JP3613666B2 - Method of combustion compression ignition internal combustion engine - Google Patents

Method of combustion compression ignition internal combustion engine Download PDF

Info

Publication number
JP3613666B2
JP3613666B2 JP24541699A JP24541699A JP3613666B2 JP 3613666 B2 JP3613666 B2 JP 3613666B2 JP 24541699 A JP24541699 A JP 24541699A JP 24541699 A JP24541699 A JP 24541699A JP 3613666 B2 JP3613666 B2 JP 3613666B2
Authority
JP
Grant status
Grant
Patent type
Prior art keywords
fuel
combustion
injection
amount
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24541699A
Other languages
Japanese (ja)
Other versions
JP2001073860A (en )
Inventor
亮 長谷川
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0057Specific combustion modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL, WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • Y02T10/44Engine management systems controlling fuel supply

Description

【0001】 [0001]
【発明の属する技術分野】 BACKGROUND OF THE INVENTION
本発明は圧縮着火式内燃機関の燃焼方法に関する。 The present invention relates to a combustion method of a compression ignition type internal combustion engine.
【0002】 [0002]
【従来の技術】 BACKGROUND OF THE INVENTION
圧縮着火式内燃機関では圧縮上死点を過ぎてピストンが下降しだすと燃焼室内の温度は次第に低くなる。 The compression ignition type internal combustion engine temperature in the combustion chamber begins piston descends past the compression top dead center gradually decreases. 従って圧縮上死点後に燃料を噴射すると燃焼室内の温度が低いために噴射燃料はただちに着火せず、噴射燃料が燃焼室内に分散して燃料粒子からの燃料の蒸発作用が進行した後に着火せしめられる。 Thus the injected fuel since the temperature is low and injects fuel after compression top dead center the combustion chamber does not immediately ignite, the injected fuel is ignited after the vaporisation of the fuel from the fuel particles are dispersed in the combustion chamber has progressed . このように噴射燃料が燃焼室内に分散して燃料の蒸発作用が進行すると燃料周りには十分な量の空気が存在するようになるのでこのような状態のもとで燃料が着火せしめられると煤の発生が抑制される。 With such injected fuel fuel is ignited under such conditions since as a sufficient amount of air is present in the fuel around the progresses vaporisation of dispersed fuel into a combustion chamber soot the occurrence of is suppressed. また、燃焼室内の温度が低下していくために燃料が着火せしめられても燃焼温度がさほど上昇せず、斯くしてNO の発生が抑制される。 Further, even if the fuel is ignited in the temperature of the combustion chamber is lowered without increasing the combustion temperature is less, generation of the NO x is suppressed by thus. この場合、燃料噴射時期を遅くすればするほど燃料が分散すると共に燃焼温度が低くなるので煤およびNO の発生量は低下する。 In this case, the amount of soot and NO x since the combustion temperature becomes lower with the fuel more you slow down the fuel injection timing dispersed drops. 従って煤およびNO の発生量を低下させるためには燃料噴射時期をできる限り遅くすることが好ましいことになる。 Therefore to reduce the generation amount of soot and NO x will be preferable to slow as possible the fuel injection timing.
【0003】 [0003]
【発明が解決しようとする課題】 [Problems that the Invention is to Solve
しかしながら燃料噴射時期を遅くすると燃焼室内の温度が低くなるために失火を生ずる。 However the temperature of the combustion chamber to slow the fuel injection timing occurs a misfire to be low. この場合、失火を生ずることなく噴射燃料を着火させることができれば煤およびNO の発生量を大巾に低減できることになる。 In this case, the if it is possible to ignite the injected fuel without causing misfire generation amount of soot and NO x can be reduced by a large margin.
本発明の目的は燃料噴射時期を遅らせても噴射燃料を着火することができ、NO および煤の発生を大巾に抑制することのできる圧縮着火式内燃機関を提供することにある。 An object of the present invention is also delay the fuel injection timing can be ignited fuel injected is to provide a compression ignition type internal combustion engine capable of suppressing the occurrence of the NO x and soot by a large margin.
【0004】 [0004]
【課題を解決するための手段】 In order to solve the problems]
上記目的を達成するために1番目の発明では、燃焼室内に向けて燃料を噴射するための燃料噴射弁を具備し、補助燃料を噴射した後に主燃料を噴射するようにした圧縮着火式内燃機関において、補助燃料の噴射量および噴射時期を圧縮上死点後において補助燃料全体が予混合燃焼しうる噴射量および圧縮上死点付近の噴射時期に設定して補助燃料全体を圧縮上死点後に予混合燃焼させ、主燃料の噴射時期を補助燃料を噴射しなかった場合には燃焼不良又は失火を生じかつ補助燃料を噴射した場合には補助燃料の燃焼後に主燃料が燃焼不良又は失火を生じることなく燃焼せしめられる圧縮上死点後の噴射時期に設定して補助燃料の燃焼後に主燃料を燃焼させ、補助燃料の噴射時期および主噴射の噴射時期を共に要求負荷が高くなるほど遅らせる First in the invention, the combustion chamber toward comprising a fuel injection valve for injecting fuel, a compression ignition internal combustion engines, which inject the primary fuel after injecting the auxiliary fuel in order to achieve the above object in, after compression top dead center by setting the injection timing entire auxiliary fuel of the entire auxiliary fuel is near injection amount and the compression top dead center can be premixed combustion injection quantity and injection timing after the compression top dead center of the auxiliary fuel It was premixed combustion, resulting in a main fuel combustion failure or misfire after combustion of the auxiliary fuel when injecting the resulting and auxiliary fuel poor combustion or misfires when the injection timing of the main fuel was injected auxiliary fuel set the injection timing after the compression top dead center burned by burning primary fuel after the combustion of the auxiliary fuel, delaying the injection timing of the injection timing and main injection of the auxiliary fuel as both the required load becomes high without うにしている。 Unishi to have.
【0007】 [0007]
【発明の実施の形態】 DETAILED DESCRIPTION OF THE INVENTION
図1を参照すると、1は機関本体、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は電気制御式燃料噴射弁、7は吸気弁、8は吸気ポート、9は排気弁、10は排気ポートを夫々示す。 Referring to FIG. 1, 1 indicates an engine body, 2 a cylinder block, a cylinder head 3, a piston 4, 5 a combustion chamber, 6 an electrically controlled fuel injector, 7 an intake valve, 8 an intake port, 9 an exhaust valve, and 10 an exhaust port, respectively. 吸気ポート8は対応する吸気枝管11を介してサージタンク12に連結され、サージタンク12は吸気ダクト13を介して排気ターボチャージャ14のコンプレッサ15に連結される。 The intake port 8 is connected to a surge tank 12 via a corresponding intake tube 11, the surge tank 12 is connected to a compressor 15 of an exhaust turbocharger 14 through an intake duct 13. 一方、排気ポート10は排気マニホルド16および排気管17を介して排気ターボチャージャ14の排気タービン18に連結され、排気タービン18の出口は酸化触媒19を内蔵した触媒コンバータ20に連結される。 On the other hand, the exhaust port 10 is connected to an exhaust turbine 18 of an exhaust turbocharger 14 through an exhaust manifold 16 and exhaust pipe 17, the outlet of the exhaust turbine 18 is connected to a catalytic converter 20 housing an oxidation catalyst 19.
【0008】 [0008]
排気マニホルド16とサージタンク12とは排気ガス再循環(以下、EGRと称す)通路22を介して互いに連結され、EGR通路22内には電子制御式EGR制御弁23が配置される。 Exhaust gas recirculation The exhaust manifold 16 and the surge tank 12 (hereinafter, referred to as EGR) are connected to each other through a passage 22, the EGR passage 22 is arranged an electronic control type EGR control valve 23. 各燃料噴射弁6は燃料供給管24を介して燃料リザーバ、いわゆるコモンレール25に連結される。 Each fuel injector 6 is connected through a fuel supply pipe 24 the fuel reservoir, a so-called common rail 25. このコモンレール25内へは電子制御式の吐出量可変な燃料ポンプ26から燃料が供給され、コモンレール25内に供給された燃料は各燃料供給管24を介して燃料噴射弁6に供給される。 This is to the common rail 25 is supplied with fuel from a variable discharge fuel pump 26 of the electronically controlled, fuel supplied into the common rail 25 is fed to the fuel injectors 6 through the fuel feed pipes 24. コモンレール25にはコモンレール25内の燃料圧を検出するための燃料圧センサ27が取付けられ、燃料圧センサ27の出力信号に基づいてコモンレール25内の燃料圧が目標燃料圧となるように燃料ポンプ26の吐出量が制御される。 The common rail 25 the fuel pressure sensor 27 for detecting the fuel pressure in the common rail 25 is attached, the fuel pump 26 so that the fuel pressure in the common rail 25 becomes a target fuel pressure based on the output signal of the fuel pressure sensor 27 the amount of discharge is controlled.
【0009】 [0009]
電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。 Electronic control unit 30 is comprised of a digital computer, connected together by a bidirectional bus 31 ROM (read only memory) 32, RAM (random access memory) 33, CPU (microprocessor) 34, input port 35 and output port 36 comprising a. 燃料圧センサ27の出力信号は対応するAD変換器37を介して入力ポート35に入力される。 The output signal of the fuel pressure sensor 27 is input to the input port 35 via a corresponding AD converter 37. アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。 A load sensor 41 generating an output voltage proportional to the amount of depression L of the accelerator pedal 40 is connected to an accelerator pedal 40, the output voltage of the load sensor 41 is input to the input port 35 via a corresponding AD converter 37 . 更に入力ポート35にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ42が接続される。 Further, the input port 35 has a crank angle sensor 42 generating an output pulse each time the crankshaft rotates by for example 30 ° is connected. 一方、出力ポート36は対応する駆動回路38を介して燃料噴射弁6、EGR制御弁23および燃料ポンプ26に接続される。 On the other hand, the output port 36 is connected to the fuel injection valves 6, EGR control valve 23 and the fuel pump 26 via corresponding drive circuits 38.
【0010】 [0010]
次に図2から図4を参照しつつ本発明による燃焼方法について説明する。 Next, the combustion method according to the present invention will be described with reference to FIGS. 2-4.
本発明による圧縮着火式内燃機関ではまず初めに補助燃料が噴射され、次いで主燃料が噴射される。 In a compression ignition type internal combustion engine according to the present invention is injected first, auxiliary fuel, then the main fuel is injected. 図2は補助燃料の噴射量Qaと主燃料の噴射量Qmを示している。 Figure 2 shows an injection amount Qm of the injection amount Qa and the main fuel of the auxiliary fuel. なお、図1において横軸はアクセルペダル40の踏込み量、即ち要求負荷を示している。 The horizontal axis represents the amount of depression, i.e. the required load of the accelerator pedal 40 in FIG. 図2に示されるように補助燃料の噴射量Qaは要求負荷Lにかかわらずに主燃料の噴射量Qmよりも少ない。 Injection amount Qa of the auxiliary fuel, as shown in FIG. 2 is smaller than the injection amount Qm of main fuel regardless of the required load L. また、主燃料の噴射量Qmは要求負荷Lが高くなるにつれて増大するのに対して補助燃料の噴射量Qaは要求負荷Lが高くなるにつれて減少する。 Further, the injection amount Qm of main fuel injection amount Qa of the auxiliary fuel whereas increases as the required load L becomes higher decreases as the required load L becomes higher.
【0011】 [0011]
図3は或る機関回転数における補助燃料の噴射開始時期θaと噴射完了時期Eθa、および主燃料の噴射開始時期θmと噴射完了時期Eθmの一例を示している。 Figure 3 shows an example of the injection start timing θm and the injection completion timing Eθm injection start timing θa and the injection completion timing Ishitaei, and the main fuel of the auxiliary fuel at a certain engine speed. また、Caは補助燃料の燃焼が行われるおおよその領域を示しており、Cmは主燃料の燃焼が行われるおおよその領域を示している。 Also, Ca has the approximate area where the combustion takes place in the auxiliary fuel, Cm indicates the approximate region in which combustion is performed in the main fuel. なお、図3において縦軸Lは要求負荷を示しており、横軸はクランク角を示している。 The vertical axis L in Fig. 3 shows the required load, the horizontal axis represents the crank angle.
【0012】 [0012]
図3に示されるように補助燃料は圧縮上死点TDC付近において噴射され、噴射された補助燃料は噴射後一定時間以上経過した圧縮上死点後に燃焼せしめられる。 Auxiliary fuel as shown in FIG. 3 is injected near compression top dead center TDC, the injected auxiliary fuel is burned after the compression top dead center older than a certain post injection time. また、主燃料は圧縮上死点後に噴射され、噴射された主燃料も噴射後一定時間以上経過した後に燃焼せしめられる。 Further, the main fuel is injected after the compression top dead center, the injected main fuel is also burned after more than a certain post injection time. なお、補助燃料の噴射開始時期θaおよび主燃料の噴射開始時期θmは要求負荷Lが高くなるほど遅くなる。 Incidentally, the injection start timing θm of the injection start timing θa and the main fuel of the auxiliary fuel becomes slower as the required load L becomes higher. 図3に示される例では補助燃料の噴射開始時期θaはほぼ圧縮上死点前BTDC2°からほぼ圧縮上死点後ATDC5°の間であり、主燃料の噴射開始時期θmはほぼ圧縮上死点後ATDC6°からほぼ圧縮上死点後ATDC18°の間である。 FIG injection start timing θa of the auxiliary fuel in the example shown in 3 is between ATDC5 ° after approximately compression top dead center approximately BTDC BTDC2 °, the injection start timing θm is substantially compression top dead center of the main fuel it is between ATDC18 ° after approximately compression top dead center from ATDC6 ° later.
【0013】 [0013]
上述したように図3は或る機関回転数における噴射開始時期θa,θmおよび噴射完了時期Eθa,Eθmを示しており、従って機関回転数が変化するとそれに伴なって噴射開始時期θa,θmおよび噴射完了時期Eθa,Eθmは変化する。 Injection start timing θa in FIG certain engine speed as described above, .theta.m and injection completion timing Ishitaei, shows a Ishitaemu, therefore the engine speed changing the injection start timing θa is accompanied thereto, .theta.m and injection completion time Eθa, Eθm changes. 例えば機関回転数が高くなると噴射開始時期θa,θmが早められる。 For example the injection start timing θa engine speed increases, .theta.m is advanced.
図4は図示平均有効圧(以下、単に圧力という)PMaおよび熱発生率dQ/dθを示している。 Figure 4 is indicated mean effective pressure (hereinafter, simply referred to as pressure) shows the PMa and heat release rate dQ / d [theta]. なお、図4において横軸はクランク角を示している。 The horizontal axis in FIG. 4 shows the crank angle. 図4に示されるように燃焼室5内の圧力PMaおよび熱発生率dQ/dθは補助燃料の燃焼Caおよび主燃料の燃焼Cmが行われたときに上昇する。 Pressure PMa and heat release rate dQ / d [theta] in the combustion chamber 5 as shown in Fig. 4 increases when the combustion Cm combustion Ca and the main fuel of the auxiliary fuel has been performed.
【0014】 [0014]
一方、図5(A)は予混合燃焼が行われた後に拡散燃焼が行われる場合の、熱発生率dQ/dθの変化パターンを示しており、図5(B)は予混合燃焼のみが行われ、拡散燃焼が行われない場合の熱発生率dQ/dθの変化パターンを示している。 On the other hand, FIG. 5 (A) in the case where the diffusion combustion after the premixed combustion is performed is performed, and shows a change pattern of the heat generation rate dQ / d [theta], FIG. 5 (B) only is premix combustion row We show a changing pattern of the heat generation rate dQ / d [theta] when the diffusion combustion is not performed. 図4に示される補助燃料の燃焼Caによる熱発生率dQ/dθの変化パターンおよび主燃料の燃焼Cmによる熱発生率dQ/dθの変化パターンはいずれも図5(B)に示される変化パターンと同じであり、従って補助燃料および主燃料は共に予混合燃焼していることがわかる。 Changing pattern of the heat generation rate dQ / d [theta] by the combustion Cm change pattern and the main fuel of the heat release rate dQ / d [theta] by the combustion Ca auxiliary fuel shown in FIG. 4 is a changing pattern of both shown in FIG. 5 (B) are the same, hence the auxiliary fuel and main fuel are both seen to premixed combustion.
【0015】 [0015]
さて、冒頭で述べたように主燃料の噴射時期を遅らせば遅らすほど煤およびNO の発生量が低下する。 Now, the generation amount of soot and NO x more delay if delayed injection timing of the main fuel, as mentioned at the beginning is reduced. 従って煤およびNO の発生量を低下させるためには主燃料の噴射時期をできる限り遅らせることが好ましいことになる。 Therefore it would be preferable to delay as much as possible the injection timing of the main fuel in order to reduce the generation amount of soot and NO x. しかしながら主燃料のみを噴射した場合、主燃料の噴射時期を遅らせていくと燃焼室5内の温度が低くなりすぎるために燃焼不良を生じ、更に噴射時期を遅らせると失火を生じることになる。 However, if you inject only the main fuel, and will delay the injection timing of the main fuel cause incomplete combustion to the temperature in the combustion chamber 5 is too low will result in a misfire and further delaying the injection timing. しかしながらこのように主燃料の噴射時期を燃焼不良又は失火を生じる噴射時期まで遅らせた状態で主燃料を正常に、即ち燃焼不良又は失火を生じることなく燃焼せしめることができれば煤およびNO の発生量を大巾に低減できることになる。 However the amount of generated thus the main fuel normally in a state of delaying the injection timing of the main fuel to a defective or cause misfire injection timing combustion, i.e. soot if it is possible allowed to burn without causing poor combustion or misfires and NO x It becomes possible to reduce by a large margin.
【0016】 [0016]
この場合、燃焼不良を生じる噴射時期よりも失火を生じる噴射時期は遅く、従って主燃料の噴射時期を失火の生じる噴射時期まで遅らせた状態で主燃料を正常に燃焼しうる場合の方が主燃料の噴射時期を燃焼不良の生じる噴射時期まで遅らせた状態で主燃料を正常に燃焼しうる場合に比べて煤およびNO の発生量を低減することができる。 In this case, the injection timing caused a misfire than the injection timing resulting in poor combustion is slow, thus the main fuel towards the case which can be successfully burned the main fuel in a state of delayed until resulting injection timing of a misfire the injection timing of the main fuel it is possible to reduce the generation amount of soot and NO x as compared to the injection timing when capable of successfully burn the main fuel in a state of delayed until injection timing of occurrence of combustion failure.
【0017】 [0017]
そこで本発明では主燃料の噴射時期を主燃料のみ噴射した場合には燃焼不良を生じる噴射時期まで、好ましくは失火を生じる更に遅い噴射時期まで遅くし、このように主燃料の噴射時期を遅くしても主燃料が正常に燃焼しうるように補助燃料を噴射するようにしている。 Therefore when only the main fuel injection injection timing of the main fuel in the present invention to injection timing resulting in poor combustion is preferably slowed to slower injection timing causing misfires, thus slowing down the injection timing of the main fuel even if the main fuel so that injects auxiliary fuel to be burned properly.
本発明による実施例では主燃料の噴射時期を遅くしても主燃料が正常に燃焼しうるように補助燃料を噴射すると燃焼室5内のほぼ全体に分布した多数の場所において同時に主燃料が着火せしめられ、NO および煤の発生量が極めて低くなる。 At the same time the main fuel is ignited in a number of locations distributed throughout substantially in the combustion chamber 5 and also to slow down the injection timing of the main fuel is the main fuel for injecting auxiliary fuel to be combusted normally in the embodiment according to the present invention allowed is, the amount of the NO x and soot is very low. この場合、なぜこのように多数の場所において同時に燃料が着火せしめられるかについては必ずしも明確ではないが次のような理由に基づいているものと考えられる。 In this case, why not necessarily clear whether this manner simultaneously fuel in many locations be ignited is considered that based on the following reasons.
【0018】 [0018]
即ち、主燃料のみを噴射した場合、主燃料の噴射時期が圧縮上死点から遅れれば遅れるほど燃料噴射時における燃焼室5内の温度は低くなり、燃焼室5内の圧力が低くなる。 That is, when jetting only the main fuel, the lower the temperature in the combustion chamber 5 injection timing at the time of fuel injection as delayed if Okurere from the compression top dead center of the main fuel, the pressure in the combustion chamber 5 becomes lower. 燃焼室5内の圧力が低くなると空気抵抗が小さくなるために燃料粒子は燃焼室5全体に分散し、また燃料粒子からの燃料の蒸発が促進される。 When the pressure in the combustion chamber 5 becomes lower fuel particles to the air resistance becomes smaller dispersed throughout the combustion chamber 5, also the evaporation of the fuel from the fuel particles is promoted. 従って燃料周りには十分な酸素が存在するようになる。 Hence as sufficient oxygen is present around the fuel. 一方、噴射燃料が分散する間に噴射燃料の温度は徐々に増大する。 On the other hand, the temperature of the injected fuel while the injected fuel is dispersed gradually increases. しかしながら燃焼室5内の温度が低いためにたとえ燃料周りに十分な酸素が存在していたとしても燃焼するには至らない。 However does not lead to combustion as sufficient oxygen is present to even fuel around to temperature is low in the combustion chamber 5. 従ってこのままでは失火してしまうことになる。 Will therefore result in misfire remains this.
【0019】 [0019]
ところが補助燃料を噴射すると補助燃料の燃焼熱によって燃焼室5内の温度が上昇する。 However the temperature in the combustion chamber 5 by the combustion heat of injecting auxiliary fuel auxiliary fuel increases. その結果燃焼室5内に分散している主燃料の酸化反応が促進され、斯くして燃焼室5内の多数の場所において同時に燃焼が開始される。 As a result the oxidation reaction of the main fuel dispersed in the combustion chamber 5 is promoted, at the same time combustion is initiated in a number of locations in the combustion chamber 5 and thus. このように燃焼室5内の多数の場所において同時に燃焼が開始されると燃焼室5内の温度は全体的に低くなり、斯くしてNO の発生量は極めて少なくなる。 Thus at the same time the temperature inside the combustion chamber 5 and the combustion is initiated in a number of locations in the combustion chamber 5 is generally low, becomes very small generation amount of the NO x and thus. また、燃料の周りに十分な酸素が存在するようになったときに燃焼が開始されるので煤の発生量も極めて少量となる。 Further, the generation amount of soot the combustion is started when sufficient oxygen is now present around the fuel becomes extremely small. またこのときの燃焼はおだやかであるために燃焼騒音がほとんど発生しなくなる。 The combustion noise since the combustion is moderate at this time is hardly generated.
【0020】 [0020]
このように補助燃料を噴射すると主燃料の燃焼は煤およびNO の発生量が極めて少なくかつ燃焼騒音がほとんど発生しない燃焼となる。 The combustion of the injecting main fuel auxiliary fuel such is the combustion very little and the combustion noise generation amount of soot and NO x hardly occurs. しかしながらこのように主燃料の燃焼が煤およびNO の発生量が極めて少なくかつ燃焼騒音がほとんど発生しない燃焼となっても補助燃料の燃焼により多量の煤やNO が発生したり、或いは燃焼騒音が発生したのでは何の意味もない。 However or a large amount of soot and NO x are generated by the combustion of very small and even if the combustion noise becomes hardly generated combustion auxiliary fuel is generated amount of the combustion soot and NO x of the main fuel, or combustion noise There is nothing of meaning than has occurred. そこで本発明では補助燃料の燃焼も煤およびNO がほとんど発生せずかつ燃焼騒音がほとんど発生しない燃焼となりかつ補助燃料の燃焼熱により主燃料の燃焼がひき起こされるように補助燃料全体をピストン4が下降を開始してから暫らくした後の圧縮上死点後において予混合燃焼せしめるようにしている。 Therefore the whole auxiliary fuel as caused combustion of the main fuel by the heat of combustion of the present in invention will burn almost occur without and combustion noise combustion also soot and NO x of the auxiliary fuel is hardly generated and the auxiliary fuel piston 4 There has been so allowed to premix combustion after the compression top dead center after pleasure interim since the start of the descent.
【0021】 [0021]
即ち、多量の燃料を圧縮上死点付近で噴射すると噴射時に生成された予混合気が一気に燃焼せしめられ、次いで燃料液滴からの蒸発燃料の燃焼、即ち拡散燃焼が行われる。 Namely, combusted a large amount of fuel premixed gas generated during injection to injection in the vicinity of compression top dead center at once, followed by combustion of the vaporized fuel from the fuel droplets, i.e. the diffusion combustion is performed. このときの熱発生率dQ/dθの発生パターンは図5(A)のようになる。 Generating patterns of the heat generation rate dQ / d [theta] at this time is as shown in FIG. 5 (A). しかしながら圧縮上死点付近で予混合気が一気に燃焼せしめられると燃焼圧が急上昇するために大きな燃焼騒音が発生し、また燃焼温が高くなるために多量のNO が発生する。 However premixture near the compression top dead center is large combustion noise is generated since the combustion pressure is caused to stretch combustion increases rapidly, also a large amount of the NO x to the combustion temperature becomes higher occurs. また、拡散燃焼が行われると液滴からの蒸発燃料が十分な空気と混合しないうちに燃焼せしめられ、斯くして多量の煤が発生する。 Further, combusted While the diffusive combustion is performed is vaporized fuel from the droplets immiscible with enough air, a large amount of soot is generated by thus. 従って補助燃料は拡散燃焼を行わせないように燃焼させる必要がある。 Thus the auxiliary fuel is required to burn so as not to perform the diffusion combustion.
【0022】 [0022]
一方、燃料を圧縮上死点付近において噴射した場合でも噴射量が少ない場合には必ずしも噴射時に生成された予混合気が一気に燃焼しない。 On the other hand, the premixed gas necessarily generated during injection if even injection amount is small when injected near compression top dead center is not at once burning fuel. 即ち、予混合気が一気に燃焼するのは予混合気の濃度が一定濃度以上になったときである。 That is, the premixed gas is once combustion is when the concentration of the premixed gas becomes more than a certain concentration. 従って噴射量が少なく、噴射時に予混合気の濃度が一定濃度以上にならない場合には噴射時に予混合気が一気に燃焼することはない。 Accordingly injection amount is small, pre-mixture is not be once burned during when the concentration of the premixed gas does not exceed a predetermined concentration injected during injection. 一方、噴射後時間を経過するにつれて燃料粒子からの蒸発燃料量が増大し、従って全体的な予混合気量は増大する。 On the other hand, the amount of evaporated fuel from the fuel particles are increased as after elapse time injection, thus overall premixture amount increases. しかしながら噴射後時間を経過するにつれて燃料粒子が分散するために予混合気の濃度は急激には上昇しない。 However the concentration of the premixed gas to the fuel particles are dispersed as the expiration of the post injection time not rapidly rise.
【0023】 [0023]
一方、噴射後時間を経過すればするほどピストン4が下降するために燃焼室5内の圧力は低くなり、燃焼室5内の温度が低くなる。 On the other hand, the pressure in the combustion chamber 5 in order to more piston 4 is lowered to be passed after the injection time is lower, the temperature in the combustion chamber 5 becomes lower. 燃焼室5内の圧力が低くなると空気抵抗が小さくなるために燃料粒子は燃焼室5全体に分散し、また燃料粒子からの燃料の蒸発が促進される。 When the pressure in the combustion chamber 5 becomes lower fuel particles to the air resistance becomes smaller dispersed throughout the combustion chamber 5, also the evaporation of the fuel from the fuel particles is promoted. 従って燃料周りには十分な酸素が存在するようになる。 Hence as sufficient oxygen is present around the fuel. 一方、噴射燃料が分散する間に噴射燃料の温度は徐々に増大し、噴射燃料の温度が着火温度に達すると燃焼が開始される。 On the other hand, the temperature of the injected fuel while the injected fuel is dispersed gradually increases, the temperature of the injected fuel combustion is initiated to reach ignition temperature. 燃焼が開始されるころには噴射燃料の大部分は予混合気となっており、斯くしてこのとき予混合燃焼が行われることになる。 Most of the injected fuel by the time combustion is initiated is a premixed gas, thus this time so that the premixed combustion is carried out. このとき上述した如く燃料周りには十分な酸素が存在しており、従って煤はほとんど発生しない。 In this case sufficient oxygen is present in the fuel around as described above, therefore soot is hardly generated. また、燃焼室5内の圧力が急速に下降しているときに予混合燃焼が行われるために燃焼圧は急激に上昇せず、従って燃焼騒音がほとんど発生しない。 The combustion pressure for premixed combustion is performed when the pressure in the combustion chamber 5 is rapidly lowered is not abruptly increased, therefore the combustion noise hardly occurs. また、予混合燃焼が開始されるころには燃焼室5内の温度が低くなっており、しかも燃焼圧が急激に上昇しないので燃焼温が低くなり、斯くしてNO の発生量が極めて少なくなる。 Moreover, the time the premix combustion is started is lower the temperature in the combustion chamber 5, and since the combustion pressure does not rapidly increase the combustion temperature is lowered, a very small generation amount of the NO x and thus Become.
【0024】 [0024]
従って補助燃料を圧縮上死点付近において噴射すると補助燃料が少い場合には噴射後一定時間以上経過したときに予混合燃焼が行われることになる。 Hence the premix combustion is performed when older than a certain post injection time when the auxiliary fuel is small auxiliary fuel to injection near the compression top dead center. この場合、もし噴射後ただちに予混合燃焼とそれに続く拡散燃焼が生じてしまう場合には補助燃料の噴射時期を遅らせることによって噴射後ただちに予混合燃焼とそれに続く拡散燃焼が生じるのを回避することができる。 In this case, it if when immediately premixed combustion and diffusion combustion subsequent post injection occurs is to avoid a subsequent diffusion combustion and immediately premixed combustion after injection by delaying the injection timing of the auxiliary fuel occurs it can. 即ち、噴射後一定時間以上経過したときに予混合燃焼が行われるか否かは補助燃料の噴射量と噴射時期に依存している。 That is, whether or not premixed combustion is performed is dependent on injection timing and the injection amount of the auxiliary fuel when a predetermined time has elapsed or after injection. そこで本発明では補助燃料の噴射量および噴射時期を噴射後一定時間以上経過したときに予混合燃焼が生じる噴射量および噴射時期に設定している。 Therefore, in the present invention is set to the injection quantity and injection timing premixed combustion occurs when the elapsed injection amount and injection timing of the auxiliary fuel injection after a predetermined time or more.
【0025】 [0025]
一方、排気マニホルド16内に供給されるEGRガス量を増大することによっても補助燃料の噴射後ただちに予混合燃焼とそれに続く拡散燃焼が生じるのを回避することができる。 On the other hand, it is possible to avoid even the post-injection immediately premixed combustion and diffusion combustion subsequent auxiliary fuel by increasing the EGR gas amount supplied into the exhaust manifold 16 occurs. 即ち、EGRガスは比熱が大きいために熱の吸収能力が高く、従ってEGRガス量を増大すると噴射燃料がなかなか着火温度まで上昇しなくなるために噴射直後に予混合燃焼とそれに続く拡散燃焼が生じなくなる。 That is, the EGR gas has a high heat absorption capacity for the specific heat is large, thus not EGR gas amount after injection in order to no longer increased to quite ignition temperature injected fuel and increases and subsequent premixed combustion diffusion combustion occurs .
【0026】 [0026]
本発明による実施例では25パーセント以上のEGR率〔=EGRガス量/(吸入空気量+EGRガス量)〕となるようにEGRガスが供給されており、図2に示される補助燃料の噴射量Qaおよび図3に示される補助燃料の噴射開始時期θaはこのようにEGRガスが供給されている状態で噴射後一定時間以上経過したときに予混合燃焼Caが行われる噴射量および噴射開始時期に設定されている。 EGR rate more than 25 percent in the embodiment according to the present invention [= EGR gas amount / (amount of intake air + EGR gas amount)] and EGR gas is supplied so that the injection amount Qa of the auxiliary fuel as shown in FIG. 2 and the injection start timing θa of the auxiliary fuel, shown in Figure 3 is set in this manner in the injection quantity and injection start timing premixed combustion Ca is performed when the EGR gas has passed a predetermined time or longer post injection in a state of being supplied It is.
【0027】 [0027]
要求負荷Lが高くなると燃焼室5内の温度が高くなるために噴射後ただちに予混合燃焼とそれに続く拡散燃焼が生じやすくなる。 Required load L becomes post injection immediately and premixed combustion subsequent diffusion combustion to the temperature in the combustion chamber 5 becomes higher it is likely to occur higher. そこで図3に示されるようにこのような予混合燃焼と拡散燃焼が生じないようにするために要求負荷Lが高くなるほど補助燃料の噴射量Qaが減少せしめられ、補助燃料の噴射開始時期θaが遅くされる。 Therefore the injection amount Qa enough auxiliary fuel required load L becomes high in order to so as not to cause diffusion combustion such a premixed combustion shown in FIG. 3 is made to decrease, the injection start timing θa of the auxiliary fuel It is late.
【0028】 [0028]
一方、燃焼室5内の温度が高くなると主燃料の燃焼時期が遅くなっても主燃料は燃焼せしめられる。 On the other hand, the main fuel even combustion timing is slow main fuel when the temperature of the combustion chamber 5 becomes higher burned. 従って要求負荷Lが高くなるほど主燃料の噴射開始時期θmは遅くされる。 Thus injection start timing θm enough main fuel required load L becomes high is slow.
図2に示される補助燃料の噴射量Qaは要求負荷Lと機関回転数Nの関数であり、この噴射量Qaは図6(A)に示すようなマップの形で予めROM32内に記憶されている。 Injection amount Qa of the auxiliary fuel, shown in FIG. 2 is a function of the required load L and the engine rotational speed N, the injection amount Qa is stored in advance in the ROM32 in the form of a map as shown in FIG. 6 (A) there. 一方、図2に示される主燃料の噴射量Qmも要求負荷Lと機関回転数Nの関数であり、この噴射量Qmも図6(B)に示すようなマップの形で予めROM32内に記憶されている。 On the other hand, is a function of the injection quantity Qm also required load L and the engine rotational speed N of the main fuel shown in FIG. 2, the injection quantity Qm also advance ROM32 in the memory in the form of a map as shown in FIG. 6 (B) It is. また、補助燃料の噴射開始時期θaも要求負荷Lと機関回転数Nの関数であり、この噴射開始時期θaも図7(A)に示すようなマップの形で予めROM32内に記憶されている。 Further, a function of the demand load L and the engine rotational speed N, the injection start timing θa of the auxiliary fuel, is stored in advance in the ROM32 in the form of a map as shown in also the injection start timing θa FIG 7 (A) . また、主燃料の噴射開始時期θmも要求負荷Lと機関回転数Nの関数であり、この噴射開始時期θmも図7(B)に示すようなマップの形で予めROM32内に記憶されている。 Further, a function of the main fuel injection start timing θm also required load L and the engine rotational speed N, is stored in advance in the ROM32 in the form of a map as shown in also the injection start timing θm FIG 7 (B) . また、EGR制御弁23の開度EGも要求負荷Lと機関回転数Nの関数であり、このEGR制御弁23の開度EGも図8に示すようなマップの形で予めROM32内に記憶されている。 Further, a function of opening EG also required load L and the engine rotational speed N of the EGR control valve 23, opening EG of the EGR control valve 23 is also stored in advance in the ROM32 in the form of a map as shown in FIG. 8 ing.
【0029】 [0029]
図9は運転制御ルーチンを示している。 Figure 9 shows the operation control routine. 図9を参照するとまず初めにステップ50において図6(A)に示すマップから補助燃料の噴射量Qaが算出される。 First, at step 50 and reference to FIG. 9 injection amount Qa of the auxiliary fuel from the map shown in FIG. 6 (A) is calculated. 次いでステップ51では図7(A)に示すマップから補助燃料の噴射開始時期θaが算出される。 Then the injection start timing θa of the auxiliary fuel is calculated from the map shown in step 51 FIG. 7 (A). 次いでステップ52では噴射量Qaおよび噴射開始時期θa等に基づいて補助燃料の噴射完了時期Eθaが算出される。 Then the injection completion timing Eθa of the auxiliary fuel is calculated on the basis of the step 52, the injection amount Qa and the injection start timing θa like. 次いでステップ53では図6(B)に示すマップから主燃料の噴射量Qmが算出される。 Next, at step 53 injection amount Qm of main fuel from the map shown in FIG. 6 (B) is calculated. 次いでステップ54では図7(B)に示すマップから主燃料の噴射開始時期θmが算出される。 Then the injection start timing θm of the main fuel is calculated from the map shown in step 54 FIG. 7 (B). 次いでステップ55では噴射量Qmおよび噴射開始時期θm等に基づいて主燃料の噴射完了時期Eθmが算出される。 Then the injection completion timing Eθm of the main fuel is calculated on the basis of the step 55, the injection amount Qm and the injection start timing θm like. 次いでステップ56では図8に示すマップからEGR制御弁23の開度EGが算出される。 Then opening EG of the EGR control valve 23 is calculated from the map shown in FIG. 8, step 56.
【0030】 [0030]
なお、図3および図4に示す実施例では補助燃料は一回のみ噴射される。 In the embodiment shown in FIGS. 3 and 4 the auxiliary fuel is injected only once. しかしながら補助燃料を複数回に亘って噴射することもできる。 However it is also possible to inject over an auxiliary fuel to a plurality of times.
また、図10に示すように機関の運転領域を低負荷側の運転領域Iと高負荷側の運転領域IIに分割し、低負荷側の運転領域Iでは図3に示すように補助燃料と主燃料を噴射し、高負荷側の運転領域IIでは従来より行われている燃焼を行うようにすることもできる。 Further, the operating region of the engine, as shown in FIG. 10 is divided into operating region II of the low load side operating region I and a high load side, the main and auxiliary fuel as shown in the operating region I in FIG. 3 of the low-load side injecting fuel, it is also possible to perform the combustion being done conventionally in the high load side operating region II.
【0031】 [0031]
【発明の効果】 【Effect of the invention】
NO および煤の発生量の少ないおだやかな燃焼を得ることができる。 It can be obtained with less gentle combustion of generation amount of the NO x and soot.
【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS
【図1】内燃機関の全体図である。 FIG. 1 is an overall view of the internal combustion engine.
【図2】補助燃料および主燃料の噴射量を示す図である。 2 is a diagram illustrating an injection amount of the auxiliary fuel and main fuel.
【図3】補助燃料および主燃料の噴射時期の代表例を示す図である。 3 is a diagram showing a representative example of the injection timing of the auxiliary fuel and main fuel.
【図4】熱発生率等を示す図である。 4 is a diagram illustrating a heat generation rate and the like.
【図5】熱発生率の変化パターンを示す図である。 5 is a diagram showing a change pattern of the heat generation rate.
【図6】補助燃料の噴射量Qa等のマップを示す図である。 6 is a diagram showing a map of injection amount Qa etc. of the auxiliary fuel.
【図7】補助燃料の噴射時期等のマップを示す図である。 7 is a diagram showing a map such as the injection timing of the auxiliary fuel.
【図8】EGR制御弁の開度のマップを示す図である。 8 is a diagram showing a map of the opening degree of the EGR control valve.
【図9】運転制御を行うためのフローチャートである。 9 is a flow chart for controlling the operation.
【図10】各運転領域I,IIを示す図である。 10 is a diagram showing the operating region I, the II.
【符号の説明】 DESCRIPTION OF SYMBOLS
5…燃焼室6…燃料噴射弁 5 ... combustion chamber 6 ... fuel injection valve

Claims (3)

  1. 燃焼室内に向けて燃料を噴射するための燃料噴射弁を具備し、補助燃料を噴射した後に主燃料を噴射するようにした圧縮着火式内燃機関において、補助燃料の噴射量および噴射時期を圧縮上死点後において補助燃料全体が予混合燃焼しうる噴射量および圧縮上死点付近の噴射時期に設定して補助燃料全体を圧縮上死点後に予混合燃焼させ、主燃料の噴射時期を補助燃料を噴射しなかった場合には燃焼不良又は失火を生じかつ補助燃料を噴射した場合には補助燃料の燃焼後に主燃料が燃焼不良又は失火を生じることなく燃焼せしめられる圧縮上死点後の噴射時期に設定して補助燃料の燃焼後に主燃料を燃焼させ、補助燃料の噴射時期および主噴射の噴射時期を共に要求負荷が高くなるほど遅らせるようにした圧縮着火式内燃機関の燃焼方法 Comprising a fuel injection valve for injecting fuel into the combustion chamber, the compression ignition internal combustion engines, which inject the primary fuel after injecting the auxiliary fuel injection quantity of the auxiliary fuel and the compression injection timing entire auxiliary fuel after dead center is premixed combustion after the compression top dead center the whole auxiliary fuel is set to the injection timing near the injection amount and the compression top dead center can be premixed combustion, the auxiliary fuel injection timing of the main fuel injection timing after the compression top dead center of the main fuel after the combustion of the auxiliary fuel is burned without causing poor combustion or misfires when injecting the resulting and auxiliary fuel poor combustion or misfires when not injecting set the combustion of the main fuel after the combustion of the auxiliary fuel injection timing and the combustion process of a compression ignition internal combustion engine together required load injection timing of the main injection is to be delayed as the higher of the auxiliary fuel.
  2. 補助燃料全体を予混合燃焼させるのに必要な量の再循環排気ガスを吸気通路内に供給するようにした請求項1に記載の圧縮着火式内燃機関の燃焼方法 The method of combustion compression ignition type internal combustion engine according to claim 1 which is adapted to the whole auxiliary fuel supplying recirculated exhaust gas in an amount necessary to cause the premixed combustion in the intake passage.
  3. 主燃料の噴射量に比べて補助燃料の噴射量を少くするようにした請求項1に記載の圧縮着火式内燃機関の燃焼方法 Combustion method of a compression ignition type internal combustion engine according to claim 1 which is adapted to reduce the injection amount of the auxiliary fuel as compared to the injection quantity of the main fuel.
JP24541699A 1999-08-31 1999-08-31 Method of combustion compression ignition internal combustion engine Expired - Fee Related JP3613666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24541699A JP3613666B2 (en) 1999-08-31 1999-08-31 Method of combustion compression ignition internal combustion engine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24541699A JP3613666B2 (en) 1999-08-31 1999-08-31 Method of combustion compression ignition internal combustion engine
DE2000137215 DE10037215C2 (en) 1999-08-31 2000-07-31 A compression ignition internal combustion engine and method for controlling the same
FR0010400A FR2797912B1 (en) 1999-08-31 2000-08-07 Motor type internal combustion compression ignition CONTROL METHOD THEREOF

Publications (2)

Publication Number Publication Date
JP2001073860A true JP2001073860A (en) 2001-03-21
JP3613666B2 true JP3613666B2 (en) 2005-01-26

Family

ID=17133340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24541699A Expired - Fee Related JP3613666B2 (en) 1999-08-31 1999-08-31 Method of combustion compression ignition internal combustion engine

Country Status (3)

Country Link
JP (1) JP3613666B2 (en)
DE (1) DE10037215C2 (en)
FR (1) FR2797912B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1701171B (en) * 2003-07-08 2010-11-24 日产自动车株式会社 Combustion control for engine
JP2005042662A (en) 2003-07-25 2005-02-17 Nissan Motor Co Ltd Combustion control device for internal combustion engine
JP2005048746A (en) 2003-07-31 2005-02-24 Nissan Motor Co Ltd Fuel control device for internal combustion engine
JP4715667B2 (en) * 2006-07-28 2011-07-06 株式会社デンソー Control device for an internal combustion engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH086627B2 (en) * 1985-06-04 1996-01-29 株式会社日本自動車部品総合研究所 Fuel injection control method and apparatus for a diesel engine
DE3735169C2 (en) * 1986-10-08 1991-11-14 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De
JPH09158810A (en) * 1995-10-02 1997-06-17 Hino Motors Ltd Diesel engine
WO1998007973A1 (en) * 1996-08-23 1998-02-26 Cummins Engine Company, Inc. Premixed charge compression ignition engine with optimal combustion control
JP4010046B2 (en) * 1997-06-24 2007-11-21 トヨタ自動車株式会社 Compression ignition internal combustion engine
JP3580099B2 (en) * 1997-09-18 2004-10-20 日産自動車株式会社 Control device for a diesel engine
DE19750226C1 (en) * 1997-11-13 1998-10-29 Daimler Benz Ag Diesel engine management system controlling breathing and injection timing in rich and weak running

Also Published As

Publication number Publication date Type
DE10037215A1 (en) 2001-03-01 application
DE10037215C2 (en) 2003-04-10 grant
FR2797912A1 (en) 2001-03-02 application
JP2001073860A (en) 2001-03-21 application
FR2797912B1 (en) 2005-11-18 grant

Similar Documents

Publication Publication Date Title
USRE36737E (en) Reduction of cold-start emissions and catalyst warm-up time with direct fuel injection
US6041591A (en) Exhaust gas heating system for in-cylinder injection internal combustion engine
US6062189A (en) Spark ignition type in-cylinder injection internal combustion engine
US5740775A (en) Diesel engine
US6536209B2 (en) Post injections during cold operation
US6318074B1 (en) Control device for direct injection engine
US6840211B2 (en) Diesel engine
US6240724B1 (en) Control device for direct injection engine
US6745743B2 (en) Control apparatus for a direct injection engine
US6182632B1 (en) Compression-ignition type engine
JP2001336439A (en) Fuel injection control device for in-cylinder fuel injection engine
US7051701B2 (en) Direct fuel injection/spark ignition engine control device
JP2005139945A (en) Internal combustion engine capable of premixed compression self-ignition operation using two kinds of fuel
JP2005155603A (en) Internal combustion engine
JP2002188474A (en) Control device for diesel engine with turbosupercharger
JPH05113146A (en) Internal combustion engine
US20060207241A1 (en) Control apparatus for internal combustion engine
US7343902B2 (en) Dual combustion mode engine
JP2000120457A (en) Diesel engine
JPH08218920A (en) Exhaust emission control device for internal combustion engine
US6449946B2 (en) Control apparatus for direct-injection engine
JP2001065397A (en) Fuel injection control device for engine
JPH1193735A (en) Control device of diesel engine
JP2004100603A (en) Engine combustion control unit
JP2000120471A (en) Cylinder injection type engine control device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees