JP3464143B2 - Electronic component storage package - Google Patents

Electronic component storage package

Info

Publication number
JP3464143B2
JP3464143B2 JP07770398A JP7770398A JP3464143B2 JP 3464143 B2 JP3464143 B2 JP 3464143B2 JP 07770398 A JP07770398 A JP 07770398A JP 7770398 A JP7770398 A JP 7770398A JP 3464143 B2 JP3464143 B2 JP 3464143B2
Authority
JP
Japan
Prior art keywords
insulating base
electronic component
conductive
weight
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07770398A
Other languages
Japanese (ja)
Other versions
JPH11274336A (en
Inventor
孝太郎 中本
治己 竹岡
吉明 伊藤
崇 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP07770398A priority Critical patent/JP3464143B2/en
Publication of JPH11274336A publication Critical patent/JPH11274336A/en
Application granted granted Critical
Publication of JP3464143B2 publication Critical patent/JP3464143B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は半導体素子や圧電振
動子等の電子部品を気密に収容するための電子部品収納
用パッケージに関するものである。 【0002】 【従来の技術】従来、半導体集積回路素子を初めとする
半導体素子あるいは水晶振動子、弾性表面波素子といっ
た圧電振動子等の電子部品を収容するための電子部品収
納用パッケージは、例えば、酸化アルミニウム(Al2
3 )質焼結体等の電気絶縁材料から成り、その上面あ
るいは下面の略中央部に電子部品を収容するための凹部
およびその凹部周辺から下面にかけて導出された、例え
ば、タングステンやモリフデン等の高融点金属粉末から
成る複数個のメタライズ配線層を有する絶縁基体と、電
子部品を外部電気回路に電気的に接続するためにメタラ
イズ配線層に銀ロウ等のロウ材を介して取着された外部
リード端子と、蓋体とから構成されている。 【0003】そして、電子部品が、例えば、半導体素子
の場合には、絶縁基体の凹部の底面に半導体素子をガラ
ス、樹脂、ロウ材等から成る接着材を介して接着固定す
るとともに半導体素子の各電極とメタライズ配線層とを
ボンディングワイヤ等の電気的接続手投を介して電気的
に接続し、しかる後、絶縁基体の上面に蓋体を低融点ガ
ラスから成る封止材を介して接合させ、絶縁基体と蓋体
とから成る容器内部に半導体素子を気密に収容すること
によって最終製品としての半導体装置と成る。 【0004】また電子部品が、例えば、圧電振動子の場
合には、絶縁基体の凹部の底面に形成された段差部に圧
電振動子の一端を導電性エポキシ樹脂等から成る接着材
を介して接着固定するとともに圧電振動子の各電極をメ
タライズ配線層に電気的に接続し、しかる後、絶縁基体
の上面に蓋体を低融点ガラスから成る封止材を介して接
合させ、絶縁基体と蓋体とから成る容器内部に半導体素
子を気密に収容することによって最終製品としての電子
部品装置と成る。 【0005】なお、絶縁基体に蓋体を接合させる封止材
としては、一般に酸化鉛56乃至66重量%、酸化ホウ
素4乃至14重量%、酸化珪素1乃至6重量%、酸化ビ
スマス0.5乃至5重量%、酸化亜鉛0・5乃至3重量
%を含むガラス成分に、フィラーとしてのコージェライ
ト系化合物を9乃至19重量%、チタン酸錫系化合物を
10乃至20重量%添加したガラスが使用されている。 【0006】しかしながら、この従来の電子部品収納用
パッケージにおいては、絶縁基体や蓋体を形成する酸化
アルミニウム(Al2 3 )質焼結体等のセラミック
ス、及び封止材を形成するガラスが共に電磁波に対しあ
まり遮断能力がないことから外部電気回路基板等に他の
電子部品とともに実装した場合、隣接する電子部品間に
電磁波の相互干渉が起こり電子部品に誤動作を起こさせ
るという問題も有していた。特に最近では外部電気回路
基板に電子部品が極めて高密度に実装され、隣接する電
子部品問の距離が極めて狭いものとなってきており、こ
の電磁波の相互干渉による問題は極めて大きなものとな
ってきた。 【0007】そこで上記欠点を解消するために本願出願
人は先に、電子部品が搭載される搭載部下方に金属層を
形成するとともに上面に前記金属層の一部がスルーホー
ル導体を介して導出されている絶縁基体と、導電性蓋体
と導電性封止材とで構成される電子部品収納用パッケー
ジを提案した(特願平9ー291299号参照)。 【0008】かかる電子部品収納用パッケージによれば
絶縁基体の上面に導電性蓋体を導電性封止材を介して接
合させ、絶縁基体に設けた金属層と導電性蓋体とをスル
ーホール導体及び導電性封止材とで電気的に接続し、電
子部品を金属層と導電性蓋体とで上下より囲みこむこと
によって外部より内部に収容する電子部品に電磁波が作
用するのが有効に防止され、電子部品を長期間にわたり
正常、かつ安定に作動させることが可能となる。 【0009】 【発明が解決しようとする課題】しかしながら、この電
子部品収納用パッケージでは、金属層の一部を絶縁基体
上面に導出させるスルーホール導体の径が0.2mm程
度で露出平面積が約0.125mm2 程度と狭いこと、
及び導電性封止材の体積抵抗が1×104 Ω程度と高い
こと等から導電性蓋体と絶縁基体に設けたスルーホール
導体とを導電性封止材を介して接続させても両者の電気
的接続は導通抵抗が高く信頼性の低いものとなり、その
結果、金属層と導電性蓋体とを確実に電気的接続させて
電子部品を外部の電磁波より確実、完全に保護すること
ができないという解決すべき課題を有していた。 【0010】本発明は上記諸欠点に鑑み案出されたもの
で、その目的は容器内部に収容する電子部品に電磁波が
作用するのを確実に防止し、電子部品を長期間にわたり
正常、かつ安定に作動させることができる電子部品収納
用パッケージを提供することにある。 【0011】 【課題を解決するための手段】本発明は、上面に電子部
品が搭載される搭載部を有し、該搭載部の下方に金属層
が配設されている絶縁基体と、一端が前記金属層に接続
され、他端が絶縁基体上面に露出しているスルーホール
導体と、導電性蓋体とから成り、前記絶縁基体のスルー
ホール導体が露出している領域を含む上面に導電性蓋体
を導電性封止材を介して接合させ、前記金属層と導電性
蓋体とを電気的に接続させつつ絶縁基体と導電性蓋体と
からなる容器内部に電子部品を気密に収容するようにな
した電子部品収納用パッケージであって、前記スルーホ
ール導体を複数個とし、絶縁基体上面の露出平面積の合
計を1.0mm2 以上としたことを特徴とするものであ
る。 【0012】本発明の電子部品収納用パッケージによれ
ば、絶縁基体の電子部品が搭載される搭載部下方に金属
層を配設させ、かつ一端が前記金属層に接続され、他端
が絶縁基体上面に露出するスルーホール導体を複数個形
成するとともに絶縁基体上面におけるスルーホール導体
の露出平面積の合計を1.0mm2 以上となるようにし
たことから絶縁基体上面に導電性蓋体を導電性封止材を
介して接合させる際、導電性封止材は複数個のスルーホ
ール導体と極めて広い面積で接触して導電性蓋体と金属
層とが確実に、かつ低い導通抵抗で電気的接続されるこ
ととなり、その結果、電子部品に電磁波が作用するのを
確実に防止して電子部品を長期間にわたり正常、かつ安
定に作動させることが可能となる。 【0013】 【発明の実施の形態】次に、本発明を添付図面に基づき
詳細に鋭明する。図1は本発明の電子部品収納用パッケ
ージの実施の形態の一例を示す断面図、図2はその要部
拡大断面図、図3は要部拡大平面図であり、同図におい
ては電子部品が半導体素子であり、電子部品収納用パッ
ケージが半導体素子収納用パッケージである場合の例を
示している。 【0014】図において、1は絶縁基体、2は導電性蓋
体である。この絶縁基体1と導電性蓋体2とで半導体素
子3を収容するための容器4が構成される。 【0015】前記絶縁基体1はその上面の略中央部に半
導体素子3が搭載収容される凹状の搭載部1aが設けて
あり、該搭載部1aには半導体素子3がガラス、樹脂、
ロウ材等からなる接着材を介して接着固定される。 【0016】前記絶縁基体1は、酸化アルミニウム質焼
結体やムライト質焼結体、室化アルミニウム質焼結体、
炭化珪素質焼結体等の電気絶縁材料から成り、例えば、
酸化アルミニウム質焼結体からなる場合であれば、酸化
アルミニウム、酸化珪素、酸化マグネシウム、酸化カル
シウム等の原料粉末に適当な有機バインター、溶剤、可
塑剤、分散剤等を添加混合して泥漿物を作り、該泥漿物
を従来周知のドクターブレード法やカレンダーロール法
等のシート成形法を採用しシート状に成形してセラミッ
クグリーンシート(セラミック生シート)を得、しかる
後、それらセラミックグリーンシートに適当な打ち抜き
加工を施すとともにこれを複数枚積層し、約1600℃
の高温で焼成することによって製作される。 【0017】また前記絶縁基体1は搭載部1a周辺から
上面にかけて複数個のメタライス配線層5が被着形成さ
れており、このメタライズ配線層5の搭載部1a周辺部
には半導体素子3の各電極がボンディングワイヤ6を介
して電気的に接続され、また絶縁基体1の上面に導出さ
れた部位には外部電気回路と接続される外部リード端子
7が銀ロウ等のロウ材を介して取着されている。 【0018】前記メタライズ配線層5は半導体素子3の
各電極を外部電気回路に電気的に接続する際の導電路と
して作用し、タングステン、モリブデン、マンガン等の
高融点金属粉末により形成されている。 【0019】前記メタライズ配線層5はタングステン、
モリブデン、マンガン等の高融点金属粉末に適当な有機
バインダー、溶剤、可塑剤等を添加混合して得た金属ペ
ーストを従来周知のスクリーン印刷法等の厚膜手法を採
用して絶縁基体1となるセラミックグリーンシートに予
め印刷塗布しておき、これをセラミックグリーンシート
と同時に焼成することによって絶縁基体1の搭載部1a
周辺から上面にかけて所定パターンに被着形成される。 【0020】なお、前記メタライズ配線層5はその表面
にニッケル、金等の良導電性で耐蝕性及びロウ材との濡
れ性が良好な金属をめっき法により1〜20μmの厚み
に被着させておくと、メタライズ配線層5の酸化腐蝕を
有効に防止することができるとともにメタライズ配線層
5とボンディングワイヤ6との接続及びメタライズ配線
層5と外部リード端子7とのロウ付けを極めて強固とな
すことができる。従って、メタライズ配線層5の酸化腐
蝕を防止し、メタライズ配線層5とボンディングワイヤ
6との接続及びメタライズ配線層5と外部リード端子7
とのロウ付けを強固となすにはメタライズ配線層5の表
面にニッケル、金等をめっき法によリ1〜20μmの厚
みに被着させておくことが好ましい。 【0021】また前記絶縁基体1に形成したメタライズ
配線層5には外部リード端子7がロウ付けされており、
該外部リード端子7は容器4の内部に収容する半導体素
子3を外部電気回路に接続する作用をなし、外部リード
端子7を外部電気回路に接続することによって内部に収
容される半導体素子3はボンディングワイヤ6、メタラ
イズ配線層5及び外部リード端子7を介して外部電気回
路に電気的に接続されることとなる。 【0022】前記外部リード端子7は鉄ーニッケルーコ
バルト合金や鉄ーニッケル合金等の金属材料からなり、
鉄ーニッケルーコバルト合金等のインゴット(塊)に圧
延加工法や打ち抜き加工法等、従来周知の金属加工法を
施すことによって所定の形状に形成される。 【0023】前記外部リード端子7はまたその表面にニ
ッケル、金等の良導電性で、かつ耐蝕性に優れた金属を
めっき法により1〜20μmの厚みに被着させておく
と、外部リード端子7の酸化腐蝕を有効に防止すること
ができるとともに外部リード端子7と外部電気回路との
電気的接続を良好となすことができる。そのため、前記
外部リード端子7はその表面にニッケル、金等をめっき
法により1〜20μmの厚みに被着させておくことが好
ましい。 【0024】更に前記絶縁基体1は搭載部1aの下方に
金属層8が配設されており、該金属層8は後述する導電
性蓋体2とで内部に収容する半導体素子3を囲み、半導
体素子3に外部より電磁波が作用するのを阻止し、半導
体素子3を安定に作動させる作用をなす。 【0025】前記金属層8は、例えば、タングステン、
モリブデン、マンガン等の高融点金属粉末から成り、タ
ングステン、モリブデン、マンガン等の高融点金属粉末
に適当な有機バインダー、溶剤、可塑剤等を添加混合し
て得た金属ペーストを従来周知のスクリーン印刷法等の
厚膜手法を採用して絶縁基体1となるセラミックグリー
ンシートに予め印刷塗布しておき、これをセラミックグ
リーンシートと同時に焼成することによって絶縁基体1
の搭載部1a下方に配されている。 【0026】前記金属層8はまたその一部にスルーホー
ル導体9の一端が接続されており、該スルーホール導体
9の他端は絶縁基体1の上面で導電性蓋体2が導電性封
止材10を介して接合される領域に露出している。 【0027】前記スルーホール導体9は導電性蓋体2を
金属層8に電気的に接続させる作用をなし、例えば、前
記金属層8と同質の材料、具体的にはタングステン、モ
リブデン、マンガン等の高融点金属粉末で形成されてい
る。 【0028】前記スルーホール導体9は絶縁基体1とな
るセラミックグリーンシートにパンチング孔あけ加工法
等を採用することによって予め孔をあけておき、この孔
