JP2003101042A - Container for accommodating optical semiconductor element - Google Patents

Container for accommodating optical semiconductor element

Info

Publication number
JP2003101042A
JP2003101042A JP2001290916A JP2001290916A JP2003101042A JP 2003101042 A JP2003101042 A JP 2003101042A JP 2001290916 A JP2001290916 A JP 2001290916A JP 2001290916 A JP2001290916 A JP 2001290916A JP 2003101042 A JP2003101042 A JP 2003101042A
Authority
JP
Japan
Prior art keywords
semiconductor element
optical semiconductor
metal frame
glass
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001290916A
Other languages
Japanese (ja)
Inventor
Yoshiaki Ito
吉明 伊藤
Takahiro Nakao
貴博 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001290916A priority Critical patent/JP2003101042A/en
Publication of JP2003101042A publication Critical patent/JP2003101042A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48235Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Abstract

PROBLEM TO BE SOLVED: To solve the problem of stresses applied to a transparent lid member increasing after sealed and the transparent lid member detached from the vessel by miniaturizing and thinning a container for accommodating an optical semiconductor element which accommodates an optical semiconductor element such as an image pickup element. SOLUTION: The container for accommodating an optical semiconductor element is constituted of an insulating base substance 1 which has a mounting part 1a of an optical semiconductor element S on an upper surface, a metal frame member 2 which is bonded to the upper surface of the insulating base substance 1 via a sealing member 7, surrounds the mounting part 1a and is used for forming a space for accommodating the element S inside, and a transparent lid member 3 which is hermetically bonded to the upper surface of the metal frame member 2 via glass-cementing material 8 and accommodates the element S in the space. In the metal frame member 2, an active metal solder material layer 9, containing at least one kind from among titanium, zirconium and hafnium, is formed on a bonding surface to the glass-cementing material 8.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は光半導体素子を気密
に封止して収納するための光半導体素子収納用容器に関
し、特に導電性の封止材を用いて封止を行う光半導体素
子収納用容器に関する。 【0002】 【従来の技術】従来、撮像素子等の光半導体素子を収容
する光半導体素子収納用容器は、例えば酸化アルミニウ
ム質焼結体等の電気絶縁材料から成り、その上面の略中
央部に光半導体素子を収容するための凹部およびその底
面から下面にかけて導出されたタングステンやモリブデ
ン等の高融点金属から成る複数個のメタライズ配線層を
有する絶縁基体と、この絶縁基体の上面に封止材を介し
て接合され、前記凹部に光半導体素子を気密に収容する
透光性蓋体とから構成されている。 【0003】そして、絶縁基体の凹部底面に光半導体素
子を導電性樹脂等を介して接着固定するとともに光半導
体素子の各電極をボンディングワイヤを介してメタライ
ズ配線層に電気的に接続し、しかる後、絶縁基体の上面
に透光性蓋体を凹部を塞ぐように封止材を介して接合さ
せ、絶縁基体と透光性蓋体とから成る容器内部に光半導
体素子を気密に収容することによって最終製品としての
光半導体装置と成る。 【0004】なお、絶縁基体に透光性蓋体を接合する封
止材としては、例えば酸化鉛56〜66重量%、酸化ホウ素
4〜14重量%、酸化珪素1〜6重量%、酸化亜鉛0.5〜
3重量%および酸化ビスマス0.5〜5重量%を含むガラ
ス成分に、フィラーとしてコージェライト系化合物を10
〜20重量%添加した鉛系のガラスが使用されている。ま
た、透光性蓋体は硼珪酸ガラス等の板材から成り、外部
からの画像を集光し撮像素子に導く働きをする。 【0005】しかしながら、この従来の光半導体素子収
納用容器においては、絶縁基体を形成する酸化アルミニ
ウム質焼結体等のセラミックスが電磁波を透過し易く、
そのため外部電気回路基板等に他の電子部品とともに実
装した場合、隣接する電子部品間に電磁波の相互干渉が
起こり光半導体装置が誤作動してしまうという問題点を
有していた。 【0006】また、この従来の光半導体素子収納用容器
においては、絶縁基体に透光性蓋体を接合させる封止材
の軟化溶融温度が400℃程度と高温であること、および
近時の光半導体素子は高密度化・高集積化に伴って耐熱
性が低下してきたこと等から、絶縁基体と透光性蓋体と
を封止材を介して接合し、絶縁基体と透光性蓋体とから
成る容器内部に光半導体素子を気密に収容した場合、封
止材を溶融させる熱が内部に収容する光半導体素子に作
用して光半導体素子の特性に劣化を招来させ、光半導体
装置を正常に作動させることができないという問題点を
有していた。 【0007】さらに、近年地球環境保護運動の高まりの
中で封止材に含まれる酸化鉛は環境負荷物質に指定され
ており、例えば酸化鉛を含む電子装置が屋外に廃棄・放
置され風雨に曝された場合、環境中に鉛が溶けだし環境
を汚染する可能性があり、人体に対して有害である酸化
鉛を用いない封止材の開発が要求されるようになってき
た。 【0008】このような問題点を解決するために、光半
導体素子収納用容器を、上面の略中央部に光半導体素子
の搭載部およびその周辺から下面にかけて導出されたタ
ングステンやモリブデン等の高融点金属から成る複数個
のメタライズ配線層を有する略平坦状の絶縁基体と、こ
の上面に封止材を介して接合され、搭載部を取り囲むと
ともに内側に光半導体素子を収容する空所を形成するた
めの金属枠体と、この金属枠体の上面にガラス接合材を
介して接合される透光性蓋体とで構成し、容器を金属枠
体でシールドして電磁波を遮断することが行なわれてい
る。 【0009】また、ガラスの低融点化および非鉛化を目
的として、封止材やガラス接合材に銀燐酸系ガラスや錫
燐酸系ガラスを主成分とする低融点ガラスを用いること
が検討されている。 【0010】 【発明が解決しようとする課題】しかしながら、近年、
CCD・CMOS等の撮像素子が携帯電子機器へ搭載さ
れるにつれ光半導体素子収納用容器の小型化が急速に進
んでおり、絶縁基体と金属枠体との接合面積および金属
枠体と透光性蓋体との接合面積が小さいものとなってき
ていること、PCボード等の外部電気回路基板への実装
後における曲げ試験等において金属枠体と透光性蓋体と
の接合面に応力が集中し易いこと、および、透光性蓋体
とガラス接合材の接合強度に較べ金属枠体とガラス接合
材との接合強度が不十分なこと等から、携帯電子機器の
落下等の衝撃により容器内部の気密封止が破れ、特に金
属枠体と、透光性蓋体を接合するガラス接合材との接合
部分で気密封止が破れ、内部に収容する撮像素子等の光
半導体素子の特性が劣化してしまう、あるいは、透光性
蓋体が金属枠体から剥がれてしまい撮像に支障をきたし
てしまうという問題を誘発していた。 【0011】本発明は上記問題点に鑑み案出されたもの
であり、その目的は小型で気密信頼性に優れ、また、電
磁波を良好に遮断するとともに容器内部に光半導体素子
を収容する際に光半導体素子に特性劣化を生じさせるこ
ともなく、さらに、鉛を含有しない地球環境に優しい小
型の光半導体素子収納用容器を提供することにある。 【0012】 【課題を解決するための手段】本発明の光半導体素子収
納用容器は、上面に光半導体素子の搭載部を有する絶縁
基体と、この絶縁基体の上面に封止材を介して接合さ
れ、搭載部を取り囲むとともに内側に光半導体素子を収
容する空所を形成するための金属枠体と、この金属枠体
の上面にガラス接合材を介して接合され、空所に光半導
体素子を気密に収容する透光性蓋体とから成る光半導体
素子収納用容器であって、金属枠体はガラス接合材との
接合面にチタン、ジルコニウム、ハフニウムの一種以上
を含む活性金属ろう材層が形成されており、ガラス接合
材は五酸化燐30〜40重量%、一酸化錫47〜60重量%、酸
化亜鉛1〜6重量%、酸化アルミニウム1〜4重量%お
よび酸化珪素1〜3重量%を含むガラス成分にフィラー
としてコージェライト系化合物を外添加で16〜45重量%
添加したものから成り、封止材はエポキシ樹脂に平均粒
子径が0.1〜30μmの導電性粒子を0.5〜200重量%含有
して成るものとしたことを特徴とするものである。 【0013】本発明の光半導体素子収納用容器によれ
ば、金属枠体のガラス接合材との接合面にチタン、ジル
コニウム、ハフニウムの一種以上を含む活性金属ろう材
層を形成したことから、金属枠体のガラス接合材との接
合面に活性金属の緻密な酸化物層が形成され、金属枠体
とガラス接合材とを強固に接合することが可能となり、
その結果、携帯電子機器の落下等の衝撃においても、金
属枠体と透光性蓋体を接合するガラス接合材との接合部
分で気密封止が破れることはなく、気密信頼性が極めて
高い光半導体素子収納容器とすることができる。 【0014】また、本発明の光半導体素子収納用容器に
よれば、絶縁基体と金属枠体とを接合する封止材を、エ
ポキシ樹脂に平均粒子径が0.1〜30μmの導電性粒子を
0.5〜200重量%含有して成るものとしたことから、その
封止温度を200℃以下の低温とすることができ、その結
果、絶縁基体と金属枠体とを封止材を介して接合させ、
絶縁基体と金属枠体と透光性蓋体とから成る容器内部に
光半導体素子を気密に収容する際、封止材を溶融させる
熱が内部に収容する光半導体素子に作用しても光半導体
素子の特性に劣化を招来することはなく、光半導体装置
を長期間にわたり正常、かつ安定に作動させることが可
能となる。さらに、封止材が導電性であることから、金
属枠体を絶縁基体に形成した接地用配線層に封止材を介
して接続することにより、容器内部に収容される光半導
体素子が金属枠体で良好にシールドされることとなり、
その結果、外部ノイズが金属枠体を介して容器内部に入
り込むのを有効に防止することができ、光半導体素子を
長期間にわたり正常、かつ安定に作動させることが可能
となる。 【0015】 【発明の実施の形態】次に、本発明を添付の図面に基づ
き詳細に説明する。 【0016】図1は、本発明の光半導体素子収納用容器
の実施の形態の一例を示す断面図である。この図におい
て1は絶縁基体、2は金属枠体、3は透光性蓋体であ
り、主にこれらで撮像素子等の光半導体素子Sを収容す
るための容器4が構成される。 【0017】絶縁基体1は、その形状が略長方形で、上
面に光半導体素子Sの搭載部1aを有し、この搭載部1
aには、光半導体素子Sが導電性エポキシ樹脂等から成
る導電性樹脂Jを介して接着固定される。 【0018】絶縁基体1は、酸化アルミニウム質焼結体
やムライト質焼結体・窒化アルミニウム質焼結体・窒化
珪素質焼結体・炭化珪素質焼結体等の電気絶縁材料から
成り、例えば酸化アルミニウム質焼結体から成る場合で
あれば、酸化アルミニウム・酸化珪素・酸化マグネシウ
ム・酸化カルシウム等の原料粉末に適当な有機バインダ
・溶剤・可塑剤・分散剤等を添加混合して泥漿物を作
り、この泥漿物を従来周知のドクターブレード法やカレ
ンダーロール法等のシート成形法を採用しシート状に成
形してセラミックグリーンシート(セラミック生シー
ト)を得、しかる後、それらセラミックグリーンシート
に適当な打ち抜き加工を施すとともにこれを複数枚積層
し、約1600℃の高温で焼成することによって製作され
る。 【0019】また、絶縁基体1には搭載部1a近傍から
底面にかけて複数のメタライズ配線層5が被着形成され
ている。そして、このメタライズ配線層5の搭載部1a
の近傍に位置する部位には光半導体素子Sの各電極がボ
ンディングワイヤ6を介して電気的に接続され、また、
絶縁基体1の底面に導出された部位には外部電気回路の
配線導体(図示せず)が半田等のロウ材を介して取着さ
れる。 【0020】このようなメタライズ配線層5は、タング
ステン・モリブデン・マンガン等の高融点金属粉末に適
当な有機溶剤・溶媒・可塑剤等を添加混合して得た金属
ペーストを従来周知のスクリーン印刷法等の厚膜手法を
採用して絶縁基体1となるセラミックグリーンシートに
あらかじめ印刷塗布しておき、これをセラミックグリー
ンシートと同時に焼成することによって絶縁基体1の上
面から底面にかけて所定パターンに被着形成される。な
お、メタライズ配線層5はその表面にニッケル・金等の
良導電性で耐蝕性およびろう材との濡れ性が良好な金属
をめっき法により1〜20μmの厚みに被着させておく
と、メタライズ配線層5の酸化腐蝕を有効に防止するこ
とができるとともにメタライズ配線層5とボンディング
ワイヤ6との接続およびメタライズ配線層5と外部電気
回路の配線導体とのろう付けを極めて強固となすことが
できる。 【0021】そして、絶縁基体1の上面には金属枠体2
が搭載部1aを取り囲んで封止材7を介して接合され、
さらに、金属枠体2の上面には透光性蓋体3が金属枠体
2の開口Kを塞ぐようにガラス接合材8を介して接合さ
れ、これによって光半導体素子Sを気密に収容する容器
4と成る。 【0022】なお、絶縁基体1への金属枠体2の接合
は、透光性蓋体3を金属枠体2に接合した後に行なわれ
る。これは、後述するようにガラス接合材8の軟化溶融
温度が約500℃と高温であるために、金属枠体2を絶縁
基体1に先に接合すると、透光性板3を金属枠体2へ接
合する際に封止材7が燃焼してしまい、その結果、絶縁
基体1と金属枠体2との接合が破れてしまうことによる
ものである。 【0023】金属枠体2は、鉄−ニッケル−コバルト合
金や鉄−ニッケル合金等の金属材料から成り、例えば鉄
−ニッケル−コバルト合金のインゴット(塊)に圧延加
工法や打ち抜き加工法等の従来周知の金属加工法を施す
ことによって略中央部に開口Kを有する枠状に成形され
る。 【0024】また、透光性蓋体3は、硼珪酸ガラスや水
晶等の透光性の板材から成り、外部からの画像を集光し
光半導体素子Sに導く機能を有し、例えば透光性蓋体3
が硼珪酸ガラスから成る場合であれば、透光性蓋体3と
成る硼珪酸ガラスの母基板をダイシング法等の従来周知
の切断加工を施すことにより、金属枠体2の開口Kの面
積よりも大きな面積に形成される。 【0025】金属枠体2は、その開口K周辺のガラス接
合材8との接合面にチタン、ジルコニウム、ハフニウム
の一種以上を含む活性金属ろう材層9が形成されてお
り、金属枠体2とガラス接合材8とは活性金属ろう材層
9を介して強固に接合している。そして、本発明の光半
導体素子収納用容器においては、このことが重要であ
る。 【0026】本発明の光半導体素子収納用容器によれ
ば、金属枠体2のガラス接合材8との接合面にチタン、
ジルコニウム、ハフニウムの一種以上を含む活性金属ろ
う材層9を形成したことから、金属枠体2のガラス接合
材8との接合面に活性金属の緻密な酸化物層が形成され
金属枠体2とガラス接合材8との強固な接合が可能とな
り、光半導体素子収納用容器が携帯電子機器等に搭載さ
れ落下等の衝撃を受けたとしても、金属枠体2と透光性
蓋体3との接合が破壊されることはなく、その結果、容
器4の気密封止が破れ内部に収容する撮像素子等の光半
導体素子Sの特性が劣化してしまったり、あるいは、透
光性蓋体3が金属枠体2から剥がれて撮像に支障をきた
してしまうことはない。 【0027】このような活性金属ろう材層9は、金属枠
体2のガラス接合材8との接合面に、例えばAg−Cu
共晶ろう材(Ag72重量%、Cu28重量%)と、これに
対して2〜4重量%のチタン、ジルコニウム、ハフニウ
ムのいずれか一種以上の活性金属とから成るペースト状
のろう材をスクリーン印刷法やカレンダーロール法等に
より70μm程度の厚さに印刷塗布するとともに乾燥し、
次に、還元雰囲気の熱処理炉にて約800℃の温度で60分
間加熱することにより層厚が55μm程度に被着形成され
る。なお、その際に活性金属ろう材層9の表面に膜厚が
3μm程度の活性金属の水素化物層が形成される。 【0028】そして、金属枠体2に被着形成した活性金
属ろう材層9上に、銀−燐酸系ガラスと有機樹脂とから
成るバインダーを調製したペースト状のガラス材料をろ
う材と同様にスクリーン印刷法やカレンダーロール法等
により印刷塗布し、さらに、透光性蓋体3を金属枠体2
の開口Kを塞ぐように載置するとともに加圧し、しかる
後、酸化雰囲気の熱処理炉にて約500℃の温度で10分間
程度加熱することにより、活性金属の緻密な酸化物層が
活性金属ろう材9とガラス接合材8との間に形成される
とともに透光性蓋体3が金属枠体2に接合される。 【0029】なお、チタン、ジルコニウム、ハフニウム
のいずれか一種以上の活性金属の含有量が2重量%未満
であると、活性金属ろう材層9の量が不十分となり、ガ
ラス接合材8との強固な接合を得ることが困難と成る傾
向にあり、また4重量%を超えると、活性金属ろう材層
9が脆くなり、接合部の強度が低下してしまう傾向があ
る。従って、チタン、ジルコニウム、ハフニウムのいず
れか一種以上の活性金属の含有量は、2〜4重量%とす
ることが好ましい。 【0030】また、焼結後の活性金属ろう材層9は、そ
の厚みが10〜70μmであることが好ましく、10μm未満
では接合部の活性金属の緻密な酸化物層の量が不十分と
なり、ガラス接合材8との強固な接合を得ることが困難
と成る傾向にあり、他方、70μmを越えると活性金属ろ
う材層9とガラス接合材8の熱膨脹係数の相異により両
者の接合部の強度が低下してしまう傾向がある。従っ
て、焼結後の活性金属ろう材層9は、その厚みが10〜70
μmであることが好ましい。 【0031】なお、ガラス接合材8は五酸化燐30〜40重
量%、一酸化錫47〜60重量%、酸化亜鉛1〜6重量%、
酸化アルミニウム1〜4重量%および酸化珪素1〜3重
量%を含むガラス成分にフィラーとしてコージェライト
系化合物を外添加で16〜45重量%添加したものから成る
ことから、その軟化溶融温度が約400℃で、後述する絶
縁基体1と、透光性蓋体3をガラス接合材8を介して接
合した金属性枠体2とを接合する封止材7の硬化温度約
200℃に較べて高温であり、絶縁基体1と、透光性蓋体
3をガラス接合材8を介して接合した金属枠体2とを封
止材7を介して接合し、絶縁基体1と金属枠体2と透光
性蓋体3とから成る容器4の内部に光半導体素子Sを気
密に収容したとしても、ガラス接合材8は封止材7の硬
化温度で軟化溶融することはなく、その結果、金属枠体
2と透光性蓋体3との気密封止が破れるということはな
い。また、ガラス接合材8は鉛を含まないことから、地
球環境に負荷を与えることもない。 【0032】ガラス接合材8は、五酸化燐が30重量%未
満であるとガラスの軟化溶融温度が高くなり、透光性蓋
体3の低温での金属枠体2への接合が困難となる傾向が
あり、また40重量%を超えるとガラス接合材8の耐薬品
性が低下し、容器4の気密封止の信頼性が大きく低下す
る傾向にある。従って、五酸化燐はその量が30〜40重量
%の範囲に特定される。 【0033】また、一酸化錫は、その量が47重量%未満
であるとガラスの軟化溶融温度が高くなり、透光性蓋体
3の低温での金属枠体2への接合が困難となる傾向があ
り、60重量%を超えるとガラス接合材8の耐薬品性が低
下し、容器4の気密封止の信頼性が大きく低下する傾向
にある。従って、一酸化錫はその量が47〜60重量%の範
囲に特定される。 【0034】さらに、酸化亜鉛は、その量が1重量%未
満であるとガラスの軟化溶融温度が高くなり、透光性蓋
体3の低温での金属枠体2への接合が困難となる傾向が
あり、6重量%を超えるとガラス接合材8の結晶化が進
んで流動性が低下し、容器4の気密封止が困難となる傾
向がある。従って、酸化亜鉛はその量が1〜6重量%の
範囲に特定される。 【0035】酸化アルミニウムは、その量が1重量%未
満であるとガラス接合材8の耐湿性が低下し、容器4の
気密封止の信頼性が低下する傾向にあり、4重量%を超
えるとガラス接合材8の軟化溶融温度が高くなり、透光
性蓋体3の低温での金属枠体2への接合が困難となる傾
向がある。従って、酸化アルミニウムはその量が1〜4
重量%の範囲に特定される。 【0036】酸化珪素は、その量が1重量%未満である
とガラス接合材8の熱膨張係数が大きくなって金属枠体
2および透光性蓋体3の熱膨張係数と大きく相違して、
容器4の気密封止の信頼性が低下してしまう傾向があ
り、3重量%を超えるとガラス接合材8の軟化溶融温度
が高くなり、透光性蓋体3の低温での金属枠体2への接
合が困難となる傾向がある。従って、酸化珪素はその量
が1〜3重量%の範囲に特定される。 【0037】さらに、フィラーとして添加されるコージ
ェライト系化合物は、その量が16重量%未満であるとガ
ラス接合材8の強度が低下し、容器4の気密封止の信頼
性が大きく低下する傾向があり、また、45重量%を超え
るとガラス接合材8の熱膨張係数が小さくなって金属枠
体2および透光性蓋体3の熱膨張係数と大きく相違し
て、容器4の気密封止の信頼性が低下してしまう傾向が
る。従って、コージェライト系化合物はその量が16〜45
重量%の範囲に特定される。 【0038】また、絶縁基体1と金属枠体2との接合
は、金属枠体2に透光性板3を接合した後、封止材7を
絶縁基体1および/または金属枠体2の接合領域に従来
周知のスクリーン印刷法等を採用して予め被着させてお
き、次に、絶縁基体1の搭載部1aに光半導体素子Sを
導電性樹脂Jを介して接着固定するとともに光半導体素
子Sの各電極をボンディングワイヤ6介してメタライズ
配線層5に電気的に接続し、さらに、絶縁基体1に金属
枠体2を両者の接合面が重なるように載置し、しかる
後、封止材7の硬化温度、すなわち約200℃で適正な荷
重を掛けながら加熱することによって行なわれる。 【0039】なお、本発明の光半導体素子収納用容器に
おいては、絶縁基体1と金属枠体2とを接合する封止材
7を、エポキシ樹脂に平均粒子径が0.1〜30μmの導電
性粒子を0.5〜200重量%含有して成るものとしたことか
ら、その封止温度を200℃以下の低温とすることがで
き、絶縁基体1と金属枠体2とを封止材7を介して接合
させ、絶縁基体1と金属枠体2と透光性蓋体3とから成
る容器4内部に光半導体素子Sを気密に収容する際、封
止材7を硬化させる熱が内部に収容する光半導体素子S
に作用しても光半導体素子Sの特性に劣化を招来するこ
とはなく、その結果、光半導体素子Sを長期間にわたり
正常、かつ安定に作動させることが可能となる。 【0040】また、本発明の光半導体素子収納容器は、
封止材7が鉛を含有していないことから、地球環境に負
荷を与えることもない。 【0041】さらに、本発明においては、封止材7が導
電性であることから、金属枠体2を絶縁基体1に形成し
たメタライズ配線層5の一部から成る接地用配線層5a
に封止材7を介して接続することにより、容器4内部に
収容される光半導体素子Sが金属枠体2で良好にシール
ドされることとなり、その結果、外部ノイズが金属枠体
2を介して容器4内部に入り込むのを有効に防止するこ
とができ、光半導体素子Sを長期間にわたり正常、かつ
安定に作動させることが可能となる。 【0042】このようなエポキシ樹脂は、緻密な3次元
網目構造を有することから耐湿性や接合強度に優れるビ
スフェノールA型エポキシ樹脂やビスフェノールA変形
エポキシ樹脂・ビスフェノールF型エポキシ樹脂・フェ
ノールノボラック型エポキシ樹脂・クレゾールノボラッ
ク型エポキシ樹脂・特殊ノボラック型エポキシ樹脂・フ
ェノール誘導体エポキシ樹脂・ビフェノール骨格型エポ
キシ樹脂等の熱硬化性タイプが用いられる。また、エポ
キシ樹脂にイミダゾール系・アミン系・ヒドラジン系・
イミダゾールアダクト系・アミンアダクト系・カチオン
重合系・ジシアンジアミド系等の硬化剤を添加してもよ
い。 【0043】なお、2種類以上のエポキシ樹脂を混合し
て用いてもよく、さらにシリコンゴムやシリコンレジン
・LDPE・HDPE・PMMA・架橋PMMA・ポリ
スチレン・架橋ポリスチレン・エチレン−アクリル共重
合・ポリメタクリル酸エチル・ブリルアクリレート・ウ
レタン等の軟質微粒子から成る充填材を添加してもよ
い。 【0044】また、導電性粒子は、封止材7に導電性を
付与する機能を有し、このような導電性粒子としては、
例えばアクリル系樹脂やフェノール系樹脂・ウレタン系
樹脂・ベンゾグアナミン樹脂・メラミン系樹脂・ポリビ
ニルベンゼン・ポリスチレン系樹脂等の各種樹脂系材料
を核にもち、表面にニッケル・金・銀・銅等の導電性材
料を被覆した粒子やカーボン粉末あるいはニッケル・金
・銀・銅等の金属粉末が用いられる。 【0045】なお、導電性粒子の含有量がエポキシ樹脂
に対して0.5重量%未満であると封止材7の導電性が低
下し、金属枠体2によるシールドが不完全となり外部ノ
イズの侵入を防止することが困難となる傾向があり、ま
た、200重量%を超えると封止材7の流動性が低下し
て、低温での気密封止が困難となる傾向がある。従っ
て、導電性粒子の含有量をエポキシ樹脂に対して0.5〜2
00重量%とすることが好ましい。さらに、導電性粒子の
平均粒子径が0.1μm未満では、封止材7の導電性が低
下し、金属枠体2によるシールドが不完全となり外部ノ
イズの侵入を防止することが困難となる傾向があり、30
μmを超えると封止材7の流動性が低下して、低温での
気密封止が困難となる傾向がある。従って、導電性粒子
の平均粒子径を0.1〜30μmとすることが好ましい。 【0046】かくして本発明の光半導体素子収納用容器
によれば、絶縁基体1の搭載部1aに光半導体素子Sを
導電性エポキシ樹脂等から成る導電性樹脂Jを介して接
着固定するとともに光半導体素子Sの各電極をボンディ
ングワイヤ6を介してメタライズ配線層5に電気的に接
続させ、しかる後、絶縁基体1の搭載部1aを覆うよう
に、上面に透光性蓋体3を接合させた金属枠体2を封止
材7を介して接合させ、絶縁基体1と金属枠体2と透光
性蓋体3とから成る容器4の内部に光半導体素子Sを気
密に収容することによって最終製品としての光半導体装
置が完成する。 【0047】なお、本発明は上述の実施の形態の一例に
限定されるものではなく、本発明の要旨を逸脱しない範
囲であれば種々の変更は可能である。例えば、金属枠体
2が図2に断面図で示すような凹形状の底面部に開口K
を有する形状のものであってもよい。さらに、図3に断
面図で示すように、透光性蓋体3を凹形状の底面部に開
口Kを有する金属枠体2の容器4内部側に接合してもよ
い。 【0048】 【発明の効果】本発明の光半導体素子収納用容器によれ
ば、金属枠体のガラス接合材との接合面にチタン、ジル
コニウム、ハフニウムの一種以上を含む活性金属ろう材
層を形成したことから、金属枠体のガラス接合材との接
合面に活性金属の緻密な酸化物層が形成され、金属枠体
とガラス接合材とを強固に接合することが可能となり、
その結果、携帯電子機器の落下等の衝撃においても、金
属枠体と透光性蓋体を接合するガラス接合材との接合部
分で気密封止が破れることはなく、気密信頼性が極めて
高い光半導体素子収納容器とすることができる。 【0049】また、本発明の光半導体素子収納用容器に
よれば、絶縁基体と金属枠体とを接合する封止材を、エ
ポキシ樹脂に平均粒子径が0.1〜30μmの導電性粒子を
0.5〜200重量%含有して成るものとしたことから、その
封止温度を200℃以下の低温とすることができ、その結
果、絶縁基体と金属枠体とを封止材を介して接合させ、
絶縁基体と金属枠体と透光性蓋体とから成る容器内部に
光半導体素子を気密に収容する際、封止材を溶融させる
熱が内部に収容する光半導体素子に作用しても光半導体
素子の特性に劣化を招来することはなく、光半導体装置
を長期間にわたり正常、かつ安定に作動させることが可
能となる。さらに、封止材が導電性であることから、金
属枠体を絶縁基体に形成した接地用配線層に封止材を介
して接続することにより、容器内部に収容される光半導
体素子が金属枠体で良好にシールドされることとなり、
その結果、外部ノイズが金属枠体を介して容器内部に入
り込むのを有効に防止することができ、光半導体素子を
長期間にわたり正常、かつ安定に作動させることが可能
となる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical semiconductor device storage container for hermetically sealing and storing an optical semiconductor device, and more particularly, to a container for storing an electrically conductive sealing material. The present invention relates to an optical semiconductor element storage container that is sealed by using the container. 2. Description of the Related Art Conventionally, an optical semiconductor element storage container for storing an optical semiconductor element such as an image pickup element is made of an electrically insulating material such as a sintered body of aluminum oxide. A concave portion for accommodating the optical semiconductor element and an insulating base having a plurality of metallized wiring layers made of a high melting point metal such as tungsten or molybdenum led out from the bottom to the lower surface, and a sealing material on the upper surface of the insulating base. And a light-transmissive lid that hermetically accommodates the optical semiconductor element in the recess. Then, the optical semiconductor element is bonded and fixed to the bottom of the concave portion of the insulating base via a conductive resin or the like, and each electrode of the optical semiconductor element is electrically connected to a metallized wiring layer via a bonding wire. A light-transmitting lid is bonded to the upper surface of the insulating base via a sealing material so as to cover the concave portion, and the optical semiconductor element is hermetically accommodated in a container including the insulating base and the light-transmitting lid. It becomes an optical semiconductor device as a final product. As a sealing material for joining the light-transmitting lid to the insulating substrate, for example, 56 to 66% by weight of lead oxide, 4 to 14% by weight of boron oxide, 1 to 6% by weight of silicon oxide, 0.5 to 0.5% of zinc oxide ~
A cordierite-based compound as a filler is added to a glass component containing 3% by weight and bismuth oxide 0.5 to 5% by weight.
Lead-based glass to which about 20% by weight is added is used. The light-transmitting lid is made of a plate material such as borosilicate glass, and functions to collect an external image and guide the image to the image sensor. However, in this conventional container for storing an optical semiconductor element, ceramics such as an aluminum oxide sintered body forming an insulating base easily transmit electromagnetic waves,
Therefore, when the optical semiconductor device is mounted on an external electric circuit board or the like together with other electronic components, mutual interference of electromagnetic waves occurs between adjacent electronic components, causing a problem that the optical semiconductor device malfunctions. Further, in this conventional container for housing an optical semiconductor element, the softening and melting temperature of the sealing material for joining the light-transmitting lid to the insulating base is as high as about 400 ° C. Since the heat resistance of semiconductor elements has been reduced due to the increase in density and integration, the insulating base and the light-transmitting lid are joined together via a sealing material to form the insulating base and the light-transmitting lid. When the optical semiconductor element is hermetically housed inside the container composed of the following, the heat for melting the sealing material acts on the optical semiconductor element housed therein to cause deterioration of the characteristics of the optical semiconductor element, and the optical semiconductor device is manufactured. There was a problem that it could not operate normally. [0007] Further, in recent years, with the rise of the global environmental protection movement, lead oxide contained in a sealing material has been designated as an environmentally harmful substance. For example, an electronic device containing lead oxide is discarded and left outdoors and exposed to wind and rain. In such a case, there is a possibility that lead may melt into the environment and contaminate the environment, and it has been required to develop a sealing material that does not use lead oxide, which is harmful to the human body. In order to solve such a problem, an optical semiconductor element accommodating container is provided with a high melting point of tungsten, molybdenum, or the like which is led out from the mounting portion of the optical semiconductor element to the substantially central portion of the upper surface and from the periphery to the lower surface. A substantially flat insulating base having a plurality of metallized wiring layers made of metal, and an upper surface joined with a sealing material to form a space surrounding the mounting portion and accommodating the optical semiconductor element therein. A metal frame, and a translucent lid joined to the upper surface of the metal frame via a glass bonding material. The container is shielded by the metal frame to block electromagnetic waves. I have. For the purpose of lowering the melting point of the glass and making it lead-free, the use of a low-melting glass mainly composed of silver phosphate glass or tin phosphate glass as a sealing material or a glass bonding material has been studied. I have. [0010] However, in recent years,
As imaging devices such as CCD and CMOS are mounted on portable electronic devices, miniaturization of optical semiconductor device storage containers is rapidly progressing, and the bonding area between the insulating base and the metal frame and the metal frame and the light transmitting property are increased. The bonding area with the lid is becoming smaller, and stress is concentrated on the bonding surface between the metal frame and the translucent lid in bending tests etc. after mounting on an external electric circuit board such as a PC board. And the joint strength between the metal frame and the glass joining material is insufficient compared to the joining strength between the translucent lid and the glass joining material. The airtight seal is broken, especially at the joint between the metal frame and the glass joining material that joins the translucent lid, and the characteristics of the optical semiconductor device such as an imaging device housed inside deteriorates. Or the translucent lid is a metal frame The problem that disturbed to peel off would imaging had been induced. The present invention has been devised in view of the above-mentioned problems, and has as its object the purpose of providing a small-sized and excellent airtight reliability, good shielding of electromagnetic waves, and a method for accommodating an optical semiconductor element in a container. An object of the present invention is to provide a small optical semiconductor element storage container which does not cause deterioration in characteristics of an optical semiconductor element and is free from lead and which is environmentally friendly. A container for storing an optical semiconductor element according to the present invention is bonded to an insulating substrate having a mounting portion for an optical semiconductor element on an upper surface thereof and a sealing material on the upper surface of the insulating substrate. A metal frame for surrounding the mounting portion and forming a space for housing the optical semiconductor element inside, and bonded to the upper surface of the metal frame via a glass bonding material, and the optical semiconductor element is filled in the space. An optical semiconductor element storage container comprising a light-transmitting lid and an airtight storage, wherein the metal frame has an active metal brazing material layer containing at least one of titanium, zirconium and hafnium on a bonding surface with a glass bonding material. The glass bonding material is formed of 30 to 40% by weight of phosphorus pentoxide, 47 to 60% by weight of tin monoxide, 1 to 6% by weight of zinc oxide, 1 to 4% by weight of aluminum oxide, and 1 to 3% by weight of silicon oxide. As a filler in glass components containing The cordierite-based compound externally added 16 to 45 wt%
The encapsulating material is characterized in that the encapsulant is made of an epoxy resin containing 0.5 to 200% by weight of conductive particles having an average particle size of 0.1 to 30 μm. According to the container for storing an optical semiconductor element of the present invention, an active metal brazing material layer containing at least one of titanium, zirconium and hafnium is formed on the joining surface of the metal frame and the glass joining material. A dense oxide layer of the active metal is formed on the bonding surface of the frame with the glass bonding material, and the metal frame and the glass bonding material can be bonded firmly,
As a result, even when the portable electronic device is dropped or the like, the hermetic seal is not broken at the joint portion between the metal frame and the glass joining material that joins the translucent lid, so that light having extremely high hermetic reliability can be obtained. It can be a semiconductor element storage container. Further, according to the container for housing an optical semiconductor element of the present invention, the sealing material for joining the insulating base and the metal frame is made of an epoxy resin containing conductive particles having an average particle diameter of 0.1 to 30 μm.
Since the content is 0.5 to 200% by weight, the sealing temperature can be reduced to a low temperature of 200 ° C. or less, and as a result, the insulating base and the metal frame are joined via the sealing material. ,
When the optical semiconductor element is hermetically accommodated in a container including an insulating base, a metal frame, and a light-transmitting lid, even if heat for melting the sealing material acts on the optical semiconductor element accommodated therein, the optical semiconductor element is prevented. The optical semiconductor device can be operated normally and stably for a long period of time without deteriorating the characteristics of the element. Further, since the sealing material is conductive, the optical semiconductor element accommodated in the container is connected to the metal frame by connecting the metal frame to the grounding wiring layer formed on the insulating base via the sealing material. It will be shielded well by the body,
As a result, it is possible to effectively prevent external noise from entering the inside of the container via the metal frame, and it is possible to operate the optical semiconductor element normally and stably for a long period of time. Next, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing an example of an embodiment of the optical semiconductor element storage container of the present invention. In this figure, reference numeral 1 denotes an insulating base, 2 denotes a metal frame, and 3 denotes a light-transmitting lid. These mainly constitute a container 4 for accommodating an optical semiconductor element S such as an image sensor. The insulating substrate 1 has a substantially rectangular shape and has a mounting portion 1a for the optical semiconductor element S on the upper surface.
At a, an optical semiconductor element S is bonded and fixed via a conductive resin J made of a conductive epoxy resin or the like. The insulating substrate 1 is made of an electrically insulating material such as an aluminum oxide sintered body, a mullite sintered body, an aluminum nitride sintered body, a silicon nitride sintered body, and a silicon carbide sintered body. In the case of an aluminum oxide sintered body, a suitable organic binder, a solvent, a plasticizer, a dispersant, etc. are added to raw material powders such as aluminum oxide, silicon oxide, magnesium oxide, calcium oxide, etc. This slurry is formed into a sheet by using a sheet forming method such as a doctor blade method or a calender roll method, which is well known, to obtain a ceramic green sheet (ceramic green sheet). It is manufactured by performing a punching process, laminating a plurality of these, and firing at a high temperature of about 1600 ° C. A plurality of metallized wiring layers 5 are formed on the insulating base 1 from the vicinity of the mounting portion 1a to the bottom surface. The mounting portion 1a of the metallized wiring layer 5
The electrodes of the optical semiconductor element S are electrically connected to a portion located in the vicinity of via a bonding wire 6.
A wiring conductor (not shown) of an external electric circuit is attached to a portion led out to the bottom surface of the insulating base 1 via a brazing material such as solder. The metallized wiring layer 5 is made of a metal paste obtained by adding a suitable organic solvent, a solvent, a plasticizer, etc. to a high melting point metal powder such as tungsten, molybdenum, manganese, etc. by a conventionally known screen printing method. The ceramic green sheet serving as the insulating substrate 1 is printed and applied in advance by employing a thick film method such as that described above, and is baked simultaneously with the ceramic green sheet to form a predetermined pattern from the upper surface to the bottom surface of the insulating substrate 1. Is done. When the metallized wiring layer 5 is coated with a metal having good conductivity, good corrosion resistance and good wettability with a brazing material to a thickness of 1 to 20 μm by plating, such as nickel or gold, the metallized wiring layer 5 is metallized. The oxidation corrosion of the wiring layer 5 can be effectively prevented, and the connection between the metallized wiring layer 5 and the bonding wire 6 and the brazing between the metallized wiring layer 5 and the wiring conductor of the external electric circuit can be made extremely strong. . A metal frame 2 is provided on the upper surface of the insulating base 1.
Are joined via a sealing material 7 surrounding the mounting portion 1a,
Further, a translucent lid 3 is bonded to the upper surface of the metal frame 2 via a glass bonding material 8 so as to close the opening K of the metal frame 2, whereby a container for housing the optical semiconductor element S in an airtight manner. 4 is obtained. The joining of the metal frame 2 to the insulating base 1 is performed after the translucent lid 3 is joined to the metal frame 2. Since the softening and melting temperature of the glass bonding material 8 is as high as about 500 ° C. as described later, when the metal frame 2 is bonded to the insulating base 1 first, the translucent plate 3 is bonded to the metal frame 2. This is due to the fact that the sealing material 7 burns when joining to the metal substrate 2 and, as a result, the joining between the insulating base 1 and the metal frame 2 is broken. The metal frame 2 is made of a metal material such as an iron-nickel-cobalt alloy or an iron-nickel alloy. For example, a conventional method such as a rolling method or a punching method is used to form an ingot of iron-nickel-cobalt alloy. By applying a well-known metal working method, it is formed into a frame shape having an opening K at a substantially central portion. The light-transmitting lid 3 is made of a light-transmitting plate material such as borosilicate glass or quartz, and has a function of condensing an external image and guiding it to the optical semiconductor element S. Sex lid 3
Is made of borosilicate glass, the base substrate of borosilicate glass serving as the translucent lid 3 is subjected to a conventionally known cutting process such as a dicing method so that the area of the opening K of the metal frame 2 can be reduced. Is formed in a large area. The metal frame 2 has an active metal brazing material layer 9 containing at least one of titanium, zirconium and hafnium formed on the surface of the metal frame 2 around the opening K with the glass bonding material 8. The glass joining material 8 is firmly joined via the active metal brazing material layer 9. This is important in the optical semiconductor element storage container of the present invention. According to the container for storing an optical semiconductor element of the present invention, the metal frame 2 is bonded to the glass bonding material 8 with titanium,
Since the active metal brazing material layer 9 containing at least one of zirconium and hafnium is formed, a dense oxide layer of the active metal is formed on the bonding surface of the metal frame 2 with the glass bonding material 8 and the metal frame 2 Strong bonding with the glass bonding material 8 becomes possible, and even if the optical semiconductor element storage container is mounted on a portable electronic device or the like and receives an impact such as dropping, the metal frame 2 and the translucent lid 3 can be connected to each other. The bonding is not broken, and as a result, the hermetic sealing of the container 4 is broken, and the characteristics of the optical semiconductor element S such as an image pickup element housed inside the container 4 are degraded, or the translucent lid 3 is There is no possibility that the film is peeled off from the metal frame 2 and hinders imaging. The active metal brazing material layer 9 is formed on the bonding surface of the metal frame 2 with the glass bonding material 8 by, for example, Ag-Cu.
A screen printing method using a paste-like brazing material composed of a eutectic brazing material (Ag 72% by weight, Cu 28% by weight) and 2 to 4% by weight of one or more active metals of titanium, zirconium and hafnium. Printing and coating to a thickness of about 70 μm by calender roll method, etc., and drying,
Next, by heating in a heat treatment furnace in a reducing atmosphere at a temperature of about 800 ° C. for 60 minutes, a layer thickness of about 55 μm is formed. At this time, a hydride layer of an active metal having a thickness of about 3 μm is formed on the surface of the active metal brazing material layer 9. On the active metal brazing material layer 9 formed on the metal frame 2, a paste-like glass material prepared by preparing a binder composed of silver-phosphate glass and an organic resin is screened similarly to the brazing material. Printing and coating are performed by a printing method, a calendar roll method, or the like.
And then pressurize it at about 500 ° C. for about 10 minutes in a heat treatment furnace in an oxidizing atmosphere to form a dense oxide layer of active metal. The translucent lid 3 is formed between the material 9 and the glass bonding material 8 and bonded to the metal frame 2. If the content of one or more active metals of titanium, zirconium and hafnium is less than 2% by weight, the amount of the active metal brazing material layer 9 becomes insufficient, and the strength of the active metal brazing material layer 9 and the strength of the glass bonding material 8 are increased. When the content exceeds 4% by weight, the active metal brazing material layer 9 becomes brittle, and the strength of the joint tends to decrease. Therefore, the content of one or more active metals of titanium, zirconium, and hafnium is preferably set to 2 to 4% by weight. The active metal brazing material layer 9 after sintering preferably has a thickness of 10 to 70 μm. If it is less than 10 μm, the amount of the active metal dense oxide layer at the joint becomes insufficient. There is a tendency that it is difficult to obtain a strong bond with the glass bonding material 8. On the other hand, if the thickness exceeds 70 μm, the strength of the bonded portion between the active metal brazing material layer 9 and the glass bonding material 8 is different due to the difference in the thermal expansion coefficient. Tends to decrease. Therefore, the active metal brazing material layer 9 after sintering has a thickness of 10-70.
It is preferably μm. The glass bonding material 8 contains 30 to 40% by weight of phosphorus pentoxide, 47 to 60% by weight of tin monoxide, 1 to 6% by weight of zinc oxide,
Since a glass component containing 1 to 4% by weight of aluminum oxide and 1 to 3% by weight of silicon oxide and 16 to 45% by weight of a cordierite-based compound as an external additive is added, its softening and melting temperature is about 400%. The curing temperature of the sealing material 7 for joining the insulating base 1 to be described later and the metallic frame 2 in which the translucent lid 3 is joined via the glass joining material 8 at about ℃.
The temperature is higher than 200 ° C., and the insulating base 1 and the metal frame 2 in which the translucent lid 3 is bonded via the glass bonding material 8 are bonded via the sealing material 7 to form the insulating base 1 Even if the optical semiconductor element S is hermetically accommodated inside the container 4 composed of the metal frame 2 and the translucent lid 3, the glass bonding material 8 does not soften and melt at the curing temperature of the sealing material 7. As a result, the hermetic seal between the metal frame 2 and the translucent lid 3 is not broken. Further, since the glass bonding material 8 does not contain lead, there is no load on the global environment. If the glass joining material 8 contains less than 30% by weight of phosphorus pentoxide, the softening and melting temperature of the glass becomes high, and it becomes difficult to join the translucent lid 3 to the metal frame 2 at a low temperature. If the content exceeds 40% by weight, the chemical resistance of the glass bonding material 8 decreases, and the reliability of hermetic sealing of the container 4 tends to greatly decrease. Therefore, phosphorus pentoxide is specified in the range of 30 to 40% by weight. If the amount of tin monoxide is less than 47% by weight, the softening and melting temperature of the glass becomes high, and it becomes difficult to join the translucent lid 3 to the metal frame 2 at a low temperature. When the content exceeds 60% by weight, the chemical resistance of the glass bonding material 8 decreases, and the reliability of hermetic sealing of the container 4 tends to greatly decrease. Thus, tin monoxide is specified in an amount in the range of 47-60% by weight. Further, if the amount of zinc oxide is less than 1% by weight, the softening and melting temperature of the glass increases, and it tends to be difficult to join the translucent lid 3 to the metal frame 2 at a low temperature. If the content exceeds 6% by weight, the crystallization of the glass bonding material 8 proceeds, the fluidity decreases, and the hermetic sealing of the container 4 tends to be difficult. Therefore, the amount of zinc oxide is specified in the range of 1 to 6% by weight. If the amount of aluminum oxide is less than 1% by weight, the moisture resistance of the glass bonding material 8 tends to decrease, and the reliability of hermetic sealing of the container 4 tends to decrease. The softening and melting temperature of the glass joining material 8 increases, and it tends to be difficult to join the translucent lid 3 to the metal frame 2 at a low temperature. Therefore, the amount of aluminum oxide is 1 to 4
It is specified in the range of weight%. When the amount of silicon oxide is less than 1% by weight, the coefficient of thermal expansion of the glass bonding material 8 is increased, and is significantly different from the coefficients of thermal expansion of the metal frame 2 and the light-transmitting lid 3.
The reliability of hermetic sealing of the container 4 tends to decrease, and if it exceeds 3% by weight, the softening and melting temperature of the glass bonding material 8 increases, and the metal frame 2 at a low temperature of the translucent lid 3 There is a tendency that joining to the surface becomes difficult. Therefore, the amount of silicon oxide is specified in the range of 1 to 3% by weight. Further, if the amount of the cordierite-based compound added as a filler is less than 16% by weight, the strength of the glass bonding material 8 is reduced, and the reliability of hermetic sealing of the container 4 tends to be greatly reduced. When the content exceeds 45% by weight, the thermal expansion coefficient of the glass bonding material 8 becomes small, and the thermal expansion coefficient of the metal frame 2 and the translucent lid 3 is largely different from that of the glass frame. Reliability tends to decrease. Therefore, the amount of cordierite-based compound is 16 to 45
It is specified in the range of weight%. The joining of the insulating base 1 and the metal frame 2 is performed by joining the translucent plate 3 to the metal frame 2 and then joining the sealing material 7 to the insulating base 1 and / or the metal frame 2. The region is preliminarily adhered by employing a conventionally known screen printing method or the like, and then the optical semiconductor element S is bonded and fixed to the mounting portion 1a of the insulating base 1 via the conductive resin J. Each electrode of S is electrically connected to the metallized wiring layer 5 via the bonding wire 6, and the metal frame 2 is placed on the insulating base 1 so that the joining surfaces of the metal frame 2 overlap each other. The heating is performed by applying a proper load at a curing temperature of 7, that is, about 200 ° C. In the container for housing an optical semiconductor element of the present invention, the sealing material 7 for joining the insulating base 1 and the metal frame 2 is made of an epoxy resin containing conductive particles having an average particle diameter of 0.1 to 30 μm. Since the content is 0.5 to 200% by weight, the sealing temperature can be set to a low temperature of 200 ° C. or less, and the insulating base 1 and the metal frame 2 are joined via the sealing material 7. When the optical semiconductor element S is hermetically accommodated in the container 4 including the insulating base 1, the metal frame 2, and the translucent lid 3, heat for curing the sealing material 7 is accommodated therein. S
