JP2003100291A - Negative electrode material of high performance lithium secondary battery - Google Patents
Negative electrode material of high performance lithium secondary batteryInfo
- Publication number
- JP2003100291A JP2003100291A JP2001288297A JP2001288297A JP2003100291A JP 2003100291 A JP2003100291 A JP 2003100291A JP 2001288297 A JP2001288297 A JP 2001288297A JP 2001288297 A JP2001288297 A JP 2001288297A JP 2003100291 A JP2003100291 A JP 2003100291A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- secondary battery
- lithium secondary
- electrode material
- graphite powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【技術分野】本発明は、リチウム二次電池負極材に関
し、より詳しくは黒鉛粉末とメソフェ−ズピッチ等のフ
ィラ−材およびバインダ−ピッチを混合して得られる、
高容量で容量ロスが少ない負極材に関する。TECHNICAL FIELD The present invention relates to a lithium secondary battery negative electrode material, and more specifically, it is obtained by mixing graphite powder with a filler material such as mesophase pitch and a binder pitch.
The present invention relates to a negative electrode material having a high capacity and a small capacity loss.
【0002】[0002]
【従来の技術】近年、リチウム二次電池はハイパワ−、
高容量の二次電池として携帯電話、パソコン等の可搬型
機器類に多く使用され、今後も需要がさらに高まると予
想されている。2. Description of the Related Art In recent years, lithium secondary batteries have been
It is widely used as a high-capacity secondary battery in portable devices such as mobile phones and personal computers, and it is expected that demand will increase further in the future.
【0003】このような可搬型機器類の小型化への流れ
を受けて、リチウム二次電池も小型化、軽量化への要請
が強まっている。In response to the trend toward miniaturization of such portable devices, there is an increasing demand for miniaturization and weight reduction of lithium secondary batteries.
【0004】そのため、リチウム二次電池を構成するパ
−ツや材料も高性能化の動きが活発になっており、中で
も負極材は電池の性能を左右するものとしてその重要性
が高まっている。For this reason, the performance and the performance of the parts and materials constituting the lithium secondary battery are becoming active, and in particular, the negative electrode material is becoming more important because it affects the performance of the battery.
【0005】この負極材としてカ−ボン系材料が注目さ
れている。カ−ボン系負極材にはまず放電容量が高容量
であることが要求されるが、それに加えて容量ロスの低
減も重要で、また電池内に多量の負極材を充填できるよ
うにするため高かさ密度であること、急速充電が可能で
あることも望まれている。Carbon-based materials are attracting attention as the negative electrode material. Carbon-based negative electrode materials are required to have a high discharge capacity, but in addition to this, it is important to reduce capacity loss, and in order to be able to fill a large amount of negative electrode material into a battery, Bulk density and rapid charging are also desired.
【0006】このような高容量化の要請に対して、人造
黒鉛、天然黒鉛などの黒鉛粉末を負極材として使用する
ことが提案されている。[0006] In response to such a demand for higher capacity, it has been proposed to use graphite powder such as artificial graphite or natural graphite as a negative electrode material.
【0007】しかし、黒鉛粉末は高容量化においては優
れた材料であるが、容量ロスが多い、かさ密度が低い等
の課題も多い。However, although graphite powder is an excellent material in increasing the capacity, there are many problems such as large capacity loss and low bulk density.
【0008】そこで、前記のようなリチウム二次電池の
高性能化への要請に応えるべく、さらに優れた負極材の
開発が望まれている。Therefore, in order to meet the demand for higher performance of the lithium secondary battery as described above, it is desired to develop a more excellent negative electrode material.
【0009】[0009]
【発明の課題】上記のようなリチウム二次電池負極材の
高性能化への要求に応えるために、本発明者は高容量で
あるとともに、容量ロスが少なく、さらに、高かさ密度
で電池内に多量に負極材を充填でき、急速充放電も可能
な高性能のリチウム二次電池負極材を提供する。DISCLOSURE OF THE INVENTION In order to meet the above demand for higher performance of a lithium secondary battery negative electrode material, the present inventor has a high capacity, a small capacity loss, and a high bulk density in a battery. Provided is a high performance lithium secondary battery negative electrode material capable of being filled with a large amount of negative electrode material and capable of rapid charge and discharge.
【0010】[0010]
【課題解決の手段】上記のような課題を解決するため
に、本発明者が提案するのは、黒鉛粉末をメソフェ−ズ
ピッチ、生コ−クス、カルサインコ−クスから選ばれる
1種以上のフィラ−材と混合し、さらにバインダ−ピッ
チを加えて混捏して得られた混合物を加圧成形により成
形体とした後、焼成して、粉砕・分級し、最終的に黒鉛
化することにより得られるリチウム二次電池負極材であ
る。In order to solve the above problems, the present inventor proposes that the graphite powder is one or more fillers selected from mesophase pitch, green coke, and calcine coke. Lithium obtained by mixing with a material, kneading the mixture obtained by adding a binder pitch and kneading the mixture to obtain a molded body, followed by firing, pulverizing and classifying, and finally graphitizing. It is a secondary battery negative electrode material.
【0011】本発明者は上記のように黒鉛粉末は高容量
である点では優れた材料だが、容量ロス等の面で課題が
あることを踏まえ、黒鉛粉末に加えてメソフェ−ズピッ
チ等のフィラ−材およびバインダ−ピッチを使用するこ
とにより優れた特性の負極材が得られることを見出し
た。As mentioned above, the present inventors have found that graphite powder is an excellent material in that it has a high capacity, but in view of the problem in terms of capacity loss and the like, in addition to graphite powder, fillers such as mesophase pitch are used. It has been found that a negative electrode material having excellent properties can be obtained by using the material and the binder pitch.
【0012】即ち、黒鉛を使用する負極材については、
BET法で測定される比表面積が大きくなる傾向がある
こと、そしてこの比表面積と容量ロスとの間には密接な
関係があることを見出した。That is, regarding the negative electrode material using graphite,
It was found that the specific surface area measured by the BET method tends to be large, and that there is a close relationship between this specific surface area and capacity loss.
【0013】そこで、上記のような黒鉛とフィラ−材お
よびバインダ−ピッチの混合割合や混捏や焼成の際の処
理温度を特定することにより、比表面積の増加を防ぎ、
放電容量を低下させることなく、容量ロスを低減させた
負極材が得られるものとして本発明を完成した。Therefore, by preventing the increase of the specific surface area by specifying the mixing ratio of the graphite, the filler material and the binder pitch and the treatment temperature during the kneading and firing as described above,
The present invention has been completed to obtain a negative electrode material with reduced capacity loss without reducing the discharge capacity.
【0014】以下に本発明の構成要件について、さらに
詳細に説明する。The constituent features of the present invention will be described in more detail below.
【0015】まず黒鉛粉末は人造黒鉛、天然黒鉛のいず
れも使用可能である。但し、X線回折分析で測定される
黒鉛の格子常数はCo(002)で6.72Å以下であるこ
とが好ましい。6.72Åを超えると負極材の電池容量
が低下する。First, as the graphite powder, both artificial graphite and natural graphite can be used. However, the lattice constant of graphite measured by X-ray diffraction analysis is preferably Co (002) of 6.72Å or less. If it exceeds 6.72Å, the battery capacity of the negative electrode material decreases.
【0016】次に上記の黒鉛粉末にフィラ−材を混合す
るが、このフィラ−材については、メソフェ−ズピッ
チ、生コ−クス、カルサインコ−クスのいずれか一種以
上を使用する。Next, a filler material is mixed with the above graphite powder. As the filler material, any one or more of mesophase pitch, raw coke and calcine coke is used.
【0017】黒鉛粉末とフィラ−材の混合比は、1/1
〜9/1が好ましい。1/1未満では電池容量が低下
し、9/1を超えると容量ロスが増加するので、いずれ
も好ましくない。The mixing ratio of the graphite powder and the filler material is 1/1.
9/1 is preferable. If it is less than 1/1, the battery capacity will decrease, and if it exceeds 9/1, the capacity loss will increase.
【0018】上記の黒鉛粉末とフィラ−材の混合物にさ
らにバインダ−ピッチを加えて、混捏する。このバイン
ダ−ピッチには通常の低軟化点ピッチを使用できるが、
石炭系ピッチが好ましい。Binder pitch is further added to the above mixture of graphite powder and filler, and the mixture is kneaded. A normal low softening point pitch can be used for this binder pitch,
Coal-based pitch is preferred.
【0019】黒鉛粉末とフィラ−材の混合物に対するバ
インダ−ピッチの割合は100/20〜100/60と
することが好ましい。100/20未満では、容量ロス
が増加し、100/60を超えると電池容量が低下する
のでいずれも好ましくない。The ratio of binder pitch to the mixture of graphite powder and filler is preferably 100/20 to 100/60. If it is less than 100/20, the capacity loss increases, and if it exceeds 100/60, the battery capacity decreases.
【0020】また上記の黒鉛粉末、フィラ−材、バイン
ダ−ピッチの混捏の温度は200〜400℃とするのが
好ましい。200℃未満では3種の材料の均一混合が進
みにくく、容量ロスが増加し、400℃を超えるとバイ
ンダ−ピッチのコ−キングが起こり、最終製品の性能が
低下するので問題がある。The kneading temperature of the above graphite powder, filler and binder pitch is preferably 200 to 400 ° C. If the temperature is lower than 200 ° C., it is difficult to uniformly mix the three materials, and the capacity loss increases. If the temperature exceeds 400 ° C., binder pitch coking occurs and the performance of the final product deteriorates, which is a problem.
【0021】次に黒鉛粉末、フィラ−材、バインダ−ピ
ッチを上記のように混捏して得た混合物を加圧成形し成
形体とする。Next, the mixture obtained by kneading the graphite powder, the filler material and the binder pitch as described above is pressure-molded to obtain a molded body.
【0022】成形体とした後は、不活性ガス雰囲気中、
または還元性雰囲気中で焼成するが、この時の焼成温度
は800℃以下の低温とする。800℃を超えると、負
極材の比表面積が大きくなり容量ロスが増加するので好
ましくない。After forming the molded body, in an inert gas atmosphere,
Alternatively, firing is performed in a reducing atmosphere, and the firing temperature at this time is set to a low temperature of 800 ° C. or lower. If it exceeds 800 ° C., the specific surface area of the negative electrode material increases and the capacity loss increases, which is not preferable.
【0023】焼成後は、粉砕、分級し、粒度を揃えて粉
末とする。粒度は特に限定されないが、通常は平均粒径
で50μm以下に調整する。After firing, the powder is pulverized and classified to have a uniform particle size to obtain a powder. The particle size is not particularly limited, but usually the average particle size is adjusted to 50 μm or less.
【0024】最終的に不活性ガスまたは還元性ガス雰囲
気中で黒鉛化することにより本発明のリチウム二次電池
負極材が得られる。Finally, the negative electrode material of the lithium secondary battery of the present invention is obtained by graphitizing in an inert gas or reducing gas atmosphere.
【0025】[0025]
【発明の効果】上記のようにして得られた本発明のリチ
ウム二次電池負極材は、高容量であるとともに、材料の
比表面積の増加を防ぐことにより、容量ロスを低減させ
ることができる。また高かさ密度で、形状が球形に近い
ので、充填性が良好で、電池内により多量の負極材を充
填させることが可能である。さらに急速充電性があり、
ハンドリング性も良好である。本発明のリチウム二次電
池負極材は、優れた高性能の材料で、今後も需要が高ま
ると予想される、可搬型機器類のパ−ツ、材料として有
用なものである。EFFECT OF THE INVENTION The lithium secondary battery negative electrode material of the present invention obtained as described above has a high capacity, and at the same time, it is possible to reduce capacity loss by preventing an increase in the specific surface area of the material. Further, since the bulk density is high and the shape is close to a sphere, the filling property is good, and it is possible to fill a larger amount of the negative electrode material in the battery. Furthermore, it has a quick charge property,
It is also easy to handle. INDUSTRIAL APPLICABILITY The negative electrode material for a lithium secondary battery of the present invention is an excellent high-performance material, and is useful as a part or material for portable equipment, which is expected to grow in demand in the future.
【0026】[0026]
【実施例1】平均粒径15μmに粉砕した市販の天然黒
鉛(製品名称:CPB,(株)中越黒鉛工業所製,Co
(002):6.7Å)とフィラ−材として平均粒径10μ
m以下に粉砕した市販のカルサインコ−クス(新日鉄化
学製)を70/30の割合で混合した。この混合物にバ
インダ−ピッチとして市販の石炭系ピッチを100/4
0の割合で加え、ニ−ダ−中で300℃で混捏して、得
られた混合物を、加圧成形し、成形体とした。次にこの
成形体を、窒素ガス雰囲気中、600℃で低温焼成し、
平均粒径20μmに粉砕、分級した後、最終的にアチソ
ン式黒鉛化炉で黒鉛化して、リチウム二次電池負極材用
の黒鉛粉末を得た。Example 1 Commercially available natural graphite crushed to an average particle size of 15 μm (product name: CPB, manufactured by Chuetsu Graphite Industry Co., Ltd., Co
(002): 6.7Å) and an average particle size of 10μ as filler material
Commercially available calcine coke (manufactured by Nippon Steel Chemical Co., Ltd.) pulverized to m or less was mixed at a ratio of 70/30. To this mixture, a commercially available coal-based pitch was used as a binder pitch at 100/4.
The mixture was added at a rate of 0 and kneaded in a kneader at 300 ° C., and the obtained mixture was pressure-molded to obtain a molded body. Next, this compact was fired at a low temperature of 600 ° C. in a nitrogen gas atmosphere,
After pulverizing and classifying to an average particle size of 20 μm, it was finally graphitized in an Acheson type graphitizing furnace to obtain graphite powder for a negative electrode material of a lithium secondary battery.
【0027】次に得られた黒鉛粉末を用いて以下のよう
に電池を作成し、電池特性を評価した。本来、黒鉛粉末
は負極として用いるが、本発明では対極にリチウム金属
を使用したため、正極で電池の特性を評価した。電極の
製造は黒鉛粉末100重量部とポリフッ化ビニリデン8
重量にN−メチル−2−ピロリドンを添加してペ−スト
化した後、ドクタ−ブレ−ドを用いて銅箔上に塗布し、
乾燥させた。乾燥後、これを1cm2の面積になるよう
に円形に打ち抜き、更に1ton/cm2の圧力でプレ
スし、電極を調整した。対極及び参照極としてリチウム
金属を使用し、電解液として1MLiClO4/EC:DEC
(体積比1:1)を用いて三極式ビ−カ−セルを組み立
てた。Next, using the obtained graphite powder, a battery was prepared as follows and the battery characteristics were evaluated. Originally, graphite powder was used as the negative electrode, but since lithium metal was used as the counter electrode in the present invention, the characteristics of the battery were evaluated with the positive electrode. The electrode is manufactured by 100 parts by weight of graphite powder and polyvinylidene fluoride 8
After adding N-methyl-2-pyrrolidone to the weight to form a paste, it was applied on a copper foil using a doctor blade,
Dried. After drying, this was punched out in a circular shape so as to have an area of 1 cm 2 , and further pressed at a pressure of 1 ton / cm 2 to prepare an electrode. Lithium metal is used as the counter electrode and the reference electrode, and the electrolyte is 1M LiClO4 / EC: DEC
A tripolar beaker cell was assembled using (volume ratio 1: 1).
【0028】充電は0.5mA/cm2の電流密度で低
電流充電後、10mVで定電圧充電に切り替え、0.0
1mAで終止した。また、放電は、0.5mA/cm2
の電流密度で定電流放電1.5Vまで行った。測定温度
は30℃である。測定結果は放電容量が370mAh/
g、容量ロスは35mAh/gであった。Charging was carried out at a current density of 0.5 mA / cm 2 at a low current and then switched to constant voltage charging at 10 mV for 0.0
It ended at 1mA. The discharge is 0.5 mA / cm 2
The constant current discharge was performed up to 1.5 V at the current density of. The measurement temperature is 30 ° C. The measurement result shows that the discharge capacity is 370 mAh /
g, the capacity loss was 35 mAh / g.
【0029】[0029]
【比較例1】実施例1における天然黒鉛/カルサインコ
−クスの割合を30/70とする以外はすべて実施例1
と同様に処理してリチウム二次電池用黒鉛粉末を得た。
実施例1と同様にして電池特性を測定した結果、放電容
量は330mAh/g、容量ロスは34mAh/gであ
った。COMPARATIVE EXAMPLE 1 Except that the ratio of natural graphite / calcine coke in Example 1 was 30/70, Example 1 was used.
A graphite powder for a lithium secondary battery was obtained by the same treatment as described above.
As a result of measuring the battery characteristics in the same manner as in Example 1, the discharge capacity was 330 mAh / g and the capacity loss was 34 mAh / g.
【0030】[0030]
【比較例2】実施例1における天然黒鉛/カルサインコ
−クスの割合を95/5とする以外はすべて実施例1と
同様に処理してリチウム二次電池用黒鉛粉末を得た。実
施例1と同様にして電池特性を測定した結果、放電容量
は370mAh/g、容量ロスは65mAh/gであっ
た。Comparative Example 2 A graphite powder for a lithium secondary battery was obtained in the same manner as in Example 1 except that the ratio of natural graphite / calcinous coke in Example 1 was changed to 95/5. As a result of measuring the battery characteristics in the same manner as in Example 1, the discharge capacity was 370 mAh / g and the capacity loss was 65 mAh / g.
【0031】[0031]
【比較例3】実施例1における天然黒鉛とカルサインコ
−クスの混合物に対するバインダ−ピッチの割合を10
0/10とする以外は実施例1と同様に処理してリチウ
ム二次電池用黒鉛粉末を得た。実施例1と同様にして電
池特性を測定した結果、放電容量は365mAh/g、
容量ロスは70mAh/gであった。COMPARATIVE EXAMPLE 3 The ratio of binder pitch to the mixture of natural graphite and calcine coke in Example 1 was 10%.
A graphite powder for a lithium secondary battery was obtained in the same manner as in Example 1 except that the amount was 0/10. As a result of measuring the battery characteristics in the same manner as in Example 1, the discharge capacity was 365 mAh / g,
The capacity loss was 70 mAh / g.
【0032】[0032]
【比較例4】実施例1における天然黒鉛とカルサインコ
−クスの混合物に対するバインダ−ピッチの割合を10
0/80とする以外はすべて実施例1と同様に処理して
リチウム二次電池用黒鉛粉末を得た。実施例1と同様に
して電池特性を測定した結果、放電容量は345mAh
/g、容量ロスは41mAh/gであった。Comparative Example 4 The ratio of the binder pitch to the mixture of natural graphite and calcine coke in Example 1 was 10%.
A graphite powder for a lithium secondary battery was obtained by the same procedure as in Example 1 except that the ratio was 0/80. As a result of measuring the battery characteristics in the same manner as in Example 1, the discharge capacity was 345 mAh.
/ G, the capacity loss was 41 mAh / g.
【0033】[0033]
【比較例5】実施例1における、混捏の温度を150℃
とする以外はすべて実施例1と同様に処理してリチウム
二次電池用黒鉛粉末を得た。実施例1と同様にして電池
特性を測定した結果、放電容量は368mAh/g、容
量ロスは72mAh/gであった。Comparative Example 5 The kneading temperature in Example 1 was set to 150 ° C.
A graphite powder for a lithium secondary battery was obtained by the same procedure as in Example 1 except that the above was adopted. As a result of measuring the battery characteristics in the same manner as in Example 1, the discharge capacity was 368 mAh / g and the capacity loss was 72 mAh / g.
【0034】[0034]
【比較例6】実施例1における焼成の温度を1000℃
とする以外はすべて実施例1と同様にしてリチウム二次
電池用黒鉛粉末を得た。実施例1と同様にして電池特性
を測定した結果、放電容量は365mAh/g、容量ロ
スは61mAh/gであった。Comparative Example 6 The firing temperature in Example 1 was set to 1000 ° C.
Graphite powder for a lithium secondary battery was obtained in the same manner as in Example 1 except that the above was adopted. As a result of measuring the battery characteristics in the same manner as in Example 1, the discharge capacity was 365 mAh / g and the capacity loss was 61 mAh / g.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ02 AJ03 AK11 AL07 AL08 CJ02 CJ03 CJ06 CJ08 EJ04 HJ01 HJ14 5H050 AA02 AA08 BA17 CA17 CB08 CB09 CB29 DA03 DA09 EA08 EA10 GA02 GA03 GA08 GA10 HA01 HA14 ─────────────────────────────────────────────────── ─── Continued front page F term (reference) 5H029 AJ02 AJ03 AK11 AL07 AL08 CJ02 CJ03 CJ06 CJ08 EJ04 HJ01 HJ14 5H050 AA02 AA08 BA17 CA17 CB08 CB09 CB29 DA03 DA09 EA08 EA10 GA02 GA03 GA08 GA10 HA01 HA14
Claims (11)
クス、カルサインコ−クスから選ばれる一種以上のフィ
ラ−材と混合し、さらにバインダ−ピッチを加え混捏し
て得られた混合物を、加圧成型し成型体とした後、焼成
して、粉砕・分級し、最終的に黒鉛化することにより得
られることを特徴とするリチウム二次電池負極材。1. A graphite powder containing mesophase pitch and green
Mixture and one or more filler materials selected from casks and calcine coke, and further mixed with a binder pitch to obtain a mixture, which is pressure-molded into a molded body, which is then calcined, pulverized and classified. And finally obtained by graphitization, a lithium secondary battery negative electrode material.
材の混合比が1/1〜9/1であるリチウム二次電池負
極材。2. The graphite powder and filler according to claim 1.
A negative electrode material for a lithium secondary battery, wherein the mixing ratio of the materials is 1/1 to 9/1.
材を混合した混合物に加えるバインダ−ピッチの割合が
100/20〜100/60であるリチウム二次電池負
極材。3. The graphite powder and filler according to claim 1.
A negative electrode material for a lithium secondary battery, wherein the ratio of the binder pitch added to the mixture in which the materials are mixed is 100/20 to 100/60.
加え混捏する際の温度を200〜400℃としたリチウ
ム二次電池負極材。4. The negative electrode material for a lithium secondary battery according to claim 1, wherein the temperature when the binder pitch is added and kneading is 200 to 400 ° C.
℃以下としたリチウム二次電池負極材。5. The firing temperature according to claim 1,
Lithium secondary battery negative electrode material at ℃ or below.
材の混合比を1/1〜9/1、黒鉛粉末とフィラ−材を
混合した混合物に加えるバインダ−ピッチの割合を10
0/20〜100/60、バインダ−ピッチを加え混捏
する際の温度を200〜400℃としたリチウム二次電
池負極材。6. The graphite powder and filler according to claim 1.
The mixing ratio of the materials is 1/1 to 9/1, and the ratio of the binder pitch added to the mixture of the graphite powder and the filler material is 10
0/20 to 100/60, a negative electrode material for a lithium secondary battery in which a binder pitch was added and kneaded at a temperature of 200 to 400 ° C.
材の混合比を1/1〜9/1、黒鉛粉末とフィラ−材を
混合した混合物に加えるバインダ−ピッチの割合を10
0/20〜100/60、焼成の温度を800℃以下と
したリチウム二次電池負極材。7. The graphite powder and filler according to claim 1.
The mixing ratio of the materials is 1/1 to 9/1, and the ratio of the binder pitch added to the mixture of the graphite powder and the filler material is 10
A lithium secondary battery negative electrode material having a firing temperature of 0/20 to 100/60 and a firing temperature of 800 ° C. or lower.
材の混合比を1/1〜9/1、バインダ−ピッチを加え
混捏する際の温度を200〜400℃、焼成の温度を8
00℃以下としたリチウム二次電池負極材。8. The graphite powder and filler according to claim 1.
The mixing ratio of the materials is 1/1 to 9/1, the temperature when the binder pitch is added and kneading is 200 to 400 ° C., and the firing temperature is 8
A negative electrode material for a lithium secondary battery at a temperature of 00 ° C or less.
材を混合した混合物に加えるバインダ−ピッチの割合を
100/20〜100/60、バインダ−ピッチを加え
混捏する際の温度を200〜400℃、焼成の温度を8
00℃以下としたリチウム二次電池負極材。9. The graphite powder and filler according to claim 1.
The ratio of the binder pitch added to the mixture in which the materials are mixed is 100/20 to 100/60, the temperature when the binder pitch is added and kneaded is 200 to 400 ° C., and the firing temperature is 8
A negative electrode material for a lithium secondary battery at a temperature of 00 ° C or less.
ラ−材の混合比が1/1〜9/1、黒鉛粉末とフィラ−
材を混合した混合物に加えるバインダ−ピッチの割合が
100/20〜100/60、バインダ−ピッチを加え
混捏する際の温度を200〜400℃、焼成の温度を8
00℃以下としたリチウム二次電池負極材。10. The graphite powder-filler mixture ratio according to claim 1, wherein the mixing ratio is 1/1 to 9/1.
The ratio of the binder pitch added to the mixture in which the materials are mixed is 100/20 to 100/60, the temperature at which the binder pitch is added and kneaded is 200 to 400 ° C., and the firing temperature is 8
A negative electrode material for a lithium secondary battery at a temperature of 00 ° C or less.
チウム二次電池負極材を用いたリチウム二次電池。11. A lithium secondary battery using the negative electrode material for a lithium secondary battery according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001288297A JP2003100291A (en) | 2001-09-21 | 2001-09-21 | Negative electrode material of high performance lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001288297A JP2003100291A (en) | 2001-09-21 | 2001-09-21 | Negative electrode material of high performance lithium secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003100291A true JP2003100291A (en) | 2003-04-04 |
Family
ID=19110970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001288297A Pending JP2003100291A (en) | 2001-09-21 | 2001-09-21 | Negative electrode material of high performance lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003100291A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008021623A (en) * | 2006-07-14 | 2008-01-31 | Nippon Carbon Co Ltd | Anode active material for high-power lithium secondary battery |
JP2009059676A (en) * | 2007-08-30 | 2009-03-19 | Nippon Carbon Co Ltd | Negative electrode active material for lithium ion secondary battery and negative electrode |
JP2011210462A (en) * | 2010-03-29 | 2011-10-20 | Mitsubishi Chemicals Corp | Anode material for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery |
KR101417588B1 (en) | 2013-01-30 | 2014-07-08 | 지에스에너지 주식회사 | Anode active material with high electrical conductivity and method for preparing the same |
CN115846363A (en) * | 2022-11-16 | 2023-03-28 | 宁夏蓝伯碳素有限公司 | Dust collection powder recycling process based on electrode paste production process |
-
2001
- 2001-09-21 JP JP2001288297A patent/JP2003100291A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008021623A (en) * | 2006-07-14 | 2008-01-31 | Nippon Carbon Co Ltd | Anode active material for high-power lithium secondary battery |
JP2009059676A (en) * | 2007-08-30 | 2009-03-19 | Nippon Carbon Co Ltd | Negative electrode active material for lithium ion secondary battery and negative electrode |
JP2011210462A (en) * | 2010-03-29 | 2011-10-20 | Mitsubishi Chemicals Corp | Anode material for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery |
KR101417588B1 (en) | 2013-01-30 | 2014-07-08 | 지에스에너지 주식회사 | Anode active material with high electrical conductivity and method for preparing the same |
CN115846363A (en) * | 2022-11-16 | 2023-03-28 | 宁夏蓝伯碳素有限公司 | Dust collection powder recycling process based on electrode paste production process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101496309B1 (en) | Silicon slurry for anode active material and carbon-silicon complex | |
JP4046601B2 (en) | Negative electrode material for lithium secondary battery and lithium secondary battery using the same | |
JP2007335325A (en) | Cathode active material for nonaqueous electrolyte secondary battery and battery | |
JP2016527668A (en) | Conductive carbon for lithium-ion batteries | |
JP2005150057A (en) | Cathode active material for nonaqueous system lithium secondary battery, its manufacturing method, and nonaqueous system lithium secondary battery using the material | |
JP2004031038A (en) | Negative electrode material for high-performance lithium ion secondary battery using natural graphite, its manufacturing method and lithium ion secondary battery using it | |
JPH10294111A (en) | Graphite carbon material coated with graphite for lithium secondary battery negative electrode material and its manufacture | |
JP4868271B2 (en) | Method for producing positive electrode active material for non-aqueous lithium secondary battery, positive electrode using this active material, and non-aqueous lithium secondary battery | |
JP3605256B2 (en) | Carbon material for negative electrode of lithium ion secondary battery and lithium ion secondary battery using the carbon material for negative electrode | |
JPH1125981A (en) | Negative electrode material for li ion secondary battery | |
JP2002117836A (en) | Negative electrode for nonaqueous electrolyte secondary battery and battery using it | |
JP2004234977A (en) | Positive electrode material for lithium secondary battery, manufacturing method of same, and lithium secondary battery using same | |
JPH07262995A (en) | Cobalt acid lithium positive electrode active material for lithium secondary battery and manufacture thereof | |
JP2003100291A (en) | Negative electrode material of high performance lithium secondary battery | |
JP2021034142A (en) | Production method of multiple oxide that is precursor of cathode active material for lithium ion secondary battery | |
JP2003288899A (en) | Positive electrode active material for nonaqueous electrolyte secondary cell | |
JP3578503B2 (en) | Positive active material for lithium secondary battery and secondary battery using the same | |
JP2003132888A (en) | Manufacturing method of carbonaceous anode material for lithium secondary battery and lithium secondary battery using the carbonaceous anode material | |
JP2005346956A (en) | Positive electrode active material for nonaqueous lithium secondary battery, manufacturing method thereof, and nonaqueous lithium secondary battery using the positive electrode active material | |
JP2010257982A (en) | Anode active material for lithium secondary battery, and lithium secondary battery including the same | |
JP6583254B2 (en) | Non-aqueous secondary battery positive electrode material, non-aqueous secondary battery and method for producing positive electrode material for non-aqueous secondary battery | |
JP2021077507A (en) | Negative electrode material for sodium ion battery and sodium ion battery | |
JP3645215B2 (en) | Method for producing negative electrode material for high performance lithium ion secondary battery | |
JP3610439B2 (en) | Cathode active material for non-aqueous lithium secondary battery and lithium secondary battery | |
JP2016072188A (en) | Method for manufacturing coated complex oxide particles for positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery arranged by use of coated complex oxide particles manufactured thereby |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050125 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050621 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060104 |