to heat up, can be raised to a temperature higher than the temperature raised by only the heating means, and the melting of the solder is ensured and the solder joint It is possible to secure reliability after mounting.

【0009】[0009]

【発明の実施の形態】次に本発明の実施の形態を図面を
参照して説明する。図1、図2は本発明の一実施の形態
の電子部品実装方法の工程説明図、図3は本発明の一実
施の形態の電子部品実装の半田接合工程における加熱温
度を示すグラフである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. 1 and 2 are process explanatory diagrams of an electronic component mounting method according to an embodiment of the present invention, and FIG. 3 is a graph showing a heating temperature in a solder joining process of electronic component mounting according to an embodiment of the present invention.

【0010】図1(a)において、電子部品1には複数
の接続用電極2が形成されており、これらの接続用電極
2には、図1(b)に示すように移載ツール4によって
半田ボール3が搭載される。そしてリフローによって電
子部品1を加熱することにより半田ボール3が溶融し、
図1(c)に示すように接続用電極2には半田バンプ3
aが形成される。この半田バンプ形成工程は、電子部品
1に予め半田を供給する半田供給工程となっている。こ
こで、半田ボール3の材質は鉛成分をほとんどまたは全
く含まない鉛フリー型の半田であり、従来一般に用いら
れたスズ・鉛系の半田よりも高融点の半田となってい
る。
In FIG. 1A, a plurality of connecting electrodes 2 are formed on an electronic component 1, and these connecting electrodes 2 are formed by a transfer tool 4 as shown in FIG. 1B. The solder balls 3 are mounted. Then, the solder ball 3 is melted by heating the electronic component 1 by reflow,
As shown in FIG. 1C, solder bumps 3 are formed on the connecting electrodes 2.
a is formed. This solder bump forming step is a solder supplying step of supplying solder to the electronic component 1 in advance. Here, the material of the solder ball 3 is a lead-free type solder containing almost no or no lead component, and has a higher melting point than tin / lead-based solder that has been generally used in the past.

【0011】次にこのようにして半田バンプ3aが形成
された電子部品1を電極6が設けられた基板5に実装す
る。電子部品1の基板5への搭載に先立って、図2
(a)に示すように、基板5の電子部品1との接合面の
所定部位には、ディスペンサ8によってエポキシ樹脂7
が供給される。本実施の形態では、基板5の電子部品1
との接合面のうち、電子部品1の内側に位置する半田バ
ンプ3aに対応した電極6を含んだ基板5の中央部にエ
ポキシ樹脂7が供給される。ここで用いられるエポキシ
樹脂7は、エポキシ樹脂の主剤に硬化剤として酸無水物
とアミン系硬化剤を混入したものであり、周囲から加熱
されて硬化反応が進行することにより、エポキシ樹脂7
自体が発熱する発熱材料である。特にアミン系硬化剤を
混入することにより、硬化時に発生する反応熱を多くし
て昇温作用を高めている。アミン系硬化剤としては、イ
ミダゾール、アミンアダクト、芳香族アミン、脂肪族ア
ミン等が使用できる。
Next, the electronic component 1 on which the solder bumps 3a are formed in this manner is mounted on the substrate 5 on which the electrodes 6 are provided. Prior to mounting the electronic component 1 on the substrate 5, FIG.
As shown in (a), the epoxy resin 7 is applied by a dispenser 8 to a predetermined portion of the joint surface of the substrate 5 with the electronic component 1.
Is supplied. In the present embodiment, the electronic component 1 of the substrate 5
The epoxy resin 7 is supplied to the central portion of the substrate 5 including the electrodes 6 corresponding to the solder bumps 3 a located inside the electronic component 1 among the bonding surfaces of the epoxy resin 7. The epoxy resin 7 used here is a mixture of an acid anhydride and an amine-based curing agent as a curing agent in the main component of the epoxy resin, and the epoxy resin 7 is heated by the surroundings to cause the curing reaction to proceed.
It is a heat generating material that itself generates heat. In particular, by mixing an amine-based curing agent, the heat of reaction generated during curing is increased to enhance the temperature raising effect. As the amine curing agent, imidazole, amine adduct, aromatic amine, aliphatic amine and the like can be used.

【0012】次に電子部品1は基板5に搭載される。図
2(b)に示すように半田バンプ3aを電極6に位置合
わせし、電子部品1をエポキシ樹脂7が供給された基板
5に対して搭載する。この後、基板5はリフロー炉に送
られ、所定の温度に加熱される。これにより図2(c)
に示すように半田バンプ3aが溶融して接続用電極2と
電極6とを接合する半田接合部3bが形成され、電子部
品1は基板5に半田接合によって実装される。
Next, the electronic component 1 is mounted on the substrate 5. As shown in FIG. 2B, the solder bumps 3 a are aligned with the electrodes 6, and the electronic component 1 is mounted on the substrate 5 to which the epoxy resin 7 has been supplied. After that, the substrate 5 is sent to a reflow furnace and heated to a predetermined temperature. As a result, FIG. 2 (c)
As shown in FIG. 3, the solder bump 3a is melted to form a solder joint 3b for joining the connecting electrode 2 and the electrode 6, and the electronic component 1 is mounted on the substrate 5 by solder joining.

【0013】このリフローによる半田接合工程における
加熱温度について、図3を参照して説明する。図3は、
半田接合工程における半田接合部3bの水平方向の温度
分布を示したものである。図3(a)中で太線で示す温
度分布は、基板5上にエポキシ樹脂7を供給しない条件
における半田接合部の温度分布、すなわちリフロー炉内
で加熱されることにより、電子部品1の周囲から供給さ
れた熱のみによって半田接合部が到達する加熱温度を示
している。
The heating temperature in the solder joining process by this reflow will be described with reference to FIG. Figure 3
It shows the temperature distribution in the horizontal direction of the solder joint portion 3b in the solder joint process. The temperature distribution shown by the thick line in FIG. 3A is the temperature distribution of the solder joint portion under the condition that the epoxy resin 7 is not supplied onto the substrate 5, that is, the temperature distribution from the periphery of the electronic component 1 by being heated in the reflow furnace. It shows the heating temperature reached by the solder joint only by the supplied heat.

【0014】リフロー炉による加熱においては、半田バ
ンプ3aの材質の融点T1と電子部品1の耐熱温度T2
に応じた半田接合温度TSを目標として加熱温度が設定
される。このときリフロー炉内の高温雰囲気によって電
子部品1が周囲から加熱される際には、外側から電子部
品1の内側へ向かう伝熱に時間遅れが存在することに起
因して、図3(a)に示すように、電子部品1の内側部
分Aに、半田接合温度TSよりも部分的に温度差ΔT1
だけ低い低温部分が発生する。この低温部分では、半田
接合部の温度が融点T1を超えにくいので、半田付け不
良になりやすい。そこでリフロー炉の加熱温度を上げて
TS’まで加熱すると、今度は電子部品1自体の温度が
耐熱温度T2を超えてしまうという問題があった(図3
(a)中に波線で示す温度分布参照)。
In the heating by the reflow furnace, the melting point T1 of the material of the solder bump 3a and the heat resistant temperature T2 of the electronic component 1 are set.
The heating temperature is set with the solder joint temperature TS corresponding to the above as a target. At this time, when the electronic component 1 is heated from the surroundings by the high temperature atmosphere in the reflow furnace, there is a time delay in the heat transfer from the outer side to the inner side of the electronic component 1. As shown in FIG. 5, the temperature difference ΔT1 is partially present in the inner portion A of the electronic component 1 from the solder joint temperature TS.
Only low temperature part is generated. In this low temperature portion, the temperature of the solder joint portion does not easily exceed the melting point T1, so that soldering failure is likely to occur. Therefore, if the heating temperature of the reflow furnace is increased to TS ', the temperature of the electronic component 1 itself will exceed the heat resistant temperature T2 (FIG. 3).
(Refer to the temperature distribution indicated by the wavy line in (a)).

【0015】図3(b)は、基板5上に供給されたエポ
キシ樹脂7が、リフロー炉内での加熱時に熱硬化反応し
て発熱することによる温度上昇ΔTの分布を示してい
る。エポキシ樹脂7は、基板5上の電子部品1の内側部
分に対応した所定部位にのみ供給されていることから、
リフロー炉内におけるエポキシ樹脂7の発熱による昇温
範囲は電子部品1の内側部分に限定され、この範囲で最
大温度TAだけ昇温する。
FIG. 3 (b) shows the distribution of the temperature rise ΔT due to the epoxy resin 7 supplied on the substrate 5 generating heat by a thermosetting reaction during heating in the reflow furnace. Since the epoxy resin 7 is supplied only to the predetermined portion corresponding to the inner portion of the electronic component 1 on the substrate 5,
The temperature rise range due to the heat generation of the epoxy resin 7 in the reflow furnace is limited to the inner part of the electronic component 1, and the temperature rises by the maximum temperature TA in this range.

【0016】図3(c)は、図2(c)に示す半田接合
工程において実現される温度分布を示している。すなわ
ち、本実施の形態に示す電子部品実装方法の半田接合工
程においては、リフロー炉内の加熱雰囲気による昇温
と、エポキシ樹脂7が熱硬化反応して発熱することによ
る昇温とが重ね合わされた形で温度が上昇する。
FIG. 3 (c) shows the temperature distribution realized in the solder joining process shown in FIG. 2 (c). That is, in the solder joining step of the electronic component mounting method shown in the present embodiment, the temperature rise due to the heating atmosphere in the reflow furnace and the temperature rise due to the epoxy resin 7 being thermoset to generate heat are superposed. The temperature rises in shape.

【0017】このとき、伝熱遅れによって生じる温度差
ΔT1が、発熱による昇温の最大温度TAによって相殺
されるような条件を設定することにより、図3(c)に
示すように、電子部品1の全範囲にわたってほぼ均一な
昇温が実現される。このような条件設定は、実験的に温
度差ΔT1を計測して求め、このΔT1に対応するTA
を実現するためのエポキシ樹脂7の供給量や、エポキシ
樹脂7の硬化剤の配合割合などを実験的に求めることに
より可能となる。
At this time, by setting the condition that the temperature difference ΔT1 caused by the heat transfer delay is canceled by the maximum temperature TA of the temperature rise due to heat generation, as shown in FIG. A substantially uniform temperature rise is realized over the entire range of. Such condition setting is obtained by experimentally measuring the temperature difference ΔT1 and TA corresponding to this ΔT1 is obtained.
It is possible to experimentally determine the supply amount of the epoxy resin 7 and the mixing ratio of the curing agent of the epoxy resin 7 for realizing the above.

【0018】一般に鉛フリー型半田は融点温度が低い組
成のものほど接合後の信頼性が劣るという特性を有して
おり、必要とされる接合信頼性を確保するためには、高
融点型の組成を選択する必要がある。しかしながらこの
ような高融点型半田の融点温度は電子部品の耐熱温度に
近く、リフロー工程において耐熱温度に対して安全側に
十分な余裕が確保されるような加熱温度設定が難しい。
Generally, the lead-free solder has a characteristic that the lower the melting point temperature of the composition, the lower the reliability after bonding. Therefore, in order to secure the required bonding reliability, the high melting point type solder is used. It is necessary to select the composition. However, the melting point temperature of such high melting point type solder is close to the heat resistant temperature of the electronic component, and it is difficult to set the heating temperature in the reflow process so as to secure a sufficient margin on the safe side with respect to the heat resistant temperature.

【0019】すなわち、リフロー時の伝熱状態の悪い内
側部分の半田バンプも含めて全ての半田バンプを確実に
溶融させるようなリフロー温度を設定すると、電子部品
の熱ダメージを招くおそれがある。これに対し、熱ダメ
ージのない低めの温度に設定すると、内側部分の半田バ
ンプの溶融が良好に行われない結果接合不良を招きやす
い。
That is, if the reflow temperature is set so as to surely melt all the solder bumps including the solder bumps of the inner portion where the heat transfer state is poor during reflow, the electronic parts may be damaged by heat. On the other hand, if the temperature is set to a low temperature without heat damage, the solder bumps in the inner portion are not melted well, and as a result, defective bonding is likely to occur.

【0020】しかしながら本実施の形態においては、リ
フロー時の伝熱状態の悪い内側部分に、発熱材料として
のエポキシ樹脂7を予め供給するようにしていることか
ら、リフロー炉内の加熱雰囲気による加熱不足をエポキ
シ樹脂7の発熱によって補うことができる。したがって
適正な半田融点範囲の幅が狭く電子部品のすべての半田
バンプについて均一に半田接合することが難しい鉛フリ
ー型半田を用いる場合にあっても、内側部分に位置する
半田バンプ3aを確実に溶融させて、電子部品1の接続
用電極2を基板5に良好に導通させることができ、接合
信頼性を良好に確保することができる。
However, in the present embodiment, since the epoxy resin 7 as the heat generating material is previously supplied to the inner portion where the heat transfer state during reflow is poor, insufficient heating due to the heating atmosphere in the reflow furnace. Can be compensated by the heat generated by the epoxy resin 7. Therefore, even when using a lead-free type solder, which has a narrow width of the proper solder melting point range and is difficult to uniformly solder-bond to all the solder bumps of the electronic component, the solder bumps 3a located in the inner portion are surely melted. As a result, the connecting electrode 2 of the electronic component 1 can be satisfactorily conducted to the substrate 5, and good bonding reliability can be ensured.

【0021】本発明者らは、昇温作用の効果を確認する
ため、アミン系硬化剤であるイミダゾールの含有量が異
なる複数の発熱材料を用いて実験を行った。実験に使用
した電子部品は、BGA(Ball Grid Arr
ay)500バンプ(フルグリッド)であり、リフロー
条件は210℃,10秒以上として、上述した手順で電
子部品を基板に半田接合した。発熱材料の配合例と実験
結果を(表1)に示す。
In order to confirm the effect of the temperature raising action, the present inventors conducted an experiment using a plurality of exothermic materials having different contents of imidazole which is an amine-based curing agent. The electronic components used in the experiment are BGA (Ball Grid Arr).
ay) 500 bumps (full grid), the reflow condition was 210 ° C., 10 seconds or more, and the electronic component was solder-bonded to the substrate by the procedure described above. A compounding example of the exothermic material and an experimental result are shown in (Table 1).

【0022】[0022]

【表1】 [Table 1]

【0023】発熱材料Aは、発熱による昇温作用が不十
分であったため、全バンプ接合しなかった電子部品の割
合が5%であった。発熱材料B,Cは半田接合率が10
0%で良好な結果となったのに対し、発熱材料Cでは全
バンプ接合した電子部品が全くなかった。これは、アミ
ン系硬化剤の含有量が多くなるにつれて発熱による昇温
作用が大きくなる反面、硬化速度が速くなって溶融した
半田(バンプ)が基板の電極に濡れ拡がる前に発熱材料
が硬化して半田接合を阻害してしまったからである。し
たがって、アミン系硬化剤は、1.5〜5重量%の含有
が好ましい。
Since the heat-generating material A had an insufficient temperature raising effect due to heat generation, the proportion of all electronic components which were not bump-bonded was 5%. The heat generating materials B and C have a solder joint ratio of 10
While 0% gave a good result, the heat-generating material C had no bump-bonded electronic components at all. This is because as the content of the amine-based curing agent increases, the heating effect due to heat generation increases, while the curing speed increases and the heat-generating material cures before the molten solder (bumps) spreads over the substrate electrodes. This has hindered solder joining. Therefore, the content of the amine curing agent is preferably 1.5 to 5% by weight.

【0024】なお上記実施の形態では、電子部品に半田
バンプ3aを形成することにより半田を供給するように
しているが、半田バンプ形成以外の半田供給方法を用い
てもよく、また電子部品1に半田を供給する代わりに、
基板5の電極6上に印刷による方法や半田プリコートな
どによって半田を供給するようにしてもよい。
In the above embodiment, the solder is supplied by forming the solder bump 3a on the electronic component. However, a solder supplying method other than the solder bump formation may be used. Instead of supplying solder,
The solder may be supplied onto the electrodes 6 of the substrate 5 by a printing method or a solder precoating method.

【0025】また、上記実施の形態では発熱材料として
のエポキシ樹脂7を供給する基板5の所定部位として、
電子部品1の内側部分に対応した範囲を設定し、この部
分の加熱不足をエポキシ樹脂7の発熱によって補うよう
にしているが、これ以外の部位に発熱材料を供給するよ
うにしてもよい。たとえばQFPなど外側に突出したリ
ードを基板の電極に半田接合する電子部品実装におい
て、これらのリードまたはリードが接合される電極に、
予め発熱材料としてのエポキシ樹脂7を塗布するように
してもよい。
Further, in the above embodiment, the predetermined portion of the substrate 5 for supplying the epoxy resin 7 as the heat generating material is
Although the range corresponding to the inner part of the electronic component 1 is set and the insufficient heating of this part is compensated by the heat generation of the epoxy resin 7, the heat generating material may be supplied to other parts. For example, in the electronic component mounting in which leads protruding outward such as QFP are solder-bonded to the electrodes of the substrate, these leads or electrodes to which the leads are bonded are
You may make it apply the epoxy resin 7 as a heat generating material previously.

【0026】[0026]

【発明の効果】本発明によれば、電子部品または基板の
所定部位に加熱によって反応熱を発生する発熱材料を供
給しておき、電子部品が搭載された基板を加熱手段によ
って加熱する加熱工程において発熱材料が発熱すること
により、電子部品の中心部周辺などの昇温しにくい所定
部位を加熱手段のみによる昇温温度よりも高い温度まで
昇温させることができ、半田の溶融を確実にして半田接
合部の実装後の信頼性を確保することができる。
According to the present invention, in a heating step in which a heat generating material that generates reaction heat by heating is supplied to a predetermined portion of an electronic component or a substrate, and the substrate on which the electronic component is mounted is heated by a heating means. When the heat-generating material generates heat, it is possible to raise the temperature of a predetermined portion, such as the central portion of the electronic component, where it is difficult to raise the temperature, to a temperature higher than the temperature raised by only the heating means, and ensure the melting of the solder. It is possible to secure reliability after mounting the joint portion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態の電子部品実装方法の工
程説明図
FIG. 1 is a process explanatory diagram of an electronic component mounting method according to an embodiment of the present invention.

【図2】本発明の一実施の形態の電子部品実装方法の工
程説明図
FIG. 2 is a process explanatory diagram of an electronic component mounting method according to an embodiment of the present invention.

【図3】本発明の一実施の形態の電子部品実装の半田接
合工程における加熱温度を示すグラフ
FIG. 3 is a graph showing a heating temperature in a solder joining process for mounting an electronic component according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 電子部品 2 電極 3 半田ボール 3a 半田バンプ 5 基板 6 電極 7 エポキシ樹脂 1 electronic components 2 electrodes 3 solder balls 3a Solder bump 5 substrates 6 electrodes 7 Epoxy resin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前田 憲 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 吉永 誠一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5E319 AA03 AC01 CC33 GG03    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Ken Maeda             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Seiichi Yoshinaga             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 5E319 AA03 AC01 CC33 GG03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】電子部品の接続用電極を基板の電極に半田
接合することにより前記接続用電極と基板の電極とを導
通させてこの電子部品を基板に実装する電子部品実装方
法であって、前記電子部品または基板に予め半田を供給
する半田供給工程と、半田が供給された電子部品または
基板の所定部位に加熱によって反応熱を発生する発熱材
料を供給する発熱材料供給工程と、この電子部品を基板
に搭載する搭載工程と、電子部品が搭載された基板を加
熱手段によって加熱する加熱工程とを含み、前記加熱工
程において前記発熱材料が発熱することにより前記所定
部位を前記加熱手段のみによる昇温温度よりも高い温度
まで昇温させることを特徴とする電子部品実装方法。
1. An electronic component mounting method for mounting an electronic component on a substrate by connecting the connecting electrode of the electronic component to an electrode on the substrate by soldering to connect the connecting electrode and the electrode on the substrate. A solder supplying step of supplying solder to the electronic component or the substrate in advance; a heat generating material supplying step of supplying a heat generating material that generates reaction heat by heating to a predetermined portion of the electronic component or the substrate to which the solder has been supplied; Is mounted on the substrate, and a heating process for heating the substrate on which the electronic component is mounted is heated by the heating means. In the heating process, the heat generating material generates heat to raise the predetermined portion only by the heating means. An electronic component mounting method, which comprises raising the temperature to a temperature higher than the temperature.
【請求項2】前記発熱材料は、酸無水物およびアミン系
硬化剤を含む硬化剤を混入したエポキシ樹脂であり、前
記加熱工程の後に熱硬化して前記電子部品と基板との間
を封止する封止樹脂を兼ねることを特徴とする電子部品
実装方法。
2. The heat generating material is an epoxy resin mixed with a curing agent containing an acid anhydride and an amine type curing agent, and is thermally cured after the heating step to seal between the electronic component and the substrate. An electronic component mounting method characterized in that it also serves as a sealing resin.
【請求項3】電子部品の接続用電極を基板の電極に半田
接合する際に電子部品と基板との間に存在し、半田接合
時の加熱によって反応熱を発生する発熱材料であって、
酸無水物およびアミン系硬化剤を含む硬化剤を混入した
エポキシ樹脂より成り、前記アミン系硬化剤の含有量が
1.5〜5重量%であることを特徴とする発熱材料。
3. A heat-generating material which is present between an electronic component and a substrate when soldering an electrode for connecting an electronic component to an electrode of a substrate, and which generates reaction heat by heating during soldering,
A heat generating material comprising an epoxy resin mixed with a curing agent containing an acid anhydride and an amine curing agent, wherein the content of the amine curing agent is 1.5 to 5% by weight.
JP2001291619A 2001-09-25 2001-09-25 Electronic component mounting method and heat generating material Pending JP2003101210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001291619A JP2003101210A (en) 2001-09-25 2001-09-25 Electronic component mounting method and heat generating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001291619A JP2003101210A (en) 2001-09-25 2001-09-25 Electronic component mounting method and heat generating material

Publications (1)

Publication Number Publication Date
JP2003101210A true JP2003101210A (en) 2003-04-04

Family

ID=19113731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001291619A Pending JP2003101210A (en) 2001-09-25 2001-09-25 Electronic component mounting method and heat generating material

Country Status (1)

Country Link
JP (1) JP2003101210A (en)

Similar Documents

Publication Publication Date Title
US6402013B2 (en) Thermosetting soldering flux and soldering process
JPH03166739A (en) Method for soldering
CN104540333B (en) The assembly technique of 3D Plus packagings
JP2000114301A (en) Formation of solder bump and method for forming the solder bump
EP1231016B1 (en) Soldering flux, solder paste and method of soldering
JPH11214441A (en) Mounting method for electronic part with bump
JP2001332583A (en) Method of mounting semiconductor chip
KR100771644B1 (en) Method of manufacturing an electronic component
JP3570229B2 (en) Solder joining method and thermosetting resin for solder joining
JP4134976B2 (en) Solder bonding method
JP2002232123A (en) Manufacturing method of composite circuit substrate
JP4200273B2 (en) Mounting board manufacturing method
JP5370300B2 (en) Electronic component joining method
JP2003101210A (en) Electronic component mounting method and heat generating material
JP2002176248A (en) Bonding material of electronic device and method and structure for mounting electronic device
JP3890814B2 (en) Electronic component mounting method
JP3266414B2 (en) Solder supply method
JP3417281B2 (en) How to mount electronic components with bumps
JP4421813B2 (en) Electronic component bonding material and electronic component mounting method
JP3722096B2 (en) Mounting board manufacturing method
JP5370296B2 (en) Electronic component joining method
JPH05259631A (en) Surface mounting of printed wiring board
KR102004825B1 (en) Non-conductive paste for chip bonding using the solder bump and method of chip bonding using the same
JPH11238961A (en) Soldering method for electronic component
JP2002141652A (en) Electronic component, and method and structure for mounting the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061107