JP2003100921A - Container for optical semiconductor element - Google Patents

Container for optical semiconductor element

Info

Publication number
JP2003100921A
JP2003100921A JP2001292022A JP2001292022A JP2003100921A JP 2003100921 A JP2003100921 A JP 2003100921A JP 2001292022 A JP2001292022 A JP 2001292022A JP 2001292022 A JP2001292022 A JP 2001292022A JP 2003100921 A JP2003100921 A JP 2003100921A
Authority
JP
Japan
Prior art keywords
optical semiconductor
semiconductor element
weight
metal frame
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001292022A
Other languages
Japanese (ja)
Inventor
Yoshiaki Ito
吉明 伊藤
Sadakatsu Yoshida
定功 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001292022A priority Critical patent/JP2003100921A/en
Publication of JP2003100921A publication Critical patent/JP2003100921A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that stress being applied to a translucent cover after sealing increases as a container for an optical semiconductor element, e.g. an imaging element, decreases in size and thickness and the cover is removed from the container. SOLUTION: The container for an optical semiconductor element comprises an insulating basic body 1 having a part 1a for mounting an optical semiconductor element S on the upper surface thereof, a metal frame 2 bonded to the upper surface of the insulating basic body 1 through a sealant 7 while surrounding the mounting part 1a and forming an inner cavity for accommodating the optical semiconductor element S, and a translucent cover 3 bonded to the upper surface of the metal frame 2 through a glass bonding material 8 and accommodating the optical semiconductor element S hermetically in the cavity wherein an active metal solder layer 9 containing at least one kind of titanium, zirconium and hafnium is formed on the surface of the metal frame 2 being bonded to the glass bonding material 8.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は光半導体素子を気密
に封止して収納するための光半導体素子収納用容器に関
し、特に封止材に低融点合金を用いて封止を行う光半導
体素子収納用容器に関する。 【0002】 【従来の技術】従来、撮像素子等の光半導体素子を収容
する光半導体素子収納用容器は、例えば酸化アルミニウ
ム質焼結体等の電気絶縁材料から成り、その上面の略中
央部に光半導体素子を収容するための凹部およびその底
面から下面にかけて導出されたタングステンやモリブデ
ン等の高融点金属から成る複数個のメタライズ配線層を
有する絶縁基体と、この絶縁基体の上面に封止材を介し
て接合され、前記凹部に光半導体素子を気密に収容する
透光性蓋体とから構成されている。 【0003】そして、絶縁基体の凹部底面に光半導体素
子を導電性樹脂等を介して接着固定するとともに光半導
体素子の各電極をボンディングワイヤを介してメタライ
ズ配線層に電気的に接続し、しかる後、絶縁基体の上面
に透光性蓋体を凹部を塞ぐように封止材を介して接合さ
せ、絶縁基体と透光性蓋体とから成る容器内部に光半導
体素子を気密に収容することによって最終製品としての
光半導体装置と成る。 【0004】なお、絶縁基体に透光性蓋体を接合する封
止材としては、例えば酸化鉛56〜66重量%、酸化ホウ素
4〜14重量%、酸化珪素1〜6重量%、酸化亜鉛0.5〜
3重量%および酸化ビスマス0.5〜5重量%を含むガラ
ス成分に、フィラーとしてコージェライト系化合物を10
〜20重量%添加した鉛系のガラスが使用されている。ま
た、透光性蓋体は硼珪酸ガラス等の板材から成り、外部
からの画像を集光し撮像素子に導く働きをする。 【0005】しかしながら、この従来の光半導体素子収
納用容器においては、絶縁基体を形成する酸化アルミニ
ウム質焼結体等のセラミックスが電磁波を透過し易く、
そのため外部電気回路基板等に他の電子部品とともに実
装した場合、隣接する電子部品間に電磁波の相互干渉が
起こり光半導体装置が誤作動してしまうという問題点を
有していた。 【0006】また、この従来の光半導体素子収納用容器
においては、絶縁基体に透光性蓋体を接合させる封止材
の軟化溶融温度が400℃程度と高温であること、および
近時の光半導体素子は高密度化・高集積化に伴って耐熱
性が低下してきたこと等から、絶縁基体と透光性蓋体と
を封止材を介して接合し、絶縁基体と透光性蓋体とから
成る容器内部に光半導体素子を気密に収容した場合、封
止材を溶融させる熱が内部に収容する光半導体素子に作
用して光半導体素子の特性に劣化を招来させ、光半導体
装置を正常に作動させることができないという問題点を
有していた。 【0007】さらに、近年地球環境保護運動の高まりの
中で封止材に含まれる酸化鉛は環境負荷物質に指定され
ており、例えば酸化鉛を含む電子装置が屋外に廃棄・放
置され風雨に曝された場合、環境中に鉛が溶けだし環境
を汚染する可能性があり、人体に対して有害である酸化
鉛を用いない封止材の開発が要求されるようになってき
た。 【0008】このような問題点を解決するために、光半
導体素子収納用容器を、上面の略中央部に光半導体素子
の搭載部およびその周辺から下面にかけて導出されたタ
ングステンやモリブデン等の高融点金属から成る複数個
のメタライズ配線層を有する略平坦状の絶縁基体と、こ
の上面に封止材を介して接合され、搭載部を取り囲むと
ともに内側に光半導体素子を収容する空所を形成するた
めの金属枠体と、この金属枠体の上面にガラス接合材を
介して接合される透光性蓋体とで構成し、容器を金属枠
体でシールドして電磁波を遮断することが行なわれてい
る。 【0009】また、ガラスの低融点化および非鉛化を目
的として、封止材やガラス接合材に銀燐酸系ガラスや錫
燐酸系ガラスを主成分とする低融点ガラスを用いること
が検討されている。 【0010】 【発明が解決しようとする課題】しかしながら、近年、
CCD・CMOS等の撮像素子が携帯電子機器へ搭載さ
れるにつれ光半導体素子収納用容器の小型化が急速に進
んでおり、絶縁基体と金属枠体との接合面積および金属
枠体と透光性蓋体との接合面積が小さいものとなってき
ていること、PCボード等の外部電気回路基板への実装
後における曲げ試験等において金属枠体と透光性蓋体と
の接合面に応力が集中し易いこと、および、透光性蓋体
とガラス接合材の接合強度に較べ金属枠体とガラス接合
材との接合強度が不十分なこと等から、携帯電子機器の
落下等の衝撃により容器内部の気密封止が破れ、特に金
属枠体と、透光性蓋体を接合するガラス接合材との接合
部分で気密封止が破れ、内部に収容する撮像素子等の光
半導体素子の特性が劣化してしまう、あるいは、透光性
蓋体が金属枠体から剥がれてしまい撮像に支障をきたし
てしまうという問題を誘発していた。 【0011】本発明は上記問題点に鑑み案出されたもの
であり、その目的は小型で気密信頼性に優れ、また、電
磁波を良好に遮断するとともに容器内部に光半導体素子
を収容する際に光半導体素子に特性劣化を生じさせるこ
ともなく、さらに、鉛を含有しない地球環境に優しい小
型の光半導体素子収納用容器を提供することにある。 【0012】 【課題を解決するための手段】本発明の光半導体素子収
納用容器は、上面に光半導体素子の搭載部を有する絶縁
基体と、この絶縁基体の上面に封止材を介して接合さ
れ、搭載部を取り囲むとともに内側に光半導体素子を収
容する空所を形成するための金属枠体と、この金属枠体
の上面にガラス接合材を介して接合され、空所に光半導
体素子を気密に収容する透光性蓋体とから成る光半導体
素子収納用容器であって、金属枠体はガラス接合材との
接合面にチタン、ジルコニウム、ハフニウムの一種以上
を含む活性金属ろう材層が形成されており、ガラス接合
材は五酸化燐30〜40重量%、一酸化錫47〜60重量%、酸
化亜鉛1〜6重量%、酸化アルミニウム1〜4重量%お
よび酸化珪素1〜3重量%を含むガラス成分にフィラー
としてコージェライト系化合物を外添加で16〜45重量%
添加したものから成り、封止材は錫50〜75重量%、アン
チモン10〜40重量%、銅1〜15重量%およびインジウム
1〜5重量%を含有してなるものとしたことを特徴とす
るものである。 【0013】本発明の光半導体素子収納用容器によれ
ば、金属枠体のガラス接合材との接合面にチタン、ジル
コニウム、ハフニウムの一種以上を含む活性金属ろう材
層を形成したことから、金属枠体のガラス接合材との接
合面に活性金属の緻密な酸化物層が形成され、金属枠体
とガラス接合材とを強固に接合することが可能となり、
その結果、携帯電子機器の落下等の衝撃においても、金
属枠体と透光性蓋体を接合するガラス接合材との接合部
分で気密封止が破れることはなく、気密信頼性が極めて
高い光半導体素子収納容器とすることができる。 【0014】また、本発明の光半導体素子収納用容器に
よれば、絶縁基体と金属枠体とを接合する封止材を錫50
〜75重量%、アンチモン10〜40重量%、銅1〜15重量%
およびインジウム1〜5重量%を含む合金から成るもの
としたことから、封止温度を350℃以下とすることがで
き、その結果、絶縁基体と金属枠体とを封止材を介して
接合させ、絶縁基体と金属枠体と透光性蓋体とから成る
容器内部に光半導体素子を気密に収容する際、封止材を
溶融させる熱が内部に収容する光半導体素子に作用して
も光半導体素子の特性に劣化を招来することはなく、光
半導体装置を長期間にわたり正常、かつ安定に作動させ
ることが可能となる。さらに、封止材が導電性であるこ
とから、金属枠体を絶縁基体に形成した接地用配線層に
封止材を介して接続することにより、容器内部に収容さ
れる光半導体素子が金属枠体で良好にシールドされるこ
ととなり、その結果、外部ノイズが金属枠体を介して容
器内部に入り込むのを有効に防止することができ、光半
導体素子を長期間にわたり正常、かつ安定に作動させる
ことが可能となる。 【0015】 【発明の実施の形態】次に、本発明を添付の図面に基づ
き詳細に説明する。 【0016】図1は、本発明の光半導体素子収納用容器
の実施の形態の一例を示す断面図である。この図におい
て1は絶縁基体、2は金属枠体、3は透光性蓋体であ
り、主にこれらで撮像素子等の光半導体素子Sを収容す
るための容器4が構成される。 【0017】絶縁基体1は、その形状が略長方形で、上
面に光半導体素子Sの搭載部1aを有し、この搭載部1
aには、光半導体素子Sが導電性エポキシ樹脂等から成
る導電性樹脂Jを介して接着固定される。 【0018】絶縁基体1は、酸化アルミニウム質焼結体
やムライト質焼結体・窒化アルミニウム質焼結体・窒化
珪素質焼結体・炭化珪素質焼結体等の電気絶縁材料から
成り、例えば酸化アルミニウム質焼結体から成る場合で
あれば、酸化アルミニウム・酸化珪素・酸化マグネシウ
ム・酸化カルシウム等の原料粉末に適当な有機バインダ
・溶剤・可塑剤・分散剤等を添加混合して泥漿物を作
り、この泥漿物を従来周知のドクターブレード法やカレ
ンダーロール法等のシート成形法を採用しシート状に成
形してセラミックグリーンシート(セラミック生シー
ト)を得、しかる後、それらセラミックグリーンシート
に適当な打ち抜き加工を施すとともにこれを複数枚積層
し、約1600℃の高温で焼成することによって製作され
る。 【0019】また、絶縁基体1には搭載部1a近傍から
底面にかけて複数のメタライズ配線層5が被着形成され
ている。そして、このメタライズ配線層5の搭載部1a
の近傍に位置する部位には光半導体素子Sの各電極がボ
ンディングワイヤ6を介して電気的に接続され、また、
絶縁基体1の底面に導出された部位には外部電気回路の
配線導体(図示せず)が半田等のロウ材を介して取着さ
れる。 【0020】このようなメタライズ配線層5は、タング
ステン・モリブデン・マンガン等の高融点金属粉末に適
当な有機溶剤・溶媒・可塑剤等を添加混合して得た金属
ペーストを従来周知のスクリーン印刷法等の厚膜手法を
採用して絶縁基体1となるセラミックグリーンシートに
あらかじめ印刷塗布しておき、これをセラミックグリー
ンシートと同時に焼成することによって絶縁基体1の上
面から底面にかけて所定パターンに被着形成される。な
お、メタライズ配線層5はその表面にニッケル・金等の
良導電性で耐蝕性およびろう材との濡れ性が良好な金属
をめっき法により1〜20μmの厚みに被着させておく
と、メタライズ配線層5の酸化腐蝕を有効に防止するこ
とができるとともにメタライズ配線層5とボンディング
ワイヤ6との接続およびメタライズ配線層5と外部電気
回路の配線導体とのろう付けを極めて強固となすことが
できる。 【0021】そして、絶縁基体1の上面には金属枠体2
が搭載部1aを取り囲んで封止材7を介して接合され、
さらに、金属枠体2の上面には透光性蓋体3が金属枠体
2の開口Kを塞ぐようにガラス接合材8を介して接合さ
れ、これによって光半導体素子Sを気密に収容する容器
4と成る。 【0022】なお、絶縁基体1への金属枠体2の接合
は、金属枠体2へ透光性蓋体3を接合した後に行なわれ
る。これは、後述するようにガラス接合材8の軟化溶融
温度が封止材7の軟化溶融温度よりも高く、絶縁基体1
への金属枠体2の接合を先に行なうと、金属枠体2へ透
光性板3を接合する際に封止材7が軟化溶融してしま
い、その結果、絶縁基体1と金属枠体2との接合が破れ
てしまうことによるものである。 【0023】金属枠体2は、鉄−ニッケル−コバルト合
金や鉄−ニッケル合金等の金属材料から成り、例えば鉄
−ニッケル−コバルト合金のインゴット(塊)に圧延加
工法や打ち抜き加工法等の従来周知の金属加工法を施す
ことによって略中央部に開口Kを有する枠状に成形され
る。 【0024】また、透光性蓋体3は、硼珪酸ガラスや水
晶等の透光性の板材から成り、外部からの画像を集光し
光半導体素子Sに導く機能を有し、例えば透光性蓋体3
が硼珪酸ガラスから成る場合であれば、透光性蓋体3と
成る硼珪酸ガラスの母基板をダイシング法等の従来周知
の切断加工を施すことにより、金属枠体2の開口Kの面
積よりも大きな面積に形成される。 【0025】金属枠体2は、その開口K周辺のガラス接
合材8との接合面にチタン、ジルコニウム、ハフニウム
の一種以上を含む活性金属ろう材層9が形成されてお
り、金属枠体2とガラス接合材8とは活性金属ろう材層
9を介して強固に接合している。そして、本発明の光半
導体素子収納用容器においては、このことが重要であ
る。 【0026】本発明の光半導体素子収納用容器によれ
ば、金属枠体2のガラス接合材8との接合面にチタン、
ジルコニウム、ハフニウムの一種以上を含む活性金属ろ
う材層9を形成したことから、金属枠体2のガラス接合
材8との接合面に活性金属の緻密な酸化物層が形成され
金属枠体2とガラス接合材8との強固な接合が可能とな
り、光半導体素子収納用容器が携帯電子機器等に搭載さ
れ落下等の衝撃を受けたとしても、金属枠体2と透光性
蓋体3との接合が破壊されることはなく、その結果、容
器4の気密封止が破れ内部に収容する撮像素子等の光半
導体素子Sの特性が劣化してしまったり、あるいは、透
光性蓋体3が金属枠体2から剥がれて撮像に支障をきた
してしまうことはない。 【0027】このような活性金属ろう材層9は、金属枠
体2のガラス接合材8との接合面に、例えばAg−Cu
共晶ろう材(Ag72重量%、Cu28重量%)と、これに
対して2〜4重量%のチタン、ジルコニウム、ハフニウ
ムのいずれか一種以上の活性金属とから成るペースト状
のろう材をスクリーン印刷法やカレンダーロール法等に
より70μm程度の厚さに印刷塗布するとともに乾燥し、
次に、還元雰囲気の熱処理炉にて約800℃の温度で60分
間加熱することにより層厚が55μm程度に被着形成され
る。なお、その際に活性金属ろう材層9の表面に膜厚が
3μm程度の活性金属の水素化物層が形成される。 【0028】そして、金属枠体2に被着形成した活性金
属ろう材層9上に、銀−燐酸系ガラスと有機樹脂とから
成るバインダーを調製したペースト状のガラス材料をろ
う材と同様にスクリーン印刷法やカレンダーロール法等
により印刷塗布し、さらに、透光性蓋体3を金属枠体2
の開口Kを塞ぐように載置するとともに加圧し、しかる
後、酸化雰囲気の熱処理炉にて約500℃の温度で10分間
程度加熱することにより、活性金属の緻密な酸化物層が
活性金属ろう材9とガラス接合材8との間に形成される
とともに透光性蓋体3が金属枠体2に接合される。 【0029】なお、チタン、ジルコニウム、ハフニウム
のいずれか一種以上の活性金属の含有量が2重量%未満
であると、活性金属ろう材層9の量が不十分となり、ガ
ラス接合材8との強固な接合を得ることが困難と成る傾
向にあり、また4重量%を超えると、活性金属ろう材層
9が脆くなり、接合部の強度が低下してしまう傾向があ
る。従って、チタン、ジルコニウム、ハフニウムのいず
れか一種以上の活性金属の含有量は、2〜4重量%とす
ることが好ましい。 【0030】また、焼結後の活性金属ろう材層9は、そ
の厚みが10〜70μmであることが好ましく、10μm未満
では接合部の活性金属の緻密な酸化物層の量が不十分と