Does not cause deterioration of the characteristics of the optical semiconductor element S, and as a result, the optical semiconductor element S can operate normally and stably for a long period of time. Further, the optical semiconductor element storage container of the present invention comprises:
Since the sealing material 7 does not contain lead, there is no load on the global environment. Further, in the present invention, since the sealing material 7 is conductive, the grounding wiring layer 5a comprising a part of the metallized wiring layer 5 in which the metal frame 2 is formed on the insulating base 1 is provided.
To the optical semiconductor element S housed in the container 4 is well shielded by the metal frame 2, and as a result, external noise is transmitted through the metal frame 2. Thus, the optical semiconductor element S can be effectively and stably operated for a long period of time. Such an epoxy resin has a dense three-dimensional network structure, and therefore has excellent moisture resistance and bonding strength, and is a bisphenol A type epoxy resin, a bisphenol A modified epoxy resin, a bisphenol F type epoxy resin, a phenol novolak type epoxy resin. A thermosetting type such as cresol novolak type epoxy resin, special novolak type epoxy resin, phenol derivative epoxy resin, biphenol skeleton type epoxy resin is used. In addition, imidazole-based, amine-based, hydrazine-based epoxy resin
A curing agent such as an imidazole adduct type, an amine adduct type, a cationic polymerization type, or a dicyandiamide type may be added. Two or more epoxy resins may be mixed and used. Silicon rubber, silicone resin, LDPE, HDPE, PMMA, cross-linked PMMA, polystyrene, cross-linked polystyrene, ethylene-acryl copolymer, polymethacrylic acid A filler composed of soft fine particles such as ethyl / bryl acrylate / urethane may be added. Further, the conductive particles have a function of imparting conductivity to the sealing material 7, and such conductive particles include:
For example, various resin materials such as acrylic resin, phenol resin, urethane resin, benzoguanamine resin, melamine resin, polyvinylbenzene, polystyrene resin, etc. are used as the core, and the surface is made of conductive material such as nickel, gold, silver, copper, etc. Particles coated with a material, carbon powder, or metal powder such as nickel, gold, silver, and copper are used. If the content of the conductive particles is less than 0.5% by weight with respect to the epoxy resin, the conductivity of the sealing material 7 is reduced, the shield by the metal frame 2 is incomplete, and the penetration of external noise is prevented. It tends to be difficult to prevent it, and if it exceeds 200% by weight, the fluidity of the sealing material 7 tends to decrease, making it difficult to hermetically seal at low temperatures. Therefore, the content of the conductive particles is 0.5 to 2 with respect to the epoxy resin.
It is preferably set to 00% by weight. Further, when the average particle size of the conductive particles is less than 0.1 μm, the conductivity of the sealing material 7 is reduced, and the shielding by the metal frame 2 is incomplete, and it tends to be difficult to prevent intrusion of external noise. Yes, 30
If it exceeds μm, the fluidity of the sealing material 7 tends to decrease, and air-tight sealing at low temperatures tends to be difficult. Therefore, it is preferable that the average particle diameter of the conductive particles be 0.1 to 30 μm. Thus, according to the optical semiconductor element storage container of the present invention, the optical semiconductor element S is bonded and fixed to the mounting portion 1a of the insulating base 1 via the conductive resin J made of a conductive epoxy resin or the like. Each electrode of the element S was electrically connected to the metallized wiring layer 5 via the bonding wire 6, and thereafter, the translucent lid 3 was bonded to the upper surface so as to cover the mounting portion 1a of the insulating base 1. The metal frame 2 is bonded via the sealing material 7, and the optical semiconductor element S is hermetically accommodated in a container 4 including the insulating base 1, the metal frame 2, and the light-transmitting lid 3, so as to be finally finished. An optical semiconductor device as a product is completed. The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, when the metal frame 2 has an opening K in a concave bottom portion as shown in a sectional view in FIG.
The shape may have the following. Further, as shown in a sectional view in FIG. 3, the light-transmitting lid 3 may be joined to the inside of the container 4 of the metal frame 2 having the opening K in the concave bottom surface. According to the optical semiconductor element storage container of the present invention, an active metal brazing material layer containing at least one of titanium, zirconium and hafnium is formed on the bonding surface of the metal frame with the glass bonding material. Because of this, a dense oxide layer of the active metal is formed on the bonding surface of the metal frame and the glass bonding material, and the metal frame and the glass bonding material can be strongly bonded.
As a result, even when the portable electronic device is dropped or the like, the hermetic seal is not broken at the joint portion between the metal frame and the glass joining material that joins the translucent lid, so that light having extremely high hermetic reliability can be obtained. It can be a semiconductor element storage container. Further, according to the container for housing an optical semiconductor element of the present invention, the sealing material for joining the insulating base and the metal frame is made of an epoxy resin containing conductive particles having an average particle diameter of 0.1 to 30 μm.
Since the content is 0.5 to 200% by weight, the sealing temperature can be reduced to a low temperature of 200 ° C. or less, and as a result, the insulating base and the metal frame are joined via the sealing material. ,
When the optical semiconductor element is hermetically accommodated in a container including an insulating base, a metal frame, and a light-transmitting lid, even if heat for melting the sealing material acts on the optical semiconductor element accommodated therein, the optical semiconductor element is prevented. The optical semiconductor device can be operated normally and stably for a long period of time without deteriorating the characteristics of the element. Further, since the sealing material is conductive, the optical semiconductor element accommodated in the container is connected to the metal frame by connecting the metal frame to the grounding wiring layer formed on the insulating base via the sealing material. It will be shielded well by the body,
As a result, it is possible to effectively prevent external noise from entering the inside of the container via the metal frame, and it is possible to operate the optical semiconductor element normally and stably for a long period of time.

【図面の簡単な説明】 【図1】本発明の光半導体素子収納用容器の実施の形態
の一例を示す断面図である。 【図2】本発明の光半導体素子収納用容器の実施の形態
の他の例を示す断面図である。 【図3】本発明の光半導体素子収納用容器の実施の形態
の他の例を示す断面図である。 【符号の説明】 1・・・・・・・・絶縁基体 1a・・・・・・・・搭載部 2・・・・・・・・金属枠体 3・・・・・・・・透光性蓋体 4・・・・・・・・容器 7・・・・・・・・封止材 8・・・・・・・・ガラス接合材 9・・・・・・・・活性金属ろう材層 S・・・・・・・・光半導体素子
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing an example of an embodiment of an optical semiconductor element storage container of the present invention. FIG. 2 is a sectional view showing another example of the embodiment of the optical semiconductor element storage container of the present invention. FIG. 3 is a cross-sectional view showing another example of the embodiment of the optical semiconductor element storage container of the present invention. [Description of Signs] 1... Insulating base 1a... Mounting section 2... Metal frame 3... Cap 4 ...... Container 7 ...... Sealing material 8 ...... Glass bonding material 9 ...... Active metal brazing material Layer S ... Opto semiconductor device

Claims (1)

【特許請求の範囲】 【請求項1】 上面に光半導体素子の搭載部を有する絶
縁基体と、該絶縁基体の上面に封止材を介して接合さ
れ、前記搭載部を取り囲むとともに内側に前記光半導体
素子を収容する空所を形成するための金属枠体と、該金
属枠体の上面にガラス接合材を介して接合され、前記空
所に前記光半導体素子を気密に収容する透光性蓋体とか
ら成る光半導体素子収納用容器であって、前記金属枠体
は前記ガラス接合材との接合面にチタン、ジルコニウ
ム、ハフニウムの一種以上を含む活性金属ろう材層が形
成されており、前記ガラス接合材は五酸化燐30〜40
重量%、一酸化錫47〜60重量%、酸化亜鉛1〜6重
量%、酸化アルミニウム1〜4重量%および酸化珪素1
〜3重量%を含むガラス成分にフィラーとしてコージェ
ライト系化合物を外添加で16〜45重量%添加したも
のから成り、前記封止材はエポキシ樹脂に平均粒子径が
0.1〜30μmの導電性粒子を0.5〜200重量%
含有して成るものであることを特徴とする光半導体素子
収納用容器。
Claims: 1. An insulating base having an optical semiconductor element mounting portion on an upper surface, and an insulating substrate bonded to an upper surface of the insulating base via a sealing material, surrounding the mounting portion and the light inside. A metal frame for forming a space for accommodating the semiconductor element, and a light-transmissive lid joined to the upper surface of the metal frame via a glass joining material, and for hermetically accommodating the optical semiconductor element in the space. An optical semiconductor element storage container comprising: an active metal brazing material layer containing at least one of titanium, zirconium, and hafnium on a bonding surface with the glass bonding material; Glass bonding material is phosphorous pentoxide 30-40
Wt%, tin monoxide 47-60 wt%, zinc oxide 1-6 wt%, aluminum oxide 1-4 wt% and silicon oxide 1
A glass component containing up to 3% by weight of a cordierite-based compound as a filler by external addition of 16 to 45% by weight, wherein the sealing material is an epoxy resin having an average particle diameter of 0.1 to 30 μm. 0.5 to 200% by weight of particles
An optical semiconductor element storage container, characterized in that it contains.
JP2001290916A 2001-09-25 2001-09-25 Container for accommodating optical semiconductor element Pending JP2003101042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001290916A JP2003101042A (en) 2001-09-25 2001-09-25 Container for accommodating optical semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001290916A JP2003101042A (en) 2001-09-25 2001-09-25 Container for accommodating optical semiconductor element

Publications (1)

Publication Number Publication Date
JP2003101042A true JP2003101042A (en) 2003-04-04

Family

ID=19113143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001290916A Pending JP2003101042A (en) 2001-09-25 2001-09-25 Container for accommodating optical semiconductor element

Country Status (1)

Country Link
JP (1) JP2003101042A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273521A (en) * 2006-03-30 2007-10-18 Eudyna Devices Inc Electronic component and module for electronic component
JP2008103460A (en) * 2006-10-18 2008-05-01 Sony Corp Semiconductor package and method for manufacturing same
US7422382B2 (en) 2005-02-16 2008-09-09 Samsung Electro-Mechanics Co., Ltd. Camera module
JP2009302102A (en) * 2008-06-10 2009-12-24 Sony Corp Solid-state imaging device and its manufacturing method
EP2657964A2 (en) 2012-04-27 2013-10-30 Canon Kabushiki Kaisha Electronic component and electronic apparatus
DE102014203427A1 (en) 2013-02-28 2014-08-28 Canon Kabushiki Kaisha Electronic component and electronic device
US9155212B2 (en) 2012-04-27 2015-10-06 Canon Kabushiki Kaisha Electronic component, mounting member, electronic apparatus, and their manufacturing methods
US9220172B2 (en) 2012-04-27 2015-12-22 Canon Kabushiki Kaisha Electronic component, electronic module, their manufacturing methods, mounting member, and electronic apparatus
US10510930B2 (en) 2016-12-27 2019-12-17 Nichia Corporation Light emitting device
US10735673B2 (en) 2018-04-27 2020-08-04 Canon Kabushiki Kaisha Imaging device module, imaging system, imaging device package, and manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7422382B2 (en) 2005-02-16 2008-09-09 Samsung Electro-Mechanics Co., Ltd. Camera module
JP2007273521A (en) * 2006-03-30 2007-10-18 Eudyna Devices Inc Electronic component and module for electronic component
JP2008103460A (en) * 2006-10-18 2008-05-01 Sony Corp Semiconductor package and method for manufacturing same
JP2009302102A (en) * 2008-06-10 2009-12-24 Sony Corp Solid-state imaging device and its manufacturing method
US9220172B2 (en) 2012-04-27 2015-12-22 Canon Kabushiki Kaisha Electronic component, electronic module, their manufacturing methods, mounting member, and electronic apparatus
EP2657964A2 (en) 2012-04-27 2013-10-30 Canon Kabushiki Kaisha Electronic component and electronic apparatus
US9253922B2 (en) 2012-04-27 2016-02-02 Canon Kabushiki Kaisha Electronic component and electronic apparatus
US9155212B2 (en) 2012-04-27 2015-10-06 Canon Kabushiki Kaisha Electronic component, mounting member, electronic apparatus, and their manufacturing methods
JP2014167991A (en) * 2013-02-28 2014-09-11 Canon Inc Electronic component and electronic apparatus
US9225882B2 (en) 2013-02-28 2015-12-29 Canon Kabushiki Kaisha Electronic component packaging that can suppress noise and electronic apparatus
DE102014203427A1 (en) 2013-02-28 2014-08-28 Canon Kabushiki Kaisha Electronic component and electronic device
US10510930B2 (en) 2016-12-27 2019-12-17 Nichia Corporation Light emitting device
US10735673B2 (en) 2018-04-27 2020-08-04 Canon Kabushiki Kaisha Imaging device module, imaging system, imaging device package, and manufacturing method

Similar Documents

Publication Publication Date Title
US9276023B2 (en) Image pickup element housing package, and image pickup device
US11075235B2 (en) Image sensor mounting base, imaging device, and imaging module
US20190035701A1 (en) Electronic component mounting board, electronic device, and electronic module
JP2007123444A (en) Package for housing optical element, optical device, and its manufacturing method
JP2003100920A (en) Container for optical semiconductor element
JP2003101042A (en) Container for accommodating optical semiconductor element
JP2003100921A (en) Container for optical semiconductor element
JPH08335650A (en) Package for housing semiconductor chip
JP2006261684A (en) Vessel for housing electronic component
JP4002472B2 (en) Optical semiconductor element storage package
JP2004254037A (en) Imaging apparatus
JP2012049377A (en) Package for housing imaging element and imaging device
JP3792612B2 (en) Piezoelectric vibrator container and piezoelectric vibrator
JP2001358241A (en) Container for accommodation of electronic component
JP2746826B2 (en) Electronic component storage package
JP3811423B2 (en) Electronic component storage container
JP2685083B2 (en) Manufacturing method of semiconductor device storage package
JP2522374Y2 (en) Package for storing solid-state image sensor
JP2000012719A (en) Package for containing solid-state image-pickup device
JP2001083255A (en) Wiring board for mounting of x-ray detecting element
JP2740605B2 (en) Manufacturing method of semiconductor device storage package
JP3138186B2 (en) Semiconductor device
JP2003046013A (en) Electronic component package
JP3659467B2 (en) Package for storing semiconductor elements
JP4360567B2 (en) Package for storing semiconductor elements