JP2003092228A - Method for manufacturing laminated ceramic capacitor - Google Patents

Method for manufacturing laminated ceramic capacitor

Info

Publication number
JP2003092228A
JP2003092228A JP2001284290A JP2001284290A JP2003092228A JP 2003092228 A JP2003092228 A JP 2003092228A JP 2001284290 A JP2001284290 A JP 2001284290A JP 2001284290 A JP2001284290 A JP 2001284290A JP 2003092228 A JP2003092228 A JP 2003092228A
Authority
JP
Japan
Prior art keywords
ceramic capacitor
internal electrode
isostatic pressing
electrode
hot isostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001284290A
Other languages
Japanese (ja)
Inventor
Shinji Nakano
伸次 中野
Hiroshi Ishikawa
石川  浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
NEC Tokin Hyogo Ltd
Original Assignee
NEC Tokin Corp
NEC Tokin Ceramics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp, NEC Tokin Ceramics Corp filed Critical NEC Tokin Corp
Priority to JP2001284290A priority Critical patent/JP2003092228A/en
Publication of JP2003092228A publication Critical patent/JP2003092228A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for easily manufacturing a multilayer and high capacitance laminated ceramic capacitor with its internal electrode unsevered and thin (2 μm or less after sintering), and continuously laminated. SOLUTION: A contact area between the internal electrode and a ceramic layer is regained by hot isostatic pressing, in a neutral or reducing atmosphere, the laminated ceramic capacitor primarily sintered by a densifying temperature in the reducing atmosphere, to extend the internal electrode and eliminate air hole.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、積層セラミックコ
ンデンサの製造方法に関し、特に、焼成時に雰囲気制御
を必要とする積層セラミックコンデンサの内部電極の緻
密化に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a monolithic ceramic capacitor, and more particularly to densification of internal electrodes of a monolithic ceramic capacitor which requires atmosphere control during firing.

【0002】[0002]

【従来の技術】近年、積層セラミックコンデンサは携帯
電話や移動通信機など携帯機器に広く用いられ、小型大
容量化、低価格化が要求されている。その積層セラミッ
クコンデンサの内部電極には従来、貴金属系のパラジウ
ムもしくはパラジウム―銀材料が用いられていたが、パ
ラジウムの価格高騰に伴い、最近では安価な卑金属系の
ニッケルが内部電極に使用されつつある。しかしニッケ
ルは、大気雰囲気中で焼成すると酸化のために絶縁体と
なり電極の機能を果たさなくなる。そこで、焼成時には
ニッケルの酸化を防止するため、炉内雰囲気を還元性と
し、焼成し、積層セラミックコンデンサの信頼性を高め
るため、再酸化を行なうなど雰囲気制御を実施するのが
一般的である。
2. Description of the Related Art In recent years, monolithic ceramic capacitors have been widely used in mobile devices such as mobile phones and mobile communication devices, and have been required to be small in size and large in capacity and low in price. Conventionally, noble metal-based palladium or palladium-silver materials were used for the internal electrodes of the monolithic ceramic capacitors, but recently, with the price increase of palladium, inexpensive base metal-based nickel is being used for the internal electrodes. . However, when nickel is baked in the air atmosphere, it becomes an insulator due to oxidation and does not function as an electrode. Therefore, in order to prevent the oxidation of nickel at the time of firing, the atmosphere in the furnace is made reducible, and firing is performed, and in order to improve the reliability of the monolithic ceramic capacitor, the atmosphere is generally controlled such as reoxidation.

【0003】従来、積層セラミックコンデンサの製造方
法は、誘電体粉末、有機結合剤、有機分散媒から成る泥
しょうをドクターブレード法などにより、厚さ数μmか
ら数十μmのグリーンシートとし、そのシート上にスク
リーン印刷法により、内部電極パターンを形成する。次
にこのグリーンシートを所要枚数、互いに、対向内部電
極となるように積層、熱圧着し、所定の形状に切断、雰
囲気制御焼結してコンデンサを得ている。
Conventionally, a method of manufacturing a monolithic ceramic capacitor is a green sheet having a thickness of several μm to several tens μm formed by a doctor blade method using a slurry composed of a dielectric powder, an organic binder and an organic dispersion medium. An internal electrode pattern is formed on the surface by screen printing. Next, a required number of these green sheets are laminated on each other so as to form opposing internal electrodes, thermocompression bonded, cut into a predetermined shape, and atmosphere controlled sintering to obtain a capacitor.