なり、ガラス接合材8との強固な接合を得ることが困難
と成る傾向にあり、他方、70μmを越えると活性金属ろ
う材層9とガラス接合材8の熱膨脹係数の相異により両
者の接合部の強度が低下してしまう傾向がある。従っ
て、焼結後の活性金属ろう材層9は、その厚みが10〜70
μmであることが好ましい。 【0031】なお、ガラス接合材8は五酸化燐30〜40重
量%、一酸化錫47〜60重量%、酸化亜鉛1〜6重量%、
酸化アルミニウム1〜4重量%および酸化珪素1〜3重
量%を含むガラス成分にフィラーとしてコージェライト
系化合物を外添加で16〜45重量%添加したものから成る
ことから、その軟化溶融温度が約400℃で、後述する絶
縁基体1と、透光性蓋体3をガラス接合材8を介して接
合した金属性枠体2とを接合する封止材7の軟化溶融温
度約350℃に較べて高温であり、絶縁基体1と、透光性
蓋体3をガラス接合材8を介して接合した金属枠体2と
を封止材7を介して接合し、絶縁基体1と金属枠体2と
透光性蓋体3とから成る容器4の内部に光半導体素子S
を気密に収容したとしても、ガラス接合材8は封止材7
の軟化溶融温度で軟化溶融することはなく、その結果、
金属枠体2と透光性蓋体3との気密封止が破れるという
ことはない。また、ガラス接合材8は鉛を含まないこと
から、地球環境に負荷を与えることもない。 【0032】ガラス接合材8は、五酸化燐が30重量%未
満であるとガラスの軟化溶融温度が高くなり、透光性蓋
体3の低温での金属枠体2への接合が困難となる傾向が
あり、また40重量%を超えるとガラス接合材8の耐薬品
性が低下し、容器4の気密封止の信頼性が大きく低下す
る傾向にある。従って、五酸化燐はその量が30〜40重量
%の範囲に特定される。 【0033】また、一酸化錫は、その量が47重量%未満
であるとガラスの軟化溶融温度が高くなり、透光性蓋体
3の低温での金属枠体2への接合が困難となる傾向があ
り、60重量%を超えるとガラス接合材8の耐薬品性が低
下し、容器4の気密封止の信頼性が大きく低下する傾向
にある。従って、一酸化錫はその量が47〜60重量%の範
囲に特定される。 【0034】さらに、酸化亜鉛は、その量が1重量%未
満であるとガラスの軟化溶融温度が高くなり、透光性蓋
体3の低温での金属枠体2への接合が困難となる傾向が
あり、6重量%を超えるとガラス接合材8の結晶化が進
んで流動性が低下し、容器4の気密封止が困難となる傾
向がある。従って、酸化亜鉛はその量が1〜6重量%の
範囲に特定される。 【0035】酸化アルミニウムは、その量が1重量%未
満であるとガラス接合材8の耐湿性が低下し、容器4の
気密封止の信頼性が低下する傾向にあり、4重量%を超
えるとガラス接合材8の軟化溶融温度が高くなり、透光
性蓋体3の低温での金属枠体2への接合が困難となる傾
向がある。従って、酸化アルミニウムはその量が1〜4
重量%の範囲に特定される。 【0036】酸化珪素は、その量が1重量%未満である
とガラス接合材8の熱膨張係数が大きくなって金属枠体
2および透光性蓋体3の熱膨張係数と大きく相違して、
容器4の気密封止の信頼性が低下してしまう傾向があ
り、3重量%を超えるとガラス接合材8の軟化溶融温度
が高くなり、透光性蓋体3の低温での金属枠体2への接
合が困難となる傾向がある。従って、酸化珪素はその量
が1〜3重量%の範囲に特定される。 【0037】さらに、フィラーとして添加されるコージ
ェライト系化合物は、その量が16重量%未満であるとガ
ラス接合材8の強度が低下し、容器4の気密封止の信頼
性が大きく低下する傾向があり、また、45重量%を超え
るとガラス接合材8の熱膨張係数が小さくなって金属枠
体2および透光性蓋体3の熱膨張係数と大きく相違し
て、容器4の気密封止の信頼性が低下してしまう傾向が
る。従って、コージェライト系化合物はその量が16〜45
重量%の範囲に特定される。 【0038】また、絶縁基体1と金属枠体2との接合
は、金属枠体2に透光性板3を接合した後、封止材7を
金属枠体2の接合領域に従来周知のスクリーン印刷法等
を採用して予め被着させておき、これを封止材7の軟化
溶融温度で焼成して金属枠体2の接合領域に溶融被着
し、次に、絶縁基体1の搭載部1aに光半導体素子Sを
導電性樹脂Jを介して接着固定するとともに光半導体素
子Sの各電極をボンディングワイヤ6介してメタライズ
配線層5に電気的に接続し、さらに、絶縁基体1に金属
枠体2を両者の接合面が重なるように載置し、しかる
後、封止材7の軟化溶融温度で適正な荷重を掛けながら
加熱することによって行なわれる。 【0039】なお、本発明の光半導体素子収納用容器に
おいては、絶縁基体1と金属枠体2とを接合する封止材
7を、錫50〜75重量%、アンチモン10〜40重量%、銅1
〜15重量%およびインジウム1〜5重量%を含有するも
のとしたことから、その軟化溶融点を350℃以下と低く
することができ、絶縁基体1と金属枠体2とを封止材7
を介して接合させ、絶縁基体1と金属枠体2と透光性蓋
体3とから成る容器4内部に光半導体素子Sを気密に収
容する際、封止材7を溶融させる熱が内部に収容する光
半導体素子Sに作用しても光半導体素子Sの特性に劣化
を招来することはなく、その結果、光半導体素子Sを長
期間にわたり正常、かつ安定に作動させることが可能と
なる。 【0040】なお、封止材7は、錫の量が50重量%未満
であると封止材7の軟化溶融温度が高くなり、低温での
容器4の気密封止が困難となる傾向があり、他方、75重
量%を超えると封止材7の機械的強度が低下し容器4の
気密封止の信頼性が劣化する傾向がある。従って、封止
材7に含有される錫の量は50〜75重量%の範囲に特定さ
れる。 【0041】また、アンチモンの量が10重量%未満であ
ると封止材7の軟化溶融温度が240℃以下と低下して、
リフロー耐性が大幅に劣化してしまう傾向があり、他
方、40重量%を超えると軟化溶融温度が高くなって、低
温での容器4の気密封止が困難となる傾向がある。従っ
て、封止材7に含有されるアンチモンの量は10〜40重量
%の範図に特定される。 【0042】さらに、封止材7に含有される銅は、絶縁
基体1に被着させたメタライズ配線層5に対する封止材
7の濡れ性を改善するとともにその接合強度を向上させ
るための成分であり、その量が1重量%未満であると封
止材7と絶縁基体1に被着させたメタライズ配線層5と
の接合強度が弱くなって容器4の気密封止の信頼性が大
幅に劣化してしまう傾向があり、他方、15重量%を超え
ると金属枠体2との濡れ性が悪くなり、絶縁基体1上に
金属枠体2を封止材7を介して強固に接合させることが
困難となって容器4の気密封止の信頼性が大幅に劣化し
てしまう傾向がある。従って、封止材7に含有される銅
の量は1〜15重量%の範図に特定される。 【0043】また、封止材7に含有されるインジウムは
絶縁基体1に被着させたメタライズ配線層5に対する封
止材7の濡れ性を改善するための成分であり、インジウ
ムの量が1重量%未満であると封止材7と絶縁基体1に
被着させたメタライズ配線層5との接合強度が弱くなっ
て容器4の気密封止の信頼性が大幅に劣化してしまう傾
向があり、他方、5重量%を超えると絶縁基体1上面の
メタライズ配線層5に層着させた金と機械的強度の弱い
金属間化合物を作り容器4の気密封止の信頼性が劣化し
てしまう傾向がある。従って、封止材7に含有させるイ
ンジウムの量は1〜5重量%の範囲に特定される。 【0044】なお、封止材7は錫を主成分とする合金か
ら成り、耐湿性に優れていることから大気中に含まれる
水分が封止材7を介して容器4の内部に浸入しようとし
てもその水分の浸入は有効に阻止され、その結果、容器
4の内部に収容する光半導体素子Sの表面電極が酸化腐
蝕されることは殆どなく、光半導体素子Sを正常に作動
させることも可能となる。 【0045】また、本発明においては、封止材7が鉛を
含有していないことから、地球環境に負荷を与えること
もない。 【0046】さらに、本発明においては、封止材7が導
電性であることから、金属枠体2を絶縁基体1に形成し
たメタライズ配線層5の一部から成る接地用配線層5a
に封止材7を介して接続することにより、容器4内部に
収容される光半導体素子Sが金属枠体2で良好にシール
ドされることとなり、その結果、外部ノイズが金属枠体
2を介して容器4内部に入り込むのを有効に防止するこ
とができ、光半導体素子Sを長期間にわたり正常、かつ
安定に作動させることが可能となる。 【0047】かくして本発明の光半導体素子収納用容器
によれば、絶縁基体1の搭載部1aに光半導体素子Sを
導電性エポキシ樹脂等から成る導電性樹脂Jを介して接
着固定するとともに光半導体素子Sの各電極をボンディ
ングワイヤ6を介してメタライズ配線層5に電気的に接
続させ、しかる後、絶縁基体1の搭載部1aを覆うよう
に、上面に透光性蓋体3を接合させた金属枠体2を封止
材7を介して接合させ、絶縁基体1と金属枠体2と透光
性蓋体3とから成る容器4の内部に光半導体素子Sを気
密に収容することによって最終製品としての光半導体装
置が完成する。 【0048】なお、本発明は上述の実施の形態の一例に
限定されるものではなく、本発明の要旨を逸脱しない範
囲であれば種々の変更は可能である。例えば、金属枠体
2が図2に断面図で示すような凹形状の底面部に開口K
を有する形状のものであってもよい。さらに、図3に断
面図で示すように、透光性蓋体3を凹形状の底面部に開
口Kを有する金属枠体2の容器4内部側に接合してもよ
い。 【0049】 【発明の効果】本発明の光半導体素子収納用容器によれ
ば、金属枠体のガラス接合材との接合面にチタン、ジル
コニウム、ハフニウムの一種以上を含む活性金属ろう材
層を形成したことから、金属枠体のガラス接合材との接
合面に活性金属の緻密な酸化物層が形成され、金属枠体
とガラス接合材とを強固に接合することが可能となり、
その結果、携帯電子機器の落下等の衝撃においても金属
枠体と透光性蓋体を接合するガラス接合材との接合部分
で気密封止が破れることはなく、気密信頼性が極めて高
い光半導体素子収納容器とすることができる。 【0050】また、本発明の光半導体素子収納用容器に
よれば、絶縁基体と金属枠体とを接合する封止材を錫50
〜75重量%、アンチモン10〜40重量%、銅1〜15重量%
およびインジウム1〜5重量%を含む合金から成るもの
としたことから、封止温度を350℃以下とすることがで
き、その結果、絶縁基体と金属枠体とを封止材を介して
接合させ、絶縁基体と金属枠体と透光性蓋体とから成る
容器内部に光半導体素子を気密に収容する際、封止材を
溶融させる熱が内部に収容する光半導体素子に作用して
も光半導体素子の特性に劣化を招来することはなく、光
半導体装置を長期間にわたり正常、かつ安定に作動させ
ることが可能となる。さらに、封止材が導電性であるこ
とから、金属枠体を絶縁基体に形成した接地用配線層に
封止材介して接続することにより、容器内部に収容され
る光半導体素子が金属枠体で良好にシールドされること
となり、その結果、外部ノイズが金属枠体を介して容器
内部に入り込むのを有効に防止することができ、光半導
体素子を長期間にわたり正常、かつ安定に作動させるこ
とが可能となる。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention
Optical semiconductor element storage container for sealing and storing
In particular, a light semiconductor that uses a low-melting-point alloy for sealing
The present invention relates to a body element storage container. 2. Description of the Related Art Conventionally, an optical semiconductor device such as an image pickup device is housed.
The optical semiconductor element storage container to be used is, for example, aluminum oxide.
Made of an electrically insulating material such as
A concave portion for accommodating an optical semiconductor device in the center and its bottom
Tungsten or molybdenum derived from the surface to the lower surface
Metallization wiring layers made of high melting point metal such as
Having an insulating base and a sealing material on the upper surface of the insulating base.
And the optical semiconductor element is hermetically housed in the recess.
And a translucent lid. An optical semiconductor element is provided on the bottom of the concave portion of the insulating substrate.
The semiconductor is glued and fixed via conductive resin, etc.
Metal electrodes are connected via bonding wires
Electrical connection to the wiring layer, and then the upper surface of the insulating base
The light-transmitting lid is joined via a sealing material so as to close the recess.
Light semi-conductive inside the container consisting of the insulating base and the translucent lid.
The airtight housing of the body element
It becomes an optical semiconductor device. [0004] A seal for bonding a light-transmitting lid to an insulating base is provided.
As a stop material, for example, lead oxide 56 to 66% by weight, boron oxide
4-14% by weight, silicon oxide 1-6% by weight, zinc oxide 0.5-
Gala containing 3% by weight and 0.5-5% by weight of bismuth oxide
10 cordierite compound as filler
Lead-based glass to which about 20% by weight is added is used. Ma
The translucent lid is made of a plate material such as borosilicate glass,
And condenses the image from the camera and guides it to the image sensor. However, this conventional optical semiconductor device package
In the delivery container, the aluminum oxide
Ceramics such as sinters can easily transmit electromagnetic waves,
Therefore, it can be mounted on an external electric circuit board etc. together with other electronic components.
When mounted, mutual interference of electromagnetic waves between adjacent electronic components
The problem that optical semiconductor devices malfunction
Had. Further, this conventional container for storing an optical semiconductor element is provided.
, A sealing material for joining a light-transmitting lid to an insulating substrate
Has a softening and melting temperature as high as about 400 ° C., and
In recent years, optical semiconductor devices have become heat-resistant due to higher density and higher integration.
The insulating base and the translucent lid
Are bonded via an encapsulant, and the insulating base and the translucent lid are
If the optical semiconductor device is hermetically housed inside a container made of
The heat that melts the sealing material acts on the optical semiconductor element housed inside.
The characteristics of the optical semiconductor device can be deteriorated by using
The problem that the device cannot be operated normally
Had. Furthermore, in recent years, the global environmental protection movement
Lead oxides contained in encapsulants are designated as environmentally hazardous substances.
For example, electronic devices containing lead oxide are discarded and released outdoors.
When exposed to wind and rain, lead melts into the environment and
Oxidation that can contaminate and is harmful to the human body
The development of lead-free encapsulants has been required
Was. In order to solve such a problem, an optical half
Place the conductive element storage container in the optical semiconductor element
From the mounting part and its surroundings to the lower surface
Plurality of refractory metals such as tungsten and molybdenum
A substantially flat insulating base having a metallized wiring layer of
It is joined to the upper surface of the
Both have a space inside to accommodate the optical semiconductor element.
And a glass bonding material on the upper surface of this metal frame.
And a translucent lid that is joined through
It is practiced to shield electromagnetic waves by shielding with the body
You. In addition, the aim is to lower the melting point of the glass and to make it non-lead.
In general, silver phosphate glass and tin are used for sealing materials and glass bonding materials.
Use low-melting glass mainly composed of phosphoric acid glass
Is being considered. [0010] However, in recent years,
Imaging devices such as CCD and CMOS are mounted on portable electronic devices.
The miniaturization of optical semiconductor device storage containers has progressed rapidly
The joint area between the insulating base and the metal frame and the metal
The joint area between the frame and the translucent lid is becoming smaller
Mounting on an external electric circuit board such as a PC board
In later bending tests etc., the metal frame and the translucent lid
Stress is easily concentrated on the joint surface of the
Metal frame and glass bonding compared with the bonding strength of glass and glass bonding material
Insufficient bonding strength with materials
The hermetic seal inside the container is broken by the impact of dropping, etc.
Joining the metal frame and the glass joining material that joins the translucent lid
The airtight seal is broken at the part, and light from the image sensor etc.
Deterioration of the characteristics of the semiconductor element or translucency
The lid came off the metal frame, which hindered imaging.
Was causing the problem that The present invention has been made in view of the above problems.
The purpose is small, excellent airtight reliability, and
Opto-semiconductor element inside the container while shielding magnetic waves well
When the optical semiconductor device is housed,
In addition, small, environmentally friendly lead-free
It is an object of the present invention to provide an optical semiconductor element storage container of a mold type. According to the present invention, there is provided an optical semiconductor device comprising:
The shipping container has an insulating part with an optical semiconductor element mounting part on the upper surface.
The base is bonded to the upper surface of the insulating base via a sealing material.
The optical semiconductor element is enclosed inside the mounting part and inside.
Metal frame for forming a cavity to accommodate, and this metal frame
Is bonded to the upper surface of the glass via a glass bonding material
Optical semiconductor comprising a light-transmissive lid for hermetically containing a body element
An element storage container in which a metal frame is
At least one of titanium, zirconium and hafnium on the joint surface
An active metal brazing material layer containing
Material is phosphorous pentoxide 30-40% by weight, tin monoxide 47-60% by weight, acid
1-6% by weight of zinc oxide, 1-4% by weight of aluminum oxide
Filler in glass component containing 1 to 3% by weight of silicon oxide
16 to 45% by weight of cordierite compound as external addition
The encapsulant consists of 50-75% by weight of tin,
10 to 40% by weight of chimon, 1 to 15% by weight of copper and indium
1 to 5% by weight.
Things. According to the container for storing an optical semiconductor element of the present invention.
For example, titanium and gil
Active metal brazing material containing at least one of conium and hafnium
Since the layer was formed, the contact between the metal frame and the glass joining material
A dense oxide layer of active metal is formed on the mating surface and the metal frame
And the glass bonding material can be firmly bonded,
As a result, even when the portable electronic device is impacted by dropping,
Joint between the glass frame and the translucent lid
In minutes, the hermetic seal is not broken and the hermetic reliability is extremely high.
A high optical semiconductor element storage container can be obtained. Further, in the container for storing an optical semiconductor element of the present invention,
According to this, the sealing material for joining the insulating base and the metal frame is made of tin 50.
~ 75wt%, antimony 10 ~ 40wt%, copper 1 ~ 15wt%
And alloys containing 1 to 5% by weight of indium
Therefore, the sealing temperature can be set to 350 ° C or less.
As a result, the insulating base and the metal frame are interposed via the sealing material.
Joined, consisting of an insulating base, a metal frame, and a translucent lid
When the optical semiconductor element is hermetically housed inside the container, use a sealing material.
The heat to be melted acts on the optical semiconductor element housed inside.
Also does not cause deterioration of the characteristics of the optical semiconductor element.
Operate semiconductor devices normally and stably for a long time
It becomes possible. In addition, the sealing material must be conductive.
From the above, the metal frame is connected to the grounding wiring layer formed on the insulating base.
By connecting via a sealing material,
The optical semiconductor device to be shielded by the metal frame
As a result, external noise is transmitted through the metal frame.
It can be effectively prevented from getting inside the
Operate conductor elements normally and stably for a long time
It becomes possible. Next, the present invention will be described with reference to the accompanying drawings.
Will be described in detail. FIG. 1 shows a container for accommodating an optical semiconductor element according to the present invention.
It is sectional drawing which shows an example of embodiment. Smell this figure
1 is an insulating base, 2 is a metal frame, and 3 is a translucent lid.
These mainly accommodate optical semiconductor elements S such as image sensors.
A container 4 is formed. The insulating substrate 1 has a substantially rectangular shape,
A mounting portion 1a of the optical semiconductor element S is provided on the surface.
In a, the optical semiconductor element S is made of a conductive epoxy resin or the like.
Adhesively fixed through a conductive resin J. The insulating substrate 1 is made of an aluminum oxide sintered body.
Yamulite sintered body, aluminum nitride sintered body, nitriding
From electrical insulating materials such as silicon-based sintered bodies and silicon carbide-based sintered bodies
For example, when it is made of aluminum oxide sintered body
If available, aluminum oxide, silicon oxide, magnesium oxide
Organic binder suitable for raw material powders such as calcium and calcium oxide
・ Mix a solvent, plasticizer, dispersant, etc.
This sludge is used for the well-known doctor blade method and curry.
Sheet forming method such as under roll method.
Shape the ceramic green sheet (ceramic raw sheet)
G) and then, afterwards, those ceramic green sheets
Punching and stacking multiple
Manufactured by firing at a high temperature of about 1600 ° C
You. The insulating base 1 is mounted on the insulating base 1 from the vicinity of the mounting portion 1a.
A plurality of metallized wiring layers 5 are formed on the bottom surface.
ing. The mounting portion 1a of the metallized wiring layer 5
Each electrode of the optical semiconductor element S is located at a position near the
Electrically connected via a bonding wire 6, and
The portion led out to the bottom surface of the insulating base 1 has an external electric circuit.
Wiring conductor (not shown) attached via solder or other brazing material
It is. Such a metallized wiring layer 5 has a tongue
Suitable for refractory metal powders such as stainless steel, molybdenum and manganese
Metals obtained by adding and mixing appropriate organic solvents, solvents, plasticizers, etc.
Paste paste using a well-known thick-film method such as screen printing.
Used as a ceramic green sheet to become the insulating base 1
Print and apply in advance, and apply this
Firing on the insulating substrate 1 at the same time
It is formed in a predetermined pattern from the surface to the bottom. What
The metallized wiring layer 5 has a surface made of nickel, gold or the like.
Metals with good conductivity, good corrosion resistance and good wettability with brazing materials
To a thickness of 1 to 20 µm by plating
And effectively prevent oxidation corrosion of the metallized wiring layer 5.
And bonding with metallized wiring layer 5
Connection with wire 6 and metallized wiring layer 5 and external electricity
Extremely strong brazing with circuit wiring conductors
it can. A metal frame 2 is provided on the upper surface of the insulating base 1.
Are joined via a sealing material 7 surrounding the mounting portion 1a,
Further, on the upper surface of the metal frame 2, a translucent lid 3 is provided.
2 via the glass bonding material 8 so as to close the opening K.
And thereby a container for hermetically containing the optical semiconductor element S.
4 is obtained. The joining of the metal frame 2 to the insulating base 1
Is performed after the translucent lid 3 is joined to the metal frame 2.
You. This is performed by softening and melting the glass bonding material 8 as described later.
The temperature is higher than the softening and melting temperature of the sealing material 7 and the insulating substrate 1
If the metal frame 2 is joined to the metal frame 2 first,
When joining the optical plate 3, the sealing material 7 is softened and melted.
As a result, the joint between the insulating base 1 and the metal frame 2 is broken.
It is due to that. The metal frame 2 is made of an iron-nickel-cobalt alloy.
Made of metal material such as gold or iron-nickel alloy, for example, iron
-Rolling of nickel-cobalt alloy ingots
Applying a conventionally known metal working method such as a construction method or a punching method
As a result, it is formed into a frame shape having an opening K at a substantially central portion.
You. The transparent cover 3 is made of borosilicate glass or water.
It is made of translucent plate material such as
It has a function of leading to the optical semiconductor element S.
Is made of borosilicate glass, the translucent lid 3 and
Borosilicate glass mother substrate made by dicing
Of the opening K of the metal frame 2
It is formed in an area larger than the product. The metal frame 2 is connected to the glass around the opening K.
Titanium, zirconium, hafnium on the joint surface with mixture 8
Active metal brazing material layer 9 containing at least one of
The metal frame 2 and the glass bonding material 8 are formed of an active metal brazing material layer.
9 are firmly joined. And the optical half of the present invention
This is important for conductive element storage containers.
You. According to the container for storing an optical semiconductor element of the present invention.
For example, titanium, a bonding surface of the metal frame 2 with the glass bonding material 8
Active metal filter containing one or more of zirconium and hafnium
Since the metal layer 9 is formed, the metal frame 2 is bonded to the glass.
A dense oxide layer of active metal is formed on the joint surface with the material 8
Strong bonding between the metal frame 2 and the glass bonding material 8 becomes possible.
The optical semiconductor element storage container is mounted on portable electronic equipment, etc.
Even if it receives a shock such as dropping, it will be transparent with the metal frame 2
The joint with the lid 3 is not destroyed, as a result
The airtight seal of the device 4 is broken and the optical half of the image sensor etc. housed inside.
The characteristics of the conductive element S may be deteriorated, or
The optical lid 3 was peeled off from the metal frame 2 and hindered imaging.
You won't. The active metal brazing material layer 9 is made of a metal frame.
The bonding surface of the body 2 with the glass bonding material 8 is, for example, Ag-Cu
Eutectic brazing material (Ag 72% by weight, Cu 28% by weight)
2 to 4% by weight of titanium, zirconium, hafnium
Paste consisting of at least one active metal
Brazing material by screen printing or calendar roll method
Print and apply to a thickness of about 70 μm and dry,
Next, at a temperature of about 800 ° C for 60 minutes in a heat treatment furnace in a reducing atmosphere.
By heating for a layer thickness of about 55 μm.
You. At this time, the film thickness is formed on the surface of the active metal brazing material layer 9.
A hydride layer of an active metal of about 3 μm is formed. The activated gold deposited on the metal frame 2
A silver-phosphate glass and an organic resin are formed on the brazing filler metal layer 9.
The paste-like glass material prepared with the binder consisting of
Screen printing method, calendar roll method, etc.
And then apply the light-transmitting lid 3 to the metal frame 2
And pressurize it to close the opening K.
Afterwards, at a temperature of about 500 ° C for 10 minutes in a heat treatment furnace in an oxidizing atmosphere
By heating to a certain degree, a dense oxide layer of the active metal
Formed between the active metal brazing material 9 and the glass bonding material 8
At the same time, the translucent lid 3 is joined to the metal frame 2. Incidentally, titanium, zirconium, hafnium
Less than 2% by weight of any one or more active metals
In this case, the amount of the active metal brazing material layer 9 becomes insufficient,
A tilt that makes it difficult to obtain a strong bond with the lath bonding material 8
If it exceeds 4% by weight, the active metal brazing material layer
9 becomes brittle and the strength of the joint tends to decrease.
You. Therefore, any of titanium, zirconium and hafnium
The content of one or more active metals is 2 to 4% by weight.
Preferably. Further, the active metal brazing material layer 9 after sintering is
Is preferably 10 to 70 μm, and less than 10 μm
Insufficient amount of dense oxide layer of active metal at joint
It is difficult to obtain a strong joint with the glass joining material 8
On the other hand, if it exceeds 70 μm, the active metal filter
Due to the difference in thermal expansion coefficient between the filler layer 9 and the glass bonding material 8.
There is a tendency for the strength of the joint of the user to decrease. Follow
The active metal brazing material layer 9 after sintering has a thickness of 10-70.
It is preferably μm. The glass bonding material 8 is composed of 30 to 40 phosphorous pentoxide.
%, Tin monoxide 47-60% by weight, zinc oxide 1-6% by weight,
1 to 4% by weight of aluminum oxide and 1 to 3 layers of silicon oxide
Cordierite as filler in glass components containing%
Consists of 16-45% by weight of external compound
Therefore, its softening and melting temperature is about 400 ° C,
The edge substrate 1 and the translucent lid 3 are connected via the glass bonding material 8.
Softening and melting temperature of the sealing material 7 joining the combined metallic frame 2
The temperature is higher than about 350 ° C, and the insulating substrate 1
The metal frame 2 in which the lid 3 is bonded via the glass bonding material 8
Are bonded via a sealing material 7, and the insulating base 1 and the metal frame 2 are
An optical semiconductor element S is provided inside a container 4 comprising a light-transmitting lid 3.
Even if the glass bonding material 8 is housed in an airtight manner,
Does not soften and melt at the softening and melting temperature of
Hermetic sealing between the metal frame 2 and the translucent lid 3 is broken.
Never. The glass bonding material 8 should not contain lead.
Therefore, there is no impact on the global environment. The glass bonding material 8 contains less than 30% by weight of phosphorus pentoxide.
If it is full, the softening and melting temperature of the glass will increase,
There is a tendency that the joining of the body 3 to the metal frame 2 at a low temperature becomes difficult.
Yes, and more than 40% by weight, chemical resistance of glass bonding material 8
And the reliability of hermetic sealing of the container 4 is greatly reduced.
Tend to be. Therefore, the amount of phosphorus pentoxide is 30-40 weight
%. The amount of tin monoxide is less than 47% by weight.
, The softening and melting temperature of the glass increases, and the light-transmitting lid
3 tends to be difficult to join to the metal frame 2 at a low temperature.
If it exceeds 60% by weight, the chemical resistance of the glass bonding material 8 is low.
Lowering the reliability of hermetic sealing of the container 4
It is in. Therefore, tin monoxide is in the range of 47-60% by weight.
Specified in the box. Further, the amount of zinc oxide is less than 1% by weight.
If it is full, the softening and melting temperature of the glass will increase,
There is a tendency that the joining of the body 3 to the metal frame 2 at a low temperature becomes difficult.
If it exceeds 6% by weight, crystallization of the glass bonding material 8 proceeds.
And the fluidity of the container 4 decreases, making it difficult to hermetically seal the container 4.
There is a direction. Therefore, zinc oxide is contained in an amount of 1 to 6% by weight.
Specified in a range. Aluminum oxide is less than 1% by weight.
When it is full, the moisture resistance of the glass bonding material 8 decreases,
The reliability of hermetic sealing tends to decrease, exceeding 4% by weight
When the temperature increases, the softening and melting temperature of the glass joining material 8 increases,
Which makes it difficult to join the conductive lid 3 to the metal frame 2 at a low temperature.
There is a direction. Therefore, the amount of aluminum oxide is 1 to 4
It is specified in the range of weight%. The amount of silicon oxide is less than 1% by weight.
The thermal expansion coefficient of the glass joining material 8 and the metal
2 and the thermal expansion coefficient of the translucent lid 3
There is a tendency that the reliability of hermetic sealing of the container 4 is reduced.
Exceeds 3% by weight, the softening and melting temperature of the glass bonding material 8
And the contact of the translucent lid 3 with the metal frame 2 at a low temperature is increased.
Tends to be difficult. Therefore, the amount of silicon oxide is
Is specified in the range of 1 to 3% by weight. Further, a cord added as a filler
Cellulite compounds are less than 16% by weight,
The strength of the lath bonding material 8 decreases, and the hermetic sealing of the container 4 is reliable
Properties tend to be greatly reduced, and more than 45% by weight
Then, the thermal expansion coefficient of the glass joining material 8 becomes small,
Significantly different from the thermal expansion coefficients of the body 2 and the translucent lid 3.
Therefore, the reliability of hermetic sealing of the container 4 tends to decrease.
You. Therefore, the amount of cordierite-based compound is 16 to 45
It is specified in the range of weight%. Further, the joining of the insulating base 1 and the metal frame 2
After joining the translucent plate 3 to the metal frame 2, the sealing material 7
A conventionally well-known screen printing method or the like is applied to the joining area of the metal frame 2.
Is applied beforehand, and this is used to soften the sealing material 7.
Fired at the melting temperature and melt-adhered to the joint area of the metal frame 2
Then, the optical semiconductor element S is mounted on the mounting portion 1a of the insulating base 1.
The optical semiconductor element is bonded and fixed via the conductive resin J.
Metallize each electrode of child S via bonding wire 6
It is electrically connected to the wiring layer 5, and furthermore,
Place the frame body 2 so that the joining surfaces of the two overlap, and
Then, while applying an appropriate load at the softening and melting temperature of the sealing material 7,
This is done by heating. The container for storing an optical semiconductor element of the present invention is
A sealing material for joining the insulating base 1 and the metal frame 2
7, 50 to 75% by weight of tin, 10 to 40% by weight of antimony, copper 1
~ 15 wt% and indium 1-5 wt%
Therefore, its softening melting point is as low as 350 ° C or less.
The insulating base 1 and the metal frame 2 can be sealed with a sealing material 7.
And an insulating substrate 1, a metal frame 2, and a light-transmitting lid.
The optical semiconductor element S is hermetically contained inside the container 4 including the body 3.
When storing, the heat that melts the sealing material
Deterioration of characteristics of optical semiconductor element S even when acting on semiconductor element S
Does not occur, and as a result, the optical semiconductor element S becomes longer.
It is possible to operate normally and stably over a period
Become. The sealing material 7 has a tin content of less than 50% by weight.
, The softening and melting temperature of the sealing material 7 increases,
Hermetic sealing of the container 4 tends to be difficult, while 75
When the amount exceeds%, the mechanical strength of the sealing material 7 decreases,
The reliability of hermetic sealing tends to deteriorate. Therefore, sealing
The amount of tin contained in material 7 is specified in the range of 50-75% by weight.
It is. The amount of antimony is less than 10% by weight.
Then, the softening and melting temperature of the sealing material 7 decreases to 240 ° C. or less,
Reflow resistance tends to deteriorate significantly,
On the other hand, if it exceeds 40% by weight, the softening / melting temperature increases,
There is a tendency that hermetic sealing of the container 4 at a temperature is difficult. Follow
The amount of antimony contained in the sealing material 7 is 10 to 40 weight
% Specified. Further, the copper contained in the sealing material 7 is
Sealant for metallized wiring layer 5 adhered to base 1
7 and its bonding strength
Component is less than 1% by weight.
Stopper 7 and metallized wiring layer 5 adhered to insulating base 1
Bonding strength is weakened, and the reliability of hermetic sealing of the container 4 is high.
Tends to deteriorate in width, while exceeding 15% by weight
As a result, the wettability with the metal frame 2 deteriorates,
It is possible to firmly join the metal frame 2 via the sealing material 7.
It becomes difficult and the reliability of hermetic sealing of the container 4 is greatly deteriorated.
Tend to be. Therefore, the copper contained in the sealing material 7
Is specified in the range of 1 to 15% by weight. The indium contained in the sealing material 7 is
Sealing for metallized wiring layer 5 adhered to insulating substrate 1
A component for improving the wettability of the stopper 7,
If the amount of the film is less than 1% by weight, the sealing material 7 and the insulating substrate 1
The bonding strength with the deposited metallized wiring layer 5 becomes weak.
The reliability of hermetic sealing of the container 4 is greatly reduced.
On the other hand, if it exceeds 5% by weight,
Gold layered on metallized wiring layer 5 and low mechanical strength
The reliability of hermetic sealing of the container 4 is deteriorated due to the formation of an intermetallic compound.
Tend to be. Therefore, a
The amount of indium is specified in the range of 1 to 5% by weight. The sealing material 7 is made of an alloy mainly composed of tin.
It is contained in the atmosphere because of its excellent moisture resistance
Moisture tries to enter the inside of the container 4 through the sealing material 7
However, the ingress of water is effectively prevented and, as a result,
The surface electrode of the optical semiconductor element S housed inside
It is hardly corroded and the optical semiconductor device S operates normally
It is also possible to make it. In the present invention, the sealing material 7 contains lead.
Because it does not contain it, it may cause a burden on the global environment
Nor. Further, in the present invention, the sealing material 7 is
The metal frame 2 is formed on the insulating base 1 because it is electrically conductive.
Wiring layer 5a composed of part of the metallized wiring layer 5
To the inside of the container 4 by connecting the
The optical semiconductor element S to be accommodated is well sealed by the metal frame 2.
As a result, external noise is
To effectively prevent entry into the interior of the container 4 through the
The optical semiconductor element S is normal for a long time, and
It is possible to operate stably. Thus, the container for storing an optical semiconductor element of the present invention.
According to this, the optical semiconductor element S is mounted on the mounting portion 1a of the insulating base 1.
Contact via conductive resin J made of conductive epoxy resin etc.
Attach and fix each electrode of the optical semiconductor element S
Electrically connected to the metallized wiring layer 5 through the
After that, the mounting portion 1a of the insulating base 1 is covered.
Then, the metal frame 2 having the transparent cover 3 bonded to the upper surface is sealed.
Bonding through the material 7, the insulating base 1, the metal frame 2, and the light transmission
The optical semiconductor element S is placed inside the container 4 including the conductive lid 3.
The optical semiconductor device as the final product
The installation is completed. The present invention relates to an example of the above-described embodiment.
It is not limited and does not depart from the gist of the present invention.
Various changes are possible within the frame. For example, metal frame
2 has an opening K at the bottom of the concave shape as shown in the sectional view of FIG.
The shape may have the following. Further, FIG.
As shown in the plan view, the light-transmitting lid 3 is opened to the concave bottom surface.
It may be joined to the inside of the container 4 of the metal frame 2 having the mouth K.
No. According to the container for storing an optical semiconductor element of the present invention.
For example, titanium and gil
Active metal brazing material containing at least one of conium and hafnium
Since the layer was formed, the contact between the metal frame and the glass joining material
A dense oxide layer of active metal is formed on the mating surface and the metal frame
And the glass bonding material can be firmly bonded,
As a result, even when the portable electronic device
Joint part with glass joining material to join frame and translucent lid
The airtight seal is not broken and the airtight reliability is extremely high
It is possible to provide a small optical semiconductor element storage container. The container for storing an optical semiconductor element of the present invention is
According to this, the sealing material for joining the insulating base and the metal frame is made of tin 50.
~ 75wt%, antimony 10 ~ 40wt%, copper 1 ~ 15wt%
And alloys containing 1 to 5% by weight of indium
Therefore, the sealing temperature can be set to 350 ° C or less.
As a result, the insulating base and the metal frame are interposed via the sealing material.
Joined, consisting of an insulating base, a metal frame, and a translucent lid
When the optical semiconductor element is hermetically housed inside the container, use a sealing material.
The heat to be melted acts on the optical semiconductor element housed inside.
Also does not cause deterioration of the characteristics of the optical semiconductor element.
Operate semiconductor devices normally and stably for a long time
It becomes possible. In addition, the sealing material must be conductive.
From the above, the metal frame is connected to the grounding wiring layer formed on the insulating base.
By connecting via a sealing material, it is housed inside the container
Optical semiconductor elements are well shielded by metal frames
As a result, external noise is transmitted through the metal frame to the container.
It can be effectively prevented from entering inside,
Ensure that the body elements operate normally and stably for a long period of time.
It becomes possible.

【図面の簡単な説明】 【図1】本発明の光半導体素子収納用容器の実施の形態
の一例を示す断面図である。 【図2】本発明の光半導体素子収納用容器の実施の形態
の他の例を示す断面図である。 【図3】本発明の光半導体素子収納用容器の実施の形態
の他の例を示す断面図である。 【符号の説明】 1・・・・・・・・絶縁基体 1a・・・・・・・・搭載部 2・・・・・・・・金属枠体 3・・・・・・・・透光性蓋体 4・・・・・・・・容器 7・・・・・・・・封止材 8・・・・・・・・ガラス接合材 9・・・・・・・・活性金属ろう材層 S・・・・・・・・光半導体素子
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing an example of an embodiment of an optical semiconductor element storage container of the present invention. FIG. 2 is a sectional view showing another example of the embodiment of the optical semiconductor element storage container of the present invention. FIG. 3 is a cross-sectional view showing another example of the embodiment of the optical semiconductor element storage container of the present invention. [Description of Signs] 1... Insulating base 1a... Mounting section 2... Metal frame 3... Cap 4 ...... Container 7 ...... Sealing material 8 ...... Glass bonding material 9 ...... Active metal brazing material Layer S ... Opto semiconductor device

Claims (1)

【特許請求の範囲】 【請求項1】 上面に光半導体素子の搭載部を有する絶
縁基体と、該絶縁基体の上面に封止材を介して接合さ
れ、前記搭載部を取り囲むとともに内側に前記光半導体
素子を収容する空所を形成するための金属枠体と、該金
属枠体の上面にガラス接合材を介して接合され、前記空
所に前記光半導体素子を気密に収容する透光性蓋体とか
ら成る光半導体素子収納用容器であって、前記金属枠体
は前記ガラス接合材との接合面にチタン、ジルコニウ
ム、ハフニウムの一種以上を含む活性金属ろう材層が形
成されており、前記ガラス接合材は五酸化燐30〜40
重量%、一酸化錫47〜60重量%、酸化亜鉛1〜6重
量%、酸化アルミニウム1〜4重量%および酸化珪素1
〜3重量%を含むガラス成分にフィラーとしてコージェ
ライト系化合物を外添加で16〜45重量%添加したも
のから成り、前記封止材は錫50〜75重量%、アンチ
モン10〜40重量%、銅1〜15重量%およびインジ
ウム1〜5重量%を含有して成るものであることを特徴
とする光半導体素子収納用容器。
Claims: 1. An insulating base having an optical semiconductor element mounting portion on an upper surface, and an insulating substrate bonded to an upper surface of the insulating base via a sealing material, surrounding the mounting portion and the light inside. A metal frame for forming a space for accommodating the semiconductor element, and a light-transmissive lid joined to the upper surface of the metal frame via a glass joining material, and for hermetically accommodating the optical semiconductor element in the space. An optical semiconductor element storage container comprising: an active metal brazing material layer containing at least one of titanium, zirconium, and hafnium on a bonding surface with the glass bonding material; Glass bonding material is phosphorous pentoxide 30-40
Wt%, tin monoxide 47-60 wt%, zinc oxide 1-6 wt%, aluminum oxide 1-4 wt% and silicon oxide 1
A glass component containing 3% by weight and a cordierite-based compound as a filler added from 16 to 45% by weight as an external additive, wherein the sealing material is 50 to 75% by weight of tin, 10 to 40% by weight of antimony, An optical semiconductor element storage container comprising 1 to 15% by weight and 1 to 5% by weight of indium.
JP2001292022A 2001-09-25 2001-09-25 Container for optical semiconductor element Pending JP2003100921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001292022A JP2003100921A (en) 2001-09-25 2001-09-25 Container for optical semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001292022A JP2003100921A (en) 2001-09-25 2001-09-25 Container for optical semiconductor element

Publications (1)

Publication Number Publication Date
JP2003100921A true JP2003100921A (en) 2003-04-04

Family

ID=19114067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001292022A Pending JP2003100921A (en) 2001-09-25 2001-09-25 Container for optical semiconductor element

Country Status (1)

Country Link
JP (1) JP2003100921A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261292A (en) * 2005-03-16 2006-09-28 Sumitomo Metal Electronics Devices Inc Light emitting element storage package
JP2007266647A (en) * 2003-09-30 2007-10-11 Toshiba Corp Light emitting device
JP2007281061A (en) * 2006-04-04 2007-10-25 Hitachi Kyowa Engineering Co Ltd Submount and its manufacturing method
WO2010081445A1 (en) * 2009-01-15 2010-07-22 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic component and optoelectronic component
JP2015122413A (en) * 2013-12-24 2015-07-02 セイコーインスツル株式会社 Package and manufacturing method of the same
CN105870294A (en) * 2016-05-05 2016-08-17 上海国熠光电科技有限公司 Packaging method and structure of high-power LED
CN111492495A (en) * 2017-10-09 2020-08-04 欧司朗Oled股份有限公司 Optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266647A (en) * 2003-09-30 2007-10-11 Toshiba Corp Light emitting device
JP4817845B2 (en) * 2003-09-30 2011-11-16 株式会社東芝 Method for manufacturing light emitting device
JP2006261292A (en) * 2005-03-16 2006-09-28 Sumitomo Metal Electronics Devices Inc Light emitting element storage package
JP2007281061A (en) * 2006-04-04 2007-10-25 Hitachi Kyowa Engineering Co Ltd Submount and its manufacturing method
WO2010081445A1 (en) * 2009-01-15 2010-07-22 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic component and optoelectronic component
US8450847B2 (en) 2009-01-15 2013-05-28 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip fitted with a carrier
JP2015122413A (en) * 2013-12-24 2015-07-02 セイコーインスツル株式会社 Package and manufacturing method of the same
CN105870294A (en) * 2016-05-05 2016-08-17 上海国熠光电科技有限公司 Packaging method and structure of high-power LED
CN105870294B (en) * 2016-05-05 2019-03-29 上海国熠光电科技有限公司 A kind of encapsulating method and structure of high-capacity LED
CN111492495A (en) * 2017-10-09 2020-08-04 欧司朗Oled股份有限公司 Optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component
JP2020537332A (en) * 2017-10-09 2020-12-17 オスラム オーエルイーディー ゲゼルシャフト ミット ベシュレンクテル ハフツングOSRAM OLED GmbH Optoelectronic semiconductor components, and methods for manufacturing optoelectronic semiconductor components
US11316075B2 (en) 2017-10-09 2022-04-26 Osram Oled Gmbh Optoelectronic semiconductor component, and method for producing an optoelectronic semiconductor component
JP7108687B2 (en) 2017-10-09 2022-07-28 オスラム オーエルイーディー ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic semiconductor component and method for manufacturing optoelectronic semiconductor component
CN111492495B (en) * 2017-10-09 2024-04-30 欧司朗Oled股份有限公司 Optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component

Similar Documents

Publication Publication Date Title
JP2003100920A (en) Container for optical semiconductor element
JP2003100921A (en) Container for optical semiconductor element
JP2003101042A (en) Container for accommodating optical semiconductor element
JP4349725B2 (en) Electronic component storage container
JP2006261684A (en) Vessel for housing electronic component
JP3811423B2 (en) Electronic component storage container
JP4044832B2 (en) Electronic component storage container lid member and electronic component storage container using the same
JP2746826B2 (en) Electronic component storage package
JP2801449B2 (en) Package for storing semiconductor elements
JP2522374Y2 (en) Package for storing solid-state image sensor
JP3792612B2 (en) Piezoelectric vibrator container and piezoelectric vibrator
JP3798972B2 (en) Electronic component storage container
JP2003046013A (en) Electronic component package
JP2003282765A (en) Container for housing electronic component
JP3716112B2 (en) Electronic component storage container
JP3462072B2 (en) Electronic component storage container
JP3117387B2 (en) Package for storing semiconductor elements
JP4514355B2 (en) Electronic component storage container
JP3464136B2 (en) Electronic component storage package
JP3495247B2 (en) Electronic component storage container
JP3716111B2 (en) Electronic component storage container
JP2002271164A (en) Vessel for piezoelectric oscillator
JP3464143B2 (en) Electronic component storage package
JP2002353360A (en) Container for storing electronic part
JP2003197802A (en) Vessel for receiving electronic component