内にタングステン粉末等に有機バインダー、溶剤等を添
加混合して得た金属ペーストを充填しておくことによっ
て形成される。 【0029】また前記スルーホール導体9は複数個形成
されており、絶縁基体1の上面に露出する平面積の合計
が1.0mm2 以上となっている。 【0030】前記スルーホール導体9を複数個形成する
のは絶縁基体1の上面に露出するスルーホール導体9の
平面積の合計を1.0mm2 以上として導電性封止材1
0との接触面積を広くするためであり、スルーホール導
体9の露出平面積の合計を1.0mm2 以上としておく
ことによって絶縁基体1の上面に導電性蓋体2を導電性
封止材10を介して接合させた際、導電性封止材10が
複数個のスルーホール導体9と極めて広い面積で接触し
て導電性蓋体2と金属層8とを確実に、かつ低い導通抵
抗で電気的接続することができ、その結果、電子部品に
電磁波が作用するのを確実に防止して電子部品を長期間
にわたり正常、かつ安定に作動させることが可能とな
る。 【0031】なお、前記複数個のスルーホール導体9は
絶縁基体1の上面に露出する平面積の合計が1.0mm
2 未満であると金属層8と導電性蓋体2とのスルーホー
ル導体9を介しての接続が不完全となり、電子部品に電
磁波が作用するのを有効に防止することが不可となるこ
とから前記複数個のスルーホール導体9は絶縁基体1の
上面に露出する平面積の合計が1.0mm2 以上に特定
される。 【0032】更に前記金属層8及びスルーホール導体9
を有する絶縁基体1はその上面に導電性蓋体2が導電性
封止材10を介して接合され、絶縁基体1と導電性蓋体
2とからなる容器4内部に半導体素子3を気密に収容す
るとともに、導電性蓋体2とスルーホール導体9とが電
気的に接続される。 【0033】前記導電性蓋体2は酸化アルミニウム質焼
結体の表面に銅やアルミニウム等の金属膜を被着させた
もの、或いは鉄ーニッケルーコバルト合金や鉄ーニッケ
ル合金等の金属材料からなり、絶縁基体1の搭載部1a
に搭載された半導体素子3を気密に封止するとともに前
述の絶縁基体1に配設した金属層8とで半導体素子3を
囲み半導体素子3に外部より電磁波が作用するのを阻止
し、半導体素子3を安定に作動させる作用をなす。 【0034】また更に、前記絶縁基体1に導電性蓋体2
を接合させる導電性封止材10は絶縁基体1と導電性蓋
体2とから成る容器4内部に半導体素子3を気密に封止
するとともに絶縁基体1の金属層8と導電性蓋体2とを
電気的に接続させる作用をなし、例えば、ガラスや有機
樹脂に金属粉末を含有させたもので形成されている。 【0035】前記導電性封止材10は、これを酸化鉛5
0乃至65重量%、酸化ホウ素2乃至10重量%、フツ
化鉛10乃至30重量%、酸化亜鉛1乃至6重量%、酸
化ズスマス10乃至20重量%を含むガラス成分に、フ
ィラーとしてのチタン酸鉛系化合物を26乃至45重量
%、銅、鉄ーニッケル合金、鉄ーニッケルーコバルト合
金を5乃至20重量%添加した導電性のガラスで形成し
ておくと該導電性のガラスは軟化浴融温度は320℃以
下と低く、そのため絶縁基体1と導電性蓋体2とを接合
させ、容器4を気密に封止する際、封止温度を低温とな
すことができ、その結果、導電性封止材10を溶融させ
る熱が内部に収容する半導体素子3に作用しても半導体
素子3の特性に劣化を招来することはなく、半導体素子
3を長期間にわたり正常、かつ安定に作動させることが
可能となる。またこの導電性のガラスは軟化浴融温度は
320℃以下と低いことから半導体素子3が絶縁基体1
の搭載部1aに樹脂等の接着材を介して接着固定されて
いる場合、半導体素子3の接着固定の特性が導電性封止
材10を軟化溶融させる熱によって大きく劣化すること
もなく、これによって半導体素子3を絶縁基体1の搭載
部1aに極めて強固に接着固定しておくことが可能とな
り、半導体素子3を常に安定に作動させることもでき
る。 【0036】なお、前記導電性封止材10を酸化鉛50
乃至65重量%、酸化ホウ素2乃至10重量%、フツ化
鉛10乃至30重量%、酸化亜鉛1乃至6重量%、酸化
ズスマス10乃至20重量%を含むガラス成分に、フィ
ラーとしてのチタン酸鉛系化合物を26乃至45重量
%、銅、鉄ーニッケル合金、鉄ーニッケルーコバルト合
金を5乃至20重量%添加した導電性のガラスで形成す
る場合、酸化鉛の量が50重量%未満であるとガラスの
軟化溶融温度が高くなって、容器4を気密封止する際の
熱によって半導体素子3の特性に劣化を招来してしま
い、また65重量%を超えるとガラスの耐薬品性が低下
し、容器4の気密封止の信頼性が大きく低下してしま
う。従って、前記酸化鉛の量は50乃至65重量%の範
囲としておくことが好ましい。 【0037】また酸化ホウ素の量は2重量%未満である
とガラスの結晶化が進んで流動性が低下し、容器4の気
密封止が困難となってしまい、また10重量%を超える
とガラスの軟化溶融温度が高くなって、容器4を気密封
止する際の熱によって半導体素子3の特性に劣化を招来
してしまう。従って、前記酸化ホウ素の量は2乃至10
重量%の範囲としておくことが好ましい。 【0038】またフッ化鉛の量は10重量%未満である
とガラスの軟化溶融温度が高くなって、容器4を気密封
止する際の熱によって半導体素子3の特性に劣化を招来
してしまい、また30重量%を適えるとガラスの耐薬品
性が低下し、容器4の気密封止の信頼性が大きく低下し
てしまう。従って、前記フッ化鉛の量は10乃至30重
量%の範囲としておくことが好ましい。 【0039】また酸化亜鉛の量は1重量%未満であると
ガラスの耐薬品性が低下し、容器4の気密封止の信頼性
が大きく低下してしまい、また6重量%を超えるとガラ
スの結晶化が進んで流動性が大きく低下し、容器4の気
密封止が困難となってしまう。従って、前記酸化亜鉛の
量は1乃至6重量%の範囲としておくことが好ましい。 【0040】また酸化ビスマスの量は10重量%未満で
あるとガラスの軟化溶融温度が高くなって、容器4を気
密封止する際の熱によって半導体素子3の特性に劣化を
招来してしまい、また20重量%を超えるとガラスの結
晶化が進んで流動性が大きく低下し、容器4の気密封止
が困難となってしまう。従って、前記酸化ビスマスの量
は10乃至20重量%の範囲としておくことが好まし
い。 【0041】また前記導電性封止材10にフィラーとし
て添加されるチタン酸鉛系化合物は導電性封止材10の
熱膨張係数を調整し、絶縁基体1と導電性蓋体2とに導
電性封止材10を強固に接合させ、容器4の気密封止の
信頼性を大きく向上させる作用をなし、その量が26重
量%未満であると導電性封止材10の熱膨張係数が絶縁
基体1と導電性蓋体2の熱膨張係数に対し大きく相違し
て導電性封止材10を絶縁基体1及び導電性蓋体2に強
固に接合させることができなくなり、また45重量%を
超えると導電性封止材10の流動性が低下し、容器4の
気密封止が困難となってしまう。従って、前記チタン酸
鉛系化合物はその量を26乃至45重量%の範囲として
おくことが好ましい。 【0042】また前記導電性封止材10にフィラーとし
て添加される銅、鉄ーニッケル合金、鉄ーニッケルーコ
バルト合金は導電性封止材10の導電性付与材であり、
その量が5重量%未満であると導電性封止材10の導電
率が低下し、絶縁基体1の金属層8に接続されている枠
状金属層9に対し導電性蓋体2を確実に電気的接続する
ことができなくなり、また20重量%を超えると導電性
封止材10の流動性が低下し、容器4の気密封止が困難
となってしまう。従って、前記同はその量が5乃至20
重量%の範囲としておくことが好ましい。 【0043】かくして上述の半導体素子収納用パッケー
ジによれば、絶縁基体1の搭載部1aに半導体素子3を
ガラス、樹脂、ロウ材等から成る接着材を介して接着固
定するとともに半導体素子3の各電極をメタライズ配線
層5にボンディングワイヤ6を介して電気的に接続し、
しかる後、絶縁基体1上面に導電性蓋体2を導電性封止
材10を介して接合させ、絶縁基体1の金属層8と導電
性蓋体2とを電気的に接続させつつ絶縁基体1と導電性
蓋体2とから成る容器4の内部に半導体素子3を気密に
収容することによって最終製品としての半導体装置が完
成する。 【0044】なお、本発明は上述の実施の形態に限定さ
れるものではなく、本発明の要旨を逸脱しない範囲であ
れば種々の変更は可能であり、例えば、前述の例では電
子部品として半導体素子を収容する電子部品収納用パッ
ケージを例示したが、電子部品が圧電磁気振動子や弾性
表面波素子等であり、これを収容するための電子部品収
納用パッケージにも適用し得る。 【0045】また前述の例ではメタライズ配線層5に外
部リード端子7をロウ付けした電子部品収納用パッケー
ジを例示したが、必ずしもこれに限定されるものではな
く、メタライズ配線層を絶縁基体の下面に導出させ、こ
れをそのまま外部電気回路に接続させる端子としたもの
であってもよい。 【0046】 【発明の効果】本発明の電子部品収納用パッケージによ
れば、絶縁基体の電子部品が搭載される搭載部下方に金
属層を配設させ、かつ一端が前記金属層に接続され、他
端が絶縁基体上面に露出するスルーホール導体を複数個
形成するとともに絶縁基体上面におけるスルーホール導
体の露出平面積の合計を1.0mm2 以上となるように
したことから絶縁基体上面に導電性蓋体を導電性封止材
を介して接合させる際、導電性封止材は複数個のスルー
ホール導体と極めて広い面積で接触して導電性蓋体と金
属層とが確実に、かつ低い導通抵抗で電気的接続される
こととなり、その結果、電子部品に電磁波が作用するの
を確実に防止して電子部品を長期間にわたり正常、かつ
安定に作動させることが可能となる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic component housing package for hermetically housing electronic components such as semiconductor elements and piezoelectric vibrators. 2. Description of the Related Art Conventionally, electronic component housing packages for housing electronic devices such as semiconductor devices such as semiconductor integrated circuit devices or piezoelectric vibrators such as crystal vibrators and surface acoustic wave devices have been known. , Aluminum oxide (Al 2
O 3 ) made of an electrically insulating material such as a sintered body, and a recess for accommodating an electronic component at a substantially central portion of an upper surface or a lower surface thereof and, for example, tungsten or molybdenum derived from the periphery of the recess to the lower surface. An insulating base having a plurality of metallized wiring layers made of a high melting point metal powder, and an external body attached to the metallized wiring layers via a brazing material such as silver brazing in order to electrically connect electronic components to an external electric circuit. It is composed of a lead terminal and a lid. In the case where the electronic component is, for example, a semiconductor element, the semiconductor element is bonded and fixed to the bottom surface of the concave portion of the insulating base via an adhesive made of glass, resin, brazing material or the like. The electrode and the metallized wiring layer are electrically connected via an electrical connection such as a bonding wire, and then the lid is joined to the upper surface of the insulating base via a sealing material made of low-melting glass, A semiconductor device as a final product is obtained by hermetically housing a semiconductor element in a container including an insulating base and a lid. When the electronic component is, for example, a piezoelectric vibrator, one end of the piezoelectric vibrator is bonded to a step formed on the bottom surface of the concave portion of the insulating base via an adhesive made of a conductive epoxy resin or the like. At the same time, the electrodes of the piezoelectric vibrator are electrically connected to the metallized wiring layer, and then the lid is joined to the upper surface of the insulating base via a sealing material made of low-melting glass. An electronic component device as a final product is obtained by hermetically housing a semiconductor element in a container formed of the following. As a sealing material for joining the lid to the insulating substrate, generally, 56 to 66% by weight of lead oxide, 4 to 14% by weight of boron oxide, 1 to 6% by weight of silicon oxide, and 0.5 to 5% by weight of bismuth oxide Glass is used in which a glass component containing 5% by weight and 0.5 to 3% by weight of zinc oxide is added with 9 to 19% by weight of a cordierite-based compound as a filler and 10 to 20% by weight of a tin titanate-based compound. ing. However, in this conventional package for housing electronic parts, ceramics such as an aluminum oxide (Al 2 O 3 ) sintered body forming an insulating base and a lid, and glass forming a sealing material are both used. Since there is not much ability to block electromagnetic waves, when mounted together with other electronic components on an external electric circuit board, etc., there is also a problem that mutual interference of electromagnetic waves between adjacent electronic components may cause malfunctions of the electronic components. Was. In particular, recently, electronic components have been mounted on an external electric circuit board at a very high density, and the distance between adjacent electronic components has become extremely small. The problem due to the mutual interference of electromagnetic waves has become extremely large. . In order to solve the above-mentioned drawbacks, the applicant of the present invention first forms a metal layer below a mounting portion on which electronic components are mounted, and at the upper surface, a part of the metal layer is led out through a through-hole conductor. (Japanese Patent Application No. 9-291299) has proposed an electronic component housing package composed of an insulating base, a conductive lid and a conductive sealing material. According to this electronic component storage package, a conductive lid is bonded to the upper surface of the insulating base via a conductive sealing material, and the metal layer provided on the insulating base and the conductive lid are connected to each other through-hole conductor. And electronically connected with the conductive encapsulant, enclosing the electronic component from above and below with the metal layer and the conductive lid, effectively preventing the electromagnetic wave from acting on the electronic component housed inside from outside. Thus, the electronic component can be operated normally and stably for a long period of time. However, in this electronic component housing package, the diameter of the through-hole conductor for leading a part of the metal layer to the upper surface of the insulating base is about 0.2 mm, and the exposed plane area is about 0.2 mm. 0.125mm 2 is as narrow as
Also, since the volume resistance of the conductive sealing material is as high as about 1 × 10 4 Ω or the like, even if the conductive lid and the through-hole conductor provided on the insulating base are connected via the conductive sealing material, The electrical connection has high conduction resistance and low reliability, and as a result, it is impossible to reliably and completely protect the electronic component from external electromagnetic waves by securely connecting the metal layer and the conductive lid. There was a problem to be solved. The present invention has been devised in view of the above-mentioned drawbacks, and its object is to reliably prevent electromagnetic waves from acting on electronic components housed in a container, and to keep electronic components normal and stable for a long period of time. An object of the present invention is to provide an electronic component storage package that can be operated at a low speed. According to the present invention, there is provided an insulating base having a mounting portion on which an electronic component is mounted on an upper surface, a metal layer provided below the mounting portion, A through-hole conductor connected to the metal layer, the other end of which is exposed on the upper surface of the insulating base; and a conductive lid, and the upper surface of the insulating base including a region where the through-hole conductor is exposed is electrically conductive. The lid is joined via a conductive sealing material, and the electronic component is hermetically housed inside a container including the insulating base and the conductive lid while electrically connecting the metal layer and the conductive lid. An electronic component housing package having the above-mentioned structure, wherein a plurality of the through-hole conductors are provided, and a total exposed flat area of an upper surface of the insulating substrate is 1.0 mm 2 or more. According to the electronic component storage package of the present invention, a metal layer is provided below the mounting portion of the insulating base on which the electronic component is mounted, and one end is connected to the metal layer and the other end is the insulating base. A plurality of through-hole conductors exposed on the upper surface are formed, and the total exposed flat area of the through-hole conductors on the upper surface of the insulating base is set to be 1.0 mm 2 or more. When joining via a sealing material, the conductive sealing material comes into contact with a plurality of through-hole conductors over an extremely large area to ensure that the conductive lid and the metal layer are electrically connected with low conduction resistance As a result, it is possible to reliably prevent the electromagnetic wave from acting on the electronic component and to operate the electronic component normally and stably for a long period of time. Next, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing an example of an embodiment of an electronic component storage package according to the present invention, FIG. 2 is an enlarged cross-sectional view of the main part, and FIG. 3 is an enlarged plan view of the main part. This is an example in which the semiconductor device is a semiconductor device and the electronic component housing package is a semiconductor device housing package. In FIG. 1, reference numeral 1 denotes an insulating base, and 2 denotes a conductive lid. The insulating base 1 and the conductive lid 2 constitute a container 4 for housing the semiconductor element 3. The insulating substrate 1 is provided with a concave mounting portion 1a in which the semiconductor element 3 is mounted and accommodated at a substantially central portion of the upper surface thereof. The semiconductor element 3 is made of glass, resin, or the like.
It is bonded and fixed via an adhesive made of brazing material or the like. The insulating substrate 1 is made of an aluminum oxide sintered body, a mullite sintered body, a room aluminum sintered body,
It is made of an electrically insulating material such as a silicon carbide sintered body.
In the case of an aluminum oxide-based sintered body, an appropriate organic binder, a solvent, a plasticizer, a dispersant, etc. are added to raw material powders such as aluminum oxide, silicon oxide, magnesium oxide, and calcium oxide, and the mixture is mixed to obtain a slurry. Then, the slurry is formed into a sheet by using a sheet forming method such as a doctor blade method or a calender roll method, which is well known in the art, to obtain a ceramic green sheet (ceramic green sheet). 1600 ° C
It is manufactured by firing at a high temperature. A plurality of metallized wiring layers 5 are formed on the insulating substrate 1 from the periphery of the mounting portion 1a to the upper surface. Each electrode of the semiconductor element 3 is provided around the mounting portion 1a of the metallized wiring layer 5. Are electrically connected via bonding wires 6, and external lead terminals 7 connected to an external electric circuit are attached via a brazing material such as silver brazing to a portion led out to the upper surface of the insulating base 1. ing. The metallized wiring layer 5 functions as a conductive path when each electrode of the semiconductor element 3 is electrically connected to an external electric circuit, and is formed of a refractory metal powder of tungsten, molybdenum, manganese or the like. The metallized wiring layer 5 is made of tungsten,
A metal paste obtained by adding a suitable organic binder, a solvent, a plasticizer, and the like to a high melting point metal powder such as molybdenum, manganese, or the like is used as the insulating substrate 1 by employing a conventionally known thick film method such as a screen printing method. The mounting portion 1a of the insulating base 1 is preliminarily printed and applied to the ceramic green sheet and fired at the same time as the ceramic green sheet.
A predetermined pattern is formed from the periphery to the upper surface. The metallized wiring layer 5 is formed by depositing a metal having good conductivity, good corrosion resistance and good wettability with a brazing material to a thickness of 1 to 20 μm, such as nickel or gold, on its surface by plating. In other words, it is possible to effectively prevent oxidation corrosion of the metallized wiring layer 5 and to make the connection between the metallized wiring layer 5 and the bonding wire 6 and the brazing between the metallized wiring layer 5 and the external lead terminals 7 extremely strong. Can be. Accordingly, oxidation corrosion of the metallized wiring layer 5 is prevented, and the connection between the metallized wiring layer 5 and the bonding wire 6 and the metallized wiring layer 5 and the external lead terminals 7 are prevented.
In order to make the brazing strong, it is preferable that nickel, gold, or the like is applied to the surface of the metallized wiring layer 5 by plating to a thickness of 1 to 20 μm. An external lead terminal 7 is brazed to the metallized wiring layer 5 formed on the insulating base 1,
The external lead terminal 7 functions to connect the semiconductor element 3 housed inside the container 4 to an external electric circuit, and the semiconductor element 3 housed inside by connecting the external lead terminal 7 to the external electric circuit is bonded. It is electrically connected to an external electric circuit via the wire 6, the metallized wiring layer 5, and the external lead terminal 7. The external lead terminals 7 are made of a metal material such as an iron-nickel-cobalt alloy or an iron-nickel alloy.
It is formed in a predetermined shape by subjecting an ingot such as an iron-nickel-cobalt alloy to a conventionally known metal working method such as a rolling method or a punching method. The external lead terminal 7 may be provided with a metal having good conductivity and excellent corrosion resistance, such as nickel or gold, having a thickness of 1 to 20 μm by plating. 7 can be effectively prevented, and the electrical connection between the external lead terminal 7 and the external electric circuit can be made good. Therefore, it is preferable that nickel, gold, or the like be applied to the surface of the external lead terminal 7 by plating to a thickness of 1 to 20 μm. Further, the insulating base 1 is provided with a metal layer 8 below the mounting portion 1a, and the metal layer 8 surrounds the semiconductor element 3 housed therein with a conductive lid 2 described later. The element 3 prevents the electromagnetic wave from acting on the element 3 from the outside, and functions to stably operate the semiconductor element 3. The metal layer 8 is made of, for example, tungsten,
Conventionally known screen printing method using a metal paste made of a high melting point metal powder such as molybdenum and manganese, obtained by adding an appropriate organic binder, solvent, plasticizer, etc. to the high melting point metal powder such as tungsten, molybdenum and manganese. Is applied to a ceramic green sheet serving as the insulating substrate 1 in advance by employing a thick film method such as that described above, and is baked simultaneously with the ceramic green sheet to thereby form the insulating substrate 1
Is disposed below the mounting portion 1a. One end of the through-hole conductor 9 is connected to a part of the metal layer 8, and the other end of the through-hole conductor 9 is connected to the upper surface of the insulating base 1 by the conductive lid 2. It is exposed in a region to be joined via the material 10. The through-hole conductor 9 functions to electrically connect the conductive lid 2 to the metal layer 8. For example, a material of the same quality as the metal layer 8, specifically, such as tungsten, molybdenum, manganese or the like is used. It is made of high melting point metal powder. The through-hole conductor 9 is preliminarily formed by punching a ceramic green sheet serving as the insulating substrate 1 by using a punching method, and an organic binder, a solvent, and the like are added to the tungsten powder and the like in the hole. It is formed by filling a metal paste obtained by addition and mixing. A plurality of the through-hole conductors 9 are formed, and the total of the plane areas exposed on the upper surface of the insulating base 1 is 1.0 mm 2 or more. The plurality of the through-hole conductors 9 are formed by setting the total area of the through-hole conductors 9 exposed on the upper surface of the insulating substrate 1 to 1.0 mm 2 or more, and setting the conductive encapsulant 1
In order to increase the contact area with the conductive sealing member 10 on the upper surface of the insulating base 1, the total exposed flat area of the through-hole conductor 9 is set to 1.0 mm 2 or more. When the conductive sealing material 10 contacts the plurality of through-hole conductors 9 over a very large area, the conductive lid 2 and the metal layer 8 are securely and electrically connected with a low conduction resistance. As a result, it is possible to reliably prevent the electromagnetic wave from acting on the electronic component, and to operate the electronic component normally and stably for a long period of time. The plurality of through-hole conductors 9 have a total plane area exposed on the upper surface of the insulating substrate 1 of 1.0 mm.
If it is less than 2 , the connection between the metal layer 8 and the conductive lid 2 via the through-hole conductor 9 becomes incomplete, and it becomes impossible to effectively prevent the electromagnetic wave from acting on the electronic component. The total of the plane areas of the plurality of through-hole conductors 9 exposed on the upper surface of the insulating base 1 is specified to be 1.0 mm 2 or more. Further, the metal layer 8 and the through-hole conductor 9
The conductive lid 2 is joined to the upper surface of the insulating base 1 via a conductive sealing material 10, and the semiconductor element 3 is hermetically accommodated in a container 4 including the insulating base 1 and the conductive lid 2. At the same time, the conductive lid 2 and the through-hole conductor 9 are electrically connected. The conductive lid 2 is made of an aluminum oxide sintered body having a surface coated with a metal film such as copper or aluminum, or a metal material such as an iron-nickel-cobalt alloy or an iron-nickel alloy. Mounting portion 1a of insulating base 1
The semiconductor element 3 mounted on the semiconductor element 3 is hermetically sealed, and the semiconductor element 3 is surrounded by the metal layer 8 disposed on the insulating base 1 to prevent electromagnetic waves from acting on the semiconductor element 3 from the outside. 3 functions to operate stably. Further, a conductive lid 2 is provided on the insulating base 1.
Is used to seal the semiconductor element 3 in a container 4 comprising the insulating base 1 and the conductive lid 2 in an airtight manner, and the metal layer 8 of the insulating base 1 and the conductive lid 2 Are electrically connected to each other, and are made of, for example, glass or organic resin containing metal powder. The conductive sealing material 10 is made of lead oxide 5
A glass component containing 0 to 65% by weight, 2 to 10% by weight of boron oxide, 10 to 30% by weight of lead fluoride, 1 to 6% by weight of zinc oxide and 10 to 20% by weight of tin oxide, and lead titanate as a filler. When the conductive glass is formed of a conductive glass to which 26 to 45% by weight of a compound is added and 5 to 20% by weight of copper, an iron-nickel alloy, or an iron-nickel-cobalt alloy, the melting temperature of the softening bath is reduced. The temperature is as low as 320 ° C. or less. Therefore, when the insulating base 1 and the conductive lid 2 are joined and the container 4 is hermetically sealed, the sealing temperature can be reduced to a low temperature. Even if the heat for melting 10 acts on the semiconductor element 3 housed therein, the characteristics of the semiconductor element 3 are not degraded, and the semiconductor element 3 can be operated normally and stably for a long period of time. Become. Since the conductive glass has a softening bath melting temperature as low as 320 ° C. or less, the semiconductor element 3 is
When the semiconductor device 3 is bonded and fixed to the mounting portion 1a via a bonding material such as a resin, the characteristics of the bonding and fixing of the semiconductor element 3 are not significantly deteriorated by the heat of softening and melting the conductive sealing material 10. The semiconductor element 3 can be extremely firmly adhered and fixed to the mounting portion 1a of the insulating base 1, and the semiconductor element 3 can always be operated stably. The conductive sealing material 10 is made of lead oxide 50
To 65% by weight, 2 to 10% by weight of boron oxide, 10 to 30% by weight of lead fluoride, 1 to 6% by weight of zinc oxide, 10 to 20% by weight of tin oxide, and a lead titanate as a filler When the compound is formed of conductive glass containing 26 to 45% by weight of a compound, 5 to 20% by weight of copper, an iron-nickel alloy, and 5 to 20% by weight of an iron-nickel-cobalt alloy, if the amount of lead oxide is less than 50% by weight, the glass Of the semiconductor element 3 is degraded by the heat generated when the container 4 is hermetically sealed, and if it exceeds 65% by weight, the chemical resistance of the glass decreases, 4, the reliability of hermetic sealing is greatly reduced. Therefore, it is preferable that the amount of the lead oxide be in the range of 50 to 65% by weight. If the amount of boron oxide is less than 2% by weight, the crystallization of the glass proceeds and the fluidity is reduced, and the hermetic sealing of the container 4 becomes difficult. Of the semiconductor element 3 is deteriorated by heat generated when the container 4 is hermetically sealed. Therefore, the amount of the boron oxide is 2 to 10
It is preferable to set it in the range of% by weight. On the other hand, if the amount of lead fluoride is less than 10% by weight, the softening and melting temperature of the glass increases, and the heat generated when the container 4 is hermetically sealed causes deterioration of the characteristics of the semiconductor element 3. If the content is 30% by weight, the chemical resistance of the glass is reduced, and the reliability of hermetic sealing of the container 4 is greatly reduced. Therefore, it is preferable that the amount of the lead fluoride be in the range of 10 to 30% by weight. If the amount of zinc oxide is less than 1% by weight, the chemical resistance of the glass is reduced, and the reliability of hermetic sealing of the container 4 is greatly reduced. As the crystallization proceeds, the fluidity is greatly reduced, and it becomes difficult to hermetically seal the container 4. Therefore, it is preferable that the amount of the zinc oxide be in the range of 1 to 6% by weight. If the amount of bismuth oxide is less than 10% by weight, the softening and melting temperature of the glass becomes high, and the heat at the time of hermetically sealing the container 4 causes deterioration of the characteristics of the semiconductor element 3, On the other hand, if it exceeds 20% by weight, the crystallization of the glass proceeds and the fluidity is greatly reduced, making it difficult to hermetically seal the container 4. Therefore, the amount of bismuth oxide is preferably set in the range of 10 to 20% by weight. The lead titanate-based compound added as a filler to the conductive sealing material 10 adjusts the coefficient of thermal expansion of the conductive sealing material 10, and forms a conductive material on the insulating base 1 and the conductive lid 2. The sealing material 10 is firmly joined, and has the effect of greatly improving the reliability of hermetic sealing of the container 4. If the amount is less than 26% by weight, the coefficient of thermal expansion of the conductive sealing material 10 is insulative. 1 and the coefficient of thermal expansion of the conductive lid 2 is so different that the conductive sealing material 10 cannot be firmly joined to the insulating base 1 and the conductive lid 2. The fluidity of the conductive sealing material 10 is reduced, and it is difficult to hermetically seal the container 4. Therefore, it is preferable that the amount of the lead titanate-based compound is in the range of 26 to 45% by weight. Copper, iron-nickel alloy, iron-nickel-cobalt alloy added to the conductive sealing material 10 as a filler is a conductivity-imparting material for the conductive sealing material 10,
When the amount is less than 5% by weight, the conductivity of the conductive sealing material 10 is reduced, and the conductive lid 2 is securely attached to the frame-shaped metal layer 9 connected to the metal layer 8 of the insulating base 1. Electrical connection cannot be made, and if it exceeds 20% by weight, the fluidity of the conductive sealing material 10 is reduced, and it becomes difficult to hermetically seal the container 4. Therefore, the amount is 5 to 20
It is preferable to set it in the range of% by weight. Thus, according to the above-described package for accommodating a semiconductor element, the semiconductor element 3 is bonded and fixed to the mounting portion 1a of the insulating base 1 via an adhesive made of glass, resin, brazing material or the like. The electrodes are electrically connected to the metallized wiring layer 5 via bonding wires 6,
Thereafter, the conductive lid 2 is joined to the upper surface of the insulating base 1 via the conductive sealing material 10, and the metal layer 8 of the insulating base 1 and the conductive lid 2 are electrically connected while the insulating base 1 is electrically connected. The semiconductor device 3 as a final product is completed by hermetically housing the semiconductor element 3 in a container 4 composed of the semiconductor device 3 and the conductive lid 2. It should be noted that the present invention is not limited to the above-described embodiment, and various changes can be made without departing from the scope of the present invention. Although the electronic component housing package for housing the element has been illustrated, the electronic component is a piezoelectric magnetic vibrator, a surface acoustic wave device, or the like, and can be applied to an electronic component housing package for housing the same. Further, in the above-mentioned example, the package for storing the electronic parts in which the external lead terminals 7 are brazed to the metallized wiring layer 5 is exemplified. However, the present invention is not limited to this, and the metallized wiring layer is formed on the lower surface of the insulating base. It may be a terminal that is derived and used as it is as a terminal that is directly connected to an external electric circuit. According to the electronic component housing package of the present invention, a metal layer is provided below the mounting portion of the insulating base on which the electronic component is mounted, and one end is connected to the metal layer. A plurality of through-hole conductors whose other ends are exposed on the upper surface of the insulating base are formed, and the total exposed area of the through-hole conductors on the upper surface of the insulating base is 1.0 mm 2 or more. When the lid is joined via the conductive sealing material, the conductive sealing material comes into contact with a plurality of through-hole conductors over an extremely large area, so that the conductive lid and the metal layer are reliably and lowly conductive. As a result, it is possible to prevent electromagnetic waves from acting on the electronic component and to operate the electronic component normally and stably for a long period of time.

【図面の簡単な説明】 【図1】本発明の電子部品収納用パッケージの実施の形
態の一例を示す断面図である。 【図2】図1に示す電子部品収納用パッケージの要部拡
大断面図である。 【図3】図1に示す電子部品収納用パッケージの絶縁基
体の搭載部周辺の拡大平面図である。 【符号の説明】 1・・・・・・・絶縁基体 2・・・・・・・導電性蓋体 3・・・・・・・半導体素子(電子部品) 4・・・・・・・容器 8・・・・・・・金属層 9・・・・・・・スルーホール導体 10・・・・・・導電性封止材
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing an example of an embodiment of an electronic component storage package according to the present invention. FIG. 2 is an enlarged sectional view of a main part of the electronic component storage package shown in FIG. FIG. 3 is an enlarged plan view of the vicinity of a mounting portion of an insulating base of the electronic component storage package shown in FIG. 1; [Description of Signs] 1 ... Insulating base 2 ... Conductive lid 3 ... Semiconductor element (electronic component) 4 ... Container 8 Metal layer 9 Through-hole conductor 10 Conductive sealing material

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−216652(JP,A) 特開 平11−126846(JP,A) 特開 平8−162559(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 23/00 H01L 23/04 H01L 23/06 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-216652 (JP, A) JP-A-11-126846 (JP, A) JP-A 8-162559 (JP, A) (58) Investigation Field (Int.Cl. 7 , DB name) H01L 23/00 H01L 23/04 H01L 23/06

Claims (1)

(57)【特許請求の範囲】 【請求項1】上面に電子部品が搭載される搭載部を有
し、該搭載部の下方に金属層が配設されている絶縁基体
と、一端が前記金属層に接続され、他端が絶縁基体上面
に露出しているスルーホール導体と、導電性蓋体とから
成り、前記絶縁基体のスルーホール導体が露出している
領域を含む上面に導電性蓋体を導電性封止材を介して接
合させ、前記金属層と導電性蓋体とを電気的に接続させ
つつ絶縁基体と導電性蓋体とからなる容器内部に電子部
品を気密に収容するようになした電子部品収納用パッケ
ージであって、前記スルーホール導体を複数個とし、絶
縁基体上面の露出平面積の合計を1.0mm2 以上とし
たことを特徴とする電子部品収納用パッケージ。
(57) Claims 1. An insulating base having a mounting portion on which an electronic component is mounted on an upper surface, and a metal layer disposed below the mounting portion, and one end of the insulating base. A conductive lid which is connected to the layer and has the other end exposed on the upper surface of the insulating base, and a conductive lid on the upper surface of the insulating base including a region where the through-hole conductor is exposed. Are bonded via a conductive sealing material so that the metal component and the conductive lid are electrically connected to each other so that the electronic component is hermetically accommodated inside a container including the insulating base and the conductive lid. An electronic component storage package, comprising: a plurality of through-hole conductors; and a total exposed plane area of an upper surface of an insulating substrate is 1.0 mm 2 or more.
JP07770398A 1998-03-25 1998-03-25 Electronic component storage package Expired - Fee Related JP3464143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07770398A JP3464143B2 (en) 1998-03-25 1998-03-25 Electronic component storage package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07770398A JP3464143B2 (en) 1998-03-25 1998-03-25 Electronic component storage package

Publications (2)

Publication Number Publication Date
JPH11274336A JPH11274336A (en) 1999-10-08
JP3464143B2 true JP3464143B2 (en) 2003-11-05

Family

ID=13641271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07770398A Expired - Fee Related JP3464143B2 (en) 1998-03-25 1998-03-25 Electronic component storage package

Country Status (1)

Country Link
JP (1) JP3464143B2 (en)

Also Published As

Publication number Publication date
JPH11274336A (en) 1999-10-08

Similar Documents

Publication Publication Date Title
JP2005039168A (en) Ceramic package and tantalum electrolytic capacitor using the same
JPH11233660A (en) Package for electronic component accommodation
JP3464138B2 (en) Electronic component storage package
JP3464143B2 (en) Electronic component storage package
JP3464136B2 (en) Electronic component storage package
JP3464137B2 (en) Electronic component storage package
JP2001358241A (en) Container for accommodation of electronic component
JP3495247B2 (en) Electronic component storage container
JP3462072B2 (en) Electronic component storage container
JP4279970B2 (en) Electronic component storage container
JP3359536B2 (en) Electronic component storage container
JP4307184B2 (en) Ceramic container and tantalum electrolytic capacitor using the same
JP3176267B2 (en) Package for storing semiconductor elements
JP3716111B2 (en) Electronic component storage container
JP3716112B2 (en) Electronic component storage container
JP3847220B2 (en) Wiring board
JP4051162B2 (en) Manufacturing method of electronic component storage container
JP3117387B2 (en) Package for storing semiconductor elements
JP3181011B2 (en) Package for storing semiconductor elements
JPH11126846A (en) Case for electronic component
JP2000183560A (en) Electronic component housing container
JPH10303325A (en) Electronic part accommodating container
JPH11274346A (en) Vessel for housing electronic component
JPH11233661A (en) Package for electronic component accommodation
JP2000183207A (en) Container for housing electronic component

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees