JP3770015B2 - In-cylinder direct injection compression ignition engine - Google Patents

In-cylinder direct injection compression ignition engine Download PDF

Info

Publication number
JP3770015B2
JP3770015B2 JP33308299A JP33308299A JP3770015B2 JP 3770015 B2 JP3770015 B2 JP 3770015B2 JP 33308299 A JP33308299 A JP 33308299A JP 33308299 A JP33308299 A JP 33308299A JP 3770015 B2 JP3770015 B2 JP 3770015B2
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
valve
timing
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33308299A
Other languages
Japanese (ja)
Other versions
JP2001152854A (en
Inventor
章彦 角方
保憲 岩切
輝行 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP33308299A priority Critical patent/JP3770015B2/en
Publication of JP2001152854A publication Critical patent/JP2001152854A/en
Application granted granted Critical
Publication of JP3770015B2 publication Critical patent/JP3770015B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、筒内直噴式圧縮着火機関に係り、特に運転条件が低負荷時または高回転速度時の燃焼特性を改善した筒内直噴式圧縮自己着火機関に関する。
【0002】
【従来の技術】
従来の圧縮着火式機関としては、たとえば特開平7−332141号公報に示されている第1従来技術がある。
【0003】
この第1従来技術では、吸気ポートに燃料を噴射するエンジンにおいて、圧縮比を高めることによって圧縮上死点付近のシリンダ内温度・圧力を高め、圧縮自着火燃焼を実現したものである。これによって火花点火ガソリンエンジンを上回る稀薄燃焼限界と低燃費を得ている。
【0004】
また、特開平11−72039号公報、特開平11−72038号公報に示される第2従来技術が知られている。この第2従来技術によれば、一部の燃料の噴射を圧縮行程後半で行い、圧縮上死点までにこの燃料の改質または燃焼予反応を促進し、その後に残部の燃料を噴射することにより、低負荷時の燃焼安定限界を拡大しようとしている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記第1従来技術は、単に圧縮比を高めることにより圧縮着火燃焼を実現しようとしたもので、理論空燃比近傍の混合気で火花点火を行う全負荷運転時ではノッキング発生に伴う点火進角限界が遅角し、通常の圧縮比の火花点火ガソリンエンジンに比べ、大幅にトルクが低下するという問題点があった。
【0006】
また、第2従来技術においては、ガソリンのようなセタン価の低い燃料では、圧縮比を大幅に高めるか、吸気を加圧、加熱するような手段を講じない場合、燃料の改質・予反応が十分に進まず、稀薄燃焼限界が限られ、十分な燃費向上を図れないという問題点があった。
【0007】
特に、機関低負荷時には空気過剰率大により、予反応が起こりづらくなり、機関高回転速度時には、予反応開始から圧縮上死点までの実時間が短縮されるため、十分な予反応が行われず、燃焼不安定となり易く、運転可能領域の制限により、十分な燃費向上を図れないことが考えられる。
【0008】
以上の問題点に鑑み本発明の課題は、全負荷火花点火時のトルク低下を抑制するとともに、圧縮自己着火運転の低負荷時及び高回転速度時に燃料の改質及び予反応を確実に起こさせて低負荷時及び高回転速度時の安定燃焼限界を拡大して十分な燃費向上を図った筒内直噴式圧縮着火機関を提供することである。
【0009】
【課題を解決するための手段】
上記課題を解決するため、請求項1記載の発明は、筒内に直接燃料噴射を行う少なくとも1本の燃料噴射弁と点火栓とを備えた筒内直噴式圧縮着火機関において、少なくとも圧縮自己着火運転の低負荷時に排気弁閉時期を進角するとともに吸気弁開時期を遅角して排気上死点を含む前後の期間に燃焼室密閉期間を有するバルブタイミングを設定するバルブタイミング制御手段と、運転条件が前記低負荷時に、ピストン冠面またはピストンクレビス部のいずれかに噴射燃料の一部が前記以外の運転条件時より多く付着または滞留するように前記燃料噴射弁からの燃料噴射を制御する燃料噴射制御手段と、を備えたことを要旨とする。
【0010】
上記課題を解決するため、請求項2記載の発明は、筒内に直接燃料噴射を行う少なくとも1本の燃料噴射弁と点火栓とを備えた筒内直噴式圧縮着火機関において、少なくとも圧縮自己着火運転の高回転速度時に排気弁閉時期を進角するとともに吸気弁開時期を遅角して排気上死点を含む前後の期間に燃焼室密閉期間を有するバルブタイミングを設定するバルブタイミング制御手段と、運転条件が前記高回転速度時に、ピストン冠面またはピストンクレビス部のいずれかに噴射燃料の一部が前記以外の運転条件時より多く付着または滞留するように前記燃料噴射弁からの燃料噴射を制御する燃料噴射制御手段と、を備えたことを要旨とする。
【0011】
上記課題を解決するため、請求項3記載の発明は、請求項1または請求項2記載の筒内直噴式圧縮着火機関において、前記燃料噴射制御手段は、前記燃料噴射弁に供給する燃料圧力を制御することにより前記ピストンへの燃料付着または滞留を制御することを要旨とする。
【0012】
上記課題を解決するため、請求項4記載の発明は、請求項1または請求項2記載の筒内直噴式圧縮着火機関において、前記燃料噴射制御手段は、燃料噴射時期の遅角化または進角化により前記ピストンへの燃料付着または滞留を制御することを要旨とする。
【0013】
上記課題を解決するため、請求項5記載の発明は、請求項1ないし請求項4のいずれか1項記載の筒内直噴式圧縮着火機関において、前記燃料噴射弁からの燃料噴射を少なくとも2回以上にわけて行い、そのうち1回は圧縮行程後半から膨張行程前半の期間に噴射することを要旨とする。
【0014】
上記課題を解決するため、請求項6記載の発明は、請求項1ないし請求項5のいずれか1項記載の筒内直噴式圧縮着火機関において、運転条件に応じて、圧縮着火燃焼と火花点火燃焼を切り換え、火花点火燃焼時は排気弁閉時期および吸気弁開時期を概ね排気上死点付近とすることを要旨とする。
【0015】
上記課題を解決するため、請求項7記載の発明は、請求項1ないし請求項5のいずれか1項記載の筒内直噴式圧縮着火機関において、圧縮着火燃焼時のある一定以上の負荷において、排気弁閉時期および吸気弁開時期を概ね排気上死点付近とすることを要旨とする。
【0016】
〔作用〕
上記構成によれば、燃料が希薄となるので高い改質率が必要となる一定以下の低負荷時、または燃料の改質時間が不足する一定以上の高回転速度時に、燃料噴射弁に供給する燃料圧力を他の運転条件時より低下させる。これにより、圧縮行程中に噴射される燃料噴霧の微粒化及び燃料噴霧内への空気の導入の程度が低くなり、比較的大きい燃料粒が噴射され、ピストン冠面への燃料の付着が多くなる。
【0017】
圧縮上死点付近では、1サイクル前の圧縮行程で噴射された燃料が十分改質されているので、圧縮時の高温高圧で圧縮着火燃焼を起こす。圧縮行程中に噴射されピストン冠面に多く付着した燃料の一部は、膨張行程で燃焼せずピストン冠面付近に未燃焼燃料として残留する。続く排気行程の前半では主に燃焼室上部やシリンダ中央付近の既燃ガスが排出され、ピストン冠面付近の未燃ガスは排出される前に排気弁が閉じられる。一部の既燃ガスとともに燃焼室に密閉された未燃ガスは、密閉期間中の圧縮による高温・高圧のために十分に改質され、燃焼の予反応が起きる。またこの高温のために、ピストン冠面に付着している燃料は蒸発し未燃ガスに加わえられ、一部は改質される。
【0018】
この密閉期間中の圧縮仕事は吸気弁が開かれるまでの吸気行程前半の膨張仕事により回収される。吸気行程後半で筒内圧力がほぼ大気圧に戻った時点で、吸気弁が開かれ新気が筒内に吸入される。次いで圧縮行程に移り、圧縮行程中の燃料噴射が行われるサイクルを繰り返す。
【0019】
こうして一定以下の低負荷時、または一定以上の高回転速度時に、燃料改質の度合いを他の運転条件時より進めて、安定した圧縮着火燃焼を起こさせることができるので、全負荷火花点火燃焼時のトルクを低下させることなく、圧縮着火燃焼運転領域を拡大し、十分な燃費低減を図ることができる。
【0020】
また本発明によれば、燃料が希薄となるので高い改質率が必要となる一定以下の低負荷時、または燃料の改質時間が不足する一定以上の高回転速度時に、燃料噴射弁に供給する燃料圧力を他の運転条件時より低下させるとともに燃料噴射弁から燃料を噴射する燃料噴射時期を他の運転条件時より遅角化させる。
【0021】
これにより、燃料圧力が低下するとともに、遅角化により圧縮行程が進むので燃焼噴射弁前面の圧力が高まるので相対的な燃料圧力をさらに低下させ、ピストン冠面への燃料の付着が他の運転条件時より多くなる。
【0022】
この燃料圧力低下と噴射時期の遅角化との併用は、燃料噴射弁の噴口の指向する方向とシリンダ軸の方向との成す角度が小さいときに、燃料噴射時の燃料噴射弁先端部とピストン冠面との距離が短くなるので、特に有効である。
【0023】
また本発明によれば、燃料が希薄となるので高い改質率が必要となる一定以下の低負荷時、または燃料の改質時間が不足する一定以上の高回転速度時に、燃料噴射弁から燃料を噴射する燃料噴射時期を他の運転条件時より進角化させる。
【0024】
これにより、特に燃料噴射弁の噴口の指向する方向とシリンダ軸の方向との成す角度が比較的大きいとき、噴射時期の進角化による噴射時の筒内圧力が低下するので、これに比例して空気抵抗が低下するため燃料噴霧の飛距離が大きくなり、ピストンクレビス部に付着する燃料の量が他の運転条件時より多くなる。
【0025】
【発明の効果】
請求項1記載の発明によれば、筒内に直接燃料噴射を行う少なくとも1本の燃料噴射弁と点火栓とを備えた筒内直噴式圧縮着火機関において、少なくとも圧縮自己着火運転の低負荷時に排気弁閉時期を進角するとともに吸気弁開時期を遅角して排気上死点を含む前後の期間に燃焼室密閉期間を有するバルブタイミングを設定するバルブタイミング制御手段と、運転条件が前記低負荷時に、ピストン冠面またはピストンクレビス部のいずれかに噴射燃料の一部が前記以外の運転条件時より多く付着または滞留するように前記燃料噴射弁からの燃料噴射を制御する燃料噴射制御手段とを備えたことにより、圧縮自己着火運転の低負荷時にピストン冠面またはピストンクレビス部に付着または滞留した燃料は、前記燃焼室密閉期間中の高温高圧に曝されて気化し、さら燃料改質または燃焼予反応が十分起こり、空燃比が大きい運転領域でも確実に圧縮自己着火燃焼が生じ、圧縮自己着火運転の低負荷時の安定燃焼限界を拡大して十分な燃費向上を図ることができるという効果がある。
【0026】
請求項2記載の発明によれば、筒内に直接燃料噴射を行う少なくとも1本の燃料噴射弁と点火栓とを備えた筒内直噴式圧縮着火機関において、少なくとも圧縮自己着火運転の高回転速度時に排気弁閉時期を進角するとともに吸気弁開時期を遅角して排気上死点を含む前後の期間に燃焼室密閉期間を有するバルブタイミングを設定するバルブタイミング制御手段と、運転条件が前記高回転速度時に、ピストン冠面またはピストンクレビス部のいずれかに噴射燃料の一部が前記以外の運転条件時より多く付着または滞留するように前記燃料噴射弁からの燃料噴射を制御する燃料噴射制御手段とを備えたことにより、圧縮自己着火運転の高回転速度時にピストン冠面またはピストンクレビス部に付着または滞留した燃料は、前記燃焼室密閉期間中の高温高圧に曝されて気化し、さら燃料改質または燃焼予反応が生じる時間的余裕が確保され、圧縮自己着火運転の機関回転速度が高い運転領域でも確実に圧縮自己着火燃焼が生じ、高回転速度時の安定燃焼限界を拡大して十分な燃費向上を図ることができるという効果がある。
【0027】
請求項3記載の発明によれば、請求項1または請求項2記載の発明の効果に加えて、前記燃料噴射制御手段は、前記燃料噴射弁に供給する燃料圧力を制御することにより前記ピストンへの燃料付着または滞留を制御するようにしたので、燃料圧力の制御のみでピストンへの燃料付着量を制御することができるという効果がある。
【0028】
請求項4記載の発明によれば、請求項1または請求項2記載の発明の効果に加えて、前記燃料噴射制御手段は、燃料噴射時期の遅角化または進角化により前記ピストンへの燃料付着または滞留を制御するようにしたので、燃料噴射時期の制御のみで安定燃焼限界を拡大した筒内直噴式圧縮着火機関を提供することができるという効果がある。
【0029】
請求項5記載の発明によれば、請求項1ないし請求項4のいずれかに記載の発明の効果に加えて、前記燃料噴射弁からの燃料噴射を少なくとも2回以上にわけて行い、そのうち1回は圧縮行程後半から膨張行程前半の期間に噴射するようにしたので、高負荷時または低回転速度時における過剰な燃料改質を避けつつ、安定燃焼限界を拡大した筒内直噴式圧縮着火機関を提供することができるという効果がある。
【0030】
請求項6記載の発明によれば、請求項1ないし請求項5のいずれかに記載の発明の効果に加えて、運転条件に応じて、圧縮着火燃焼と火花点火燃焼を切り換え、火花点火燃焼時は排気弁閉時期および吸気弁開時期を概ね排気上死点付近とするようにしたので、高負荷時の高出力と低負荷時の低燃費とを両立させることができるという効果がある。
【0031】
請求項7記載の発明によれば、請求項1ないし請求項5のいずれかに記載の発明の効果に加えて、圧縮着火燃焼時のある一定以上の負荷において、排気弁閉時期および吸気弁開時期を概ね排気上死点付近とするようにしたので、中負荷時から低負荷時まで安定燃焼限界を拡大した筒内直噴式圧縮着火機関を提供することができるという効果がある。
【0032】
【発明の実施の形態】
次に本発明の実施の形態を、図面を参照して詳細に説明する。
【0033】
図1は本発明に係る筒内直噴式圧縮着火機関の第1の実施形態を示すシステム構成図である。
【0034】
図1において、燃焼室1は、シリンダヘッド2とシリンダ3とピストン4により形成されている。燃焼室1と吸気ポート5との間を開閉する吸気弁6は、吸気カム7により駆動される。燃焼室1と排気ポート8との間を開閉する排気弁9は、排気カム10により駆動される。
【0035】
吸気カム7と排気カム10とは、バルブタイミング可変機構13により、例えばカムプロフィールを切替可能となっており、排気上死点直前で吸気弁が開くとともに排気上死点直後に排気弁が閉じる通常のバルブタイミングと、排気上死点前に排気弁が閉じるとともに排気上死点後に吸気弁が開くことにより排気上死点付近で燃焼室の密閉期間(慣用的にマイナスオーバーラップと呼ばれ、以下、マイナスO/Lと略す)を有するマイナスO/Lバルブタイミングとが切替可能となっている。
【0036】
燃焼室1の略頂部には、点火栓11と燃料噴射弁12とが設けられ、燃焼室1の内部へ燃料噴射弁12から直接燃料を噴射することができるとともに、火花点火燃焼時には、点火栓11から火花放電することにより混合気へ点火することができるようになっている。燃料噴射弁12は、噴口の指向する方向と、シリンダ軸方向との成す角度が比較的小さい燃料噴射弁である。
【0037】
また、機関の各種状態を検出するセンサとして、クランク角センサ21、アクセル開度センサ22、吸気量センサ23、水温センサ24、油温センサ25が設けられ、これら各種センサの検出信号は、エンジンコントロールユニット(以下、ECUと略す)30へ入力されている。
【0038】
ECU30は、クランク角センサ21及びアクセル開度センサ22により与えられるエンジン回転速度及びエンジン負荷に基づいて運転条件を判定する運転条件判定部31と、運転条件判定部31の指示に基づいてバルブタイミング可変機構13にバルブタイミングを切り換えさせるバルブタイミング制御部32と、運転条件判定部31の指示に基づいて燃料噴射弁12からの燃料噴射態様を切り替えてピストン冠面またはピストンクレビス部に付着または滞留する燃料量を制御する燃料噴射制御部33とを備えている。
【0039】
運転条件判定部31は、例えば図10(a)に示すような運転条件判定マップを備え、エンジン回転速度及びエンジン負荷に基づいて、火花点火運転領域、通常バルブタイミングの圧縮着火運転領域、排気上死点付近で吸排気弁が共に閉状態の燃焼室の密閉期間付圧縮着火運転領域を判定する。
【0040】
図10は、第1実施形態における燃焼形態を示す運転領域マップであり、火花点火運転領域、通常のバルブタイミングによる圧縮着火運転領域、及び圧縮上死点付近で吸排気弁が共に閉じた密閉期間を有するバルブタイミングによる圧縮自己着火運転領域が設けられている。
【0041】
図10(a)に示すように、一定以上の高回転領域および高負荷領域では、排気弁閉時期及び吸気弁開時期が共に排気TDC付近に設定された通常のバルブタイミングを選択するとともに、火花点火燃焼を行う。
【0042】
中回転速度以下の中負荷領域では、上記通常のバルブタイミングによる圧縮自己着火運転を行い、中回転以下の低負荷領域では、排気上死点付近で排気弁及び吸気弁が共に閉じた密閉期間(マイナスオーバラップ、以下マイナスO/Lと略す)を有するバルブタイミングによる圧縮自己着火運転を行う。
【0043】
そして、図10(b)に示すように、密閉期間付圧縮自己着火運転領域においては、例えばBB’線に示すようにエンジン負荷が小さい場合に、ピストン冠面またはピストンクレビス部に付着又は滞留する燃料量が多くなるように燃料噴射する。
【0044】
また、図10(c)に示すように、密閉期間付圧縮自己着火運転領域においては、例えばAA’線に示すようにエンジン回転速度が高い場合に、ピストン冠面またはピストンクレビス部に付着又は滞留する燃料量が多くなるように燃料噴射する。
【0045】
図1の運転条件判定部31は、エンジン回転速度及びエンジン負荷の判定結果に応じて、火花点火運転領域または通常バルブタイミングの圧縮着火運転領域の場合には、通常バルブタイミングを選択するようにバルブタイミング制御部32に指示し、密閉期間付圧縮着火運転領域の場合には密閉期間付バルブタイミングを選択するようにバルブタイミング制御部32に指示する。
【0046】
バルブタイミング制御部32は、バルブタイミング可変機構13に対し、例えば吸気カム7及び排気カム10のカムプロフィールの切替を指示することにより、通常バルブタイミングまたは密閉期間付バルブタイミングを実現させる。
【0047】
図5は、(d)、(e)は、本実施形態におけるバルブタイミングを示す図である。通常のバルブタイミングでは、排気上死点(排気TDC)前に吸気弁が開き、排気TDC後に排気弁が閉じるバルブオーバラップ動作を行って、吸排気効率を高めている。
【0048】
一方、マイナスO/Lを有するバルブタイミングでは、排気TDC前に排気弁を閉じて、排気TDC後に吸気弁を開く、マイナスO/L動作を行う。
【0049】
これにより、通常のバルブタイミングによるPV線図は図5(b)となり、マイナスO/L動作時のPV線図は、図5(c)となる。
【0050】
燃料噴射制御部33は、運転条件判定部31の指示に従って、燃料噴射態様を切り替えて、ピストン冠面またはピストンクレビス部に付着または滞留する燃料量を制御するものであり、燃料ポンプ14の吐出圧力を制御する燃料圧力制御部34と、燃料噴射弁12から燃料噴射する時期を制御する燃料噴射時期制御部35とを備えている。
【0051】
すなわち燃料噴射制御部33は、火花点火燃焼時には、燃料噴射時期を吸気行程として均質混合気を形成するように、通常のバルブタイミング時の圧縮着火燃焼時には、ピストン冠面またはピストンクレビス部に付着または滞留する燃料が少なくなるように、密閉期間付圧縮着火燃焼時には、ピストン冠面またはピストンクレビス部に付着または滞留する燃料量を機関負荷及び回転速度に応じて変化させるように、燃料ポンプ14の吐出圧力即ち燃料圧力、及び燃料噴射弁12からの燃料噴射時期を制御するものである。
【0052】
図3は、第1実施形態における燃料噴射の形態を示すものであり、図3(a)は、低負荷時の燃料噴射形態を示し、図3(b)は通常時の燃料噴射形態を示すものである。
【0053】
密閉期間付圧縮着火燃焼運転の低負荷時には、図3(a)に示すように、燃料圧力低下による粒径粗大に伴って、霧化の悪化および大粒径液滴の貫徹力増加による付着量増大、または燃料噴射時期の遅角により噴射弁〜冠面間距離が短くなることで、冠面に衝突する噴霧量が増加することによる付着量大となるように燃料噴射弁12から燃料噴射する。
【0054】
通常の圧縮着火時には、図3(b)に示すように、燃料圧力または(および)燃料噴射時期を通常として、燃料のピストン冠面4aへの付着量が少なくなるように燃料噴射弁12から燃料噴射する。
【0055】
次に、図6の筒内状態模式図に基づいて、第1実施形態における部分負荷時のある定められたエンジン負荷・回転速度時の圧縮着火燃焼におけるエンジンの作動を説明する。
【0056】
圧縮着火燃焼の低負荷時には、運転条件判定部31からバルブタイミング制御部32を介してバルブタイミング可変機構13を作動させることにより、排気弁閉時期(EVC)を進角し、吸気弁開時期(IVO)を遅角して、排気上死点付近に燃焼室の密閉期間(マイナスO/L)を設けるようバルブタイミングを選択する。
【0057】
図6(a)に示す排気行程前半では、通常のエンジンと同じくシリンダの排気ガスは排気弁9から排気ポート8へと排出される。図6(b)に示す排気行程後半では、排気弁9を閉じて高温の排気ガスを閉じ込め、再度圧縮を行い、筒内に高温、高圧の状態を形成する。ここで、前サイクルの圧縮行程にピストン4の冠面に積極的に燃料が付着するように燃料噴射を行うため、噴射した燃料の一部が燃焼せずにピストン冠面付近に未燃燃料18aとして残留する。
【0058】
この排気行程前半には、主に燃焼室上部やシリンダ中央付近の排気ガスが排出されるため、ピストン冠面付近に付着または滞留したガソリンは排気行程前半には排出されず、筒内に残留し、排気弁閉後の再圧縮により、高温高圧ガス中で、気化し、さらに燃焼の予反応が起こり反応性の高い組成に改質される。
【0059】
吸気行程前半では吸気弁6及び排気弁9を閉じた状態のまま、改質された燃料を含む混合気を大気圧近くまで膨張させ、排気行程後半の圧縮仕事を回収することができるので、排気上死点付近に密閉期間を設けたことによるポンピングロスは無くなる。次いで、図6(c)に示す吸気行程後半に吸気弁6を開き、新気を吸気ポート5から燃焼室内へ吸入する。
【0060】
図6(d)に示す圧縮行程では改質された燃料を含む混合気と新気が混合された状態で圧縮され、圧縮行程後半にて燃料噴射弁12から負荷に応じた燃料噴射を行う。そして改質された燃料を基にした予反応が圧縮とともに生じ、圧縮上死点付近において圧縮着火燃焼が起こる。
【0061】
このとき、燃料噴射時期を遅角化して圧縮上死点に近く噴射するか、燃料噴射弁12に供給する燃料圧力を通常の圧縮着火時または、火花点火時よりも低く設定する。これにより、燃料噴射弁12に供給される燃料圧力と燃料噴射弁前面の圧力との差が小さくなり、燃料噴射弁12から噴射される燃料噴霧16aの霧滴が大きくなるので、ピストン冠面付近に付着し滞留する燃料18の量は多くなる。
【0062】
この結果、シリンダ内に高温の排気ガスを閉じ込め、圧縮された少量の燃料の改質効果により、圧縮比を高めることなく、低負荷・高回転領域における安定した圧縮着火燃焼を実現できる。
【0063】
ここで、密閉期間中に燃料噴射を行うことで、上記と同様な燃料改質効果が得られることが考えられるが、密閉期間中の燃料噴射量が噴射が多くなると、当該期間中に燃料の一部が燃焼し、十分な燃費の向上が図れないことが考えられる。また、密閉期間中に微量の燃料を噴射するようにした場合、燃料噴射弁のダイナミックレンジを考えると、全負荷時の燃料噴射量と密閉期間中の微量噴射を両立することが難しい。このため、圧縮行程中での燃料噴射によって、密閉期間中に改質させる燃料を筒内に保持する方法は有効である。
【0064】
機関負荷がある程度以上高い場合は、密閉期間を設けて燃料改質を行わなくても、通常の圧縮行程によって、十分な予反応が起こり、自己着火燃焼が可能になる。負荷が高い場合、筒内の平均空燃比が濃くなるため、燃料のピストン冠面やピストンクレビスへの付着が要因で、スモークが排出されることが懸念される。また、高負荷時に密閉期間に燃料の改質を行った場合、改質された燃料によって、予反応が過剰に促進されることで急激な燃焼が引き起こされ、ノッキング状態になることが懸念される。
【0065】
したがって、機関負荷がある一定以上となった場合、バルブタイミングを、排気上死点付近で、排気弁が閉じ、吸気弁が開くような通常のバルブタイミングに変更するとともに、燃料噴射時期を進角するか燃料圧力を高めることによって、ピストンへの付着量を低減するように燃料噴射を制御する。
【0066】
また、図10に示すように、一定以上の高回転領域および高負荷領域では、通常のバルブタイミングを選択するとともに、火花点火燃焼を行う。その場合の筒内状態を図9に示す。ここでは、燃料噴射時期を吸気行程とし、均質混合気を形成して、圧縮上死点近傍にて火花点火燃焼を行うよう図示してある。
【0067】
図2は、本発明に係る筒内直噴式圧縮着火機関の第2の実施形態を示すシステム構成図である。図1に示した第1実施形態との相違は、燃料噴射弁15の噴口の指向する方向とシリンダ軸方向との成す角度が比較的大きく設定されていることと、燃料噴射制御部37が燃料圧力制御部34を備えず、運転条件に応じて燃料ポンプの吐出圧力、即ち燃料噴射弁15に供給される燃料圧力を制御することなく、常に一定の燃料圧力が供給されていることである。その他の構成は、第1実施形態において説明した図1の構成と同じである。このため、本実施形態の燃料噴射制御部37による燃料噴射態様の制御は、燃料噴射時期制御部35の制御に依存している。
【0068】
図4(a)は、本発明における第2の実施形態の低負荷時の燃料噴射の形態を表わすもので、図8に示す通常バルブタイミングでの圧縮着火燃焼時における燃料噴射(図4(b))に対し、圧縮行程における燃料噴射時期を進角してピストンクレビス部4b付近に燃料を多く付着または滞留させるようにしたものである。
【0069】
図4(b)に示すように、通常バルブタイミングでの圧縮行程噴射時は、ピストン冠面に設けた突起4cにより噴射された燃料がピストンクレビス部4bへ到達するのを防ぎ、未燃HCやスモークの排出を抑制する。この際、燃料噴射圧力を高く設定することで、ピストンに燃料液膜を生じさせないようにしてもよい。
【0070】
次に、図7の筒内状態模式図に基づいて、第2実施形態における部分負荷時のある定められたエンジン負荷・回転速度時の圧縮着火燃焼におけるエンジンの作動を説明する。
【0071】
まず、運転領域判定部の判定により第1実施形態と同様に排気上死点付近に密閉期間を有するようマイナスO/Lのバルブタイミングを選択する。
【0072】
図7(a)に示す排気行程前半では、通常のエンジンと同じくシリンダの排気ガスは排気弁9から排気ポート8へと排出される。図7(b)に示す排気行程後半では、排気弁9を閉じて高温の排気ガスを閉じ込め、再度圧縮を行い、筒内に高温、高圧の状態を形成する。ここで、前サイクルの圧縮行程にピストンクレビス部に積極的に燃料が付着するように燃料噴射を行うため、噴射した燃料の一部が燃焼せずにピストンクレビス部付近に未燃燃料19aとして残留する。
【0073】
この排気行程前半には、主に燃焼室上部やシリンダ中央付近の排気ガスが排出されるため、ピストンクレビス部付近に付着または滞留したガソリンは排気行程前半には排出されず、筒内に残留し、排気弁閉後の再圧縮により、高温高圧ガス中で、気化し、さらに燃焼の予反応が起こり反応性の高い組成に改質される。
【0074】
吸気行程前半では吸気弁6及び排気弁9を閉じた状態のまま、改質された燃料を含む混合気を大気圧近くまで膨張させ、排気行程後半の圧縮仕事を回収することができるので、排気上死点付近に密閉期間を設けたことによるポンピングロスは無くなる。次いで、図7(c)に示す吸気行程後半に吸気弁6を開き、新気を吸気ポート5から燃焼室内へ吸入する。
【0075】
図7(d)に示す圧縮行程において、噴射燃料がピストン冠面の突起に衝突せず、シリンダボア方向へ飛翔するよう燃料噴射時期を進角化して設定する。
【0076】
このようにしてピストンクレビス部へ飛翔した燃料の一部は、壁面で火炎がクエンチされるため、燃焼することなく密閉期間に筒内に残留し、高温の残留ガスとともに再圧縮されることになり、燃料改質が行われる。したがって、圧縮比を高めることなく、低負荷・高回転領域における安定した圧縮着火燃焼を実現できる。
【0077】
なお、一度の燃料噴射によって、上述した密閉期間中の滞留燃料を生成する必要はなく、滞留する燃料量を精度良くコントロールするため、2度以上に分けて燃料噴射を行い、燃料を滞留させるための圧縮行程後半の噴射と、吸気行程中や圧縮行程の早い時期にも燃料噴射を行ってもよい。
【0078】
この場合、負荷の制御と密閉期間中の残留燃料量の制御を独立させるために、密閉期間中の残留燃料量の制御のため、膨張行程前半に燃料を噴射させ、ピストン冠面やピストンクレビス部に燃料を付着・滞留させてもよい。
【0079】
以上説明したように、本発明によれば、排気弁閉時期(EVC)を進角し、吸気弁開時期(IVO)を遅角して、EVC〜TDC間の圧縮仕事をTDC〜IVO間に回収するようバルブタイミングを設定し、排気上死点付近に密閉期間を設け、ピストン冠面またはピストンクレビス部のいずれかに噴射燃料の一部が付着または滞留するよう燃料噴射を行い、前記密閉期間中に燃焼室内に存在する高温高圧ガスによって活性化される燃料を確保することで、圧縮比を高めることなく、すなわち全負荷運転時のトルクを低下させることなく、低負荷または高回転領域における安定した圧縮着火燃焼を実現することで、エンジンの燃費を向上することが出来る。
【図面の簡単な説明】
【図1】本発明に係る筒内直噴式圧縮着火機関の第1実施形態の構成を説明するシステム構成図である。
【図2】本発明に係る筒内直噴式圧縮着火機関の第2実施形態の構成を説明するシステム構成図である。
【図3】第1実施形態における圧縮着火燃焼時の燃料噴射形態を説明する模式図である。
【図4】第2実施形態における圧縮着火燃焼時の燃料噴射形態を説明する模式図である。
【図5】実施形態におけるバルブタイミングを説明する図である。
【図6】第1実施形態における低負荷時の筒内状態説明図である。
【図7】第2実施形態における低負荷時の筒内状態説明図である。
【図8】第1および第2実施形態における通常圧縮着火時の筒内状態説明図である。
【図9】第1および第2実施形態における高負荷火花点火燃焼時の筒内状態説明図である。
【図10】本発明における火花点火運転領域、通常バルブタイミング圧縮着火運転領域、密閉期間(マイナスO/L)付圧縮着火運転領域をエンジン負荷−エンジン回転速度マップ上に表示した図である。
【符号の説明】
1 燃焼室
2 シリンダヘッド
3 シリンダ
4 ピストン
5 吸気ポート
6 吸気弁
7 吸気カム
8 排気ポート
9 排気弁
10 排気カム
11 点火栓
12、15 燃料噴射弁
13 バルブタイミング可変機構
14 燃料ポンプ
21 クランク角センサ
22 アクセル開度センサ
23 吸気量センサ
24 水温センサ
25 油温センサ
30 エンジンコントロールユニット(ECU)
31 運転条件判定部
32 バルブタイミング制御部
33 燃料噴射制御部
34 燃料圧力制御部
35 燃料噴射時期制御部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an in-cylinder direct injection compression ignition engine, and more particularly to an in-cylinder direct injection compression self-ignition engine with improved combustion characteristics when the operating conditions are low load or high rotational speed.
[0002]
[Prior art]
As a conventional compression ignition type engine, for example, there is a first prior art disclosed in Japanese Patent Laid-Open No. 7-332141.
[0003]
In the first prior art, in an engine that injects fuel into an intake port, the temperature and pressure in the cylinder near the compression top dead center are increased by increasing the compression ratio, thereby realizing compression self-ignition combustion. As a result, the lean combustion limit and low fuel consumption that exceed the spark ignition gasoline engine are obtained.
[0004]
Further, a second prior art disclosed in Japanese Patent Laid-Open Nos. 11-72039 and 11-72038 is known. According to the second prior art, a part of the fuel is injected in the latter half of the compression stroke, the reforming or combustion pre-reaction of the fuel is promoted up to the compression top dead center, and then the remaining fuel is injected. Therefore, we are trying to expand the combustion stability limit at low load.
[0005]
[Problems to be solved by the invention]
However, the first prior art is intended to realize compression ignition combustion simply by increasing the compression ratio. At full load operation in which spark ignition is performed with a mixture near the stoichiometric air-fuel ratio, the ignition progress associated with the occurrence of knocking is achieved. There is a problem that the angle limit is retarded and the torque is greatly reduced as compared with a spark-ignition gasoline engine having a normal compression ratio.
[0006]
Further, in the second prior art, in the case of a low cetane number fuel such as gasoline, the fuel reforming / pre-reaction is not performed unless the compression ratio is significantly increased or the intake air is pressurized or heated. However, there is a problem that the lean combustion limit is limited and the fuel consumption cannot be improved sufficiently.
[0007]
In particular, pre-reactions are difficult to occur due to a large excess air ratio when the engine is under a low load. At high engine speeds, the actual time from the start of pre-reaction to compression top dead center is shortened. Combustion is likely to be unstable, and it is considered that sufficient fuel efficiency cannot be improved due to the limitation of the operable region.
[0008]
In view of the above problems, the problem of the present invention is to suppress a torque drop during full load spark ignition, Compression self-ignition operation In-cylinder direct-injection compression ignition that ensures fuel reforming and pre-reactions at low loads and high rotational speeds to expand the stable combustion limit at low loads and high rotational speeds, thereby improving fuel efficiency. Is to provide an institution.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, an invention according to claim 1 is directed to an in-cylinder direct injection compression ignition engine including at least one fuel injection valve that directly injects fuel into a cylinder and an ignition plug. At least during low load in compression self-ignition operation Exhaust top dead center by advancing exhaust valve closing timing and retarding intake valve opening timing In the period before and after including Set valve timing with combustion chamber sealing period Do Valve timing control means and operating conditions Said Fuel injection control means for controlling fuel injection from the fuel injection valve so that a part of the injected fuel adheres or stays on either the piston crown surface or the piston clevis portion at a low load more than in other operating conditions. And the gist of the above.
[0010]
In order to solve the above-mentioned problem, an invention according to claim 2 is directed to an in-cylinder direct injection compression ignition engine including at least one fuel injection valve that directly injects fuel into a cylinder and an ignition plug. At least at high rotational speeds in compression self-ignition operation Exhaust top dead center by advancing exhaust valve closing timing and retarding intake valve opening timing In the period before and after including Set valve timing with combustion chamber sealing period Do Valve timing control means and operating conditions Said Fuel injection control for controlling the fuel injection from the fuel injection valve so that a part of the injected fuel adheres or stays on either the piston crown surface or the piston clevis portion at a high rotational speed more than in other operating conditions. And a means.
[0011]
In order to solve the above-mentioned problems, a third aspect of the present invention provides the direct injection type compression ignition engine according to the first or second aspect, wherein the fuel injection control means supplies the fuel pressure supplied to the fuel injection valve. The gist is to control the adhesion or retention of fuel to the piston by controlling.
[0012]
In order to solve the above-mentioned problem, the invention according to claim 4 is the direct injection type compression ignition engine according to claim 1 or 2, wherein the fuel injection control means is configured to retard or advance the fuel injection timing. The gist is to control the adhesion or retention of the fuel to the piston by the conversion.
[0013]
In order to solve the above-mentioned problems, a fifth aspect of the present invention is the direct injection type compression ignition engine according to any one of the first to fourth aspects, wherein at least two fuel injections from the fuel injection valve are performed. The gist of the above is that the injection is performed once during the period from the latter half of the compression stroke to the first half of the expansion stroke.
[0014]
In order to solve the above-mentioned problem, the invention according to claim 6 is the direct injection type compression ignition engine according to any one of claims 1 to 5, wherein the compression ignition combustion and the spark ignition are performed according to the operating conditions. The gist is to switch the combustion, and at the time of spark ignition combustion, the exhaust valve closing timing and the intake valve opening timing are approximately in the vicinity of the exhaust top dead center.
[0015]
In order to solve the above-mentioned problems, the invention according to claim 7 is the direct injection type compression ignition engine according to any one of claims 1 to 5, wherein the compression ignition combustion is performed at a certain load or higher. The main point is that the exhaust valve closing timing and the intake valve opening timing are approximately near the exhaust top dead center.
[0016]
[Action]
According to the above configuration, the fuel is diluted and supplied to the fuel injection valve at a low load below a certain level that requires a high reforming rate, or at a high rotation speed above a certain level where the fuel reforming time is insufficient. Reduce fuel pressure compared to other operating conditions. As a result, the degree of atomization of the fuel spray injected during the compression stroke and the introduction of air into the fuel spray are reduced, relatively large fuel particles are injected, and fuel adheres to the piston crown. .
[0017]
In the vicinity of the compression top dead center, the fuel injected in the compression stroke one cycle before is sufficiently reformed, so that compression ignition combustion occurs at a high temperature and high pressure during compression. A portion of the fuel injected during the compression stroke and adhering to the piston crown surface does not burn in the expansion stroke and remains as unburned fuel near the piston crown surface. In the first half of the subsequent exhaust stroke, the burned gas near the top of the combustion chamber and the center of the cylinder is mainly discharged, and the unburned gas near the piston crown is closed before being discharged. Unburned gas sealed in the combustion chamber together with some burned gas is sufficiently reformed due to high temperature and high pressure due to compression during the sealing period, and combustion pre-reaction occurs. Further, because of this high temperature, the fuel adhering to the piston crown surface evaporates and is added to the unburned gas, and a part thereof is reformed.
[0018]
The compression work during this sealing period is recovered by the expansion work in the first half of the intake stroke until the intake valve is opened. When the in-cylinder pressure returns to almost atmospheric pressure in the latter half of the intake stroke, the intake valve is opened and fresh air is drawn into the cylinder. Next, the process proceeds to the compression stroke, and a cycle in which fuel injection is performed during the compression stroke is repeated.
[0019]
In this way, at a low load below a certain level, or at a high rotation speed above a certain level, the degree of fuel reforming can be advanced from other operating conditions to cause stable compression ignition combustion, so full-load spark ignition combustion Without reducing the torque at the time, it is possible to expand the compression ignition combustion operation region and to sufficiently reduce fuel consumption.
[0020]
Further, according to the present invention, the fuel is diluted and supplied to the fuel injection valve at a low load below a certain level where a high reforming rate is required, or at a high rotation speed above a certain level where the fuel reforming time is insufficient. The fuel pressure to be decreased is lower than that in other operating conditions, and the fuel injection timing for injecting fuel from the fuel injection valve is retarded from that in other operating conditions.
[0021]
As a result, the fuel pressure decreases, and the compression stroke advances due to the retarded angle, so that the pressure on the front surface of the combustion injection valve increases, so that the relative fuel pressure is further reduced, and the fuel adheres to the piston crown surface during other operations. More than the condition.
[0022]
The combined use of the fuel pressure drop and the retarded injection timing is that when the angle formed by the direction of the injection nozzle orifice and the direction of the cylinder shaft is small, the tip of the fuel injection valve and the piston during fuel injection This is particularly effective because the distance from the crown surface is shortened.
[0023]
Further, according to the present invention, the fuel is diluted from the fuel injection valve at a low load below a certain level at which a high reforming rate is required because the fuel is diluted, or at a high rotation speed above a certain level where the fuel reforming time is insufficient. The fuel injection timing for injecting fuel is advanced from the other operating conditions.
[0024]
As a result, the in-cylinder pressure at the time of injection decreases due to the advance of the injection timing, particularly when the angle formed by the direction of the injection port of the fuel injection valve and the direction of the cylinder shaft is relatively large. As the air resistance decreases, the flight distance of the fuel spray increases, and the amount of fuel adhering to the piston clevis increases as compared to other operating conditions.
[0025]
【The invention's effect】
According to the first aspect of the present invention, in the in-cylinder direct injection compression ignition engine including at least one fuel injection valve that directly injects fuel into the cylinder and an ignition plug, At least during low load in compression self-ignition operation Exhaust top dead center by advancing exhaust valve closing timing and retarding intake valve opening timing In the period before and after including Set valve timing with combustion chamber sealing period Do Valve timing control means and operating conditions Said Fuel injection control means for controlling fuel injection from the fuel injection valve so that a part of the injected fuel adheres or stays on either the piston crown surface or the piston clevis portion at a low load more than in other operating conditions. By having Compression self-ignition operation The fuel adhering or staying on the piston crown or piston clevis during low load is vaporized by exposure to high temperature and high pressure during the combustion chamber sealing period, and further fuel reforming or combustion pre-reaction occurs, resulting in a large air-fuel ratio. Compressive self-ignition combustion occurs reliably in the operating range, Compression self-ignition operation There is an effect that the stable combustion limit at the time of low load can be expanded and sufficient fuel consumption can be improved.
[0026]
According to the invention of claim 2, in a direct injection type compression ignition engine having at least one fuel injection valve that directly injects fuel into the cylinder and an ignition plug, At least at high rotational speeds in compression self-ignition operation Exhaust top dead center by advancing exhaust valve closing timing and retarding intake valve opening timing In the period before and after including Set valve timing with combustion chamber sealing period Do Valve timing control means and operating conditions Said Fuel injection control for controlling the fuel injection from the fuel injection valve so that a part of the injected fuel adheres or stays on either the piston crown surface or the piston clevis portion at a high rotational speed more than in other operating conditions. By providing means, Compression self-ignition operation The fuel adhering to or staying on the piston crown or piston clevis at high rotation speed is vaporized by exposure to high temperature and high pressure during the combustion chamber sealing period, and there is enough time for fuel reforming or combustion prereaction to occur. And Compression self-ignition operation There is an effect that the compression self-ignition combustion is surely generated even in the operation region where the engine rotational speed is high, and the fuel consumption can be sufficiently improved by expanding the stable combustion limit at the high rotational speed.
[0027]
According to the invention of claim 3, in addition to the effect of the invention of claim 1 or 2, the fuel injection control means controls the fuel pressure supplied to the fuel injection valve to the piston. Therefore, the amount of fuel adhering to the piston can be controlled only by controlling the fuel pressure.
[0028]
According to a fourth aspect of the invention, in addition to the effect of the first or second aspect of the invention, the fuel injection control means is configured to reduce the fuel to the piston by retarding or advancing the fuel injection timing. Since adhesion or stagnation is controlled, there is an effect that it is possible to provide an in-cylinder direct injection compression ignition engine having an expanded stable combustion limit only by controlling the fuel injection timing.
[0029]
According to the invention described in claim 5, in addition to the effect of the invention described in any one of claims 1 to 4, fuel injection from the fuel injection valve is performed at least twice, of which 1 In-cylinder direct-injection compression ignition engine with expanded stable combustion limit while avoiding excessive fuel reforming at high load or low rotation speed because the injection was performed during the second half of the compression stroke to the first half of the expansion stroke There is an effect that can be provided.
[0030]
According to the invention described in claim 6, in addition to the effects of the invention described in any one of claims 1 to 5, the compression ignition combustion and the spark ignition combustion are switched according to the operating conditions, and the spark ignition combustion is performed. Since the exhaust valve closing timing and the intake valve opening timing are set approximately in the vicinity of exhaust top dead center, there is an effect that both high output at high load and low fuel consumption at low load can be achieved.
[0031]
According to the invention of claim 7, in addition to the effect of the invention of any of claims 1 to 5, the exhaust valve closing timing and the intake valve opening at a certain load or more during compression ignition combustion. Since the timing is set to approximately the exhaust top dead center, there is an effect that it is possible to provide an in-cylinder direct injection compression ignition engine having an expanded stable combustion limit from a middle load to a low load.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings.
[0033]
FIG. 1 is a system configuration diagram showing a first embodiment of an in-cylinder direct injection compression ignition engine according to the present invention.
[0034]
In FIG. 1, the combustion chamber 1 is formed by a cylinder head 2, a cylinder 3 and a piston 4. An intake valve 6 that opens and closes between the combustion chamber 1 and the intake port 5 is driven by an intake cam 7. An exhaust valve 9 that opens and closes between the combustion chamber 1 and the exhaust port 8 is driven by an exhaust cam 10.
[0035]
For example, the cam profile can be switched between the intake cam 7 and the exhaust cam 10 by a variable valve timing mechanism 13, and the intake valve opens immediately before the exhaust top dead center and closes immediately after the exhaust top dead center. The valve timing and the exhaust valve closes before the exhaust top dead center and the intake valve opens after the exhaust top dead center to close the combustion chamber in the vicinity of the exhaust top dead center (usually called minus overlap, , Which is abbreviated as minus O / L) can be switched.
[0036]
An ignition plug 11 and a fuel injection valve 12 are provided substantially at the top of the combustion chamber 1, and fuel can be directly injected from the fuel injection valve 12 into the combustion chamber 1. The air-fuel mixture can be ignited by spark discharge from 11. The fuel injection valve 12 is a fuel injection valve having a relatively small angle formed by the direction in which the injection hole is directed and the cylinder axis direction.
[0037]
As sensors for detecting various states of the engine, a crank angle sensor 21, an accelerator opening sensor 22, an intake air amount sensor 23, a water temperature sensor 24, and an oil temperature sensor 25 are provided. It is input to a unit (hereinafter abbreviated as ECU) 30.
[0038]
The ECU 30 has an operating condition determining unit 31 that determines an operating condition based on the engine speed and the engine load given by the crank angle sensor 21 and the accelerator opening sensor 22, and a variable valve timing based on an instruction from the operating condition determining unit 31. A fuel that adheres to or stays on the piston crown surface or piston clevis portion by switching the fuel injection mode from the fuel injection valve 12 based on an instruction from the valve timing control section 32 that causes the mechanism 13 to switch the valve timing and the operating condition determination section 31 And a fuel injection control unit 33 for controlling the amount.
[0039]
The operation condition determination unit 31 includes an operation condition determination map as shown in FIG. 10A, for example, and based on the engine speed and the engine load, the spark ignition operation region, the normal valve timing compression ignition operation region, the exhaust A compression ignition operation region with a sealing period of the combustion chamber in which both the intake and exhaust valves are closed in the vicinity of the dead center is determined.
[0040]
FIG. 10 is an operation region map showing the combustion mode in the first embodiment, and includes a spark ignition operation region, a compression ignition operation region with normal valve timing, and a sealed period in which the intake and exhaust valves are closed near the compression top dead center. A compression self-ignition operation region with a valve timing is provided.
[0041]
As shown in FIG. 10 (a), in a high rotation region and a high load region above a certain level, the normal valve timing in which both the exhaust valve closing timing and the intake valve opening timing are set in the vicinity of the exhaust TDC is selected, and a spark is generated. Ignition combustion is performed.
[0042]
In the medium load region below the medium rotation speed, the compression self-ignition operation is performed according to the normal valve timing. In the low load region below the medium rotation, the exhaust valve and the intake valve are both closed near the exhaust top dead center. A compression self-ignition operation is performed at a valve timing having a minus overlap (hereinafter abbreviated as minus O / L).
[0043]
Then, as shown in FIG. 10 (b), in the compression self-ignition operation region with a sealing period, for example, the engine load is small In this case, the fuel is injected so that the amount of fuel adhering to or staying on the piston crown surface or the piston clevis portion increases.
[0044]
Further, as shown in FIG. 10 (c), in the compression self-ignition operation region with a sealing period, for example, when the engine speed is high as shown by the line AA ', it adheres to or stays on the piston crown surface or the piston clevis portion. Fuel injection is performed so that the amount of fuel to be increased.
[0045]
The operation condition determination unit 31 in FIG. 1 selects the normal valve timing in the spark ignition operation region or the compression ignition operation region of the normal valve timing according to the determination result of the engine speed and the engine load. The timing control unit 32 is instructed, and in the case of the compression ignition operation region with the sealing period, the valve timing control unit 32 is instructed to select the valve timing with the sealing period.
[0046]
The valve timing control unit 32 instructs the valve timing variable mechanism 13 to switch the cam profile of the intake cam 7 and the exhaust cam 10, for example, thereby realizing normal valve timing or valve timing with a sealing period.
[0047]
5D and 5E are diagrams showing valve timings in the present embodiment. In normal valve timing, the intake valve opens before exhaust top dead center (exhaust TDC), and the exhaust valve closes after exhaust TDC to increase the intake and exhaust efficiency.
[0048]
On the other hand, at the valve timing having minus O / L, a minus O / L operation is performed in which the exhaust valve is closed before exhaust TDC and the intake valve is opened after exhaust TDC.
[0049]
Thereby, the PV diagram based on the normal valve timing is as shown in FIG. 5B, and the PV diagram during the minus O / L operation is as shown in FIG. 5C.
[0050]
The fuel injection control unit 33 switches the fuel injection mode in accordance with an instruction from the operating condition determination unit 31 and controls the amount of fuel adhering or staying on the piston crown surface or the piston clevis unit. And a fuel injection timing control unit 35 for controlling the timing of fuel injection from the fuel injection valve 12.
[0051]
That is, the fuel injection control unit 33 adheres to the piston crown surface or the piston clevis portion at the time of compression ignition combustion at the normal valve timing so as to form a homogeneous mixture with the fuel injection timing as the intake stroke at the time of spark ignition combustion. The fuel pump 14 discharges so that the amount of fuel adhering to or staying on the piston crown or piston clevis is changed according to the engine load and rotational speed during compression ignition combustion with a closed period so that the staying fuel is reduced. The pressure, that is, the fuel pressure, and the fuel injection timing from the fuel injection valve 12 are controlled.
[0052]
FIG. 3 shows the form of fuel injection in the first embodiment, FIG. 3 (a) shows the fuel injection form at low load, and FIG. 3 (b) shows the fuel injection form at normal time. Is.
[0053]
When the compression ignition combustion operation with a closed period is low, as shown in FIG. 3 (a), the amount of adhesion due to the deterioration of atomization and the penetration of large droplets increases with the increase in the particle size due to the decrease in fuel pressure. The fuel injection from the fuel injection valve 12 is carried out so that the amount of adhesion due to the increase in the amount of spray impinging on the crown surface increases due to the increase in the distance between the injection valve and the crown surface due to the increase or the delay of the fuel injection timing. .
[0054]
At the time of normal compression ignition, as shown in FIG. 3 (b), the fuel pressure or (and) the fuel injection timing is normal, and the fuel is injected from the fuel injection valve 12 so that the amount of fuel adhering to the piston crown 4a is reduced. Spray.
[0055]
Next, based on the in-cylinder state schematic diagram of FIG. 6, the operation of the engine in compression ignition combustion at a predetermined engine load / rotational speed at the time of partial load in the first embodiment will be described.
[0056]
When the compression ignition combustion is at a low load, the valve timing variable mechanism 13 is operated from the operating condition determination unit 31 via the valve timing control unit 32 to advance the exhaust valve closing timing (EVC) and the intake valve opening timing ( The valve timing is selected so that IVO) is retarded and a combustion chamber sealing period (minus O / L) is provided near the exhaust top dead center.
[0057]
In the first half of the exhaust stroke shown in FIG. 6A, the exhaust gas of the cylinder is discharged from the exhaust valve 9 to the exhaust port 8 as in the case of a normal engine. In the latter half of the exhaust stroke shown in FIG. 6B, the exhaust valve 9 is closed to confine the high temperature exhaust gas, and compression is performed again to form a high temperature and high pressure state in the cylinder. Here, since fuel injection is performed so that fuel is positively attached to the crown surface of the piston 4 during the compression stroke of the previous cycle, a part of the injected fuel does not burn and the unburned fuel 18a near the piston crown surface. Remains as.
[0058]
During the first half of the exhaust stroke, exhaust gas is mainly discharged from the upper part of the combustion chamber and near the center of the cylinder. Therefore, the gasoline adhering to or staying in the vicinity of the piston crown is not discharged in the first half of the exhaust stroke and remains in the cylinder. By recompression after closing the exhaust valve, it is vaporized in a high-temperature and high-pressure gas, and further, a pre-reaction of combustion occurs and reforms to a highly reactive composition.
[0059]
In the first half of the intake stroke, the air-fuel mixture containing the reformed fuel can be expanded to near atmospheric pressure while the intake valve 6 and the exhaust valve 9 are closed, and the compression work in the second half of the exhaust stroke can be recovered. There is no pumping loss due to the sealing period near the top dead center. Next, the intake valve 6 is opened in the latter half of the intake stroke shown in FIG. 6C, and fresh air is drawn into the combustion chamber from the intake port 5.
[0060]
In the compression stroke shown in FIG. 6D, the air-fuel mixture containing the reformed fuel and the fresh air are compressed in a mixed state, and fuel is injected from the fuel injection valve 12 according to the load in the latter half of the compression stroke. A pre-reaction based on the reformed fuel occurs with compression, and compression ignition combustion occurs near the compression top dead center.
[0061]
At this time, the fuel injection timing is retarded and injection is made close to the compression top dead center, or the fuel pressure supplied to the fuel injection valve 12 is set lower than that during normal compression ignition or spark ignition. As a result, the difference between the fuel pressure supplied to the fuel injection valve 12 and the pressure on the front surface of the fuel injection valve is reduced, and the mist droplets of the fuel spray 16a injected from the fuel injection valve 12 are increased. The amount of fuel 18 adhering to and staying on increases.
[0062]
As a result, high temperature exhaust gas is confined in the cylinder, and stable compression ignition combustion in a low load / high rotation range can be realized without increasing the compression ratio due to the reforming effect of a small amount of compressed fuel.
[0063]
Here, it is conceivable that the fuel reforming effect similar to the above can be obtained by performing the fuel injection during the sealing period. However, when the fuel injection amount during the sealing period increases, It is conceivable that a part of the fuel is burned and fuel efficiency cannot be improved sufficiently. Further, when a small amount of fuel is injected during the sealing period, it is difficult to achieve both the fuel injection amount at the full load and the minute injection during the sealing period in consideration of the dynamic range of the fuel injection valve. Therefore, a method of holding the fuel to be reformed in the cylinder during the sealing period by fuel injection during the compression stroke is effective.
[0064]
When the engine load is higher than a certain level, a sufficient pre-reaction occurs in the normal compression stroke without the need for fuel reforming by providing a sealing period, and self-ignition combustion becomes possible. When the load is high, the average air-fuel ratio in the cylinder becomes dense, and there is a concern that smoke may be discharged due to fuel adhering to the piston crown and piston clevis. In addition, when fuel is reformed in a closed period at high load, there is a concern that the reformed fuel will promote excessive pre-reaction and cause rapid combustion, resulting in a knocking state. .
[0065]
Therefore, when the engine load exceeds a certain level, the valve timing is changed to a normal valve timing in which the exhaust valve closes and the intake valve opens near the exhaust top dead center, and the fuel injection timing is advanced. The fuel injection is controlled so as to reduce the amount of adhesion to the piston by increasing the fuel pressure.
[0066]
Further, as shown in FIG. 10, in a high rotation region and a high load region above a certain level, normal valve timing is selected and spark ignition combustion is performed. The in-cylinder state in that case is shown in FIG. Here, the fuel injection timing is taken as the intake stroke, a homogeneous air-fuel mixture is formed, and spark ignition combustion is performed near the compression top dead center.
[0067]
FIG. 2 is a system configuration diagram showing a second embodiment of the direct injection type compression ignition engine according to the present invention. The difference from the first embodiment shown in FIG. 1 is that the angle formed by the direction of the injection port of the fuel injection valve 15 and the cylinder axial direction is set to be relatively large, and that the fuel injection control unit 37 has The pressure control unit 34 is not provided, and a constant fuel pressure is always supplied without controlling the discharge pressure of the fuel pump, that is, the fuel pressure supplied to the fuel injection valve 15 according to the operating conditions. The other configuration is the same as the configuration of FIG. 1 described in the first embodiment. For this reason, the control of the fuel injection mode by the fuel injection control unit 37 of the present embodiment depends on the control of the fuel injection timing control unit 35.
[0068]
FIG. 4A shows a fuel injection mode at low load according to the second embodiment of the present invention. The fuel injection at the time of compression ignition combustion at the normal valve timing shown in FIG. 8 (FIG. 4B )), The fuel injection timing in the compression stroke is advanced so that a large amount of fuel adheres or stays in the vicinity of the piston clevis portion 4b.
[0069]
As shown in FIG. 4 (b), during the compression stroke injection at the normal valve timing, the fuel injected by the protrusion 4c provided on the piston crown surface is prevented from reaching the piston clevis portion 4b. Reduce smoke emissions. At this time, a fuel liquid film may not be generated on the piston by setting the fuel injection pressure high.
[0070]
Next, based on the in-cylinder state schematic diagram of FIG. 7, the operation of the engine in compression ignition combustion at a predetermined engine load / rotational speed at the time of partial load in the second embodiment will be described.
[0071]
First, the minus O / L valve timing is selected so as to have a sealing period in the vicinity of the exhaust top dead center, as in the first embodiment, as determined by the operation region determination unit.
[0072]
In the first half of the exhaust stroke shown in FIG. 7A, the exhaust gas of the cylinder is discharged from the exhaust valve 9 to the exhaust port 8 as in the case of a normal engine. In the latter half of the exhaust stroke shown in FIG. 7B, the exhaust valve 9 is closed to confine the high-temperature exhaust gas, compression is performed again, and a high-temperature and high-pressure state is formed in the cylinder. Here, since fuel injection is performed so that the fuel is positively attached to the piston clevis portion in the compression stroke of the previous cycle, a part of the injected fuel does not burn and remains as unburned fuel 19a in the vicinity of the piston clevis portion. To do.
[0073]
During the first half of the exhaust stroke, the exhaust gas mainly from the upper part of the combustion chamber and the center of the cylinder is discharged. Therefore, the gasoline adhering to or staying in the vicinity of the piston clevis is not discharged in the first half of the exhaust stroke and remains in the cylinder. By recompression after closing the exhaust valve, it is vaporized in a high-temperature and high-pressure gas, and further, a pre-reaction of combustion occurs and reforms to a highly reactive composition.
[0074]
In the first half of the intake stroke, the air-fuel mixture containing the reformed fuel can be expanded to near atmospheric pressure while the intake valve 6 and the exhaust valve 9 are closed, and the compression work in the second half of the exhaust stroke can be recovered. There is no pumping loss due to the sealing period near the top dead center. Next, in the latter half of the intake stroke shown in FIG. 7C, the intake valve 6 is opened, and fresh air is drawn into the combustion chamber from the intake port 5.
[0075]
In the compression stroke shown in FIG. 7 (d), the fuel injection timing is advanced and set so that the injected fuel does not collide with the projections on the piston crown surface and flies in the cylinder bore direction.
[0076]
Part of the fuel that has flown to the piston clevis in this way is quenched in the wall and remains in the cylinder during the sealing period without being burned, and is recompressed together with the high-temperature residual gas. Fuel reforming is performed. Therefore, stable compression ignition combustion in a low load / high rotation range can be realized without increasing the compression ratio.
[0077]
In addition, it is not necessary to generate the staying fuel during the above-described sealing period by one fuel injection, and in order to control the amount of staying fuel with high accuracy, the fuel injection is performed in two or more times and the fuel is retained. The fuel injection may be performed during the latter half of the compression stroke and during the intake stroke or early in the compression stroke.
[0078]
In this case, in order to make the load control and the residual fuel amount control during the sealing period independent, in order to control the residual fuel amount during the sealing period, fuel is injected in the first half of the expansion stroke, and the piston crown surface and piston clevis part The fuel may adhere to or stay in the tank.
[0079]
As described above, according to the present invention, the exhaust valve closing timing (EVC) is advanced, the intake valve opening timing (IVO) is retarded, and the compression work between EVC and TDC is performed between TDC and IVO. The valve timing is set so as to be recovered, a sealing period is provided near the exhaust top dead center, and fuel injection is performed so that part of the injected fuel adheres or stays on either the piston crown surface or the piston clevis part. By securing the fuel that is activated by the high-temperature and high-pressure gas existing in the combustion chamber, it is possible to stabilize in a low load or high rotation range without increasing the compression ratio, that is, without reducing the torque during full load operation. By realizing the compression ignition combustion, the fuel efficiency of the engine can be improved.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram illustrating a configuration of a first embodiment of an in-cylinder direct injection compression ignition engine according to the present invention.
FIG. 2 is a system configuration diagram illustrating a configuration of a second embodiment of the direct injection type compression ignition engine according to the present invention.
FIG. 3 is a schematic diagram illustrating a fuel injection mode at the time of compression ignition combustion in the first embodiment.
FIG. 4 is a schematic diagram illustrating a fuel injection mode during compression ignition combustion in the second embodiment.
FIG. 5 is a diagram illustrating valve timing in the embodiment.
FIG. 6 is an explanatory diagram of an in-cylinder state at the time of low load in the first embodiment.
FIG. 7 is an explanatory diagram of an in-cylinder state at the time of low load in the second embodiment.
FIG. 8 is an explanatory diagram of an in-cylinder state during normal compression ignition in the first and second embodiments.
FIG. 9 is an explanatory diagram of an in-cylinder state at the time of high load spark ignition combustion in the first and second embodiments.
FIG. 10 is a diagram in which a spark ignition operation region, a normal valve timing compression ignition operation region, and a compression ignition operation region with a sealing period (minus O / L) in the present invention are displayed on an engine load-engine rotation speed map.
[Explanation of symbols]
1 Combustion chamber
2 Cylinder head
3 cylinders
4 Piston
5 Intake port
6 Intake valve
7 Intake cam
8 Exhaust port
9 Exhaust valve
10 Exhaust cam
11 Spark plug
12, 15 Fuel injection valve
13 Valve timing variable mechanism
14 Fuel pump
21 Crank angle sensor
22 Accelerator position sensor
23 Intake sensor
24 Water temperature sensor
25 Oil temperature sensor
30 Engine control unit (ECU)
31 Operating condition determination unit
32 Valve timing controller
33 Fuel injection control unit
34 Fuel pressure control unit
35 Fuel injection timing controller

Claims (7)

筒内に直接燃料噴射を行う少なくとも1本の燃料噴射弁と点火栓とを備えた筒内直噴式圧縮着火機関において、
少なくとも圧縮自己着火運転の低負荷時に排気弁閉時期を進角するとともに吸気弁開時期を遅角して排気上死点を含む前後の期間に燃焼室密閉期間を有するバルブタイミングを設定するバルブタイミング制御手段と、
運転条件が前記低負荷時に、ピストン冠面またはピストンクレビス部のいずれかに噴射燃料の一部が前記以外の運転条件時より多く付着または滞留するように前記燃料噴射弁からの燃料噴射を制御する燃料噴射制御手段と、
を備えたことを特徴とする筒内直噴式圧縮着火機関。
In a cylinder direct injection compression ignition engine including at least one fuel injection valve that directly injects fuel into a cylinder and an ignition plug,
Valve timing for setting a valve timing having a combustion chamber sealing period in the period before and after exhaust top dead center by advancing the exhaust valve closing timing and retarding the intake valve opening timing at least at the time of low load of compression self-ignition operation Control means;
The operating conditions at the time of low load, controls the fuel injection from the fuel injection valve as part of either the injected fuel of the piston crown surface or piston clevis portion is often deposited or residence than during the operation conditions other than the Fuel injection control means;
An in-cylinder direct injection compression ignition engine characterized by comprising:
筒内に直接燃料噴射を行う少なくとも1本の燃料噴射弁と点火栓とを備えた筒内直噴式圧縮着火機関において、
少なくとも圧縮自己着火運転の高回転速度時に排気弁閉時期を進角するとともに吸気弁開時期を遅角して排気上死点を含む前後の期間に燃焼室密閉期間を有するバルブタイミングを設定するバルブタイミング制御手段と、
運転条件が前記高回転速度時に、ピストン冠面またはピストンクレビス部のいずれかに噴射燃料の一部が前記以外の運転条件時より多く付着または滞留するように前記燃料噴射弁からの燃料噴射を制御する燃料噴射制御手段と、
を備えたことを特徴とする筒内直噴式圧縮着火機関。
In a cylinder direct injection compression ignition engine including at least one fuel injection valve that directly injects fuel into a cylinder and an ignition plug,
A valve that sets the valve timing having a combustion chamber sealing period in the period before and after exhaust top dead center by advancing the exhaust valve closing timing and retarding the intake valve opening timing at least at a high rotational speed of compression self-ignition operation Timing control means;
During operation conditions the high rotational speed, controls the fuel injection from the fuel injection valve as part of either the injected fuel of the piston crown surface or piston clevis portion is often deposited or residence than during the operation conditions other than the Fuel injection control means,
An in-cylinder direct injection compression ignition engine characterized by comprising:
前記燃料噴射制御手段は、
前記燃料噴射弁に供給する燃料圧力を制御することにより前記ピストンへの燃料付着または滞留を制御することを特徴とする請求項1または請求項2記載の筒内直噴式圧縮着火機関。
The fuel injection control means includes
3. The direct injection type compression ignition engine according to claim 1, wherein fuel adhesion or stagnation to the piston is controlled by controlling a fuel pressure supplied to the fuel injection valve.
前記燃料噴射制御手段は、
燃料噴射時期の遅角化または進角化により前記ピストンへの燃料付着または滞留を制御することを特徴とする請求項1または請求項2記載の筒内直噴式圧縮着火機関。
The fuel injection control means includes
3. An in-cylinder direct injection compression ignition engine according to claim 1 or 2, wherein fuel adhesion or stagnation on the piston is controlled by retarding or advancing the fuel injection timing.
前記燃料噴射弁からの燃料噴射を少なくとも2回以上にわけて行い、そのうち1回は圧縮行程後半から膨張行程前半の期間に噴射することを特徴とする請求項1ないし請求項4のいずれか1項記載の筒内直噴式圧縮着火機関。5. The fuel injection from the fuel injection valve is performed at least twice, and one injection is performed during the period from the latter half of the compression stroke to the first half of the expansion stroke. The in-cylinder direct injection compression ignition engine described in the item. 運転条件に応じて、圧縮着火燃焼と火花点火燃焼を切り換え、火花点火燃焼時は排気弁閉時期および吸気弁開時期を概ね排気上死点付近とすることを特徴とする請求項1ないし請求項5のいずれか1項記載の筒内直噴式圧縮着火機関。The compression ignition combustion and the spark ignition combustion are switched in accordance with the operating conditions, and the exhaust valve closing timing and the intake valve opening timing are approximately in the vicinity of the exhaust top dead center during the spark ignition combustion. The in-cylinder direct injection compression ignition engine according to claim 5. 圧縮着火燃焼時のある一定以上の負荷において、排気弁閉時期および吸気弁開時期を概ね排気上死点付近とすることを特徴とする請求項1ないし請求項5のいずれか1項記載の筒内直噴式圧縮着火機関。The cylinder according to any one of claims 1 to 5, wherein the exhaust valve closing timing and the intake valve opening timing are approximately in the vicinity of exhaust top dead center at a certain load or more during compression ignition combustion. Internal direct injection compression ignition engine.
JP33308299A 1999-11-24 1999-11-24 In-cylinder direct injection compression ignition engine Expired - Fee Related JP3770015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33308299A JP3770015B2 (en) 1999-11-24 1999-11-24 In-cylinder direct injection compression ignition engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33308299A JP3770015B2 (en) 1999-11-24 1999-11-24 In-cylinder direct injection compression ignition engine

Publications (2)

Publication Number Publication Date
JP2001152854A JP2001152854A (en) 2001-06-05
JP3770015B2 true JP3770015B2 (en) 2006-04-26

Family

ID=18262080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33308299A Expired - Fee Related JP3770015B2 (en) 1999-11-24 1999-11-24 In-cylinder direct injection compression ignition engine

Country Status (1)

Country Link
JP (1) JP3770015B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3975695B2 (en) * 2001-06-25 2007-09-12 日産自動車株式会社 Self-igniting engine
JP3952710B2 (en) * 2001-08-06 2007-08-01 日産自動車株式会社 Compression self-ignition internal combustion engine
JP2003097317A (en) * 2001-09-26 2003-04-03 Hitachi Ltd Method for controlling ignition timing of premixed compression-ignition engine
EP1331382B1 (en) * 2002-01-24 2008-09-03 Robert Bosch Gmbh Method, computer programme, control and/or regulation device for operation of an internal combustion engine and internal combustion engine
JP4126958B2 (en) * 2002-05-17 2008-07-30 トヨタ自動車株式会社 In-cylinder injection internal combustion engine start-up control device
JP4117799B2 (en) * 2007-01-18 2008-07-16 株式会社日立製作所 Control method of ignition timing of premixed compression ignition engine
WO2010046999A1 (en) 2008-10-20 2010-04-29 トヨタ自動車株式会社 Internal combustion engine controller
JP6631574B2 (en) * 2017-03-31 2020-01-15 マツダ株式会社 Premixed compression ignition engine

Also Published As

Publication number Publication date
JP2001152854A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
US7080613B2 (en) Method for auto-ignition combustion control
US6994072B2 (en) Method for mid load operation of auto-ignition combustion
US7367313B2 (en) Speed transient control methods for direct-injection engines with controlled auto-ignition combustion
US7370633B2 (en) Load transient control methods for direct-injection engines with controlled auto-ignition combustion
JP5423717B2 (en) Spark ignition gasoline engine
JP5447423B2 (en) gasoline engine
EP1424481A2 (en) Diesel engine
US20060196466A1 (en) Method for transition between controlled auto-ignition and spark ignition modes in direct fuel injection engines
JP4122630B2 (en) Compression self-ignition gasoline engine
JP2002206446A (en) Internal combustion engine and fuel injection control device for the internal combustion engine
WO2006017085A2 (en) Four stroke engine auto-ignition combustion
JP2002004913A (en) Compression self-ignition type internal combustion engine
JP2003049691A (en) Control system for self-ignition type engine
JP2002155780A (en) Combustion control device of internal combustion engine
KR20030022040A (en) Controller for spark ignition type direct injection engine
JP4736518B2 (en) In-cylinder direct injection internal combustion engine control device
JP2002242716A (en) Control device for cylinder injection engine
JP3975695B2 (en) Self-igniting engine
JP3770015B2 (en) In-cylinder direct injection compression ignition engine
JP2003090239A (en) Internal combustion engine of cylinder direct injection type
JP4492399B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device and control method
JP7294099B2 (en) Control device for compression ignition engine
JP3873560B2 (en) Combustion control device for internal combustion engine
JP2009156045A (en) Fuel injection control device of engine
JP4274063B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees