JP2003090795A - 環境評価装置 - Google Patents

環境評価装置

Info

Publication number
JP2003090795A
JP2003090795A JP2001325647A JP2001325647A JP2003090795A JP 2003090795 A JP2003090795 A JP 2003090795A JP 2001325647 A JP2001325647 A JP 2001325647A JP 2001325647 A JP2001325647 A JP 2001325647A JP 2003090795 A JP2003090795 A JP 2003090795A
Authority
JP
Japan
Prior art keywords
environment
change
gas
gas component
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001325647A
Other languages
English (en)
Inventor
Masahiro Kitada
正弘 北田
Fumiyoshi Kirino
文良 桐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001325647A priority Critical patent/JP2003090795A/ja
Publication of JP2003090795A publication Critical patent/JP2003090795A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

(57)【要約】 【目的】従来の環境評価装置の欠点を除去し、製品を構
成する材料側からより正確な環境評価をする評価装置を
提供することである。 【構成】本環境評価装置は1)環境中のガス成分と反応
する素子部分、2)素子の変化を検出し電気信号に変え
る部分、3)測定結果を記憶する部分を基本とし、これ
らに加えて、あらかじめ測定しておいた基準となる物質
を用いて測定したけ結果を記憶する部分を設けても良
い。 【効果】短時間に環境評価を行え、高精度、高感度でし
かも安価な測定装置を提供することができる。本発明の
手法は製品などの構成体である材料の視点に立って環境
による影響を評価できる。

Description

【発明の詳細な説明】 【発明の属する技術分野】
【0001】本発明は各種の製品および材料の環境中に
含有のガスによる劣化の評価あるいは事前評価、劣化防
止の技術に係り、特に、環境評価のための評価装置に関
する。
【従来の技術】
【0002】地球環境の悪化、種々の環境の変化に伴っ
て、各種製品の腐食等による性能低下が激しくなってい
る。従来の製品に対する環境の評価は大きく分けて、環
境中のガス成分や濃度等の測定によるものと、環境中に
置かれた製品を構成するバルク材料の暴露試験で行われ
ていた。
【0003】前者のガス成分の測定では材料の劣化に種
々の因子が絡んでいるため、実際の劣化を正確に判断す
ることはできない。後者のバルク材料の暴露試験では、
酸化反応による重量の増加などを測定しているが、塵埃
の付着などの影響があり不正確になる。また、バルク材
料では試験片が大きくて重量があるため、重量増加の方
法では劣化初期の評価が困難である。
【0004】このように、環境の善し悪しの判定は直接
的には環境中のガス成分の測定などで評価できるが、各
種製品が実際にどれだけ腐食等で劣化するかは環境中の
ガス成分のほかに温度、湿度、天候、風速等のさまざま
な気候条件により影響によって著しく異なる。したがっ
て、ガス成分の測定結果はおおよその傾向を判断するだ
けに止まり、製品の劣化を直ちに判断することはできな
い。すなわち、製品側(材料側)からの評価が必要であ
る。
【0005】その場合、環境中のガス成分が容易に測定
でき、しかも、結果の処理から劣化予測が簡便に行える
評価装置の開発が望まれていた。
【発明が解決しようとする課題】
【0006】上述のように、製品側から評価した従来法
ではバルク材料の暴露試験などでおおよその判断をして
きたが、定量化するのは難しく、測定データのばらつき
や、試験時間が極めて長いために環境の変化による不特
定な要素が加わり、正しい評価ができなかった。また、
得られたデータから簡単な手法により製品の寿命予測が
容易に行えなかった。
【0007】そこで、本発明の目的は、従来の環境評価
装置の欠点を除去し、製品を構成する材料側からより正
確な環境評価をする評価装置を提供することである。
【課題を解決するための手段】
【0008】本発明の目的は、1)環境中のガス成分と
反応する素子部分、2)素子の変化を検出し電気信号に
変える部分、3)測定結果を記憶する部分の3つの部分
からなる環境評価装置を用いることにより実現できる。
これらに加えて、あらかじめ測定しておいた基準となる
物質を用いて測定したけ結果を所定の場所に記憶する部
分を設けても良い。この記憶してあるデータと測定した
結果とを対比させて、材料の寿命を予測することができ
る。
【0009】ここで、検出素子は、絶縁物基板上に形成
され金属およびその合金、あるいはその化合物からな
る。そして、薄膜の有する物理的あるいは/および化学
的性質によって環境中のガス成分を検知する。本発明の
検出素子では、薄膜の光反射率、光透過率、電気抵抗の
内から選ばれる少なくとも1種類の特性の経時変化を用
いる。
【0010】環境中におけるガス成分との反応により生
成した異物質の生成による光学的な変化、すなわち反射
率あるいは透過率の測定あるいは、電気抵抗の変化の測
定によって反応の進行状況を把握する。これにより、反
応の進行を定量化できる。
【0011】透過率測定の場合には、測定光の波長領域
で基板は光学的に光を透過できることが必要である。反
射率あるいは透過率の測定には、金属等の薄膜の検出素
子を中心に、固定波長の発光素子と受光素子(光電変換
素子)の組合せからなるデバイスを利用する。電気抵抗
変化による環境評価においては、4端子法を用いて抵抗
の測定を行う。この測定は連続的に行っても、また、一
定の時間周期で行っても良い。
【0012】測定の指示はマイコンやパーソナルコンピ
ュータなどを用いて自動化することが最も好ましい。そ
して、測定したデータとそれに対応した時間を格納して
おき、必要に応じて解析を行う。解析は反射率、透過率
や電気抵抗の経時変化から、これらの物性値の単位時間
当たりの変化を求める。この値を用いて、一定時間後の
変化を予測することができる。また、検出素子の分析や
経時変化の曲線から反応次数などの反応機構(劣化機
構)を解析できる。
【0013】さらに、濃度が既知の標準ガスを用いてあ
らかじめ検出素子の経時変化を測定しておき、その結果
をパーソナルコンピュータなどの所定の位置に記憶させ
ておく。さらに、標準ガスを用いて測定したデータと環
境中において測定したデータとを比較することで、大気
中のガス成分の同定や反応速度(腐食速度)を推定する
ことができる。これにより、材料の劣化速度が推定でき
る。
【0014】大気中には複数のガス成分が含まれてい
る。その場合、ガス成分の検出素子に選択性を持たせれ
ばよい。すなわち、各々のガスと選択的に反応する金属
およびその合金、あるいはその化合物を用いればよい。
あるいは、途中にフィルタを入れて検出の妨害となる成
分を除去して選択性を持たせても良い。
【発明の実施の形態】
【実施の形態1】
【0015】〔装置の構成と機能〕作製した環境評価装
置の基本部分は、図1に示すようにガス検出素子部
(1)、ガス導入部(2)、検出機構(3)、測定デー
タ蓄積部(4)、基準データ蓄積部(5)より構成され
る。パーソナルコンピュータ(6)などで各パーツを制
御したり、データのやり取りをするとより使い易い装置
になる。
【0016】ガス検出素子部(1)は以下に述べる手順
で作製される。まず、検出素子には酸素や水に対しては
Cu薄膜を、硫黄化合物に対してAg薄膜を検出素子に
用いた。素子の作製は、光学的に平坦な平面を有する直
径10mm、厚さ1mmの透明ガラス基板上にスパッタ
法でAg薄膜を100nm膜厚に形成した。ここで用い
る膜の材質は、検出するガスによって適宜選択されるこ
とはいうまでもない。例えば、Fe,Cr,ステンレス
鋼,Tbなどの希土類元素、Ni,Coなどを用いるこ
とができる。
【0017】ガス成分の検出は、検出機構(3)におい
て光反射率の経時変化を測定することにより行う。用い
た装置の概略は図2に示すとおりである。光源(11)
に630nmの半導体レーザーを用いた。この他に、発
光ダイオードなどを用いても良い。レンズを用いて2m
m直径の光スポットに成形した。光源を出た光はビーム
スプリッタI(12)により分離され、一方を光検出器
I(13)へ、もう一方を検出素子へ導入される。検出
素子で反射した光は、ビームスプリッタII(14)に
より分離され、検出器II(15)へ導入される。検出
器Iと検出器IIの差分検出器(16)により差をとる
ことで反射率変化を検出することができる。ここでは、
作動検出方式の例を示したが、この手法は高い精度で測
定できるが、光学系が複雑である。そこで、光源から検
出素子に光を照射し、反射してきた光を受光素子で検出
(光電変換)しても良い。いずれの手法を選択するか
は、測定の精度やコストなどにより決定すればよい。
【0018】ガス導入部(2)により、ガス検出素子
(1)へ試料ガスを一定の条件で導入する。そのため
に、導入部の終端の吸引ポンプにより等速吸引を行い、
ガスを一定流量になるように調節する。ここで、ガス流
量を制御するのは、測定の精度ならびに再現性を確保す
るためである。
【0019】このようにして測定したデータは、測定デ
ータ蓄積部(4)に反射率と測定時間のデータとをペア
ーで格納した。これにより、光反射率の時間変化率を求
めることができる。
【0020】さらに、あらかじめ基準データ蓄積部
(5)には標準ガスを用いて測定した光反射率の時間変
化率が格納されている。これは、あらかじめ測定した濃
度既知の標準ガスによる検出素子の光反射率の経時変化
が格納されている。この値は、濃度を変化させて反射率
の経時変化を測定し、データベースとして基準データ蓄
積部(5)に格納しておく。ここで、中間の値をとった
場合は、補完法により濃度を求めればよい。
【0021】基準データ蓄積部(5)に格納されている
データは、測定対象となるガスの濃度を定量するための
ものである。測定対象となるガスを一定濃度含む空気を
ガス検出素子へ導入する。そして、一定時間ごとに光反
射率を測定し、光反射率の経時変化を測定しておく。測
定対象となるガスの濃度を変えて光反射率の時間変化率
を測定しておく。この値と、自分が測定したい環境にお
いて測定したデータとを比較することにより、環境中の
対象ガスの濃度を知ることができる。
【0022】〔実測例1−定性分析〕まず初めに、室内
環境中に腐食性ガスの存在を検出した例について述べ
る。ここでは、検出素子部(1)にAgの薄膜を用い
た。そして、ガス導入部(2)により検出素子部(1)
に分析対象ガスを一定流量(流速一定でも良い)で導入
した。そのときの検出素子表面における反射率の経時変
化を測定した。その結果を図3に示す。この図から、光
反射率の平均時間変化率(%/day)が既測定値
(0.8%/day)の値と同じか大きい場合には測定
対象ガスが環境中に含まれることがわかる。特に、用い
る検出素子の材料によって対象とするガス成分が異な
り、Agは硫黄分と塩素分に応答する材料である。
【0023】〔実測例2−定量分析〕次に、対象ガス成
分を定量した場合について述べる。ガス導入機構(2)
を用いて、試料ガスを検出素子へ導入した。そして、検
出素子の光反射率の経時変化を測定記録した。そして、
光反射率の時間変化率を計算し、基準データ蓄積部
(5)に格納されている標準ガスを用いて測定した検出
素子の光反射率の時間変化率と比較する。ここで、検出
素子の光反射率の時間変化率は標準ガスの濃度を変えて
測定した結果を図4に示す。この図から、時間と光反射
率との関係をあらかじめ求めておき、その変化率の結果
と試料ガスの測定結果とを比較することにより、ガス中
の対象成分の濃度を求めることができた。ただし、標準
ガスはSOを用いたので、定量されるガス濃度はSO
換算量となる。しかし、検出素子をESCAなどで分
析することにより、硫黄分と塩素分と分離でき、各々の
寄与を調べることができる。ここでは、Ag薄膜を用い
たので、塩素分(塩害)と硫黄分(主に二酸化硫黄や硫
化水素など)をあわせた値として定量できた。その値は
0.15ppmであった。
【0024】〔実測例3〕次に、検出素子としてCu薄
膜を用いて測定した。ここで、光反射率に変化が生じる
のは、Cuと反応する成分である水と酸素が原因である
ことがあらかじめわかっている。これらの物質は、金属
の腐食を促進する元素なので、その存在や濃度をとらえ
ておくことは重要である。そこで、外気を試料ガスとし
てガス導入系を通して検出素子に導いた。その結果、
1.60%/dayの反射率の時間変化率であった。こ
の結果は、あらかじめ測定した気温が25℃で相対湿度
が70%(25℃−70%RHと表す)での測定結果の
1.67%/dayとほぼ同じ値であった。このことか
ら、試料の状態を定量分析できた。
【0025】以上のように、反射率の変化を基本にして
環境を評価することができる。すなわち、反射率がある
一定の値になるまでの時間によって評価する方法、反射
率が0になる時間を外装によって求めて比較する方法、
一定の時間における反射率で比較する方法、劣化直線の
勾配で比較する方法等がある。これらは環境評価に目的
によって異なるが、一般には、一定の時間での反射率の
低下量あるいは一定の時間後の反射率を用いるのが便利
である。
【実施の形態2】
【0026】本実施の形態では、検出素子の試料ガス中
に含まれる測定対象ガスによる変化を検出するのに電気
抵抗の変化を用いた場合である。検出素子の構造を図5
に示す。電気抵抗の測定には4端子法を用いた。ここで
は、0.1μm膜厚のAg薄膜を用いた。この素子の見
かけの抵抗値は約200Ωであった。最終的には、一定
電流を素子に通電し、電圧で表示した。初期の値は20
mVである。
【0027】上記の検出素子にガス導入系により試料ガ
スを導入し、電圧の経時変化を測定した。その結果、電
圧の変化率は0.40mV/dayであった。この変化
率の値は、標準ガス(二酸化硫黄を0.2ppm含有)
を用いて測定した値(0.43mV/day)とほぼ同
じ値であった。このことから、試料ガス中の濃度は二酸
化硫黄換算で0.2ppmであることがわかる。
【0028】次に、検出素子に用いる材料として0.1
μm膜厚のCu薄膜を用いて測定を行った。この素子の
見かけの抵抗値は約180Ωであった。そして、定電流
電源により一定の電流を素子に通電し、電圧の経時変化
(抵抗の変化に相当)を記録した。初期の電圧は20m
Vである。そして、試料ガスを導入して電圧の経時変化
を測定したところ、0.38mV/dayであった。こ
の値と標準ガスを用いて測定した既知の値(データ格納
部)とを比較したところ、25℃で相対湿度が80%
(25℃−80%RHと表示)のガスを導入して測定し
た値(0.35mV/day)とほぼ同じ電圧変化であ
る。この結果から試料ガス中の水分濃度は相対湿度で8
0%であることがわかった。
【実施の形態3】
【0029】本実施例では検出素子の光透過率の変化に
より環境評価を行った場合である。用いた検出素子周辺
の概略図を図6に示す。ここでは、光源として680n
mの半導体レーザーを使用し、検出素子にはAg膜を使
用した。光の検出にはフォトダイオードを用いた。ここ
で、Ag膜は硫黄化合物や塩素イオンに対して活性で、
これらの化合物の検出に有効である。
【0030】ガス導入系により試料ガスを検出素子に導
き、素子における透過率の経時変化を測定した。その結
果、透過率の増加は1.2%/dayであった。この変
化率は0.1ppmの二酸化硫黄による標準ガスによる
測定結果(1.1%/day)とほぼ同じであり、二酸
化硫黄換算で0.1ppmであることがわかった。
【0031】比較のために、光反射率の経時変化により
環境評価を行った。それによると、0.6%/dayの
反射率の減少が見られ、これは、この変化率は0.1p
pmの二酸化硫黄による標準ガスによる測定結果(0.
7%/day)とほぼ同じであり、二酸化硫黄換算で
0.1ppmであることがわかった。このように、透過
法で定量した場合も反射法で定量した場合とも同じ分析
結果が得られた。
【発明の効果】
【0032】上記の実施の形態で明らかなように、薄膜
材料と環境成分との反応を利用して、短時間に環境評価
を行え、高精度、高感度でしかも安価な測定装置を提供
することができる。本発明の手法は製品などの構成体で
ある材料の視点に立って環境による影響を評価できる。
さらに、計測を連続的に行える。一般のガス成分の測定
に比較し簡便で、材料の反応を時間で積分した状態で結
果がでる特徴がある。また、反応した薄膜は長時間保存
ができるので、必要な分析等に利用することができる。
地球環境が悪化している状況で、各種材料の環境評価に
非常に役立つ分析装置を提供できる。
【図面の簡単な説明】
【図1】環境評価装置の構成を示す図。
【図2】検出素子部および検出部の概略を示す図。
【図3】Ag薄膜の反射率の経時変化を示す図。
【図4】標準ガスを用いて測定した反射率の経時変化を
示す図。
【図5】電気抵抗測定法による検出素子の構造を示す
図。
【図6】光透過率測定法による検出素子ならびに検出部
の構成を示す図。
【符号の説明】
1…ガス検出素子 2…ガス導入部 3…検出部 4…測定データ蓄積部 5…基準データ蓄積部 6…情報処理系(電気回路) 7…ガス検出系 8…パーソナルコンピュータ(情報処理装置) 11…光源 12…ビームスプリッタI 13…光検出器I 14…ビームスプリッタII 15…光検出器II 16…差分検出器 17…検出窓 18…試料ガス
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 27/12 G01N 27/12 B C ZAB ZABA Fターム(参考) 2G046 AA09 AA14 BA01 DC03 DC14 DC16 DC17 DC18 EB01 EB07 FB02 FE02 FE11 2G054 AA01 AB06 CA08 CA10 EB03 GB01 JA00 2G059 AA01 BB01 CC06 CC09 DD12 EE01 EE02 FF04 GG01 GG02 HH02 HH06 JJ11 JJ22 KK01 MM01 MM05 MM10 2G060 AA01 AB02 AB11 AE19 AE26 AF07 AF09 AG05 HC19 HC21 KA01 KA14

Claims (8)

    【特許請求の範囲】
  1. 【請求項1】絶縁物基板上に形成され金属およびその合
    金、あるいはその化合物からなる薄膜の有する物理的あ
    るいは/および化学的性質によって環境中のガス成分を
    検知する素子とその素子の変化を検出する部分と検出し
    た結果を処理する部分の少なくとも3つの部分からなる
    ことを特徴とする環境評価装置。
  2. 【請求項2】絶縁物基板上に形成され金属およびその合
    金、あるいはその化合物からなる薄膜の有する物理的あ
    るいは/および化学的性質によって環境中のガス成分を
    検知する素子とその素子の変化を検出する部分と検出し
    た結果を処理する部分とあらかじめ素子の特性の変化を
    記憶した部分の少なくとも4つの部分からなることを特
    徴とする環境評価装置。
  3. 【請求項3】請求項1および請求項2に記載の環境中の
    ガス成分を検知する素子の変化が金属およびその合金、
    あるいはその化合物からなる薄膜の光反射率、光透過
    率、電気抵抗の内から選ばれる少なくとも1種類の特性
    の変化により環境中のガス成分を検知したことを特徴と
    する環境評価装置。
  4. 【請求項4】請求項1および請求項2に記載の環境中の
    ガス成分を検知する素子における光反射率、光透過率、
    電気抵抗の内から選ばれる少なくとも1種類の特性の経
    時変化を測定した結果を請求項1および請求項2に記載
    の検出した結果を処理する部分に記憶したことを特徴と
    する環境評価装置。
  5. 【請求項5】環境中のガス成分による素子の特性変化を
    あらかじめ測定しておき、この結果を請求項2に記載の
    あらかじめ素子の特性の変化を記憶した部分に経時変化
    の情報を格納してあることを特徴とする環境評価装置。
  6. 【請求項6】請求項5に記載のあらかじめ測定する素子
    の特性の変化が、該光反射率、光透過率、電気抵抗の内
    から選ばれる少なくとも1種類の物性定数のガスによる
    経時変化であり、この変化をあらかじめ標準環境で測定
    した結果をあらかじめ素子の特性の変化を記憶した部分
    に格納してあることを特徴とする環境評価装置。
  7. 【請求項7】請求項2に記載の測定環境中に含有のガス
    成分による検出素子の変化を測定した結果と請求項5に
    記載のあらかじめ標準環境で測定した検出素子の変化の
    測定結果とを比較することにより、材料の劣化速度を予
    測する機能を有することを特徴とする環境評価装置。
  8. 【請求項8】請求項7に記載の材料の劣化速度を予測す
    るのに、請求項1および請求項2に記載の環境中に含有
    のガス成分を検出する素子として、少なくとも2種類以
    上の金属およびその合金、あるいはその化合物からなる
    薄膜を有する検出素子を用いて行ったことを特徴とする
    環境評価装置。
JP2001325647A 2001-09-18 2001-09-18 環境評価装置 Pending JP2003090795A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001325647A JP2003090795A (ja) 2001-09-18 2001-09-18 環境評価装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001325647A JP2003090795A (ja) 2001-09-18 2001-09-18 環境評価装置

Publications (1)

Publication Number Publication Date
JP2003090795A true JP2003090795A (ja) 2003-03-28

Family

ID=19142167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001325647A Pending JP2003090795A (ja) 2001-09-18 2001-09-18 環境評価装置

Country Status (1)

Country Link
JP (1) JP2003090795A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064492A (ja) * 2006-09-05 2008-03-21 Mitsubishi Electric Corp 被検ガス蓄積型ガスセンサ
JP2014013213A (ja) * 2012-07-05 2014-01-23 Fanuc Ltd 電子機器の設置環境判定装置
JP2015508491A (ja) * 2011-12-23 2015-03-19 エスセーアー・ハイジーン・プロダクツ・アーベー 吸収性物品への液体排出を検出する方法
JP2016185347A (ja) * 2016-06-15 2016-10-27 エスセーアー・ハイジーン・プロダクツ・アーベー 吸収性物品への液体排出を検出する方法
JP2017227499A (ja) * 2016-06-21 2017-12-28 富士通株式会社 ガスセンサ及び情報処理システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064492A (ja) * 2006-09-05 2008-03-21 Mitsubishi Electric Corp 被検ガス蓄積型ガスセンサ
JP2015508491A (ja) * 2011-12-23 2015-03-19 エスセーアー・ハイジーン・プロダクツ・アーベー 吸収性物品への液体排出を検出する方法
US9585795B2 (en) 2011-12-23 2017-03-07 Sca Hygiene Products Ab Method for detecting a liquid discharge to an absorbent article
JP2014013213A (ja) * 2012-07-05 2014-01-23 Fanuc Ltd 電子機器の設置環境判定装置
JP2016185347A (ja) * 2016-06-15 2016-10-27 エスセーアー・ハイジーン・プロダクツ・アーベー 吸収性物品への液体排出を検出する方法
JP2017227499A (ja) * 2016-06-21 2017-12-28 富士通株式会社 ガスセンサ及び情報処理システム

Similar Documents

Publication Publication Date Title
US6165347A (en) Method of identifying a gas
JP5052509B2 (ja) アフィニティ分析法及びシステム
US20220349820A1 (en) Fiber-optic sensing apparatus, system and method for characterizing metal ions in solution
JP7368566B2 (ja) 劣化診断システム、抵抗値推定方法、およびコンピュータープログラム
Ryhl-Svendsen Corrosivity measurements of indoor museum environments using lead coupons as dosimeters
US10753854B2 (en) High selectivity corrosion sensor system
US5327211A (en) Process for molecular-specific optical fiber probes for raman detection
JP2003294606A (ja) 環境評価方式およびそれを用いた環境評価装置
JP4372567B2 (ja) 紫外光による水および水溶液測定方法
JP2003090795A (ja) 環境評価装置
US20120244637A1 (en) Method and system for interaction analysis
US20140350868A1 (en) Method for sensor calibration
US11093583B2 (en) Method and system for improving the evaluation of an interaction between an analyte and a ligand using a biosensor
KR101335032B1 (ko) 시료의 정량적 분석을 위한 시료측정 카트리지 및 시료 정량 분석 장치
JP2002228658A (ja) 分析装置
CN111879691A (zh) 一种基于光纤表面等离子体共振的大气腐蚀性监测装置及方法
Bhalla Measurement of Human Urine Specific Gravity Using Nanoplasmonics: A Paradigm Shift from Scales to Biosensors
US11402321B2 (en) High-sensitive biosensor chip using high extinction coefficient marker and dielectric substrate, measurement system, and measurement method
Ooi et al. Signal demodulation for surface plasmon resonance tilted fiber Bragg grating based on root sum squared method
US10689683B2 (en) Systems and methods for determining the concentrations of multiple species using multiple sensors
US20110222055A1 (en) Determination of the salt concentration of an aqueous solution
JPH09145597A (ja) 色彩測定を利用した金属の腐食生成物量測定方法
JP4087295B2 (ja) ダイオキシン類の測定方法及び装置
Periolatto et al. Routine Monitoring of Trace Arsenic in Water by Lab-on-a-chip Technology: a Preliminary Study
NL2015580B1 (en) Sensor system for spectrophotometric measurement of components and method there for.