【0004】しかし、積層セラミックコンデンサの多積
層化、薄層化の影響から内部電極をより精度よく、かつ
薄く印刷する必要がある。内部電極の印刷には、通常、
スクリーン印刷法により実施されるが、内部電極ペース
トの薄塗りには、印刷機の印圧、ギャップ、印刷スピー
ド、スキージ硬度、スキージ角度の調整、印刷スクリー
ンのメッシュ、製版厚み、内部電極ペ−ストを粘度調整
するなどの方法がとられている。
However, it is necessary to print the internal electrodes more accurately and thinly due to the influence of multi-layering and thinning of the multilayer ceramic capacitor. The internal electrodes are usually printed by
Although it is carried out by the screen printing method, the thin coating of the internal electrode paste includes printing pressure of the printing machine, gap, printing speed, squeegee hardness, adjustment of squeegee angle, printing screen mesh, plate making thickness, internal electrode paste. The viscosity is adjusted.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな内部電極ペーストの薄塗りをした積層セラミックコ
ンデンサは、セラミック材料の緻密化温度で、セラミッ
ク材料と内部電極材料との融点の違いから内部電極が収
縮し空孔が生じるため、この空孔面積分だけセラミック
層と内部電極の接触面積が減少する。焼成したセラミッ
クコンデンサの状態を図1に示す。この空孔は、図1
(b)のように積層方向から断面観察すると内部電極上
に空孔4があり図1(c)のように垂直方向の断面から
観察すると内部電極2が切れて見える。内部電極2を従
来より薄く印刷を実施した場合。電極の切れがさらに顕
著になり、目的の静電容量を得ることは困難であった。
However, in such a laminated ceramic capacitor in which the internal electrode paste is thinly coated, the internal electrodes are not formed due to the difference in melting point between the ceramic material and the internal electrode material at the densification temperature of the ceramic material. Since the holes shrink due to contraction, the contact area between the ceramic layer and the internal electrode is reduced by the area of the holes. The state of the fired ceramic capacitor is shown in FIG. This hole is shown in FIG.
When the cross section is observed from the stacking direction as shown in (b), the holes 4 are present on the internal electrode, and the internal electrode 2 appears to be cut off when observed from the cross section in the vertical direction as shown in FIG. 1 (c). When the inner electrode 2 is printed thinner than before. The breakage of the electrode became more prominent, and it was difficult to obtain the target capacitance.

【0006】従来技術として、特許1595391号に
おいて、大気雰囲気中の一次焼成後に熱間静水厚プレス
を施す手法が特許化されているが、大気中で一次焼成す
るため、ニッケルの内部電極が酸化され、コンデンサに
ならないという欠点がある。
As a conventional technique, in Japanese Patent No. 1595391, a method of hot isostatic pressing after primary firing in an air atmosphere has been patented, but since the primary firing is performed in the air, the nickel internal electrode is oxidized. However, it has the drawback of not becoming a capacitor.

【0007】本発明における技術的課題は内部電極2を
切れのない状態で薄く(焼成後2μm以下)、且つ、連
続的に積層することであり、多積層で高静電容量の積層
セラミックコンデンサを容易に製造する方法を提供する
ことである。
The technical problem in the present invention is to make the internal electrodes 2 thin (2 μm or less after firing) and continuously laminated in an unbroken state. It is to provide a method of easily manufacturing.

【0008】[0008]

【課題を解決するための手段】本発明は、還元性雰囲気
において緻密化温度により一次焼成した積層セラミック
コンデンサを中性もしくは還元性雰囲気中で熱間静水圧
プレス処理を施すことにより、内部電極を引き延ばすこ
とで空孔を消滅させて、セラミック層との接触面積を回
復させる手法である。
According to the present invention, an internal electrode is formed by subjecting a monolithic ceramic capacitor, which is primarily fired at a densification temperature in a reducing atmosphere, to hot isostatic pressing in a neutral or reducing atmosphere. This is a method of extinguishing the voids by stretching and recovering the contact area with the ceramic layer.

【0009】また、セラミック材料には、主成分をチタ
ン酸バリウムなどの還元しやすい材料を用い、内部電極
材料にニッケルを用い、一次焼成は還元性雰囲気にて行
ない、熱間静水圧プレス処理時には、N2中の中性雰囲気
もしくは還元性雰囲気にて行なう。また熱間静水圧プレ
ス処理後に再酸化の為の酸化性雰囲気中の熱処理を施す
と信頼性が向上する。
Further, as the ceramic material, a material that can be easily reduced such as barium titanate is used as the main component, nickel is used as the internal electrode material, and the primary firing is performed in a reducing atmosphere, and during hot isostatic pressing. , N 2 in a neutral or reducing atmosphere. Further, reliability is improved by performing heat treatment in an oxidizing atmosphere for reoxidation after hot isostatic pressing.

【0010】[0010]

【実施例】以下に、実施例に基づき本発明を詳細に説明
する。セラミック材料として、緻密化温度1350℃の
チタン酸バリウムを主成分とする材料をもちいて、本発
明の製造方法による積層セラミックコンデンサを作製し
た。
EXAMPLES The present invention will be described in detail below based on examples. As a ceramic material, a material containing barium titanate as a main component having a densification temperature of 1350 ° C. was used to manufacture a laminated ceramic capacitor by the manufacturing method of the present invention.

【0011】まず、上記誘電体粉末と有機結合材として
ポリビニルブチラール、有機分散媒としてメチルプロピ
レングリコールを用いて泥しょうを作製し、ドクターブ
レード法により厚み10μmのグリーンシートを作製し
た。このグリーンシート上に、ニッケルの内部電極用ペ
ーストを所定のパターンでスクリーン印刷し、250枚
積層後、熱圧着し、積層セラミックコンデンサの未焼成
体を形成した。この未焼成体を第1表に示す種々の温度
および雰囲気中で一次焼成した後、熱間静水圧プレス処
理を施して、実施例1〜6の焼成体チップを得た。還元
性雰囲気は、N2+H2混合ガスを用いて、1300℃に
おける酸素分圧を10−9から10-14[atm]として、
中性雰囲気ガスにはN2ガスを用いた。さらに実施例7〜
12では熱間静水圧プレス処理後に酸化性雰囲気中の熱
処理を行ない焼成体チップを得た。熱間静水圧プレス処
理の条件は圧力300kg/cmで、温度、雰囲気を
第1表に示すように種々変化させ、静電容量の設計値は
22μFとした。
First, using the above dielectric powder, polyvinyl butyral as an organic binder, and methyl propylene glycol as an organic dispersion medium, a slurry was prepared, and a green sheet having a thickness of 10 μm was prepared by a doctor blade method. On this green sheet, nickel internal electrode paste was screen-printed in a predetermined pattern, and after stacking 250 sheets, thermocompression bonding was performed to form an unfired body of a laminated ceramic capacitor. After the primary firing of this green body in various temperatures and atmospheres shown in Table 1, hot isostatic pressing treatment was performed to obtain fired body chips of Examples 1 to 6. The reducing atmosphere is a mixed gas of N 2 + H 2 and an oxygen partial pressure at 1300 ° C. of 10 −9 to 10 −14 [atm].
N 2 gas was used as the neutral atmosphere gas. Furthermore, Example 7-
In No. 12, after hot isostatic pressing, heat treatment was performed in an oxidizing atmosphere to obtain a fired chip. The conditions for the hot isostatic pressing treatment were a pressure of 300 kg / cm 2 , the temperature and atmosphere were variously changed as shown in Table 1, and the design value of the capacitance was 22 μF.

【0012】この焼成体チップに、外部電極としてCu
ペーストを塗布、焼き付けをして図2に示す積層セラミ
ックコンデンサを製造した。また、内部電極2の空孔に
よる電極切れを観察、測定するために積層セラミックコ
ンデンサにおける積層方向の断面観察を実施した。断面
の模式図を図3に示す。
Cu is used as an external electrode on the fired body chip.
The paste was applied and baked to manufacture the monolithic ceramic capacitor shown in FIG. Further, in order to observe and measure electrode breakage due to holes in the internal electrode 2, cross-section observation in the lamination direction of the laminated ceramic capacitor was performed. A schematic view of the cross section is shown in FIG.

【0013】図3に示す内部電極2の切れを定量化する
ため、図1(c)の断面B−B’に示す内部電極2の長
さに対する電極切れ長さの割合を取り、(1)式のよう
に電極切れ率と定義した。電極切れ率[%]=極切れ長
さの和/電極長さ×100・・・・・(1)
In order to quantify the breakage of the internal electrode 2 shown in FIG. 3, the ratio of the electrode breakage length to the length of the internal electrode 2 shown in the cross section BB ′ of FIG. The electrode disconnection rate is defined as follows. Electrode breakage rate [%] = sum of electrode breakage length / electrode length × 100 (1)

【0014】第1表から明らかなように、比較例1の熱
間静水圧プレス処理を行わない従来の焼成方法では、電
極切れ率が約15%と大きく、容量も約17μFと小さ
いのに比べて、本発明法による実施例1〜7に見られる
ように、還元性雰囲気10−9、10-14[atm]におい
て1300℃の温度で一次焼成を行ない、その後、中性
または還元性雰囲気で熱間静水圧プレス処理すると、電
極切れ率が0.28〜0.62%と減少し、内部電極空
孔4の減少が認められ、静電容量もほぼ設計値22μと
等しくなる。
As is apparent from Table 1, in the conventional firing method of Comparative Example 1 in which the hot isostatic pressing is not performed, the electrode breakage rate is as large as about 15% and the capacity is as small as about 17 μF. Then, as shown in Examples 1 to 7 according to the method of the present invention, primary firing is performed at a temperature of 1300 ° C. in a reducing atmosphere of 10 −9 and 10 −14 [atm], and then in a neutral or reducing atmosphere. When the hot isostatic pressing process is performed, the electrode breakage rate is reduced to 0.28 to 0.62%, the reduction of the internal electrode holes 4 is recognized, and the electrostatic capacitance is almost equal to the design value 22μ.

【0015】同様に、還元性雰囲気にて一次焼成を行な
った後に、中性または還元性雰囲気にて熱間静水圧プレ
ス処理を施し、さらに再酸化のための酸化性雰囲気中の
熱処理をした実施例8〜14も、切れ率が0.21〜
0.58%と減少し、静電容量も21.87〜21.9
5μFとなり、静電容量の設計値とほぼ等しくなった。
Similarly, after performing primary firing in a reducing atmosphere, hot isostatic pressing is performed in a neutral or reducing atmosphere, and then heat treatment is performed in an oxidizing atmosphere for reoxidation. Examples 8 to 14 also have a cutting rate of 0.21 to
It decreased to 0.58% and the capacitance was 21.87 to 21.9.
The value was 5 μF, which was almost equal to the design value of the capacitance.

【0016】また、酸化性雰囲気中の熱処理を施さなく
ても、本発明の効果は得られるが、素子の高寿命化の要
因となる誘電体の再酸化が促進させるため、酸化雰囲気
中の熱処理を行う事が好ましい。
Although the effect of the present invention can be obtained without performing heat treatment in an oxidizing atmosphere, heat treatment in an oxidizing atmosphere is promoted because the reoxidation of the dielectric, which is a factor for extending the life of the device, is promoted. Is preferably performed.

【0017】なお、実施例において、緻密化温度が13
50℃の誘電体材料について説明したが、本発明は他の
誘電体材料を用いるものについても同様に実施できるも
ので、実施例に示した誘電体材料に限定されるものでは
ない。
In the embodiment, the densification temperature is 13
Although the dielectric material at 50 ° C. has been described, the present invention can be similarly applied to other dielectric materials, and is not limited to the dielectric materials shown in the examples.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、内
部電極の空孔を減少することができ、これにより内部電
極が薄く、且つ連続した状態の積層セラミックコンデン
サが得られる。
As described above, according to the present invention, it is possible to reduce the number of voids in the internal electrodes, which makes it possible to obtain a monolithic ceramic capacitor in which the internal electrodes are thin and continuous.

【0020】また、内部電極が薄く連続的に形成できる
ことで多積層のセラミックコンデンサにおいても、信頼
性に優れる大容量積層セラミックコンデンサの製造が可
能となった。
Further, since the internal electrodes can be formed thinly and continuously, it becomes possible to manufacture a large-capacity multilayer ceramic capacitor having excellent reliability even in a multi-layer ceramic capacitor.

【図面の簡単な説明】[Brief description of drawings]

【図1】積層セラミックコンデンサの積層方向と垂直方
向の断面図
FIG. 1 is a sectional view of a monolithic ceramic capacitor in a direction perpendicular to a laminating direction.

【図2】積層セラミックコンデンサの構成図[Fig. 2] Configuration diagram of a monolithic ceramic capacitor

【図3】積層セラミックコンデンサのHIP処理前後の
垂直断面図で(a)は熱間静水圧プレス処理無し、
(b)は熱間静水圧プレス処理有り。
FIG. 3 is a vertical cross-sectional view of a monolithic ceramic capacitor before and after HIP treatment, in which (a) is no hot isostatic pressing treatment;
(B) has hot isostatic pressing.

【符号の説明】[Explanation of symbols]

1 セラミック層 2 内部電極 3 外部電極 4 内部電極の空孔 5 電極の切れの長さ 6 電極長さ 1 Ceramic layer 2 internal electrodes 3 external electrodes 4 Internal electrode holes 5 Cut length of electrode 6 electrode length

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5E001 AB03 AH05 AH08 AJ01 AJ02 5E082 AB03 FG26 FG54 MM22 MM24   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5E001 AB03 AH05 AH08 AJ01 AJ02                 5E082 AB03 FG26 FG54 MM22 MM24

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数の内部電極層とセラミック層を有す
る積層構造からなる積層セラミックコンデンサにおい
て、還元性雰囲気にて一次焼成した後、中性もしくは還
元性雰囲気中にて熱間静水圧プレス処理を施すことを特
徴とする積層セラミックコンデンサの製造方法。
1. A monolithic ceramic capacitor having a laminated structure having a plurality of internal electrode layers and ceramic layers is subjected to primary firing in a reducing atmosphere and then subjected to hot isostatic pressing in a neutral or reducing atmosphere. A method for manufacturing a monolithic ceramic capacitor, which comprises applying the same.
【請求項2】 請求項1記載の積層セラミックコンデン
サの製造方法において、熱間静水圧プレス後に酸化性雰
囲気中で熱処理をおこなうことを特徴とする積層セラミ
ックコンデンサの製造方法。
2. The method for manufacturing a monolithic ceramic capacitor according to claim 1, wherein heat treatment is performed in an oxidizing atmosphere after hot isostatic pressing.
JP2001284290A 2001-09-19 2001-09-19 Method for manufacturing laminated ceramic capacitor Pending JP2003092228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001284290A JP2003092228A (en) 2001-09-19 2001-09-19 Method for manufacturing laminated ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001284290A JP2003092228A (en) 2001-09-19 2001-09-19 Method for manufacturing laminated ceramic capacitor

Publications (1)

Publication Number Publication Date
JP2003092228A true JP2003092228A (en) 2003-03-28

Family

ID=19107639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001284290A Pending JP2003092228A (en) 2001-09-19 2001-09-19 Method for manufacturing laminated ceramic capacitor

Country Status (1)

Country Link
JP (1) JP2003092228A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020202245A (en) * 2019-06-07 2020-12-17 太陽誘電株式会社 Manufacturing method of ceramic electronic component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020202245A (en) * 2019-06-07 2020-12-17 太陽誘電株式会社 Manufacturing method of ceramic electronic component
JP7477080B2 (en) 2019-06-07 2024-05-01 太陽誘電株式会社 Manufacturing method for ceramic electronic components

Similar Documents

Publication Publication Date Title
JP2023003087A (en) Ceramic electronic component
JPH0992983A (en) Manufacture of ceramic multilayer board
JP3785966B2 (en) Manufacturing method of multilayer ceramic electronic component and multilayer ceramic electronic component
JP2015026801A (en) Multilayer ceramic capacitor, method for manufacturing the same, and board for mounting multilayer ceramic capacitor
WO2005117041A1 (en) Electronic part, layered ceramic capacitor, and manufacturing method thereof
US6627120B2 (en) Conductive paste and laminated ceramic electronic component
JPWO2005117040A1 (en) Electronic component, multilayer ceramic capacitor, and method for manufacturing the same
JP2000138129A (en) Laminated ceramic capacitor and its manufacture
JP4182009B2 (en) Conductive particles, conductive paste, electronic component, multilayer ceramic capacitor and manufacturing method thereof
JP4066432B2 (en) Manufacturing method of laminated piezoelectric ceramic element
JP2019145684A (en) Ceramic capacitor and manufacturing method thereof
JPWO2005017928A1 (en) Multilayer ceramic component and manufacturing method thereof
JP2006253651A (en) Multi-layer ceramic capacitor and its manufacturing method
JP2003115416A (en) Conductive paste, method of manufacturing laminated ceramic electronic component, and laminated ceramic electronic component
JP2003092228A (en) Method for manufacturing laminated ceramic capacitor
JP2003045740A (en) Laminated electronic component
JP2004179349A (en) Laminated electronic component and its manufacturing method
JP2008277294A (en) Conductive particle, conductive paste, electronic component, and laminated ceramic capacitor and manufacturing method thereof
JP2756745B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2008198655A (en) Multilayer ceramic electronic component and its manufacturing process
JP4729993B2 (en) Manufacturing method of multilayer ceramic electronic component
JP4163637B2 (en) Electronic component, multilayer ceramic capacitor, and method for manufacturing the same
JP2003347152A (en) Method for manufacturing multilayer ceramic electronic component
JP2007184333A (en) Ceramic green-sheet with embedded electrode, method for manufacturing the same, and method for manufacturing laminated ceramic electronic component utilizing the same
JP3273125B2 (en) Multilayer ceramic capacitors