JP2003090239A - Internal combustion engine of cylinder direct injection type - Google Patents

Internal combustion engine of cylinder direct injection type

Info

Publication number
JP2003090239A
JP2003090239A JP2001284705A JP2001284705A JP2003090239A JP 2003090239 A JP2003090239 A JP 2003090239A JP 2001284705 A JP2001284705 A JP 2001284705A JP 2001284705 A JP2001284705 A JP 2001284705A JP 2003090239 A JP2003090239 A JP 2003090239A
Authority
JP
Japan
Prior art keywords
fuel
air
ignition
cylinder
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001284705A
Other languages
Japanese (ja)
Inventor
Atsushi Terachi
淳 寺地
Akihiro Sakakida
明宏 榊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001284705A priority Critical patent/JP2003090239A/en
Publication of JP2003090239A publication Critical patent/JP2003090239A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0668Treating or cleaning means; Fuel filters
    • F02D19/0671Means to generate or modify a fuel, e.g. reformers, electrolytic cells or membranes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Abstract

PROBLEM TO BE SOLVED: To improve fuel consumption and emission, by spreading an operating region of compression self ignition combustion while avoiding knocking and unstable combustion. SOLUTION: This internal combustion engine of cylinder direct injection type, performing compression self ignition combustion, when it is performed, mixes fuel injected from a fuel injection valve 16 into a mixture chamber 17 provided in a two-fluid injection valve 14 with air supplied from an air pipe 19, increases aldehyde to reform the fuel into fuel enhancing ignitability by igniting the concerned mixture by a spark plug 20, and spreads an operating region of the compression self ignition combustion by injecting the concerned reformed fuel into a cylinder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、筒内に燃料噴射弁
から直接燃料を噴射する筒内直接噴射式内燃機関に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-cylinder direct injection internal combustion engine in which fuel is directly injected into a cylinder from a fuel injection valve.

【0002】[0002]

【従来の技術】圧縮自己着火(以下簡略に自己着火とも
いう)燃焼を行う筒内直接噴射式内燃機関(以下圧縮自
己着火式内燃機関という)として、特開平10−196
424号公報に記載されているものがある。これは、シ
リンダ内のピストンとは別に補助圧縮手段としてコント
ロールピストンを備えており、自己着火寸前の高温に至
るまで圧縮された混合気に対し、コントロールピストン
による圧縮をさらに加えることで、上記混合気を一斉に
自着火させる構成となっている。
A cylinder direct injection internal combustion engine (hereinafter referred to as compression self-ignition internal combustion engine) that performs compression self-ignition (hereinafter also simply referred to as self-ignition) combustion is disclosed in Japanese Patent Laid-Open No. 10-196.
There is one described in Japanese Patent No. 424. This is equipped with a control piston as auxiliary compression means in addition to the piston in the cylinder.By further adding compression by the control piston to the air-fuel mixture compressed to a high temperature on the verge of self-ignition, It is designed to self-ignite all at once.

【0003】また、点火プラグを備える圧縮自己着火式
内燃機関が、公開平11−210539号公報に開示さ
れている。この発明においては、特に、圧縮行程末期に
おける筒内のガス温度が、点火すると混合気全体の自己
着火を引き起こす目標温度であるかを判断し、吸気弁の
開弁時期を制御することにより、圧縮行程末期における
筒内のガス温度が上記目標温度に維持されるように制御
している。
A compression self-ignition type internal combustion engine equipped with a spark plug is disclosed in Japanese Laid-Open Patent Publication No. 11-210539. In the present invention, in particular, by determining whether the gas temperature in the cylinder at the end of the compression stroke is a target temperature that causes self-ignition of the entire air-fuel mixture when ignited, and controlling the opening timing of the intake valve, The gas temperature in the cylinder at the end of the stroke is controlled to be maintained at the target temperature.

【0004】[0004]

【発明が解決しようとする課題】自己着火燃焼は、火炎
伝播による燃焼と異なり、局所的な燃焼温度が低く、N
Oxがごく微量にしか発生しないという利点がある。そ
の反面、均質な混合気場においては、筒内全域が一斉に
着火に至るため、負荷の上昇に伴って混合気を濃くする
と、筒内の圧力上昇率が大きくなりすぎ、振動、騒音が
大きくなるという問題がある。
Unlike the combustion by flame propagation, self-ignition combustion has a low local combustion temperature and N
There is an advantage that Ox is generated only in a very small amount. On the other hand, in a homogeneous air-fuel mixture field, the entire region of the cylinder is ignited all at once, so if the mixture is made richer as the load increases, the rate of pressure increase in the cylinder becomes too large, and vibration and noise increase. There is a problem of becoming.

【0005】従って、自己着火燃焼の行われる負荷限界
を上昇させるためには、着火時期を上死点付近またはそ
れ以降に設定し、大部分の燃焼を上死点より後の期間に
生じさせることにより、筒内の圧力上昇率を小さくする
必要がある。しかしながら、着火時期を遅らせた場合の
燃焼は、ピストンの下降による圧力減少とともに初期の
燃焼が進むため、本質的に不安定となりやすい。
Therefore, in order to increase the load limit of the self-ignition combustion, the ignition timing is set near the top dead center or later, and most of the combustion is generated in the period after the top dead center. Therefore, it is necessary to reduce the rate of pressure increase in the cylinder. However, the combustion when the ignition timing is delayed is essentially unstable because the initial combustion progresses as the pressure decreases due to the lowering of the piston.

【0006】すなわち、自己着火燃焼の負荷限界を上昇
させるためには、着火の時期を遅らせ、かつ安定した着
火が得られるよう制御する必要がある。一方、均質な混
合気場において、特開平11−210539号公報記載
の技術を適用した場合、点火プラグによるアシストによ
り着火時期は安定する。しかしながらこの方法は、上死
点付近またはそれ以降に自己着火燃焼を起こしたとして
も、着火位置を遅らせることが不可能であり、結果とし
て、自己着火燃焼の負荷限界の上昇に対しては効果がな
いことが、本願発明者等の実験により確認されている。
That is, in order to increase the load limit of self-ignition combustion, it is necessary to delay the ignition timing and control so that stable ignition can be obtained. On the other hand, when the technique described in Japanese Patent Laid-Open No. 11-210539 is applied in a homogeneous air-fuel mixture field, the ignition timing is stabilized by the assistance of the spark plug. However, this method cannot delay the ignition position even if self-ignition combustion occurs near or after top dead center, and as a result, it is not effective for increasing the load limit of self-ignition combustion. It has been confirmed by experiments conducted by the inventors of the present application that there is none.

【0007】また、自己着火燃焼に際して、局所的に濃
い混合気場を形成し、そこから自己着火、あるいは火花
着火させ、濃い混合気場からの燃焼により周囲の燃料を
自己着火させる方法が特開平11−210539号公報
に記載されており、局所的な濃い混合気場の形成を、燃
焼室の吸気弁配置側の側部からピストン冠面に噴射する
ことにより行っているが、この場合、局所的な濃い混合
気をある一定の場所に留めておくことは不可能であり、
また、濃い混合気場を維持し、シリンダヘッド中心に配
した点火プラグへ安定供給するためには、噴射燃料量が
増大する。つまり、上死点付近もしくはそれ以降に遅ら
せることができたとしても、濃い混合気が多く存在する
ため、圧力上昇率を下げることは困難であり、NOxも
低減できない。
Further, there is a method of locally forming a rich air-fuel mixture field during self-ignition combustion, causing self-ignition or spark ignition from there, and self-igniting surrounding fuel by combustion from the rich air-fuel mixture field. 11-210539, the local formation of a rich air-fuel mixture is performed by injecting from the side of the combustion chamber on the intake valve arrangement side to the piston crown surface. It is impossible to keep a specific rich mixture in a certain place,
Further, in order to maintain a rich air-fuel mixture field and stably supply it to the spark plug arranged in the center of the cylinder head, the amount of injected fuel increases. That is, even if it can be delayed near the top dead center or thereafter, there is a large amount of rich air-fuel mixture, so it is difficult to reduce the pressure increase rate, and NOx cannot be reduced.

【0008】本発明は、このような従来の課題に着目し
てなされたもので、燃料性状の改善によって安定した自
己着火燃焼の負荷範囲を拡大でき、もって燃費、エミッ
ションを改善した筒内直接噴射式内燃機関を提供するこ
とを目的とする。
The present invention has been made by paying attention to such a conventional problem, and it is possible to expand the load range of stable self-ignition combustion by improving the fuel property, thereby improving the fuel consumption and the emission, and the in-cylinder direct injection is improved. An object of the present invention is to provide an internal combustion engine.

【0009】[0009]

【課題を解決するための手段】このため、請求項1に係
る発明は、筒内に燃料噴射弁から直接燃料を噴射する筒
内直接噴射式内燃機関において、着火性が高まるように
燃料を改質し、該改質した燃料を噴射することを特徴と
する。
Therefore, according to the first aspect of the present invention, in a cylinder direct injection internal combustion engine in which fuel is directly injected into a cylinder from a fuel injection valve, the fuel is modified so as to improve ignitability. Characterized by injecting the reformed fuel.

【0010】請求項1に係る発明によると、筒内に着火
性を高めた燃料を噴射することにより、燃料の着火遅れ
時間が非常に短くなり、自己着火燃焼時において、燃料
噴射から着火に至るまでの時間を短くすることが可能と
なり高成層度を維持できるため、HC排出量を抑制する
ことができる。また火花着火運転時においても着火性が
良いため、HC排出量を抑制することができる。
According to the first aspect of the present invention, by injecting the fuel having the improved ignitability into the cylinder, the ignition delay time of the fuel becomes extremely short, and during the self-ignition combustion, the fuel injection to the ignition occur. Since it is possible to shorten the time until, and it is possible to maintain a high degree of stratification, it is possible to suppress the amount of HC emission. Further, since the ignitability is good even during the spark ignition operation, the HC emission amount can be suppressed.

【0011】これにより、自己着火燃焼が可能な運転領
域が拡大し、燃費、エミッションが改善する。また、請
求項2に係る発明は、アルデヒド量を増加させることに
より、燃料の改質を行うことを特徴とする。請求項2に
係る発明によると、燃料のアルデヒド量を増加させるこ
とにより、着火性を高めることが可能となり、2種類の
燃料を持つことなく容易に着火性が高い燃料の噴射が可
能となる。
As a result, the operating range in which self-ignition combustion is possible is expanded, and fuel consumption and emissions are improved. The invention according to claim 2 is characterized in that the fuel is reformed by increasing the amount of aldehyde. According to the invention of claim 2, the ignitability can be enhanced by increasing the aldehyde amount of the fuel, and the fuel having the high ignitability can be easily injected without having two types of fuel.

【0012】また、請求項3に係る発明は、前記燃料噴
射弁に接続された燃料配管の上流に第2の燃料噴射弁か
ら噴射された燃料と空気とを混合する点火プラグ付の混
合気室を介装し、該混合気室内の混合気を点火プラグで
火花点火して得られた改質燃料を、前記下流側の燃料噴
射弁から筒内に噴射することを特徴とする。
Further, the invention according to claim 3 is a mixture chamber with a spark plug for mixing the fuel injected from the second fuel injection valve and the air upstream of the fuel pipe connected to the fuel injection valve. The reformed fuel obtained by spark ignition of the air-fuel mixture in the air-fuel mixture chamber with a spark plug is injected into the cylinder from the fuel injection valve on the downstream side.

【0013】請求項3に係る発明によると、混合気室内
の燃料を火花点火することにより、燃料を改質しアルデ
ヒド量を増加することができ、燃料の着火性を高めるこ
とが可能となる。また、請求項4に係る発明は、前記燃
料噴射弁に第2の燃料噴射弁から噴射された燃料と空気
とを混合する点火プラグ付の混合気室を配設し、該混合
気室内の混合気を点火プラグで火花点火して得られた改
質燃料を筒内に噴射することを特徴とする。
According to the third aspect of the present invention, the fuel in the air-fuel mixture chamber is ignited by spark ignition, so that the fuel can be reformed and the amount of aldehyde can be increased, and the ignitability of the fuel can be enhanced. The invention according to claim 4 is characterized in that the fuel injection valve is provided with an air-fuel mixture chamber with an ignition plug for mixing the fuel injected from the second fuel injection valve and the air, and the mixture in the air-fuel mixture chamber is provided. It is characterized in that reformed fuel obtained by spark ignition of air with a spark plug is injected into a cylinder.

【0014】請求項4に係る発明によると、混合気室内
の燃料を火花点火することにより、燃料を改質しアルデ
ヒド量を増加することができ、燃料の着火性を高めるこ
とが可能となる。また、混合気室が筒内噴射する燃料噴
射弁内に設けらることで、コンパクト化できる。また、
請求項5に係る発明は、オゾンを添加することにより、
燃料の改質を行うことを特徴とする。
According to the fourth aspect of the present invention, the fuel in the air-fuel mixture chamber is ignited by spark ignition, so that the fuel can be reformed and the amount of aldehyde can be increased, and the ignitability of the fuel can be enhanced. Further, by providing the air-fuel mixture chamber in the fuel injection valve for in-cylinder injection, the size can be reduced. Also,
According to the invention of claim 5, by adding ozone,
It is characterized in that the fuel is reformed.

【0015】請求項5に係る発明によると、混合気にオ
ゾンを添加することにより、着火性を高めることが可能
となり、2種類の燃料を持つことなく容易に着火性が高
い燃料の噴射が可能となる。また、請求項6に係る発明
は、前記燃料噴射弁に接続された燃料配管の上流に第2
の燃料噴射弁から噴射された燃料とオゾンを添加した空
気とを混合する混合気室を介装し、該混合気室内の混合
気を改質燃料として、前記下流側の燃料噴射弁から筒内
に噴射することを特徴とする。
According to the fifth aspect of the invention, by adding ozone to the mixture, it is possible to enhance the ignitability, and it is possible to easily inject a highly ignitable fuel without having two types of fuel. Becomes Further, the invention according to claim 6 is characterized in that a second pipe is provided upstream of the fuel pipe connected to the fuel injection valve.
An air-fuel mixture chamber that mixes the fuel injected from the fuel injection valve and the air to which ozone is added, and the air-fuel mixture in the air-fuel mixture chamber is used as reformed fuel, and the fuel is injected from the downstream side fuel injection valve into the cylinder. It is characterized by injecting into.

【0016】請求項6に係る発明によると、混合気室内
の燃料にオゾンを添加することにより、着火性を高めた
燃料に改質することができる。また、請求項7に係る発
明は、前記燃料噴射弁に第2の燃料噴射弁から噴射され
た燃料とオゾンを添加した空気とを混合する混合気室を
配設し、該混合気室内の混合気を改質燃料として筒内に
噴射することを特徴とする。
According to the sixth aspect of the invention, by adding ozone to the fuel in the air-fuel mixture chamber, the fuel can be reformed into a fuel having an improved ignitability. In the invention according to claim 7, a fuel-air mixture chamber for mixing the fuel injected from the second fuel-injection valve and the air to which ozone is added is provided in the fuel injection valve, and the mixture in the air-fuel mixture chamber is provided. It is characterized in that air is injected into the cylinder as reformed fuel.

【0017】請求項7に係る発明によると、混合気室内
の燃料にオゾンを添加することにより、燃料の着火性を
高めることが可能となる。また、混合気室が2流体噴射
弁内に配されて一体化されることで、コンパクト化され
る。また、請求項8に係る発明は、運転領域により、火
花着火運転と圧縮自己着火運転を切り換え、該圧縮自己
着火運転時に、筒内に2回に分割して燃料を噴射し、2
回目の燃料噴射時に着火性が高まるように改質した燃料
を噴射することを特徴とする。
According to the invention of claim 7, it becomes possible to enhance the ignitability of the fuel by adding ozone to the fuel in the air-fuel mixture chamber. Further, the air-fuel mixture chamber is arranged in the two-fluid injection valve so as to be integrated with the two-fluid injection valve, whereby the device is made compact. Further, the invention according to claim 8 switches between spark ignition operation and compression self-ignition operation depending on the operation region, and during the compression self-ignition operation, the fuel is injected into the cylinder by dividing into two times, and
It is characterized in that fuel reformed so as to enhance ignitability is injected at the time of the fuel injection for the first time.

【0018】請求項8に係る発明によると、圧縮自己着
火運転時に、燃料を2回に分けて筒内へ供給し、1回目
の供給燃料を自己着火燃焼の主燃焼として用い、2回目
の供給燃料は、その燃焼によって圧縮自己着火へ至らし
めるために用いる。この2回目の供給燃料を着火性が良
くなるように改質したものとすることにより、2回目に
供給する燃料の噴射時期を着火直前に設定可能になるた
め、高成層を維持できる。これにより、前記2回目の供
給燃料量を主燃焼に至らしめるための必要最小限な燃料
量に抑えることが可能になり、NOxを十分に低減でき
る。
According to the eighth aspect of the present invention, during the compression self-ignition operation, the fuel is supplied into the cylinder in two steps, and the first-time supply fuel is used as the main combustion of the self-ignition combustion, and the second supply is performed. The fuel is used to cause compression self-ignition by its combustion. By modifying the fuel supplied for the second time so as to improve the ignitability, the injection timing of the fuel supplied for the second time can be set immediately before ignition, so that high stratification can be maintained. As a result, the amount of fuel supplied for the second time can be suppressed to the minimum amount of fuel required to reach main combustion, and NOx can be sufficiently reduced.

【0019】また、請求項9に係る発明は、機関回転速
度が増大するにしたがって、2回目の噴射燃料量割合を
増加させることを特徴とする。請求項9に係る発明によ
ると、請求項8に記載の効果に加えて、圧縮自己着火運
転時に際し、機関回転速度が上昇するにつれて、前記2
回目の着火性が高まるように改質した燃料の供給燃料量
を増加することにより、実時間が短くなることによる主
燃焼の着火性の悪化を抑制することが可能となり、HC
排出量の抑制が可能となるばかりでなく、圧縮自己着火
燃焼領域を高回転側へ拡大することが可能となり、燃費
をさらに改善できる。
The invention according to claim 9 is characterized in that the second injected fuel amount ratio is increased as the engine speed is increased. According to the invention of claim 9, in addition to the effect of claim 8, during the compression self-ignition operation, as the engine speed increases, the
By increasing the fuel supply amount of the reformed fuel so as to improve the ignition performance of the second time, it is possible to suppress the deterioration of the ignition performance of the main combustion due to the reduction of the actual time.
Not only can the amount of emissions be suppressed, but the compression self-ignition combustion region can be expanded to the high rotation side, and fuel efficiency can be further improved.

【0020】また、請求項10に係る発明は、負荷が増
大するにしたがって、2回目の噴射燃料量割合を増加さ
せることを特徴とする。請求項10に係る発明による
と、圧縮自己着火運転時に際し、負荷が高まるにつれ
て、圧縮自己着火による主燃焼開始時期をノッキングを
回避するために上死点から遅角させる必要があるが、前
記主燃焼を上死点から遅角させることは前記主燃焼の着
火性を悪化することに繋がる。そこで、前記2回目の着
火性が高まるように改質した燃料の供給燃料量を増加す
ることにより、前記主燃焼の着火性の悪化を回避するこ
とが可能となり、HC排出量の抑制が可能となるばかり
でなく、圧縮自己着火燃焼領域を高負荷側へ拡大するこ
とが可能となり、燃費をさらに改善できる。
The invention according to claim 10 is characterized in that the second injected fuel amount ratio is increased as the load is increased. According to the invention of claim 10, as the load increases during the compression self-ignition operation, it is necessary to retard the main combustion start timing due to compression self-ignition from top dead center in order to avoid knocking. Delaying the combustion from the top dead center leads to deterioration of the ignitability of the main combustion. Therefore, by increasing the fuel supply amount of the fuel reformed so as to enhance the ignitability of the second time, it becomes possible to avoid the deterioration of the ignitability of the main combustion, and it is possible to suppress the HC emission amount. Not only that, but the compression self-ignition combustion region can be expanded to the high load side, and fuel consumption can be further improved.

【0021】また、請求項11に係る発明は、機関回転
速度が増大するにしたがって、1回目の燃料噴射の噴射
時期を遅らせることを特徴とする。請求項11に係る発
明によると、1回目の燃料噴射の噴射時期を機関回転速
度の増大に伴い遅らせることで、急激な圧力上昇を引き
起こすことのない適切な燃焼時期において、自己着火燃
焼に関わる混合気の拡散によるリーン化を抑制し、回転
速度増大に伴う燃料の予反応時間不足に起因する自己着
火燃焼の安定性低下、および燃焼期間の増大を防止でき
る。
The invention according to claim 11 is characterized in that the injection timing of the first fuel injection is delayed as the engine rotation speed increases. According to the invention of claim 11, by delaying the injection timing of the first fuel injection with the increase of the engine rotation speed, the mixing relating to the self-ignition combustion is performed at an appropriate combustion timing that does not cause a rapid pressure increase. It is possible to suppress leaning due to air diffusion, and prevent deterioration of stability of self-ignition combustion and increase of combustion period due to insufficient pre-reaction time of fuel accompanying increase in rotation speed.

【0022】また、請求項12に係る発明は、負荷が増
大するにしたがって、1回目の燃料噴射の噴射時期を進
ませることを特徴とする。請求項12に係る発明による
と、1回目の燃料噴射の噴射時期を負荷の増大に伴い進
ませることで燃料を筒内に拡散させ、燃料噴射量の増加
に伴う自己着火燃焼に関わる混合気のリッチ化を抑制
し、急激な圧力上昇の発生を防止できる。
The invention according to claim 12 is characterized in that the injection timing of the first fuel injection is advanced as the load increases. According to the invention of claim 12, by advancing the injection timing of the first fuel injection with the increase of the load, the fuel is diffused in the cylinder, and the fuel-air mixture related to the self-ignition combustion with the increase of the fuel injection amount It is possible to suppress enrichment and prevent a sudden increase in pressure.

【0023】また、請求項13に係る発明は、機関回転
速度が増大するにしたがって、筒内に噴射された燃料の
点火時期を遅らせることを特徴とする。請求項13に係
る発明によると、点火時期を機関回転速度上昇に伴い遅
らせることで、火花点火燃焼に引き続く自己着火燃焼時
期を遅らせ、燃焼時の急激な圧力上昇の発生を防止でき
る。
The invention according to claim 13 is characterized in that the ignition timing of the fuel injected into the cylinder is delayed as the engine speed increases. According to the thirteenth aspect of the present invention, by delaying the ignition timing as the engine speed increases, it is possible to delay the self-ignition combustion timing subsequent to the spark ignition combustion and prevent a sudden increase in pressure during combustion.

【0024】また、請求項14に係る発明は、負荷が増
大するにしたがって、筒内に噴射された燃料の点火時期
を遅らせることを特徴とする。請求項14に係る発明に
よると、点火時期を負荷の上昇に伴い遅らせることで、
火花着火燃焼に引き続く自己着火燃焼時期を遅らせ、急
激な圧力上昇の発生を防止できる。
The invention according to claim 14 is characterized in that the ignition timing of the fuel injected into the cylinder is delayed as the load increases. According to the invention of claim 14, by delaying the ignition timing as the load increases,
It is possible to delay the self-ignition combustion timing subsequent to the spark ignition combustion, and prevent a sudden increase in pressure.

【0025】また、請求項15に係る発明は、機関回転
速度が増大するにしたがって、2回目の燃料噴射の噴射
時期を遅らせることを特徴とする。請求項15に係る発
明によると、機関回転速度が増大するにしたがって遅ら
せた点火時期に合わせて2回目の燃料噴射の噴射時期を
遅らせることで、火花点火燃焼に関わる混合気の拡散に
よるリーン化を抑制し、着火安定性の低下を防止するこ
とで、自己着火燃焼開始時期の制御が精度良く行われ
る。
The invention according to claim 15 is characterized in that the injection timing of the second fuel injection is delayed as the engine speed increases. According to the fifteenth aspect of the present invention, by delaying the injection timing of the second fuel injection in accordance with the ignition timing that is delayed as the engine speed increases, leaning is achieved by diffusion of the air-fuel mixture involved in spark ignition combustion. By suppressing and preventing the ignition stability from deteriorating, the control of the self-ignition combustion start timing is accurately performed.

【0026】また、請求項16に係る発明は、負荷が増
大するにしたがって、2回目の燃料噴射の噴射時期を遅
らせることを特徴とする。請求項16に係る発明による
と、負荷が増大するにしたがって遅らせた点火時期に合
わせて2回目の燃料噴射の噴射時期を遅らせることで、
火花点火燃焼に関わる混合気の拡散によるリーン化を抑
制し、着火安定性の低下を防止することで、自己着火燃
焼開始時期の制御が精度良く行われる。
The invention according to claim 16 is characterized in that the injection timing of the second fuel injection is delayed as the load increases. According to the invention of claim 16, by delaying the injection timing of the second fuel injection in accordance with the ignition timing delayed as the load increases,
By suppressing leaning due to diffusion of the air-fuel mixture related to spark ignition combustion and preventing deterioration of ignition stability, the self-ignition combustion start timing is accurately controlled.

【0027】[0027]

【発明の実施の形態】以下、図面に基づいて本発明の実
施形態について説明する。図1は本発明に係る内燃機関
の燃焼制御装置をガソリンエンジンに適用した第1の実
施形態の構成を示す。本実施形態においては、中低負荷
及び中回転数以下の特定の運転条件において自己着火燃
焼を行い、高負荷または高回転域においては火花点火燃
焼を行うように、自己着火燃焼と火花点火燃焼とを切換
可能となっている(図2参照)。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of a first embodiment in which a combustion control device for an internal combustion engine according to the present invention is applied to a gasoline engine. In the present embodiment, self-ignition combustion is performed under specific operating conditions of medium and low load and medium revolutions or less, and spark ignition combustion is performed in a high load or high revolution range, such as self-ignition combustion and spark ignition combustion. Can be switched (see FIG. 2).

【0028】エンジン本体は、ピストン1、燃焼室2、
燃料噴射弁3、吸気ポート4、吸気バルブ5、排気ポー
ト6、排気バルブ7、点火プラグ8を備えている。この
エンジン本体を制御する電子制御装置(以下、ECUと
略す)10は、運転条件に応じて自己着火燃焼と火花点
火燃焼のいずれかの燃焼方式で運転を行うかを判定する
燃焼パターン判定部11と、火花点火燃焼運転時の燃焼
パラメータを制御する火花点火燃焼制御部12と、自己
着火燃焼運転時の燃焼制御パラメータを制御する自己着
火燃焼制御部13と、噴射燃料制御部14と、噴射時期
制御部15と、点火時期制御部31とを備える。自己着
火燃焼制御部13は、低負荷時は改質燃料を噴射し、中
・高負荷時は1回目の噴射時には非改質燃料を噴射し、
2回目の噴射時には改質燃料を噴射するように噴射燃料
制御部14を制御し、かつ、噴射時期制御部15を制御
して低負荷時の噴射時期と、中・高負荷時の1回目の噴
射時期及び2回目の噴射時期とを制御する。
The engine body includes a piston 1, a combustion chamber 2,
The fuel injection valve 3, the intake port 4, the intake valve 5, the exhaust port 6, the exhaust valve 7, and the spark plug 8 are provided. An electronic control unit (hereinafter abbreviated as ECU) 10 for controlling the engine body determines a combustion pattern determination unit 11 that determines whether to perform operation by self-ignition combustion or spark ignition combustion according to operating conditions. A spark ignition combustion control unit 12 that controls combustion parameters during spark ignition combustion operation; a self-ignition combustion control unit 13 that controls combustion control parameters during self-ignition combustion operation; an injection fuel control unit 14; and an injection timing. The controller 15 and the ignition timing controller 31 are provided. The self-ignition combustion control unit 13 injects the reformed fuel when the load is low, and injects the non-reformed fuel during the first injection when the load is medium or high.
The injection fuel control unit 14 is controlled so as to inject the reformed fuel at the time of the second injection, and the injection timing control unit 15 is controlled so that the injection timing at the low load and the first injection time at the medium and high loads are controlled. The injection timing and the second injection timing are controlled.

【0029】尚、ECU1の構成要素の中、燃焼パター
ン判定部11、火花点火燃焼制御部12、自己着火燃焼
制御部13はハードワイヤードの論理回路で構成するこ
ともできるが、本実施の形態では、マイクロコンピュー
タのプログラムとして実現されている。図3は、同一負
荷に対する着火時期の自己着火燃焼が成立する範囲を示
す。
Although the combustion pattern determination unit 11, the spark ignition combustion control unit 12, and the self-ignition combustion control unit 13 among the constituent elements of the ECU 1 can be configured by a hard-wired logic circuit, in the present embodiment, , Is realized as a program of a microcomputer. FIG. 3 shows a range in which self-ignition combustion at the ignition timing for the same load is established.

【0030】着火時期を早期にしていくとノッキング強
度が増大する。また、着火時期を遅らすことにより安定
度が悪化方向に増大する。ノック限界及び安定度限界に
より、図3からわかるように従来技術においては、圧縮
自己着火燃焼運転における着火時期許容範囲は極めて狭
い範囲である。図4に着火時期を変化させた場合の筒内
圧力及び熱発生の燃焼波形を示す。破線の波形は圧縮上
死点直後の着火時期による波形であり、実線の波形は着
火時期を圧縮上死点から遅角したときの波形である。着
火時期を進角すると、筒内圧力の変化は急峻となる。筒
内温度は残留EGRガスの影響を受けるために、一度着
火時期が進角すると、筒内温度が上昇するため、その後
の燃焼サイクルでは着火時期がより進角する傾向があ
る。そこで、本発明において、筒内中心に配した高濃度
の混合気に火花着火をすることにより、着火時期をコン
トロールし、低濃度の混合気を自己着火に至らしめるも
のである。
The knocking strength increases as the ignition timing is set earlier. In addition, delaying the ignition timing increases stability in a deteriorating direction. Due to the knock limit and the stability limit, as can be seen from FIG. 3, in the conventional technique, the allowable ignition timing range in the compression self-ignition combustion operation is extremely narrow. FIG. 4 shows combustion waveforms of in-cylinder pressure and heat generation when the ignition timing is changed. The broken line waveform is a waveform according to the ignition timing immediately after the compression top dead center, and the solid line waveform is a waveform when the ignition timing is retarded from the compression top dead center. When the ignition timing is advanced, the cylinder pressure changes sharply. Since the in-cylinder temperature is affected by the residual EGR gas, once the ignition timing advances, the in-cylinder temperature rises, so that the ignition timing tends to advance further in the subsequent combustion cycle. Therefore, in the present invention, a high-concentration air-fuel mixture arranged in the center of the cylinder is ignited by spark ignition to control the ignition timing so that a low-concentration air-fuel mixture is self-ignited.

【0031】図5のフローにて制御の流れを説明する。
まずS31にてエンジン回転速度、負荷を検出する。次
にS32で燃焼形態を判断する。すなわち、エンジン回
転速度、負荷の検出値から図2のマップを使って、火花
点火燃焼を行うか、自己着火燃焼を行うかを判別する。
The control flow will be described with reference to the flow chart of FIG.
First, in S31, the engine speed and load are detected. Next, in S32, the combustion mode is determined. That is, it is determined whether the spark ignition combustion or the self-ignition combustion is performed from the detected values of the engine rotation speed and the load by using the map of FIG.

【0032】火花点火燃焼を行う場合にはS33で火花
点火燃焼の制御を開始し、自己着火燃焼を行う場合には
S34で自己着火燃焼の制御を開始する。本第1の実施
形態では平坦なシリンダヘッドにおける図を示したが、
ベントルーフ型のシリンダヘッドを有したエンジンにお
いても同様の効果が得られる。図6に、自己着火燃焼時
の低負荷運転領域におけるタイムチャートを示す。
When the spark ignition combustion is performed, the control of the spark ignition combustion is started in S33, and when the self ignition combustion is performed, the control of the self ignition combustion is started in S34. In the first embodiment, the flat cylinder head is shown, but
The same effect can be obtained in an engine having a vent roof type cylinder head. FIG. 6 shows a time chart in the low load operation region during self-ignition combustion.

【0033】低負荷運転時は、筒内の圧力上昇率が過大
となることがないので、圧縮上死点前に自己着火が発生
する設定でよい。すなわち、火花点火燃焼(SI)をト
リガーとして自己着火燃焼(CI)を引き起こすような
SI−CI制御は必要ない。負荷が小さい(燃料噴射量
が少ない)とき、噴射燃料を燃焼室内に均一に分布させ
ると、混合気の空燃比が大きくなりすぎて、良好な自己
着火が得られなくなる。このため、低負荷運転時は圧縮
行程中に燃料噴射を行い、少量の燃料を限られた領域に
分布させて良好な着火性を得るようにする。
During low load operation, the rate of pressure increase in the cylinder does not become excessively large, so that self-ignition may occur before the compression top dead center. That is, SI-CI control that causes spark ignition combustion (SI) to trigger self-ignition combustion (CI) is not necessary. When the load is small (the fuel injection amount is small), if the injected fuel is evenly distributed in the combustion chamber, the air-fuel ratio of the air-fuel mixture becomes too large, and good self-ignition cannot be obtained. Therefore, during low load operation, fuel injection is performed during the compression stroke, and a small amount of fuel is distributed in a limited region to obtain good ignitability.

【0034】燃焼室に噴射された燃料は噴霧領域に集中
しているが、時間の経過と共に周囲への拡散が進み、燃
料の分布が偏平化している。このため、噴射から着火ま
での時間が長くなるほど、過大な空燃比の混合気領域が
大きくなる。この領域中の燃料は着火しないまま排出さ
れる確率が高く、HC排出量を増加させる要因となる。
The fuel injected into the combustion chamber is concentrated in the spray region, but with the passage of time, diffusion to the surroundings progresses, and the fuel distribution is flattened. Therefore, the longer the time from injection to ignition, the larger the air-fuel mixture region with an excessive air-fuel ratio. The fuel in this region has a high probability of being discharged without being ignited, which becomes a factor to increase the amount of HC emission.

【0035】そこで、予め改質した燃料を噴射すると、
噴射から着火までの時間が短くなるので、燃料は噴霧領
域に集中している状態で自己着火に至る。このため、H
C排出量を抑制することができる。図7に自己着火燃焼
時の中・高負荷運転領域におけるタイムチャートを示
す。中・高負荷運転時は、圧縮上死点後に燃料を燃焼さ
せる必要があるので、SI−CI制御を行う。
Therefore, when the pre-reformed fuel is injected,
Since the time from injection to ignition is shortened, the fuel reaches self-ignition while being concentrated in the spray region. Therefore, H
The amount of C emission can be suppressed. FIG. 7 shows a time chart in the medium / high load operation region during self-ignition combustion. During medium / high load operation, it is necessary to burn the fuel after the compression top dead center, so SI-CI control is performed.

【0036】すなわち、自己着火燃焼用の燃料噴射に加
えて点火実行直前に少量の2回目の噴射を行い、この2
回目噴射で形成された比較的濃い混合気に火花点火し、
濃混合気領域の燃料を火花点火によって燃焼させる。火
花点火を行う場合も、噴射から点火まではある程度の時
間をおく必要があり、また、点火を行ってから実際に燃
料が着火するまでの間にもタイムラグが存在する。
That is, in addition to the fuel injection for self-ignition combustion, a small amount of the second injection is performed immediately before the ignition is performed.
Spark ignition to a relatively rich mixture formed by the second injection,
The fuel in the rich air-fuel mixture region is burned by spark ignition. Even when performing spark ignition, it is necessary to wait for a certain time from injection to ignition, and there is a time lag between the ignition and the actual ignition of the fuel.

【0037】この間に噴射燃料の拡散が進んで燃料の分
布が偏平化するので、噴射から着火までの時間が長くな
るほど火炎伝播しない混合気領域が大きくなる。火花点
火燃焼によって確実に自己着火燃焼を引き起こすには、
火炎伝播しない領域が発生するのを見越して火花点火燃
焼用の燃料噴射を行う(火花点火燃焼用の燃料噴射量を
増やす)必要が生じる。
During this time, the injected fuel is diffused and the fuel distribution is flattened, so that the longer the time from injection to ignition, the larger the air-fuel mixture region in which flame does not propagate. To ensure self-ignition combustion by spark ignition combustion,
It is necessary to inject fuel for spark ignition combustion (increase the fuel injection amount for spark ignition combustion) in anticipation of the occurrence of a region where flame propagation does not occur.

【0038】ここで、予め改質した燃料を噴射すると、
噴射から点火実行までに確保すべき時間が短くなり、さ
らに点火実行から着火までのタイムラグも短くなる。こ
のため、燃料が噴霧領域に集中しているうちに火炎を濃
混合気領域の周辺部まで伝播させることが可能となり、
火花点火燃焼用の燃料噴射量を最小限にすることができ
る。
When the pre-reformed fuel is injected,
The time to be secured from injection to ignition is shortened, and the time lag from ignition to ignition is shortened. Therefore, it becomes possible to propagate the flame to the peripheral portion of the rich air-fuel mixture region while the fuel is concentrated in the spray region.
The fuel injection amount for spark ignition combustion can be minimized.

【0039】自己着火においては図8に示すように、圧
力上昇率とノッキング強度には相関があり、圧力上昇率
が大きくなるとノッキング強度が強くなることが明らか
となっている。また、図9に示すように燃焼期間増大に
従い燃焼期間中にピストンが下降することにより燃焼が
不完全となり、燃焼効率が低下することが明らかとなっ
ている。すなわち、燃焼効率を低下させないために一定
クランク角以内で燃焼を完了させる場合に、燃焼が行わ
れる実時間が減少し単位時間あたりの圧力上昇率が増大
する高負荷時ほどノッキングが起こり易く、自己着火運
転領域の拡大を困難としている。
In self-ignition, as shown in FIG. 8, there is a correlation between the pressure increase rate and the knocking strength, and it has been clarified that the knocking strength increases as the pressure increase rate increases. Further, as shown in FIG. 9, it is clear that as the combustion period increases, the piston descends during the combustion period, resulting in incomplete combustion and reduced combustion efficiency. That is, when the combustion is completed within a certain crank angle so as not to reduce the combustion efficiency, the actual time when the combustion is performed decreases and the pressure increase rate per unit time increases. It is difficult to expand the ignition operation area.

【0040】図10には、機関回転速度N及び負荷T
と、燃焼時期θ50とに対する圧力上昇率の関係を示し
ている。θ50は筒内に噴射された燃料の50%が燃焼
したときのクランク角であり、燃焼時期を表す1パラメ
ーターである。同じ回転速度あるいは同じ負荷であれば
燃焼時期を上死点から遅角するほど圧力上昇率は低下す
る。これはピストンが下降するときに燃焼が行われるた
め、ピストン下降による圧力の低下によって燃焼時の圧
力上昇が抑えられるためである。
FIG. 10 shows the engine speed N and the load T.
And the relationship of the pressure rise rate with respect to the combustion timing θ50. θ50 is the crank angle when 50% of the fuel injected into the cylinder burns, and is one parameter indicating the combustion timing. The pressure increase rate decreases as the combustion timing is retarded from the top dead center at the same rotation speed or the same load. This is because the combustion is performed when the piston descends, and the pressure decrease due to the piston descending suppresses the pressure increase during combustion.

【0041】本実施形態においては、筒内に噴射された
燃料の50%が燃焼したクランク角(以下、θ50と略
す)で表す燃焼時期を上死点後とし、図11に示すよう
に機関回転速度上昇、あるいは負荷上昇に伴い、さらに
遅らせるよう制御することでノッキングを防止する。そ
の結果、圧縮自己着火運転領域の拡大が可能となる。そ
のため、機関の運転条件に応じて、適切な燃焼時期が得
られるように、1回目の燃料噴射時期、2回目の燃料噴
射時期、一段目の燃焼を開始する点火時期、1回目の燃
料噴射と2回目の燃料噴射の噴射量割合を以下のように
制御する。
In the present embodiment, the combustion timing represented by the crank angle (hereinafter, abbreviated as θ50) at which 50% of the fuel injected into the cylinder is burned is after the top dead center, and the engine rotation is performed as shown in FIG. Knocking is prevented by controlling the speed to be further delayed as the speed increases or the load increases. As a result, the compression self-ignition operation range can be expanded. Therefore, according to the operating conditions of the engine, the first fuel injection timing, the second fuel injection timing, the ignition timing for starting the first-stage combustion, and the first fuel injection are performed so that an appropriate combustion timing can be obtained. The injection amount ratio of the second fuel injection is controlled as follows.

【0042】図12に機関回転速度Nと負荷Tに対する
1回目の燃料噴射時期IT1を示す。図のようにIT1
を機関回転速度上昇に伴い遅らせることで、急激な圧力
上昇を引き起こすことのない適切な燃焼時期において、
自己着火燃焼に関わる混合気の拡散によるリーン化を抑
制し、回転速度上昇に伴う燃料の予反応時間不足に起因
する自己着火燃焼の安定性低下、および燃焼期間の増大
を防止できる。また、IT1を機関負荷上昇に伴い進ま
せることで燃料を筒内に拡散させ、燃料噴射量の増加に
伴う自己着火燃焼に関わる混合気のリッチ化を抑制し、
急激な圧力上昇の発生を防止できる。
FIG. 12 shows the first fuel injection timing IT1 with respect to the engine speed N and the load T. IT1 as shown
By delaying the engine speed as the engine speed increases, at an appropriate combustion timing that does not cause a sudden pressure increase,
It is possible to suppress leaning due to diffusion of the air-fuel mixture related to self-ignition combustion, and prevent deterioration of stability of self-ignition combustion and increase of combustion period due to insufficient pre-reaction time of fuel accompanying increase in rotation speed. Further, the fuel is diffused in the cylinder by advancing IT1 as the engine load increases, and the enrichment of the air-fuel mixture associated with the self-ignition combustion accompanying the increase in the fuel injection amount is suppressed,
It is possible to prevent a sudden increase in pressure.

【0043】図13に機関回転速度Nと負荷Tに対する
点火時期IGTを示す。図のようにIGTを機関回転速
度上昇に伴い遅らせることで、火花点火燃焼に引き続く
自己着火燃焼時期を遅らせ、燃焼時の急激な圧力上昇の
発生を防止できる。また、IGTを機関負荷上昇に伴い
遅らせることで、火花着火燃焼に引き続く自己着火燃焼
時期を遅らせ、急激な圧力上昇の発生を防止できる。
FIG. 13 shows the ignition timing IGT with respect to the engine speed N and the load T. By delaying the IGT as the engine speed increases as shown in the figure, it is possible to delay the self-ignition combustion timing subsequent to the spark ignition combustion and prevent a rapid pressure increase during combustion. Further, by delaying the IGT as the engine load increases, it is possible to delay the self-ignition combustion timing subsequent to the spark ignition combustion and prevent a sudden increase in pressure.

【0044】図14に機関回転速度Nと負荷Tに対する
2回目の燃料噴射時期IT2を示す。IT2をIGTに
伴い、すなわち機関回転速度及び負荷上昇に伴い、遅ら
せることで、点火時期において火花点火燃焼に関わる混
合気の拡散によるリーン化を抑制し、着火安定性の低下
を防止することで、自己着火燃焼開始時期の制御が精度
良く行われる。
FIG. 14 shows the second fuel injection timing IT2 with respect to the engine speed N and the load T. By delaying IT2 with IGT, that is, with increase in engine speed and load, by suppressing leaning due to diffusion of air-fuel mixture related to spark ignition combustion at ignition timing, and preventing deterioration of ignition stability, The self-ignition combustion start timing is accurately controlled.

【0045】図15に機関回転速度Nおよび負荷Tによ
る全噴射量に対する2回目の燃料噴射量割合を示す。前
述のように、点火時期IGTは機関回転速度及び負荷上
昇に伴い、遅らせることで制御される。その場合、図の
ように全噴射量に対する2回目の燃料噴射割合を増加す
ることで火花着火燃焼の発熱量を増加し、引き続く自己
着火燃焼を確実に行わせることが可能である。
FIG. 15 shows the ratio of the second fuel injection amount to the total injection amount due to the engine speed N and the load T. As described above, the ignition timing IGT is controlled by delaying it as the engine speed and the load increase. In that case, it is possible to increase the heat generation amount of the spark ignition combustion by increasing the second fuel injection ratio with respect to the total injection amount as shown in the figure, and to reliably perform the subsequent self-ignition combustion.

【0046】図16に、燃料噴射弁としての2流体噴射
弁の第1構成図を示す。2流体噴射弁14に混合気室1
7を具備し、混合気室17内に燃料噴射弁(第2の燃料
噴射弁)16と点火プラグ20を持つ。燃料は、燃料配
管18を介して前記燃料噴射弁18に供給され、空気
は、空気配管19を介して混合気室17に供給される。
混合気室17内にて高濃度な混合気を生成し、点火プラ
グ20を点火することによりアルデヒド量を増加させ
る。2流体噴射弁14から噴射される改質燃料15のア
ルデヒド量が増加することにより着火性が高まり改質さ
れる。
FIG. 16 shows a first structural view of a two-fluid injection valve as a fuel injection valve. The air-fuel mixture chamber 1 in the two-fluid injection valve 14
7, a fuel injection valve (second fuel injection valve) 16 and a spark plug 20 are provided in the mixture chamber 17. Fuel is supplied to the fuel injection valve 18 via a fuel pipe 18, and air is supplied to the air-fuel mixture chamber 17 via an air pipe 19.
A high-concentration air-fuel mixture is generated in the air-fuel mixture chamber 17, and the spark plug 20 is ignited to increase the amount of aldehyde. By increasing the amount of aldehyde in the reformed fuel 15 injected from the two-fluid injection valve 14, ignitability is enhanced and reforming is performed.

【0047】図17に、燃料噴射弁としての2流体噴射
弁の第2構成図を示す。2流体噴射弁14に混合気室1
7を具備し、混合気室17内に燃料噴射弁16を持つ。
2流体噴射弁用の空気配管21にオゾンを添加すること
により、混合気室17内にて生成される混合気は着火性
が高まり改質される。図18に、燃料噴射弁としての2
流体噴射弁の第3構成図を示す。2流体噴射弁14上流
に混合気室17を具備し、混合気室17内に燃料噴射弁
16と点火プラグ20を持つ。混合気室17内にて高濃
度な混合気を生成し、点火プラグ20を点火することに
よりアルデヒド量を増加させる。改質燃料15のアルデ
ヒド量が増加することにより着火性が高まり改質され
る。
FIG. 17 shows a second structural view of a two-fluid injection valve as a fuel injection valve. The air-fuel mixture chamber 1 in the two-fluid injection valve 14
7 and has a fuel injection valve 16 in a mixture chamber 17.
By adding ozone to the air pipe 21 for the two-fluid injection valve, the air-fuel mixture generated in the air-fuel mixture chamber 17 has an improved ignitability and is reformed. FIG. 18 shows a fuel injection valve 2
The 3rd block diagram of a fluid injection valve is shown. The mixture chamber 17 is provided upstream of the two-fluid injection valve 14, and the mixture chamber 17 has a fuel injection valve 16 and an ignition plug 20. A high-concentration air-fuel mixture is generated in the air-fuel mixture chamber 17, and the spark plug 20 is ignited to increase the amount of aldehyde. As the amount of aldehyde in the reformed fuel 15 increases, the ignitability is increased and reforming is performed.

【0048】図19に、燃料噴射弁としての2流体噴射
弁の第4構成図を示す。2流体噴射弁14の上流に混合
気室17を具備し、混合気室17内に燃料噴射弁16を
持つ。2流体噴射弁用の空気配管21にオゾンを添加す
ることにより、混合気室17内にて生成される混合気は
着火性が高まり改質される。
FIG. 19 shows a fourth structural view of a two-fluid injection valve as a fuel injection valve. An air-fuel mixture chamber 17 is provided upstream of the two-fluid injection valve 14, and a fuel injection valve 16 is provided in the air-fuel mixture chamber 17. By adding ozone to the air pipe 21 for the two-fluid injection valve, the air-fuel mixture generated in the air-fuel mixture chamber 17 has an improved ignitability and is reformed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る内燃機関の第1の実施形態の構成
図。
FIG. 1 is a configuration diagram of a first embodiment of an internal combustion engine according to the present invention.

【図2】自己着火成立範囲を説明する図。FIG. 2 is a diagram illustrating a self-ignition establishment range.

【図3】自己着火時期とノック強度、安定度を説明する
図。
FIG. 3 is a diagram for explaining self-ignition timing, knock strength, and stability.

【図4】燃焼時期に対する燃焼波形を説明する図。FIG. 4 is a diagram illustrating a combustion waveform with respect to a combustion timing.

【図5】第1実施形態における制御フローを説明する
図。
FIG. 5 is a diagram illustrating a control flow according to the first embodiment.

【図6】圧縮自己着火運転時の低負荷運転におけるタイ
ムチャート。
FIG. 6 is a time chart in low load operation during compression self-ignition operation.

【図7】圧縮自己着火運転時の中から高負荷運転におけ
るタイムチャート。
FIG. 7 is a time chart from compression self-ignition operation to high load operation.

【図8】圧力上昇率とノッキング強度の関係を説明する
図。
FIG. 8 is a diagram illustrating a relationship between a pressure increase rate and knocking strength.

【図9】燃焼期間と燃焼効率の関係を示す図。FIG. 9 is a diagram showing a relationship between a combustion period and combustion efficiency.

【図10】負荷及び機関回転速度とノッキング強度に対
する圧力上昇率の関係を説明する図。
FIG. 10 is a diagram illustrating a relationship between a load and an engine speed, and a pressure increase rate with respect to knocking strength.

【図11】機関回転速度と負荷に対する燃焼期間の関係
を説明する図。
FIG. 11 is a diagram for explaining the relationship between engine speed and combustion period with respect to load.

【図12】機関回転速度と負荷に対する1回目の燃料噴
射時期IT1の関係を説明する図。
FIG. 12 is a diagram illustrating the relationship between the engine speed and the load of the first fuel injection timing IT1.

【図13】機関回転速度と負荷に対する点火時期IGT
の関係を説明する図。
FIG. 13: Ignition timing IGT with respect to engine speed and load
FIG.

【図14】機関回転速度と負荷に対する2回目の噴射時
期IT2の関係を説明する図。
FIG. 14 is a diagram for explaining the relationship between the engine speed and the load of the second injection timing IT2.

【図15】機関回転速度と負荷に対する全噴射量に対す
る2回目の噴射量割合の関係を説明する図。
FIG. 15 is a diagram illustrating a relationship between a second injection amount ratio with respect to a total injection amount with respect to an engine rotation speed and a load.

【図16】2流体噴射弁の第1構成図を説明する図。FIG. 16 is a diagram illustrating a first configuration diagram of a two-fluid injection valve.

【図17】2流体噴射弁の第2構成図を説明する図。FIG. 17 is a diagram illustrating a second configuration diagram of a two-fluid injection valve.

【図18】2流体噴射弁の第3構成図を説明する図。FIG. 18 is a diagram illustrating a third configuration diagram of a two-fluid injection valve.

【図19】2流体噴射弁の第4構成図を説明する図。FIG. 19 is a diagram illustrating a fourth configuration diagram of a two-fluid injection valve.

【符号の説明】[Explanation of symbols]

1 ピストン 2 燃焼室 3 燃料噴射弁 4 吸気ポート 5 吸気バルブ 6 排気ポート 7 排気バルブ 8 点火プラグ 10 ECU 11 燃焼パターン判定部 12 火花点火燃焼制御部 13 自己着火燃焼制御部 14 2流体噴射弁 15 改質燃料 16 2流体噴射弁用噴射弁 17 2流体噴射弁用混合気室 18 燃料配管 19 2流体噴射弁用空気配管 20 2流体噴射弁用点火プラグ 21 2流体噴射弁用空気配管 1 piston 2 combustion chamber 3 Fuel injection valve 4 intake ports 5 intake valve 6 exhaust port 7 exhaust valve 8 spark plugs 10 ECU 11 Combustion pattern determination unit 12 Spark ignition combustion control unit 13 Self-ignition combustion control unit 14 Two-fluid injection valve 15 reformed fuel 16 2 Injection valve for fluid injection valve 17 Mixture chamber for two-fluid injection valve 18 Fuel piping 19 2 Air pipe for fluid injection valve 20 2 Fluid injection valve spark plug 21 Two-fluid injection valve air piping

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 41/02 351 F02D 41/02 351 41/34 41/34 H 45/00 312 45/00 312H 312Z 364 364N F02M 25/00 F02M 25/00 H 27/02 27/02 A C Fターム(参考) 3G084 AA04 AA05 BA03 BA13 CA04 CA09 DA02 DA10 EB08 FA18 FA33 3G092 AA01 AA06 AA09 AB01 AB02 AB06 AB11 AB12 AB13 AB15 AB16 BA03 BB01 BB06 BB11 BB12 BB13 BB20 DE01S DE03S DE04S DE11S DE17S DF03 DG07 DG09 EA01 EA11 EC09 FA18 FA24 GA03 GA06 GA16 GA18 HA11Z HB01X HB01Z HE01Z 3G301 HA01 HA04 HA16 HA21 HA24 JA02 JA26 KA06 KA09 KA23 KA25 LB04 MA11 MA18 MA26 NC02 NE01 PA17Z PB03Z PB05Z PE01Z ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F02D 41/02 351 F02D 41/02 351 41/34 41/34 H 45/00 312 45/00 312H 312Z 364 364N F02M 25/00 F02M 25/00 H 27/02 27/02 A C F term (reference) 3G084 AA04 AA05 BA03 BA13 CA04 CA09 DA02 DA10 EB08 FA18 FA33 3G092 AA01 AA06 AA09 AB01 AB02 AB06 AB11 AB12 AB13 AB15 AB16 BA03 BB01 BA06 BB01 BB11 BB12 BB13 BB20 DE01S DE03S DE04S DE11S DE17S DF03 DG07 DG09 EA01 EA11 EC09 FA18 FA24 GA03 GA06 GA16 GA18 HA11Z HB01X HB01Z HE01Z 3G301 HA01 HA04 HA16 HA01 HA01 HA25 HA16 HA21 HA02 HA16 HA21 HA02 HA16 HA21 HA02 HA16 HA21 HA02 HA16 HA25

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】筒内に燃料噴射弁から直接燃料を噴射する
筒内直接噴射式内燃機関において、 着火性が高まるように燃料を改質し、該改質した燃料を
噴射することを特徴とする筒内直接噴射式内燃機関。
1. An in-cylinder direct injection internal combustion engine in which fuel is directly injected from a fuel injection valve into a cylinder, the fuel is reformed so as to improve ignitability, and the reformed fuel is injected. In-cylinder direct injection internal combustion engine.
【請求項2】アルデヒド量を増加させることにより、燃
料の改質を行うことを特徴とする請求項1に記載の筒内
直接噴射式内燃機関。
2. The in-cylinder direct injection internal combustion engine according to claim 1, wherein the fuel is reformed by increasing the amount of aldehyde.
【請求項3】前記燃料噴射弁に接続された燃料配管の上
流に第2の燃料噴射弁から噴射された燃料と空気とを混
合する点火プラグ付の混合気室を介装し、該混合気室内
の混合気を点火プラグで火花点火して得られた改質燃料
を、前記下流側の燃料噴射弁から筒内に噴射することを
特徴とする請求項2に記載の筒内直接噴射式内燃機関。
3. An air-fuel mixture chamber with a spark plug for mixing fuel and air injected from a second fuel injection valve is provided upstream of a fuel pipe connected to the fuel injection valve, and the air-fuel mixture is provided. The in-cylinder direct injection internal combustion engine according to claim 2, wherein the reformed fuel obtained by spark ignition of the air-fuel mixture in the room is injected from the downstream fuel injection valve into the in-cylinder. organ.
【請求項4】前記燃料噴射弁に第2の燃料噴射弁から噴
射された燃料と空気とを混合する点火プラグ付の混合気
室を配設し、該混合気室内の混合気を点火プラグで火花
点火して得られた改質燃料を筒内に噴射することを特徴
とする請求項2に記載の筒内直接噴射式内燃機関。
4. An air-fuel mixture chamber with an ignition plug for mixing fuel and air injected from a second fuel injection valve is provided in the fuel injection valve, and the air-fuel mixture in the air-fuel mixture chamber is discharged by the ignition plug. The in-cylinder direct injection internal combustion engine according to claim 2, wherein the reformed fuel obtained by spark ignition is injected into the cylinder.
【請求項5】オゾンを添加することにより、燃料の改質
を行うことを特徴とする請求項1に記載の筒内直接噴射
式内燃機関。
5. The in-cylinder direct injection internal combustion engine according to claim 1, wherein the fuel is reformed by adding ozone.
【請求項6】前記燃料噴射弁に接続された燃料配管の上
流に第2の燃料噴射弁から噴射された燃料とオゾンを添
加した空気とを混合する混合気室を介装し、該混合気室
内の混合気を改質燃料として、前記下流側の燃料噴射弁
から筒内に噴射することを特徴とする請求項5に記載の
筒内直接噴射式内燃機関。
6. An air-fuel mixture chamber for mixing fuel injected from a second fuel injection valve and ozone-added air is provided upstream of a fuel pipe connected to the fuel injection valve, and the air-fuel mixture is mixed. The in-cylinder direct injection internal combustion engine according to claim 5, wherein the air-fuel mixture in the chamber is used as reformed fuel and is injected into the cylinder from the fuel injection valve on the downstream side.
【請求項7】前記燃料噴射弁に第2の燃料噴射弁から噴
射された燃料とオゾンを添加した空気とを混合する混合
気室を配設し、該混合気室内の混合気を改質燃料として
筒内に噴射することを特徴とする請求項5に記載の筒内
直接噴射式内燃機関。
7. A fuel-air mixture chamber for mixing the fuel injected from the second fuel-injection valve and ozone-added air is provided in the fuel injection valve, and the air-fuel mixture in the air-fuel mixture chamber is reformed fuel. The in-cylinder direct injection internal combustion engine according to claim 5, characterized in that the fuel is injected into the cylinder.
【請求項8】運転領域により、火花着火運転と圧縮自己
着火運転を切り換え、該圧縮自己着炎運転時に、筒内に
2回に分割して燃料を噴射し、2回目の燃料噴射時に着
火性が高まるように改質した燃料を噴射することを特徴
とする請求項1〜請求項6のいずれか1つに記載の筒内
直接噴射式内燃機関。
8. A spark ignition operation and a compression self-ignition operation are switched depending on the operation region, and during the compression self-ignition operation, the fuel is injected into the cylinder in two divisions, and the ignitability is obtained at the second fuel injection. The in-cylinder direct injection internal combustion engine according to any one of claims 1 to 6, wherein the reformed fuel is injected so as to increase the fuel consumption.
【請求項9】機関回転速度が増大するにしたがって、2
回目の噴射燃料量割合を増加させることを特徴とする請
求項8に記載の筒内直接噴射式内燃機関。
9. As the engine speed increases, 2
The in-cylinder direct injection internal combustion engine according to claim 8, wherein the fuel injection rate of the second injection is increased.
【請求項10】負荷が増大するにしたがって、2回目の
噴射燃料量割合を増加させることを特徴とする請求項8
または請求項9に記載の筒内直接噴射式内燃機関。
10. The second injected fuel amount ratio is increased as the load is increased.
Alternatively, the in-cylinder direct injection internal combustion engine according to claim 9.
【請求項11】機関回転速度が増大するにしたがって、
1回目の燃料噴射の噴射時期を遅らせることを特徴とす
る請求項8〜請求項10のいずれか1つに記載の筒内直
接噴射式内燃機関。
11. As the engine speed increases,
The cylinder direct injection internal combustion engine according to any one of claims 8 to 10, characterized in that the injection timing of the first fuel injection is delayed.
【請求項12】負荷が増大するにしたがって、1回目の
燃料噴射の噴射時期を進ませることを特徴とする請求項
8〜請求項11のいずれか1つに記載の筒内直接噴射式
内燃機関。
12. The in-cylinder direct injection internal combustion engine according to claim 8, wherein the injection timing of the first fuel injection is advanced as the load increases. .
【請求項13】機関回転速度が増大するにしたがって、
筒内に噴射された燃料の点火時期を遅らせることを特徴
とする請求項8〜請求項12のいずれか1つに記載の筒
内直接噴射式内燃機関。
13. As the engine speed increases,
The cylinder direct injection internal combustion engine according to any one of claims 8 to 12, characterized in that the ignition timing of the fuel injected into the cylinder is delayed.
【請求項14】負荷が増大するにしたがって、筒内に噴
射された燃料の点火時期を遅らせることを特徴とする請
求項8〜請求項13のいずれか1つに記載の筒内直接噴
射式内燃機関。
14. The in-cylinder direct injection internal combustion engine according to claim 8, wherein the ignition timing of the fuel injected into the cylinder is delayed as the load increases. organ.
【請求項15】機関回転速度が増大するにしたがって、
2回目の燃料噴射の噴射時期を遅らせることを特徴とす
る請求項13に記載の筒内直接噴射式内燃機関。
15. As the engine speed increases,
The in-cylinder direct injection internal combustion engine according to claim 13, wherein the injection timing of the second fuel injection is delayed.
【請求項16】負荷が増大するにしたがって、2回目の
燃料噴射の噴射時期を遅らせることを特徴とする請求項
14に記載の筒内直接噴射式内燃機関。
16. The in-cylinder direct injection internal combustion engine according to claim 14, wherein the injection timing of the second fuel injection is delayed as the load increases.
JP2001284705A 2001-09-19 2001-09-19 Internal combustion engine of cylinder direct injection type Pending JP2003090239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001284705A JP2003090239A (en) 2001-09-19 2001-09-19 Internal combustion engine of cylinder direct injection type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001284705A JP2003090239A (en) 2001-09-19 2001-09-19 Internal combustion engine of cylinder direct injection type

Publications (1)

Publication Number Publication Date
JP2003090239A true JP2003090239A (en) 2003-03-28

Family

ID=19107978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001284705A Pending JP2003090239A (en) 2001-09-19 2001-09-19 Internal combustion engine of cylinder direct injection type

Country Status (1)

Country Link
JP (1) JP2003090239A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650243A (en) * 2011-02-24 2012-08-29 马自达汽车株式会社 Control device and method of spark-ignition gasoline engine
JP2015187424A (en) * 2014-03-27 2015-10-29 マツダ株式会社 Direct injection gasoline engine starting control device
JP2015190366A (en) * 2014-03-28 2015-11-02 マツダ株式会社 Control device of direct injection gasoline engine
JP2018084181A (en) * 2016-11-22 2018-05-31 マツダ株式会社 Control device for compression self-ignition type engine
WO2018097104A1 (en) * 2016-11-22 2018-05-31 マツダ株式会社 Control device for compression self-ignition engine
JP2018084182A (en) * 2016-11-22 2018-05-31 マツダ株式会社 Control device for compression self-ignition type engine
JP2018084183A (en) * 2016-11-22 2018-05-31 マツダ株式会社 Control device for compression self-ignition type engine
JP2018084184A (en) * 2016-11-22 2018-05-31 マツダ株式会社 Control device for compression self-ignition type engine
JP2018193985A (en) * 2017-05-19 2018-12-06 マツダ株式会社 Control device for compression ignition type engine
CN108952946A (en) * 2017-05-19 2018-12-07 马自达汽车株式会社 The control device of compression ignition engine
JP2019203414A (en) * 2018-05-22 2019-11-28 マツダ株式会社 Control device for compression ignition type engine
JP2019203412A (en) * 2018-05-22 2019-11-28 マツダ株式会社 Control device for compression ignition type engine
JP2019203415A (en) * 2018-05-22 2019-11-28 マツダ株式会社 Control device for compression ignition type engine
JP2019203413A (en) * 2018-05-22 2019-11-28 マツダ株式会社 Control device for compression ignition type engine
JP2019203411A (en) * 2018-05-22 2019-11-28 マツダ株式会社 Control device for compression ignition type engine

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172661A (en) * 2011-02-24 2012-09-10 Mazda Motor Corp Control device for spark ignition type gasoline engine
CN102650243A (en) * 2011-02-24 2012-08-29 马自达汽车株式会社 Control device and method of spark-ignition gasoline engine
JP2015187424A (en) * 2014-03-27 2015-10-29 マツダ株式会社 Direct injection gasoline engine starting control device
JP2015190366A (en) * 2014-03-28 2015-11-02 マツダ株式会社 Control device of direct injection gasoline engine
US10677143B2 (en) 2016-11-22 2020-06-09 Mazda Motor Corporation Control device for compression self-ignition engine
JP2018084181A (en) * 2016-11-22 2018-05-31 マツダ株式会社 Control device for compression self-ignition type engine
WO2018097104A1 (en) * 2016-11-22 2018-05-31 マツダ株式会社 Control device for compression self-ignition engine
JP2018084182A (en) * 2016-11-22 2018-05-31 マツダ株式会社 Control device for compression self-ignition type engine
JP2018084183A (en) * 2016-11-22 2018-05-31 マツダ株式会社 Control device for compression self-ignition type engine
JP2018084184A (en) * 2016-11-22 2018-05-31 マツダ株式会社 Control device for compression self-ignition type engine
CN108952946B (en) * 2017-05-19 2020-12-04 马自达汽车株式会社 Control device for compression ignition engine
US10539098B2 (en) 2017-05-19 2020-01-21 Mazda Motor Corporation Control system of compression-ignition engine
JP2018193985A (en) * 2017-05-19 2018-12-06 マツダ株式会社 Control device for compression ignition type engine
CN108952946A (en) * 2017-05-19 2018-12-07 马自达汽车株式会社 The control device of compression ignition engine
JP2019203413A (en) * 2018-05-22 2019-11-28 マツダ株式会社 Control device for compression ignition type engine
JP2019203411A (en) * 2018-05-22 2019-11-28 マツダ株式会社 Control device for compression ignition type engine
JP2019203414A (en) * 2018-05-22 2019-11-28 マツダ株式会社 Control device for compression ignition type engine
JP2019203415A (en) * 2018-05-22 2019-11-28 マツダ株式会社 Control device for compression ignition type engine
JP2019203412A (en) * 2018-05-22 2019-11-28 マツダ株式会社 Control device for compression ignition type engine
JP7077770B2 (en) 2018-05-22 2022-05-31 マツダ株式会社 Compression ignition engine controller
JP7077769B2 (en) 2018-05-22 2022-05-31 マツダ株式会社 Compression ignition engine controller
JP7077771B2 (en) 2018-05-22 2022-05-31 マツダ株式会社 Compression ignition engine controller
JP7077768B2 (en) 2018-05-22 2022-05-31 マツダ株式会社 Compression ignition engine controller
JP7115028B2 (en) 2018-05-22 2022-08-09 マツダ株式会社 Compression ignition engine controller

Similar Documents

Publication Publication Date Title
JP3975702B2 (en) Control device for self-igniting engine
JP4424147B2 (en) Exhaust gas purification device for internal combustion engine
EP1983169A1 (en) Internal Combustion Engine and Combustion Method of the Same
US8082093B2 (en) Fuel injection control apparatus and fuel injection control method of internal combustion engine
JP2005214041A (en) Control device for direct spark ignition type internal combustion engine
JP2004239208A (en) Engine combustion control device
JP2006002637A (en) Control device for compression self-ignition type internal combustion engine
JP2003090239A (en) Internal combustion engine of cylinder direct injection type
JP6376289B2 (en) Internal combustion engine control device and internal combustion engine control method
JP2002070558A (en) Compression self-ignition type gasoline internal combustion engine
JP3975695B2 (en) Self-igniting engine
JP2002227697A (en) Fuel injection device of internal combustion engine
JP3945174B2 (en) Combustion control device for internal combustion engine
JP4492399B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device and control method
JP2007064187A (en) Knock suppression device for internal combustion engine
JP3952710B2 (en) Compression self-ignition internal combustion engine
JP6471041B2 (en) Injection controller for spark ignition engine
JP2006112329A (en) Control device of cylinder direct injection type spark ignition internal combustion engine
JP4274063B2 (en) Control device for internal combustion engine
JPH10212995A (en) Exhaust temperature raising device
JP2002195040A (en) Cylinder direct-injection of fuel type internal combustion engine
JPH11101127A (en) Combustion control device
JP3613666B2 (en) Combustion method for compression ignition internal combustion engine
JP2006177179A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP4333548B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller