JP3952710B2 - Compression self-ignition internal combustion engine - Google Patents

Compression self-ignition internal combustion engine Download PDF

Info

Publication number
JP3952710B2
JP3952710B2 JP2001237378A JP2001237378A JP3952710B2 JP 3952710 B2 JP3952710 B2 JP 3952710B2 JP 2001237378 A JP2001237378 A JP 2001237378A JP 2001237378 A JP2001237378 A JP 2001237378A JP 3952710 B2 JP3952710 B2 JP 3952710B2
Authority
JP
Japan
Prior art keywords
air
fuel mixture
ignition
fuel
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001237378A
Other languages
Japanese (ja)
Other versions
JP2003049650A (en
Inventor
淳 寺地
浩一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001237378A priority Critical patent/JP3952710B2/en
Publication of JP2003049650A publication Critical patent/JP2003049650A/en
Application granted granted Critical
Publication of JP3952710B2 publication Critical patent/JP3952710B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • F02D41/3047Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug said means being a secondary injection of fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/101Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on or close to the cylinder centre axis, e.g. with mixture formation using spray guided concepts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D2041/3088Controlling fuel injection for air assisted injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【0001】
【発明の属する技術分野】
本発明は、少なくとも所定の運転条件にて圧縮自己着火燃焼を行わせる圧縮自己着火式内燃機関に関する。
【0002】
【従来の技術】
圧縮自己着火式内燃機関の一例として、特開平10−196424号公報に記載されているものがある。これは、シリンダ内のピストンとは別に補助圧縮手段としてコントロールピストンを備えており、自己着火寸前の高温に至るまで圧縮された混合気に対し、コントロールピストンによる圧縮を更に加えることで、混合気を一斉に自己着火させる構成となっている。
【0003】
また、点火プラグを備える圧縮自己着火式内燃機関が、特開平11−210539号公報に開示されている。これは、圧縮行程末期における筒内のガス温度が、点火すると混合気全体の自己着火を引き起こす目標温度であるかを判断し、吸気弁の開弁時期を制御することにより、圧縮行程末期における筒内のガス温度が目標温度に維持されるように制御している。
【0004】
【発明が解決しようとする課題】
上記2つの従来技術は、いずれも自己着火燃焼の着火時期を強制的に制御しようとするものであるが、コントロールピストンを用いる特開平10−196424号公報の技術は、エンジンの構造が複雑になり過ぎて実用化が困難である。
一方、火花点火を用いる特開平11−210539号公報の技術では、火花点火によって与えることができる補助的な圧力上昇の幅が小さく、安定した着火時期制御を行うことが困難である。
【0005】
火花点火による圧力上昇幅を大きくする方法としては、燃焼室内の一部に燃料濃度の高い領域を形成し、この領域の混合気に火花点火して限られた領域の燃料を火炎伝播燃焼させることが考えられるが、燃焼室内の状況が様々に変化すると火炎伝播燃焼する領域の範囲も様々に変化してしまい、火炎伝播燃焼に伴って多く発生するNOxの生成量を一定量以下に抑制することが困難となる。
【0006】
そこで、本発明は、混合気場形成に着目し、筒内の混合気分布を圧縮自己着火式内燃機関のために最適化することにより、安定した着火時期の制御を可能とすると共に、NOx生成量を一定値以下に抑制することを目的とする。
【0007】
【課題を解決するための手段】
このため、請求項1の発明では、筒内に直接燃料を噴射する噴射弁と、点火プラグとを具備し、少なくとも所定の運転条件にて圧縮自己着火燃焼を行わせる圧縮自己着火式内燃機関において、前記噴射弁として、筒内に直接燃料及び空気を噴射可能な噴射弁を用い、燃料噴射を2回に分割して、吸気行程から圧縮行程前期の間で1回目の燃料噴射を実行し、その後、圧縮行程にて、空気のみの噴射を実行し、更にこれに続けて2回目の燃料噴射を実行することにより、筒内混合気場を、前記2回目の燃料噴射により点火プラグに近接して形成される濃い混合気領域と、前記1回目の燃料噴射により点火プラグから離れて形成される薄い混合気領域とに分け、濃い混合気と薄い混合気との間を前記空気のみの噴射による火炎伝播しない層にし、点火プラグにより濃い混合気に火花点火してこれを火炎伝播によって燃焼させ、この燃焼に伴う筒内圧力と温度の上昇によって薄い混合気を自己着火させるようにしたことを特徴とする。
【0008】
請求項2の発明では、筒内中心に濃い混合気を配し、その周りを取り囲むように火炎伝播しないを配し、その周りに前記濃い混合気が燃焼することにより自己着火に至る薄い混合気を配したことを特徴とする。
請求項3の発明では、筒内中央から偏心した位置に濃い混合気を配し、この濃い混合気と交わらない位置に濃い混合気が燃焼することによって自己着火に至る薄い混合気を配し、前記濃い混合気と前記薄い混合気とを火炎伝播しない層にて隔てたことを特徴とする。
【0011】
【発明の効果】
請求項1の発明によれば、筒内混合気場を濃い混合気領域と薄い混合気領域とに2層化し、濃い混合気層と薄い混合気層とを火炎伝播しない層にて隔てることにより、濃い混合気層の火花点火による火炎が薄い混合気層に伝播せず、濃い混合気層の燃焼による圧力と温度の上昇で薄い混合気層が自己着火するため、火花点火時期を制御することで自己着火時期を確実に制御することができる一方、火炎伝播燃焼に寄与する燃料の量が設定量以上となるのを確実に防止して、NOxの生成を抑制することができる。
また、筒内に直接燃料及び空気を噴射可能な噴射弁を用いて、燃料噴射を2回に分割して行い、1回目の燃料噴射と2回目の燃料噴射との間に空気のみを噴射することにより、1回目の燃料噴射による燃料は燃焼室内の空気と混ざり合って希薄化し、その後の空気噴射により、空気のみの領域が形成され、続けて行われる2回目の燃料噴射により、高背圧下で高濃度な混合気が形成される。これにより、火花点火のための濃い混合気と、自己着火のための薄い混合気とを、空気層により、火炎伝播しないよう確実に隔てることができ、NOxを抑制しつつ、安定した自己着火燃焼を実現できる。
【0012】
請求項2の発明によれば、筒内中心に濃い混合気を配し、筒内中心から外側の比較的温度が低い領域に自己着火する薄い混合気を配することにより、急峻な燃焼を抑制することが可能となり、圧縮自己着火燃焼領域を高負荷側に広げることが可能となる他、筒内中心にて濃い混合気を燃焼させるため、未燃混合気を抑制し、HC排出量を低減することが可能となる。
【0013】
請求項3の発明によれば、筒内中央から偏心した位置に濃い混合気を配することにより、濃い混合気が筒内中心から偏心した位置にて発熱することにより筒内温度分布に斑が生じることで、急峻な燃焼を抑制することが可能となり、圧縮自己着火燃焼領域を高負荷側に広げることが可能となる。
【0016】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
図1は本発明の一実施形態を示す圧縮自己着火式内燃機関(特にガソリンエンジン)のシステム図である。
但し、このエンジンでは、所定の運転条件において圧縮自己着火燃焼を行い、他の運転条件では火花点火燃焼を行うよう、火花点火燃焼と圧縮自己着火燃焼とを切換可能となっている。
【0017】
図1において、1はシリンダ、2はシリンダヘッド、3はピストン、4は燃焼室、5は吸気ポート、6は吸気弁、7は排気ポート、8は排気弁、9は混合気噴射弁、10は点火プラグである。
混合気噴射弁9は、内部に混合気室が形成されており、外部から供給される高圧の空気と燃料とをこの混合気室内で混合し、得られた混合気を燃焼室4内へ噴射する噴射弁である。また、混合気室へ燃料を供給することなく混合気噴射弁9を開弁させることにより、高圧空気のみを燃焼室4内へ噴射することもできるようになっている。
【0018】
ここで、混合気噴射弁9はシリンダヘッド2の中央部に垂直に取付けて、その噴口を燃焼室4内に臨ませる一方、点火プラグ10はシリンダヘッド2に斜めに取付けて、その先端部を燃焼室4内に突出させることで、混合気噴射弁9により形成される燃料噴霧(噴霧円錐)に近接して点火プラグ10のスパークギャップを配置してある。
【0019】
このエンジンを制御する電子制御装置(以下、ECUという)20は、運転条件に応じて火花点火燃焼と圧縮自己着火燃焼とのいずれの燃焼形態で運転を行うかを判断する燃焼形態判断部21と、火花点火燃焼運転時の燃焼制御パラメータを制御する火花点火燃焼制御部22と、圧縮自己着火燃焼運転時の燃焼制御パラメータを制御する圧縮自己着火燃焼制御部23とを備えている。
【0020】
尚、燃焼形態判断部21、火花点火燃焼制御部22及び圧縮自己着火燃焼制御部23は、ハードワイヤードの論理回路で構成することもできるが、本実施形態ではマイクロコンピュータのプログラムとして実現されている。
このような構成のもと、図2に示すような、低中回転及び低中負荷領域において圧縮自己着火燃焼を行い、高回転又は高負荷領域において火花点火燃焼を行う。
【0021】
次に、圧縮自己着火燃焼の特性について説明する。
図3は、同一負荷に対する着火時期の自己着火燃焼が成立する範囲を示すものである。着火時期を早期にしていくとノック強度が増大して、ノック限界を超える。逆に、着火時期を遅らしていくと安定度が悪化して、安定度限界を超える。従って、圧縮自己着火燃焼の成立範囲である着火時期の許容範囲(ノック限界内かつ安定度限界内の範囲)は、極めて狭い範囲である。
【0022】
図4は、着火時期を変化させた場合の筒内圧力及び熱発生の波形を示すものである。破線の波形は着火時期を進角して圧縮上死点直後とした場合の波形であり、実線の波形は着火時期を圧縮上死点から遅角した場合の波形である。これからわかるように、着火時期を進角すると、筒内圧力の変化は急峻となる。
圧縮自己着火燃焼中に、何らかの影響で着火時期が最適な時期から進角すると、上記の通り筒内圧力の変化が急峻となり、これに伴って筒内温度も上昇する。この影響は筒内残留ガス温度の上昇という形で次サイクルへ持ち込まれ、次サイクルの着火時期が更に進角する傾向となる。反対に、着火時期が最適な時期から遅角すると、次サイクルの着火時期は更に遅角する傾向となる。
【0023】
このように、圧縮自己着火燃焼における着火時期は非常に不安定であるため、強制的に着火時期を制御してやる必要があり、本発明では、燃焼室内に高濃度な混合気と希薄な混合気とを形成し、高濃度な混合気に火花点火してこれを火炎伝播によって燃焼させ、この燃焼に伴う筒内圧力と温度の上昇によって希薄な混合気を自己着火させるようにしている。この方法によれば、火花点火時期を制御することで自己着火時期を確実に制御することが可能である。
【0024】
但し、この方法では、全ての燃料を自己着火燃焼させる場合よりもNOx生成量が増加することになるので、火花点火とその後の火炎伝播燃焼(以下、火花点火燃焼という)に寄与する燃料の量を必要最小限とすることが望ましい。
そこで本発明では、高濃度な混合気と希薄な混合気とを燃焼室内で分離形成することにより、火花点火燃焼に寄与する燃料の量が設定量以上となることを確実に防止するようにしている。
【0025】
次に、図5のフローにて制御の流れを説明する。
先ずS1で、エンジン回転数N及び負荷Tを検出する。
次にS2で、燃焼形態を判断する。すなわち、エンジン回転数N及び負荷Tの検出値が図2のマップの火花点火燃焼領域内にあるか、圧縮自己着火燃焼領域内にあるかを判断する。
【0026】
この結果、火花点火燃焼領域内と判断された場合には、S3で火花点火燃焼の制御を行い、圧縮自己着火燃焼領域と判断された場合には、S4で圧縮自己着火燃焼の制御を行う。
S3で行われる火花点火燃焼制御では、吸気行程中に混合気噴射弁9を駆動して燃焼室4内に混合気を噴射供給し、圧縮行程後期に点火プラグ10を駆動して火花点火を行う。この場合、火花点火によって生じた火炎は燃焼室4全体の混合気に伝播する。
【0027】
S4で行われる圧縮自己着火燃焼制御では、自己着火の条件を成立させるために吸入空気の温度を上昇させる制御(例えば、排気行程中に排気弁8を閉じて残留ガス量を増加させる制御)を行うと共に、高濃度な混合気と希薄な混合気とを燃焼室内で分離形成するための混合気噴射弁9の制御を行う。
具体的には、図6に示すように、混合気噴射弁9により、吸気行程から圧縮行程前期の間で1回目の混合気噴射を実行し、その後、圧縮行程にて、高圧空気のみの噴射を実行し、更に2回目の混合気噴射を実行する。
【0028】
1回目の混合気噴射による混合気は燃焼室4内の空気と混ざり合って希薄化し、燃焼室4の全域に希薄な混合気を形成する(図6(a)参照)。その後の空気噴射により、混合気噴射弁9の周囲に空気のみの領域が形成され(図6(b)参照)、続けて実行される2回目の混合気噴射により、混合気噴射弁9の周囲に高濃度な混合気が形成される(図6(c)参照))。
【0029】
2回目の混合気噴射は、圧縮行程の後半、すなわち高背圧下で実行されるため、噴射混合気の到達距離が短く、拡散があまり進まないうちに点火プラグ10による点火が行われるので、この混合気の燃料濃度は比較的高くなる。結果として、混合気噴射弁9の周囲に高濃度混合気が存在し、周辺部に希薄混合気が存在すると共に、2つの混合気領域の間に空気層が存在する混合気分布(図7参照)を実現することができる。尚、図7では、高濃度混合気領域を火花着火領域、希薄混合気領域を圧縮着火領域、これらの間の空気層を火炎伝播しない領域と記してある。
【0030】
このような混合気分布を形成して混合気噴射弁9に隣接する点火プラグ10を点火駆動すると、高濃度混合気が火炎伝播によって燃焼し、この燃焼に伴う筒内圧力と温度の上昇を受けて希薄混合気が自己着火によって燃焼する。
このとき、高濃度混合気と希薄混合気とは空気層によって空間的に分離されているので、図8に示すように火花点火燃焼と自己着火燃焼とを分離することができる。このため、火花点火燃焼する燃料の量が設定量より多くなり過ぎてNOx生成量が過大となることを防止できる。
【0031】
尚、火花点火燃焼と自己着火燃焼との分離は空間的に行われていればよく、時間的には図9に示すような重なりを生じていてもよい。図8及び図9は熱発生パターンを示すもので、dQ/dθは熱発生率である。
また、高濃度混合気と希薄混合気とを分離する空気層が空気のみから成る層である必要はなく、高濃度混合気の伝播火炎を希薄混合気へ伝播させないほど燃料希薄な層となっていればよい。
【0032】
更に、高濃度混合気(火花着火領域)と希薄混合気(圧縮着火領域)と空気層(火炎伝播しない領域)とを図7に示したように同心円上に形成することも必須ではなく、図10及び図11に示すような分布で高濃度混合気(火花着火領域)と希薄混合気(圧縮着火領域)とを分離形成してもよい。図10及び図11の実施形態では、シリンダヘッド2の周辺部に混合気噴射弁9を斜めに取付け、これに近接して点火プラグ10を配置してある。
【図面の簡単な説明】
【図1】 本発明の一実施形態を示す内燃機関のシステム図
【図2】 圧縮自己着火燃焼領域を示す図
【図3】 圧縮自己着火燃焼の成立範囲を示す図
【図4】 着火時期を変化させた場合の筒内圧力及び熱発生の波形を示す図
【図5】 制御の流れを示すフローチャート
【図6】 圧縮自己着火燃焼時の混合気分離形成方法を示す図
【図7】 筒内混合気分布を示す図
【図8】 熱発生パターンの一例を示す図
【図9】 熱発生パターンの他の例を示す図
【図10】 本発明の他の実施形態を示す内燃機関のシステム図
【図11】 図10の実施形態における筒内混合気分布を示す図
【符号の説明】
1 シリンダ
2 シリンダヘッド
3 ピストン
4 燃焼室
5 吸気ポート
6 吸気弁
7 排気ポート
8 排気弁
9 混合気噴射弁
10 点火プラグ
20 ECU
21 燃焼形態判断部
22 火花点火燃焼制御部
23 圧縮自己着火燃焼制御部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a compression self-ignition internal combustion engine that performs compression self-ignition combustion under at least predetermined operating conditions.
[0002]
[Prior art]
An example of a compression self-ignition internal combustion engine is described in JP-A-10-196424. This is equipped with a control piston as an auxiliary compression means in addition to the piston in the cylinder, and the mixture is further compressed by the control piston against the mixture compressed to a high temperature just before self-ignition. It is configured to self-ignite all at once.
[0003]
A compression self-ignition internal combustion engine having a spark plug is disclosed in Japanese Patent Laid-Open No. 11-210539. This is because it is determined whether the gas temperature in the cylinder at the end of the compression stroke is a target temperature that causes self-ignition of the entire air-fuel mixture when ignited, and by controlling the opening timing of the intake valve, the cylinder at the end of the compression stroke is controlled. The inside gas temperature is controlled to be maintained at the target temperature.
[0004]
[Problems to be solved by the invention]
Both of the above two prior arts attempt to forcibly control the ignition timing of self-ignition combustion. However, the technique of Japanese Patent Laid-Open No. 10-196424 using a control piston complicates the structure of the engine. It is too difficult to put it into practical use.
On the other hand, in the technique disclosed in Japanese Patent Application Laid-Open No. 11-210539 using spark ignition, it is difficult to perform stable ignition timing control because the width of the auxiliary pressure increase that can be given by spark ignition is small.
[0005]
As a method of increasing the pressure increase range due to spark ignition, a region with a high fuel concentration is formed in a part of the combustion chamber, and the air-fuel mixture in this region is spark-ignited so that the fuel in a limited region is subjected to flame propagation combustion. However, if the situation in the combustion chamber changes variously, the range of the flame propagation combustion region also changes variously, and the amount of NOx generated frequently due to flame propagation combustion is suppressed to a certain amount or less. It becomes difficult.
[0006]
Therefore, the present invention pays attention to the formation of the air-fuel mixture field and optimizes the air-fuel mixture distribution in the cylinder for the compression self-ignition internal combustion engine, thereby enabling stable ignition timing control and NOx generation. The purpose is to suppress the amount below a certain value.
[0007]
[Means for Solving the Problems]
Therefore, according to the first aspect of the present invention, there is provided a compression self-ignition internal combustion engine that includes an injection valve that directly injects fuel into a cylinder and an ignition plug, and that performs compression self-ignition combustion under at least predetermined operating conditions. The injection valve is an injection valve capable of directly injecting fuel and air into the cylinder, dividing the fuel injection into two times, and executing the first fuel injection from the intake stroke to the first half of the compression stroke, Thereafter, in the compression stroke, only air is injected, and subsequently, the second fuel injection is performed, so that the in- cylinder air- fuel mixture field is brought close to the spark plug by the second fuel injection. And a thin air-fuel mixture region formed away from the spark plug by the first fuel injection, and between the thick air-fuel mixture and the thin air-fuel mixture is injected by only the air. the layer that does not flame propagation, This was burned by flame propagation by spark ignition in rich mixture by fire plugs, the thin air-fuel mixture by increasing the in-cylinder pressure and temperature caused by the combustion, characterized in that so as to self-ignition.
[0008]
In the invention of claim 2, a thick mixture is disposed in the center of the cylinder, a layer that does not propagate the flame is disposed so as to surround the periphery, and the thin mixture that causes self-ignition by burning the dense mixture around it. It is characterized by care.
In the invention of claim 3, a thick air-fuel mixture is arranged at a position eccentric from the center of the cylinder, and a thin air-fuel mixture that leads to self-ignition is disposed by burning the rich air-fuel mixture at a position not intersecting with this rich air-fuel mixture, The thick air-fuel mixture and the thin air-fuel mixture are separated by a layer that does not propagate flame.
[0011]
【The invention's effect】
According to the first aspect of the present invention, the in-cylinder air-fuel mixture field is divided into two layers, a rich air-fuel mixture region and a thin air-fuel mixture region, and the thick air-fuel mixture layer and the thin air-fuel mixture layer are separated by a layer that does not propagate flame. The spark ignition timing should be controlled because the flame caused by spark ignition of the rich mixture layer does not propagate to the thin mixture layer, and the thin mixture layer self-ignites due to pressure and temperature rise due to combustion of the dense mixture layer. Thus, the self-ignition timing can be reliably controlled, while the amount of fuel contributing to flame propagation combustion can be reliably prevented from exceeding the set amount, and the generation of NOx can be suppressed.
Further, by using an injection valve capable of directly injecting fuel and air into the cylinder, fuel injection is divided into two times, and only air is injected between the first fuel injection and the second fuel injection. As a result, the fuel from the first fuel injection mixes with the air in the combustion chamber and is diluted, and the subsequent air injection forms an air-only region, and the subsequent second fuel injection causes a high back pressure. A high concentration air-fuel mixture is formed. As a result, the rich mixture for spark ignition and the thin mixture for self-ignition can be reliably separated by the air layer so as not to propagate the flame, and stable self-ignition combustion while suppressing NOx Can be realized.
[0012]
According to the invention of claim 2, a sharp mixture is suppressed by disposing a rich mixture at the center of the cylinder and a thin mixture that self-ignites from the center of the cylinder to a relatively low temperature region outside. In addition to expanding the compression self-ignition combustion area to the high load side, the rich air-fuel mixture is burned at the center of the cylinder, reducing unburned air-fuel mixture and reducing HC emissions. It becomes possible to do.
[0013]
According to the invention of claim 3, by arranging the rich air-fuel mixture at a position eccentric from the center of the cylinder, the dense air-fuel mixture generates heat at a position eccentric from the center of the cylinder, thereby causing unevenness in the in-cylinder temperature distribution. As a result, steep combustion can be suppressed, and the compression self-ignition combustion region can be expanded to the high load side.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a system diagram of a compression self-ignition internal combustion engine (particularly a gasoline engine) showing an embodiment of the present invention.
However, in this engine, it is possible to switch between spark ignition combustion and compression self-ignition combustion so that compression auto-ignition combustion is performed under predetermined operating conditions and spark ignition combustion is performed under other operating conditions.
[0017]
In FIG. 1, 1 is a cylinder, 2 is a cylinder head, 3 is a piston, 4 is a combustion chamber, 5 is an intake port, 6 is an intake valve, 7 is an exhaust port, 8 is an exhaust valve, 9 is an air-fuel mixture injection valve, 10 Is a spark plug.
The air-fuel mixture injection valve 9 has an air-fuel mixture chamber formed therein, mixes high-pressure air and fuel supplied from the outside in the air-fuel mixture chamber, and injects the obtained air-fuel mixture into the combustion chamber 4. This is an injection valve. Further, only the high-pressure air can be injected into the combustion chamber 4 by opening the mixture injection valve 9 without supplying fuel to the mixture chamber.
[0018]
Here, the air-fuel mixture injection valve 9 is vertically attached to the center portion of the cylinder head 2 so that its injection port faces the combustion chamber 4, while the spark plug 10 is obliquely attached to the cylinder head 2 and its tip portion is attached. By projecting into the combustion chamber 4, the spark gap of the spark plug 10 is arranged close to the fuel spray (spray cone) formed by the air-fuel mixture injection valve 9.
[0019]
An electronic control unit (hereinafter referred to as ECU) 20 that controls the engine includes a combustion mode determination unit 21 that determines whether to perform a spark ignition combustion or a compression self-ignition combustion according to the operating conditions. A spark ignition combustion control unit 22 that controls the combustion control parameters during the spark ignition combustion operation and a compression self ignition combustion control unit 23 that controls the combustion control parameters during the compression self ignition combustion operation are provided.
[0020]
The combustion form determination unit 21, the spark ignition combustion control unit 22, and the compression self-ignition combustion control unit 23 can be configured by a hard-wired logic circuit, but in this embodiment, are realized as a microcomputer program. .
Under such a configuration, compression self-ignition combustion is performed in the low / medium rotation and low / medium load regions as shown in FIG. 2, and spark ignition combustion is performed in the high rotation / high load region.
[0021]
Next, the characteristics of compression self-ignition combustion will be described.
FIG. 3 shows a range in which self-ignition combustion at the ignition timing for the same load is established. If the ignition timing is made earlier, the knock strength increases and exceeds the knock limit. Conversely, if the ignition timing is delayed, the stability deteriorates and exceeds the stability limit. Therefore, the allowable range of the ignition timing (the range within the knock limit and the stability limit), which is the formation range of the compression self-ignition combustion, is an extremely narrow range.
[0022]
FIG. 4 shows in-cylinder pressure and heat generation waveforms when the ignition timing is changed. A broken line waveform is a waveform when the ignition timing is advanced and immediately after the compression top dead center, and a solid line waveform is a waveform when the ignition timing is retarded from the compression top dead center. As can be seen, when the ignition timing is advanced, the change in the in-cylinder pressure becomes steep.
During compression self-ignition combustion, if the ignition timing is advanced from an optimal timing due to some influence, the change in the in-cylinder pressure becomes steep as described above, and the in-cylinder temperature also increases accordingly. This influence is brought into the next cycle in the form of an increase in the in-cylinder residual gas temperature, and the ignition timing of the next cycle tends to advance further. On the contrary, if the ignition timing is retarded from the optimal timing, the ignition timing of the next cycle tends to be further retarded.
[0023]
Thus, since the ignition timing in compression self-ignition combustion is very unstable, it is necessary to forcibly control the ignition timing.In the present invention, a high-concentration mixture and a lean mixture are The high-concentration air-fuel mixture is spark-ignited and burned by flame propagation, and the lean air-fuel mixture is self-ignited by the rise in in-cylinder pressure and temperature accompanying this combustion. According to this method, the self-ignition timing can be reliably controlled by controlling the spark ignition timing.
[0024]
However, in this method, the amount of NOx generated increases as compared with the case where all fuels are self-ignited and combusted. Therefore, the amount of fuel that contributes to spark ignition and subsequent flame propagation combustion (hereinafter referred to as spark ignition combustion). It is desirable to minimize
Therefore, in the present invention, the high-concentration air-fuel mixture and the lean air-fuel mixture are separated and formed in the combustion chamber, thereby reliably preventing the amount of fuel contributing to spark ignition combustion from exceeding a set amount. Yes.
[0025]
Next, the flow of control will be described with reference to the flow of FIG.
First, at S1, the engine speed N and the load T are detected.
Next, in S2, the combustion mode is determined. That is, it is determined whether the detected values of the engine speed N and the load T are within the spark ignition combustion region or the compression self-ignition combustion region of the map of FIG.
[0026]
As a result, when it is determined that it is in the spark ignition combustion region, the spark ignition combustion is controlled in S3, and when it is determined that it is the compression self ignition combustion region, the compression self ignition combustion is controlled in S4.
In the spark ignition combustion control performed in S3, the air-fuel mixture injection valve 9 is driven during the intake stroke to inject and supply the air-fuel mixture into the combustion chamber 4, and the spark plug 10 is driven late in the compression stroke to perform spark ignition. . In this case, the flame generated by spark ignition propagates to the air-fuel mixture throughout the combustion chamber 4.
[0027]
In the compression self-ignition combustion control performed in S4, control for increasing the temperature of the intake air in order to satisfy the self-ignition condition (for example, control for closing the exhaust valve 8 during the exhaust stroke to increase the residual gas amount) is performed. In addition, the air-fuel mixture injection valve 9 is controlled to separate and form a high-concentration air-fuel mixture and a lean air-fuel mixture in the combustion chamber.
Specifically, as shown in FIG. 6, the mixture injection valve 9 performs the first mixture injection from the intake stroke to the first half of the compression stroke, and then injection of only high-pressure air in the compression stroke. And the second mixture injection is executed.
[0028]
The air-fuel mixture by the first air-fuel mixture injection is mixed with the air in the combustion chamber 4 to be diluted, and a lean air-fuel mixture is formed throughout the combustion chamber 4 (see FIG. 6A). Subsequent air injection forms an air-only region around the mixture injection valve 9 (see FIG. 6 (b)), and the second mixture injection that is subsequently executed results in the periphery of the mixture injection valve 9. A high-concentration air-fuel mixture is formed (see FIG. 6C)).
[0029]
The second air-fuel mixture injection is executed in the latter half of the compression stroke, that is, under a high back pressure, so that the reach of the air-fuel mixture is short, and ignition is performed by the spark plug 10 before the diffusion progresses so much. The fuel concentration of the mixture becomes relatively high. As a result, a high-concentration air-fuel mixture exists around the air-fuel mixture injection valve 9, a lean air-fuel mixture exists in the periphery, and an air-fuel mixture distribution in which an air layer exists between two air-fuel mixture regions (see FIG. ) Can be realized. In FIG. 7, the high-concentration mixture region is indicated as a spark ignition region, the lean mixture region is indicated as a compression ignition region, and the air layer between them is indicated as a region where no flame is propagated.
[0030]
When the spark plug 10 adjacent to the air-fuel mixture injection valve 9 is ignited by forming such air-fuel mixture distribution, the high-concentration air-fuel mixture is burned by flame propagation, and the in-cylinder pressure and temperature are increased due to this combustion. The lean air-fuel mixture burns by self-ignition.
At this time, since the high-concentration mixture and the lean mixture are spatially separated by the air layer, spark ignition combustion and self-ignition combustion can be separated as shown in FIG. For this reason, it is possible to prevent the amount of fuel ignited by spark ignition from becoming excessively larger than the set amount and causing the NOx generation amount to become excessive.
[0031]
Note that the spark ignition combustion and the self-ignition combustion need only be separated spatially, and may overlap as shown in FIG. 9 in terms of time. 8 and 9 show heat generation patterns, and dQ / dθ is a heat generation rate.
In addition, the air layer that separates the high-concentration mixture from the lean mixture does not need to be a layer composed of only air, and the fuel layer is so thin that the propagation flame of the high-concentration mixture does not propagate to the lean mixture. Just do it.
[0032]
Further, it is not essential to form a high-concentration air-fuel mixture (spark ignition region), a lean air-fuel mixture (compression ignition region), and an air layer (region where flame does not propagate) on a concentric circle as shown in FIG. 10 and FIG. 11 may be used to separate and form a high-concentration mixture (spark ignition region) and a lean mixture (compression ignition region). In the embodiment of FIGS. 10 and 11, the air-fuel mixture injection valve 9 is obliquely attached to the periphery of the cylinder head 2, and the spark plug 10 is disposed in the vicinity thereof.
[Brief description of the drawings]
FIG. 1 is a system diagram of an internal combustion engine showing an embodiment of the present invention. FIG. 2 is a diagram showing a compression self-ignition combustion region. FIG. 3 is a diagram showing a range in which compression self-ignition combustion is established. FIG. 5 is a flow chart showing the flow of control when the pressure is changed in the cylinder. FIG. 6 is a flow chart showing the control flow. FIG. FIG. 8 is a diagram showing an example of a heat generation pattern. FIG. 9 is a diagram showing another example of a heat generation pattern. FIG. 10 is a system diagram of an internal combustion engine showing another embodiment of the present invention. 11 is a diagram showing the in-cylinder mixture distribution in the embodiment of FIG.
1 cylinder
2 Cylinder head
3 Piston
4 Combustion chamber
5 Intake port
6 Intake valve
7 Exhaust port
8 Exhaust valve
9 Mixture injection valve
10 Spark plug
20 ECU
21 Combustion form determination unit
22 Spark ignition combustion control unit
23 Compression self-ignition combustion controller

Claims (3)

筒内に直接燃料を噴射する噴射弁と、点火プラグとを具備し、少なくとも所定の運転条件にて圧縮自己着火燃焼を行わせる圧縮自己着火式内燃機関において、
前記噴射弁として、筒内に直接燃料及び空気を噴射可能な噴射弁を用い、燃料噴射を2回に分割して、吸気行程から圧縮行程前期の間で1回目の燃料噴射を実行し、その後、圧縮行程にて、空気のみの噴射を実行し、更にこれに続けて2回目の燃料噴射を実行することにより、
筒内混合気場を、前記2回目の燃料噴射により点火プラグに近接して形成される濃い混合気領域と、前記1回目の燃料噴射により点火プラグから離れて形成される薄い混合気領域とに分け、濃い混合気と薄い混合気との間を前記空気のみの噴射による火炎伝播しない層にし、
点火プラグにより濃い混合気に火花点火してこれを火炎伝播によって燃焼させ、この燃焼に伴う筒内圧力と温度の上昇によって薄い混合気を自己着火させるようにしたことを特徴とする圧縮自己着火式内燃機関。
In a compression self-ignition internal combustion engine that includes an injection valve that directly injects fuel into a cylinder and an ignition plug, and that performs compression self-ignition combustion under at least predetermined operating conditions,
As the injection valve, an injection valve capable of directly injecting fuel and air into the cylinder is used, the fuel injection is divided into two times, and the first fuel injection is performed between the intake stroke and the first half of the compression stroke, and thereafter In the compression stroke, the injection of only air is performed, followed by the second fuel injection,
The in-cylinder air- fuel mixture field is divided into a rich air- fuel mixture region formed close to the spark plug by the second fuel injection, and a thin air-fuel mixture region formed away from the spark plug by the first fuel injection. Divided into a layer that does not propagate the flame by jetting only the air between the rich mixture and the thin mixture ,
A compression self-ignition system characterized in that a rich air-fuel mixture is ignited by a spark plug and burned by flame propagation, and a thin air-fuel mixture is self-ignited by an increase in in-cylinder pressure and temperature accompanying this combustion. Internal combustion engine.
筒内中心に濃い混合気を配し、その周りを取り囲むように火炎伝播しないを配し、その周りに前記濃い混合気が燃焼することにより自己着火に至る薄い混合気を配したことを特徴とする請求項1記載の圧縮自己着火式内燃機関。A thick air-fuel mixture is placed in the center of the cylinder, a layer that does not propagate flame is placed around it, and a thin air-fuel mixture that leads to self-ignition is disposed around the dense air-fuel mixture. The compression self-ignition internal combustion engine according to claim 1. 筒内中央から偏心した位置に濃い混合気を配し、この濃い混合気と交わらない位置に濃い混合気が燃焼することによって自己着火に至る薄い混合気を配し、前記濃い混合気と前記薄い混合気とを火炎伝播しない層にて隔てたことを特徴とする請求項1記載の圧縮自己着火式内燃機関。  A thick air-fuel mixture is arranged at a position that is eccentric from the center of the cylinder, and a thin air-fuel mixture that causes self-ignition is disposed by burning the rich air-fuel mixture at a position that does not intersect with the rich air-fuel mixture. 2. The compression self-ignition internal combustion engine according to claim 1, wherein the air-fuel mixture is separated by a layer that does not propagate flame.
JP2001237378A 2001-08-06 2001-08-06 Compression self-ignition internal combustion engine Expired - Fee Related JP3952710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001237378A JP3952710B2 (en) 2001-08-06 2001-08-06 Compression self-ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001237378A JP3952710B2 (en) 2001-08-06 2001-08-06 Compression self-ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003049650A JP2003049650A (en) 2003-02-21
JP3952710B2 true JP3952710B2 (en) 2007-08-01

Family

ID=19068470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001237378A Expired - Fee Related JP3952710B2 (en) 2001-08-06 2001-08-06 Compression self-ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP3952710B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005163624A (en) * 2003-12-02 2005-06-23 Hitachi Ltd Engine cogeneration system
JP4033160B2 (en) * 2004-03-30 2008-01-16 トヨタ自動車株式会社 Control device for internal combustion engine capable of premixed compression self-ignition operation
FR2896273A1 (en) * 2006-01-18 2007-07-20 Renault Sas High-pressure gas injector for internal combustion engine has gas jet activator operated during second half of compression cycle
DE102006004236A1 (en) * 2006-01-30 2007-08-09 Siemens Ag Method and device for operating an internal combustion engine
JP4838666B2 (en) 2006-08-31 2011-12-14 ヤンマー株式会社 Operation method of premixed compression self-ignition engine
JP2010530934A (en) * 2007-06-22 2010-09-16 オービタル・オーストラリア・ピーティワイ・リミテッド Controlling method of controlled automatic ignition (CAI) combustion process
JP6264422B1 (en) * 2016-10-04 2018-01-24 マツダ株式会社 Control device for premixed compression ignition engine
JP6252647B1 (en) * 2016-10-05 2017-12-27 マツダ株式会社 Control device for premixed compression ignition engine
JP6249084B1 (en) * 2016-11-29 2017-12-20 マツダ株式会社 Premixed compression ignition engine
JP6249083B1 (en) * 2016-11-29 2017-12-20 マツダ株式会社 Premixed compression ignition engine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431649A (en) * 1990-05-25 1992-02-03 Yamaha Motor Co Ltd Injection controller of cylinder injection engine
JP3039155B2 (en) * 1992-09-01 2000-05-08 トヨタ自動車株式会社 Fuel combustion promotion method for diesel engine
JP3804879B2 (en) * 1997-03-06 2006-08-02 ヤンマー株式会社 Combustion method of direct injection diesel engine
US6227151B1 (en) * 1997-08-01 2001-05-08 Ford Global Technologies, Inc. Gasoline internal combustion engine
JP3820750B2 (en) * 1998-05-20 2006-09-13 三菱ふそうトラック・バス株式会社 diesel engine
JP2001020744A (en) * 1999-07-09 2001-01-23 Komatsu Ltd Engine and combustion control method for the same
JP3770015B2 (en) * 1999-11-24 2006-04-26 日産自動車株式会社 In-cylinder direct injection compression ignition engine
JP2001193465A (en) * 2000-01-17 2001-07-17 Mitsubishi Heavy Ind Ltd Diesel engine
JP3760710B2 (en) * 2000-01-26 2006-03-29 日産自動車株式会社 Combustion control device for internal combustion engine

Also Published As

Publication number Publication date
JP2003049650A (en) 2003-02-21

Similar Documents

Publication Publication Date Title
JP3975702B2 (en) Control device for self-igniting engine
JP4501950B2 (en) Combustion control device for internal combustion engine
JP6225938B2 (en) Control device for internal combustion engine
KR101016924B1 (en) Fuel injection control apparatus and fuel injection control method of internal combustion engine
US20080257304A1 (en) Internal combustion engine and combustion method of the same
JP2008157075A (en) Internal combustion engine
KR20120058502A (en) Method for operating an internal combustion engine
JP2016089747A (en) Control device of internal combustion engine
JP2018184869A (en) Control device of internal combustion engine
JP3952710B2 (en) Compression self-ignition internal combustion engine
JP3975695B2 (en) Self-igniting engine
JP3945174B2 (en) Combustion control device for internal combustion engine
JP4492192B2 (en) diesel engine
JP2003090239A (en) Internal combustion engine of cylinder direct injection type
JP3873560B2 (en) Combustion control device for internal combustion engine
JP3945158B2 (en) In-cylinder direct injection internal combustion engine
JP2008184970A (en) Control device of gasoline engine
JP3627546B2 (en) Direct cylinder injection spark ignition engine
JP2006052686A (en) Control device of internal combustion engine
JP2002285844A (en) Compression self-ignition type internal combustion engine
JP3978965B2 (en) Combustion control device for internal combustion engine
JP4609227B2 (en) Internal combustion engine
JP2008025400A (en) Control device of direct injection type spark ignition internal combustion engine
JP6965853B2 (en) Premixed compression ignition engine
JP2016200080A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees