JP2002195040A - Cylinder direct-injection of fuel type internal combustion engine - Google Patents

Cylinder direct-injection of fuel type internal combustion engine

Info

Publication number
JP2002195040A
JP2002195040A JP2000391161A JP2000391161A JP2002195040A JP 2002195040 A JP2002195040 A JP 2002195040A JP 2000391161 A JP2000391161 A JP 2000391161A JP 2000391161 A JP2000391161 A JP 2000391161A JP 2002195040 A JP2002195040 A JP 2002195040A
Authority
JP
Japan
Prior art keywords
fuel
concave chamber
air
fuel mixture
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000391161A
Other languages
Japanese (ja)
Other versions
JP3945158B2 (en
Inventor
Hiroshi Ogawa
弘志 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000391161A priority Critical patent/JP3945158B2/en
Publication of JP2002195040A publication Critical patent/JP2002195040A/en
Application granted granted Critical
Publication of JP3945158B2 publication Critical patent/JP3945158B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a compressed self ignition combustion area to expand on the high-load side, by delaying ignition timing at the time of compressed self ignition combustion so as to slower the pace of increase in pressure within a cylinder. SOLUTION: A fuel injection valve 10 is disposed to a cylinder wall on an intake port 6 side, a first recessed chamber 41 having a small opening area is formed in the fuel injection valve 10 side of a piston crown 4a, and a second recessed chamber 42 having a large opening area is formed near the first recessed chamber 41. Rich air-fuel mixture 52 is supplied in the first recessed chamber 41, and lean air-fuel mixture 51 is supplied in the second recessed chamber 42; and the rich air-fuel mixture 52 is burnt by spark ignition posterior to a top dead center to generate heat, and the heat causes the compressed self-ignition combustion of the lean air-fuel mixture 51.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、筒内直接噴射式内
燃機関に関し、特に、ガソリンのようなセタン価の低い
燃料を用いて圧縮自己着火燃焼を行わせる機関に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-cylinder direct injection internal combustion engine, and more particularly to an engine in which compression self-ignition combustion is performed using a fuel having a low cetane number such as gasoline.

【0002】[0002]

【従来の技術】従来、圧縮自己着火燃焼を行う内燃機関
として、特開平10−196424号公報に開示される
ものがあった。このものは、シリンダ内のピストンとは
別に、補助圧縮手段としてコントロールピストンを備
え、自己着火寸前の高温にまで圧縮された混合気に対
し、前記コントロールピストンによる圧縮をさらに加え
ることで、上記混合気を一斉に自己着火させる構成とな
っている。
2. Description of the Related Art Hitherto, as an internal combustion engine which performs compression self-ignition combustion, there has been one disclosed in Japanese Patent Application Laid-Open No. Hei 10-196424. This is provided with a control piston as auxiliary compression means separately from the piston in the cylinder, and further adds compression by the control piston to the air-fuel mixture which has been compressed to a high temperature just before self-ignition. Are self-ignited simultaneously.

【0003】また、点火プラグによる火花点火により自
己着火を引き起こすよう構成された機関が、特開平11
−210539号公報に開示されている。このものは、
圧縮行程末期におけるシリンダ内のガス温度が、点火す
ると混合気全体の自己着火を引き起こす目標温度である
か否かを判断し、この判断に基づいて吸気弁の開弁時期
を制御することにより、圧縮行程末期におけるシリンダ
内のガス温度を上記目標温度に維持するようにしてい
る。
An engine configured to cause self-ignition by spark ignition by a spark plug is disclosed in
-21039. This one is
It is determined whether or not the gas temperature in the cylinder at the end of the compression stroke is a target temperature at which ignition of the entire air-fuel mixture causes self-ignition, and the valve opening timing of the intake valve is controlled based on this determination to thereby control the compression. The gas temperature in the cylinder at the end of the stroke is maintained at the target temperature.

【0004】[0004]

【発明が解決しようとする課題】ところで、圧縮自己着
火燃焼は、火炎伝播による燃焼と異なり、局所的な燃焼
温度が低く、NOxが極微量にしか発生しないという利
点があるが、その反面、均質な混合気場においては、シ
リンダ内全域が一斉に着火するため、負荷の上昇に伴っ
て混合気をリッチ化すると、シリンダ内の圧力上昇率が
大きくなりすぎ、振動・騒音が大きくなるという問題が
ある。
By the way, the compression self-ignition combustion has an advantage that, unlike the combustion by flame propagation, the local combustion temperature is low and NOx is generated only in a very small amount. In an air-fuel mixture field, the entire area inside the cylinder is ignited all at once.Therefore, if the air-fuel mixture is enriched with an increase in load, the pressure rise rate in the cylinder will become too large, and vibration and noise will increase. is there.

【0005】従って、圧縮自己着火燃焼運転を行わせる
負荷領域を高負荷側に拡大するためには、着火時期を上
死点付近又はそれ以降に設定し、大部分の燃焼を上死点
より後の期間に生じさせることで、シリンダ内の圧力上
昇率を抑制する必要がある。しかしながら、着火時期を
上死点付近又はそれ以降に遅らせた場合には、ピストン
の下降と共に初期の燃焼が進むことになるため、燃焼が
不安定になり易く、圧縮自己着火燃焼運転を行わせる負
荷領域を高負荷側に拡大するためには、着火の時期を遅
らせ、かつ、安定した燃焼性が得られるようにする必要
がある。
Therefore, in order to expand the load region in which the compression self-ignition combustion operation is performed to the high load side, the ignition timing is set near or after the top dead center, and most of the combustion is performed after the top dead center. , It is necessary to suppress the rate of pressure increase in the cylinder. However, if the ignition timing is delayed near or after the top dead center, the initial combustion proceeds with the lowering of the piston, so that the combustion tends to be unstable, and the load for performing the compression self-ignition combustion operation. In order to expand the region to the high load side, it is necessary to delay the ignition timing and obtain stable combustion.

【0006】一方、均質な混合気場において、特開平1
1−210539号公報に開示されるような点火プラグ
によるアシストを適用すれば、圧縮自己着火燃焼の着火
時期を安定させることができる。しかし、上記の方法で
は、上死点付近又はそれ以降に圧縮自己着火燃焼が発生
するとしても、着火時期を遅らせることができず、圧縮
自己着火燃焼領域の高負荷側への拡大には効果を発揮し
ない。
On the other hand, in a homogeneous gas mixture field, Japanese Patent Application Laid-Open
If the assist by the ignition plug as disclosed in Japanese Patent Application Laid-Open No. 1-210539 is applied, the ignition timing of the compression self-ignition combustion can be stabilized. However, according to the above method, even if compression self-ignition combustion occurs near or at the top dead center, the ignition timing cannot be delayed, and it is not effective in expanding the compression self-ignition combustion region to the high load side. Does not demonstrate.

【0007】また、圧縮自己着火燃焼において、局所的
にリッチな混合気場を形成し、そこから自己着火或いは
火花着火させ、リッチな混合気場からの燃焼により周囲
の燃料を圧縮自己着火させる方法が特開平11−210
539号公報に開示されている。しかし、特開平11−
210539号公報に開示されるように、燃焼室の吸気
弁が配置される側の周壁からピストン冠面に向け燃料を
噴射し、ピストン冠面に設けられた壁面に沿って燃料噴
霧を持ち上げて点火プラグ周りに集める構成では、リッ
チ混合気を一定の場所に留めておくことが困難であっ
て、シリンダヘッド中心に配した点火プラグヘリッチな
混合気を安定供給するためには、多くの燃料を噴射する
必要があり、上死点付近もしくはそれ以降に着火時期を
遅らせることができたとしても、リッチな混合気が多く
存在するため、圧力上昇率を下げることは困難である。
Further, in the compression self-ignition combustion, a method is provided in which a rich mixture field is locally formed, self-ignition or spark ignition is performed therefrom, and the surrounding fuel is compressed and self-ignited by combustion from the rich mixture field. Are disclosed in JP-A-11-210.
No. 539. However, JP-A-11-
As disclosed in Japanese Patent Publication No. 210539, fuel is injected from a peripheral wall of a combustion chamber on a side where an intake valve is disposed toward a piston crown, and fuel spray is lifted along a wall provided on the piston crown to ignite. In the configuration where the rich mixture is collected around the plug, it is difficult to keep the rich mixture in a certain place.To stably supply the rich mixture to the ignition plug located in the center of the cylinder head, a large amount of fuel must be supplied. Even if injection must be performed and the ignition timing can be delayed near or after the top dead center, it is difficult to reduce the pressure rise rate because of the rich mixture.

【0008】本発明は上記問題点に鑑みなされたもので
あり、リッチな混合気場からの燃焼により周囲の燃料を
圧縮自己着火させることで、確実に圧力上昇率を抑制す
ることができ、以って、圧縮自己着火燃焼領域を高負荷
側に拡大することが可能となる筒内直接噴射式内燃機関
を提供することを目的とする。
[0008] The present invention has been made in view of the above problems, and by compressing and self-igniting the surrounding fuel by combustion from a rich air-fuel mixture field, it is possible to reliably suppress the pressure rise rate. Accordingly, it is an object of the present invention to provide a direct injection type internal combustion engine capable of expanding a compression self-ignition combustion region to a high load side.

【0009】[0009]

【課題を解決するための手段】そのため、請求項1記載
の発明では、燃焼室の周辺部に燃料噴射弁を備える一
方、ピストン冠面の前記燃料噴射弁側の端部に第1凹室
を形成すると共に、該第1凹室に対して前記燃料噴射弁
の軸線方向に隣接する第2凹室を形成する構成とした。
According to the present invention, a fuel injection valve is provided in a peripheral portion of a combustion chamber, and a first concave chamber is provided at an end of a piston crown surface on the side of the fuel injection valve. In addition, a second concave chamber is formed adjacent to the first concave chamber in the axial direction of the fuel injection valve.

【0010】かかる構成によると、燃料噴射弁の軸線方
向に沿って、ピストン冠面上に第1凹室及び第2凹室が
形成され、これら第1凹室及び第2凹室にそれぞれ異な
る濃度(空燃比)の混合気を形成することが可能とな
る。請求項2記載の発明では、前記第1凹室のピストン
冠面における開口面積を、前記第2凹室の開口面積より
も小さくする構成とした。
According to this configuration, the first and second concave chambers are formed on the piston crown along the axial direction of the fuel injection valve, and the first and second concave chambers have different concentrations. (Air-fuel ratio) can be formed. According to the second aspect of the invention, the opening area of the first concave chamber on the piston crown surface is smaller than the opening area of the second concave chamber.

【0011】かかる構成によると、燃料噴射弁に近い側
の第1凹室の開口面積が、燃料噴射弁から遠い側の第2
凹室の開口面積よりも狭く、第1凹室によって局所的な
混合気場が形成される一方、濃度の異なる混合気を開口
面積の広い第2凹室に配することで、燃焼室内で濃度の
異なる混合気の成層化が行われる。請求項3記載の発明
では、前記第1凹室の深さを、前記第2凹室の深さより
も浅くする構成とした。
According to this configuration, the opening area of the first concave chamber on the side closer to the fuel injection valve is equal to the opening area of the second recess on the side farther from the fuel injection valve.
A local mixture field is formed by the first concave chamber, which is narrower than the opening area of the concave chamber, and a mixture having a different concentration is disposed in the second concave chamber having a large opening area, so that the concentration in the combustion chamber is reduced. Are stratified. According to the third aspect of the invention, the depth of the first concave chamber is smaller than the depth of the second concave chamber.

【0012】かかる構成によると、燃料噴射弁に近い側
の第1凹室の深さが、燃料噴射弁から遠い側の第2凹室
の開口面積よりも浅く、第1凹室によって局所的な混合
気場が形成される一方、濃度の異なる混合気を深い第2
凹室に配することで、燃焼室内で濃度の異なる混合気の
成層化が行われる。請求項4記載の発明では、前記第2
凹室が、燃料噴射弁の軸線方向における断面で円弧状で
あって、開口部がピストン冠面の周辺部にまで広がる略
長方形状に形成される構成とした。
According to this configuration, the depth of the first concave chamber on the side closer to the fuel injection valve is smaller than the opening area of the second concave chamber on the side farther from the fuel injection valve, and the first concave chamber has a local area. While an air-fuel mixture field is formed, the air-fuel mixture having different concentrations is
By arranging them in the concave chamber, stratification of air-fuel mixtures having different concentrations is performed in the combustion chamber. In the invention described in claim 4, the second
The concave chamber has an arc-shaped cross section in the axial direction of the fuel injection valve, and the opening is formed in a substantially rectangular shape extending to the periphery of the piston crown surface.

【0013】かかる構成によると、第2凹室の底面が、
燃料噴射弁の軸線方向における断面で円弧状であって、
然も、ピストン冠面の周辺部にまで広がる略長方形状に
形成されることで、シリンダ内の吸気によるタンブル流
が保持される。請求項5記載の発明では、吸気ポート内
に吸気行程でシリンダ内に形成されるタンブル流を強化
するタンブル流強化手段を備える構成とした。
According to this configuration, the bottom surface of the second concave chamber is
An arc-shaped cross section in the axial direction of the fuel injection valve,
The tumble flow caused by the intake air in the cylinder is maintained by forming the cylinder into a substantially rectangular shape that extends to the periphery of the piston crown. According to the fifth aspect of the invention, the intake port is provided with a tumble flow enhancing means for enhancing the tumble flow formed in the cylinder during the intake stroke.

【0014】かかる構成によると、タンブル流強化手段
によってシリンダ内に吸気によって形成されるタンブル
流を積極的に強化する。請求項6記載の発明では、前記
タンブル流強化手段が、吸気ポートを部分的に開閉する
遮断弁であり、該遮断弁を閉じることで吸気に偏流を生
じさせ、吸気行程でシリンダ内に形成されるタンブル流
を強化する構成とした。
According to this configuration, the tumble flow formed by the intake air in the cylinder is positively enhanced by the tumble flow enhancing means. In the invention according to claim 6, the tumble flow enhancing means is a shutoff valve that partially opens and closes an intake port, and when the shutoff valve is closed, a drift occurs in the intake air. To enhance the tumble flow.

【0015】かかる構成によると、吸気ポートの一部が
遮断弁によって遮蔽されることで、タンブル流を強化す
るように吸気の偏流が生じる。請求項7記載の発明で
は、前記第1凹室にリッチな混合気を配し、前記第2凹
室にリーンな混合気を配する構成とした。かかる構成に
よると、第1凹室にリッチな混合気が配される一方、こ
の第1凹室に隣接する第2凹室にリーンな混合気が配さ
れ、リッチ混合気が火花点火或いは圧縮自己着火によっ
て燃焼することで、隣接するリーンな混合気をリッチ混
合気の発熱で自己着火燃焼に至らしめることが可能であ
る。
According to this configuration, since a part of the intake port is shielded by the shut-off valve, the drift of the intake air occurs so as to enhance the tumble flow. According to the seventh aspect of the present invention, a rich air-fuel mixture is disposed in the first concave chamber, and a lean air-fuel mixture is disposed in the second concave chamber. According to this configuration, while the rich air-fuel mixture is disposed in the first concave chamber, the lean air-fuel mixture is disposed in the second concave chamber adjacent to the first concave chamber, and the rich air-fuel mixture is spark-ignited or compressed. By burning by ignition, it is possible to cause the adjacent lean air-fuel mixture to self-ignite combustion by the heat generated by the rich air-fuel mixture.

【0016】請求項8記載の発明では、前記第1凹室に
配したリッチな混合気が上死点近傍において圧縮自己着
火に至る混合気であり、該第1凹室に配したリッチな混
合気の圧縮自己着火により、前記第2凹室に配したリー
ンな混合気を圧縮自己着火燃焼に至らしめる構成とし
た。かかる構成によると、第1凹室に配したリッチな混
合気が圧縮自己着火に至ると、その発熱によって隣接す
る第2凹室に配したリーンな混合気が圧縮自己着火燃焼
に至る。
In the invention described in claim 8, the rich air-fuel mixture disposed in the first concave chamber is an air-fuel mixture leading to compression auto-ignition near the top dead center, and the rich air-fuel mixture disposed in the first concave chamber is provided. The lean air-fuel mixture disposed in the second concave chamber is brought to the compression self-ignition combustion by the compression self-ignition of the gas. According to this configuration, when the rich air-fuel mixture disposed in the first concave chamber reaches the compression self-ignition, the generated heat causes the lean air-fuel mixture disposed in the adjacent second concave chamber to perform the compression self-ignition combustion.

【0017】請求項9記載の発明では、前記第1凹室に
配したリッチな混合気を点火プラグの火花点火によって
着火させることにより、前記第2凹室に配したリーンな
混合気を圧縮自己着火燃焼に至らしめる構成とした。か
かる構成によると、第1凹室に配したリッチな混合気が
点火プラグによって火花点火されると、その発熱によっ
て隣接する第2凹室に配したリーンな混合気が圧縮自己
着火燃焼に至る。
According to the ninth aspect of the present invention, the rich air-fuel mixture disposed in the first concave chamber is ignited by spark ignition of a spark plug to compress the lean air-fuel mixture disposed in the second concave chamber. The configuration is such that ignition combustion is achieved. According to this configuration, when the rich air-fuel mixture disposed in the first concave chamber is spark-ignited by the spark plug, the generated heat causes the lean air-fuel mixture disposed in the adjacent second concave chamber to undergo compression self-ignition combustion.

【0018】請求項10記載の発明では、圧縮行程中に
前記燃料噴射弁から燃料を噴射させることにより、前記
第1凹室にリッチな混合気を配し、前記第2凹室にリー
ンな混合気を配する構成とした。かかる構成によると、
圧縮行程中に燃料を噴射することで、燃料噴霧が第1凹
室の底面に衝突拡散し、第1凹室にはリッチな混合気が
溜まり、また、隣接する第2凹室にリーンな混合気が形
成される。
According to the tenth aspect of the present invention, fuel is injected from the fuel injection valve during the compression stroke, so that a rich air-fuel mixture is disposed in the first concave chamber and a lean mixture is supplied to the second concave chamber. Care was taken. According to such a configuration,
By injecting fuel during the compression stroke, the fuel spray collides and diffuses on the bottom surface of the first concave chamber, and a rich air-fuel mixture accumulates in the first concave chamber. Qi is formed.

【0019】請求項11記載の発明では、同一サイクル
内において、圧縮行程後半から上死点近傍における燃料
噴射と、該噴射時期よりも前の燃料噴射との少なくとも
2回に分けて燃料を噴射させることで、前記第1凹室に
リッチな混合気を配し、前記第2凹室にリーンな混合気
を配する構成とした。かかる構成によると、圧縮行程後
半から上死点近傍において噴射される燃料は、第1凹室
内の留まってリッチ混合気を形成する一方、該圧縮行程
後半から上死点近傍における噴射時期よりも前の時期に
おいて噴射された燃料は、拡散によって第2凹室にリー
ン混合気を形成する。
According to the eleventh aspect of the present invention, fuel is injected at least twice in the same cycle, that is, fuel injection near the top dead center from the latter half of the compression stroke and fuel injection before the injection timing. Thus, a configuration is adopted in which a rich air-fuel mixture is disposed in the first concave chamber and a lean air-fuel mixture is disposed in the second concave chamber. According to this configuration, the fuel injected near the top dead center from the latter half of the compression stroke stays in the first concave chamber to form a rich air-fuel mixture, while the fuel is injected earlier than the injection timing near the top dead center from the latter half of the compression stroke. The fuel injected at the time of (1) forms a lean mixture in the second concave chamber by diffusion.

【0020】[0020]

【発明の効果】請求項1記載の発明によると、第1凹室
と第2凹室とに異なる濃度(空燃比)の混合気を配し、
混合気を安定的に成層化することが可能で、リッチな混
合気場からの燃焼により隣接するリーンな混合気を圧縮
自己着火させる構成において、リッチな混合気を必要最
小限だけ生成させて着火させることができ、大部分の燃
料の燃焼を遅らせることができるようになるという効果
がある。
According to the first aspect of the present invention, a mixture of different concentrations (air-fuel ratio) is disposed in the first and second concave chambers,
It is possible to stably stratify the air-fuel mixture, and in a configuration in which the adjacent lean air-fuel mixture is compressed and self-ignited by combustion from a rich air-fuel mixture field, the rich air-fuel mixture is generated only to the minimum necessary for ignition This has the effect that the combustion of most of the fuel can be delayed.

【0021】請求項2,3記載の発明によると、第1凹
室を局所的な混合気形成場として、濃度の異なる混合気
を確実に成層化することができるという効果がある。請
求項4記載の発明によると、第2凹室により吸気による
タンブル流が保持され、第2凹室に生成される混合気を
均一化することができ、燃焼安定性を向上させることが
できるという効果がある。
According to the second and third aspects of the present invention, there is an effect that the first concave chamber is used as a local gas-mixture formation field, so that the mixture having different concentrations can be surely stratified. According to the fourth aspect of the invention, the tumble flow due to the intake air is held by the second concave chamber, and the air-fuel mixture generated in the second concave chamber can be made uniform, and the combustion stability can be improved. effective.

【0022】請求項5,6記載の発明によると、吸気に
より生成されるタンブル流を強化することで、第2凹室
に生成される混合気を均一化することができ、燃焼安定
性を向上させることができるという効果がある。請求項
7記載の発明によると、第1凹室に安定的に配される局
所的なリッチ混合気の燃焼により、第2凹室に配される
リーンな混合気を圧縮自己着火させることができ、必要
最小限のリッチ混合気の燃焼で、大部分の燃料を圧縮自
己着火燃焼に至らしめることが可能となり、大部分の燃
料の燃焼が遅れることで圧縮自己着火燃焼領域を高負荷
側に拡大することができるようになるという効果があ
る。
According to the fifth and sixth aspects of the present invention, by enhancing the tumble flow generated by the intake air, the air-fuel mixture generated in the second concave chamber can be made uniform, and the combustion stability is improved. There is an effect that can be made. According to the seventh aspect of the invention, the lean air-fuel mixture disposed in the second concave chamber can be compressed and self-ignited by the local combustion of the rich air-fuel mixture stably disposed in the first concave chamber. , Most of the fuel can be brought to compression self-ignition combustion by the combustion of the minimum necessary rich mixture, and the compression self-ignition combustion area is expanded to the high load side by delaying the combustion of most fuel There is an effect that it becomes possible to do.

【0023】請求項8記載の発明によると、第1凹室に
配されるリッチな混合気の圧縮自己着火燃焼により隣接
する第2凹室に配されるリーンな混合気を圧縮自己着火
燃焼に至らしめるので、大部分の燃焼を上死点付近もし
くはそれ以降に発生させ、圧力上昇率を抑制することが
でき、圧縮自己着火燃焼領域を高負荷側に拡大すること
ができるようになるという効果がある。
According to the present invention, the lean air-fuel mixture disposed in the adjacent second concave chamber is subjected to the compression self-ignition combustion by the compression self-ignition combustion of the rich air-fuel mixture disposed in the first concave chamber. As a result, most of the combustion is generated near or after the top dead center, the pressure rise rate can be suppressed, and the compression self-ignition combustion region can be expanded to the high load side. There is.

【0024】請求項9記載の発明によると、第1凹室に
配されるリッチな混合気の火花点火燃焼により隣接する
第2凹室に配されるリーンな混合気を圧縮自己着火燃焼
に至らしめるので、大部分の燃焼を上死点付近もしくは
それ以降に発生させ、圧力上昇率を抑制することがで
き、圧縮自己着火燃焼領域を高負荷側に拡大することが
できると共に、第1凹室に配されるリッチな混合気を火
花点火燃焼させるので、自己着火時期を、圧力上昇率を
抑制できかつ燃焼安定度を確保できる範囲内に制御する
ことができるという効果がある。
According to the ninth aspect of the present invention, the lean air-fuel mixture disposed in the adjacent second concave chamber is brought to the compression self-ignition combustion by the spark ignition combustion of the rich air-fuel mixture disposed in the first concave chamber. As a result, most of the combustion is generated near or after the top dead center, the rate of pressure rise can be suppressed, the compression self-ignition combustion region can be expanded to a high load side, and the first concave chamber can be formed. In this case, the self-ignition timing can be controlled within a range in which the pressure rise rate can be suppressed and the combustion stability can be ensured.

【0025】請求項10記載の発明によると、圧縮行程
中の噴射によって、第1凹室にリッチな混合気を配し、
第2凹室にリーンな混合気を配することが容易に行える
という効果がある。請求項11記載の発明によると、同
一サイクル内で2回以上に分けて燃料を噴射する構成と
し、かつ、圧縮行程後半から上死点近傍において2回目
以降の燃料噴射を行わせることで、第1凹室に安定的に
リッチ混合気を形成することができるという効果があ
る。
According to the tenth aspect, a rich air-fuel mixture is disposed in the first concave chamber by the injection during the compression stroke.
There is an effect that a lean air-fuel mixture can be easily arranged in the second concave chamber. According to the eleventh aspect of the present invention, the fuel is divided into two or more injections in the same cycle, and the second and subsequent fuel injections are performed near the top dead center from the latter half of the compression stroke. There is an effect that a rich air-fuel mixture can be stably formed in one concave chamber.

【0026】[0026]

【発明の実施の形態】以下に本発明の実施の形態を図に
基づいて説明する。図1は、本発明が適用される筒内直
接噴射式のガソリン機関を示す。この図1において、機
関1の燃焼室2は、シリンダ3,ピストン4,シリンダ
ヘッド5によって形成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a direct injection gasoline engine to which the present invention is applied. In FIG. 1, a combustion chamber 2 of an engine 1 is formed by a cylinder 3, a piston 4, and a cylinder head 5.

【0027】前記燃焼室2に連通する吸気ポート6には
吸気バルブ7が介装され、同じく燃焼室2に連通する排
気ポート8には排気バルブ9が介装される。前記シリン
ダヘッド5はペントルーフ型に形成され、前記吸気バル
ブ7及び排気バルブ9はV型に配置される。前記吸気ポ
ート6側のシリンダ壁には、ピストン冠面4aに向けて
燃料を噴射する燃料噴射弁10が設けられ、該燃料噴射
弁10近傍のシリンダヘッド5には、燃料噴射弁10直
下の混合気を火花点火すべく点火プラグ11が設けられ
る。
An intake port 7 communicating with the combustion chamber 2 is provided with an intake valve 7, and an exhaust port 8 communicating with the combustion chamber 2 is also provided with an exhaust valve 9. The cylinder head 5 is formed in a pent roof type, and the intake valve 7 and the exhaust valve 9 are arranged in a V shape. A fuel injection valve 10 for injecting fuel toward the piston crown surface 4a is provided on the cylinder wall on the side of the intake port 6, and a cylinder head 5 near the fuel injection valve 10 is provided with a fuel injection valve 10 just below the fuel injection valve 10. A spark plug 11 is provided for spark ignition of the air.

【0028】前記ピストン4の冠面には、第1凹室41
及び第2凹室42が形成される。前記第1凹室41は、
ピストン冠面の燃料噴射弁10側の端部に形成されるも
のであり、開口部を燃料噴射弁10の軸方向に短い楕円
形とすると共に、底面が中心ほど深くなるように形成さ
れる。尚、前記第1凹室41の開口面積は、点火プラグ
11近傍に局所的な混合気場を形成すべく、第2凹室4
2の開口面積に比べて大幅に小さく形成される。
A first concave chamber 41 is provided on the crown surface of the piston 4.
And the second concave chamber 42 is formed. The first concave chamber 41 includes:
The opening is formed at the end of the piston crown face on the side of the fuel injection valve 10, and the opening is formed in an elliptical shape that is short in the axial direction of the fuel injection valve 10, and the bottom is deeper toward the center. Incidentally, the opening area of the first concave chamber 41 is set so as to form a local mixed gas field near the ignition plug 11.
2 is formed much smaller than the opening area.

【0029】また、第2凹室42は、前記第1凹室41
に対して燃料噴射弁10の軸線方向に隣接して形成され
るものであり、燃料噴射弁10に近い側から第1凹室4
1,第2凹室42の順で並んで形成される。前記第2凹
室42の開口部は、燃料噴射弁10の軸線方向に沿って
延びる一対の辺とこれらの辺に直交する一対の辺からな
る長方形状であって、ピストン冠面の周辺部にまで広が
るように形成される。そして、前記長方形状の開口部の
燃料噴射弁10側の1辺に、前記第1凹室41の楕円形
状の開口部が接するようにして、第1凹室41と第2凹
室42とが隣接する。
The second concave chamber 42 is provided in the first concave chamber 41.
Is formed adjacent to the fuel injection valve 10 in the axial direction with respect to the first concave chamber 4 from the side near the fuel injection valve 10.
The first and second concave chambers 42 are formed in this order. The opening of the second concave chamber 42 has a rectangular shape composed of a pair of sides extending along the axial direction of the fuel injection valve 10 and a pair of sides orthogonal to these sides, and is formed around the periphery of the piston crown. Formed to spread out. Then, the first concave chamber 41 and the second concave chamber 42 are formed such that the elliptical opening of the first concave chamber 41 is in contact with one side of the rectangular opening on the side of the fuel injection valve 10. Adjacent.

【0030】また、前記第2凹室42の底面は、燃料噴
射弁10の軸線方向の断面で円弧状になるように形成さ
れ、最大深さは、前記第1凹室41よりも深くなるよう
に形成される。前記燃料噴射弁10による噴射量・噴射
時期及び点火プラグ11による点火時期を制御するエン
ジンコントロールユニット(以下、ECUという)20
は、圧縮自己着火燃焼と火花点火燃焼とのいずれの燃焼
方式で運転を行うかを運転条件に応じて判定する燃焼パ
ターン判定部21、火花点火燃焼時に前記燃料噴射弁1
0及び点火プラグ11を制御する火花点火燃焼制御部2
2、圧縮自己着火燃焼時に前記燃料噴射弁10及び点火
プラグ11を制御する自己着火燃焼制御部23によって
構成される。
The bottom surface of the second chamber 42 is formed so as to have an arc-shaped cross section in the axial direction of the fuel injection valve 10, and the maximum depth is greater than the first chamber 41. Formed. An engine control unit (hereinafter referred to as ECU) 20 for controlling the injection amount / injection timing of the fuel injection valve 10 and the ignition timing of the ignition plug 11
The combustion pattern determining unit 21 determines which of the compression self-ignition combustion and the spark ignition combustion is to be operated according to the operating conditions.
0 and spark ignition combustion control unit 2 for controlling spark plug 11
2. A self-ignition combustion control unit 23 that controls the fuel injection valve 10 and the spark plug 11 during compression self-ignition combustion.

【0031】前記燃焼パターン判定部21は、図2に示
すように、機関の負荷と回転数N(rpm)に基づいて燃
焼方式を判別する構成であり、低中負荷・低中回転領域
を圧縮自己着火燃焼領域として判定し、それ以外の高負
荷・高回転領域を火花点火燃焼領域と判定する。尚、前
記燃焼パターン判定部21,火花点火燃焼制御部22及
び自己着火燃焼制御部23は、ハードワイヤードの論理
回路で構成することが可能であるが、本実施形態では、
マイクロコンピュータのプログラムとして実現される。
As shown in FIG. 2, the combustion pattern judging section 21 judges the combustion system based on the load of the engine and the number of revolutions N (rpm). It is determined as a self-ignition combustion region, and other high-load, high-speed regions are determined as spark-ignition combustion regions. Note that the combustion pattern determination unit 21, the spark ignition combustion control unit 22, and the self-ignition combustion control unit 23 can be constituted by a hard-wired logic circuit.
It is realized as a microcomputer program.

【0032】図3のフローチャートは、前記ECU20
による燃料噴射制御の様子を示すものであり、ステップ
S101では、機関1の負荷及び回転数を読み込む。ス
テップS102では、図2に示す圧縮自己着火燃焼領域
内の低負荷領域であるか否かを判別する。そして、圧縮
自己着火燃焼領域内の低負荷領域であるときには、ステ
ップS103へ進み、圧縮行程前半から後半で燃料噴射
を行わせ、この1回目の燃料噴射によって、第2凹室4
2に高成層度のストイキ(理論空燃比)よりもリーンな
混合気51を生成する。
The flowchart of FIG.
In step S101, the load and rotation speed of the engine 1 are read. In step S102, it is determined whether or not the engine is in a low-load area within the compression-self-ignition combustion area shown in FIG. When the load is in the low load region within the compression self-ignition combustion region, the process proceeds to step S103, in which fuel injection is performed in the first half to the second half of the compression stroke.
2, a mixture 51 leaner than a stoichiometric (stoichiometric air-fuel ratio) with a high degree of stratification is generated.

【0033】次いで、ステップS104へ進み、圧縮行
程後半から上死点近傍において、1度目よりも低流量で
燃料噴射を行わせ、この2回目の燃料噴射によって前記
第1凹室41にストイキ(理論空燃比)付近のリッチな
混合気52を形成する。そして、第1凹室41に配され
るリッチ混合気52を、点火プラグ11による火花着火
により上死点後に燃焼させ、該燃焼による発熱で、隣接
する第2凹室42に配されるリーン混合気51を圧縮自
己着火燃焼に至らしめる。
Next, in step S104, fuel injection is performed at a lower flow rate than the first time in the vicinity of the top dead center from the latter half of the compression stroke. An air-fuel mixture 52 near the air-fuel ratio) is formed. Then, the rich air-fuel mixture 52 disposed in the first concave chamber 41 is burned after the top dead center by spark ignition by the ignition plug 11, and the heat generated by the combustion causes the lean mixture 52 disposed in the adjacent second concave chamber 42. The gas 51 is brought to compression self-ignition combustion.

【0034】一方、ステップS102で圧縮自己着火燃
焼領域内の低負荷領域ではないと判別されたときには、
ステップS105へ進み、圧縮自己着火燃焼領域内の中
負荷領域であるか否かを判別する。そして、圧縮自己着
火燃焼領域内の中負荷領域であるときには、ステップS
106へ進む。
On the other hand, when it is determined in step S102 that the region is not the low load region in the compression self-ignition combustion region,
Proceeding to step S105, it is determined whether or not the engine is in a medium load area within the compression self-ignition combustion area. When the load is in the medium load range in the compression auto-ignition combustion range, step S
Proceed to 106.

【0035】ステップS106では、吸気行程で燃料噴
射を行わせ、この1回目の燃料噴射によって、第2凹室
42に高成層度のストイキ(理論空燃比)よりもリーン
な混合気51を生成する。次いで、ステップS107へ
進み、圧縮行程後半から上死点近傍において、1度目よ
りも低流量で燃料噴射を行わせ、この2回目の燃料噴射
によって前記第1凹室41にストイキ(理論空燃比)付
近のリッチな混合気52を形成する。
In step S106, fuel injection is performed in the intake stroke. By this first fuel injection, a mixture 51 leaner than the stoichiometric (stoichiometric air-fuel ratio) with a high stratification degree is generated in the second concave chamber 42. . Next, in step S107, fuel injection is performed at a lower flow rate than the first time near the top dead center from the latter half of the compression stroke, and the second fuel injection causes the first concave chamber 41 to stoichiometrically (stoichiometric air-fuel ratio). A rich air-fuel mixture 52 is formed in the vicinity.

【0036】そして、第1凹室41に配されるリッチ混
合気52を点火プラグ11による火花着火により上死点
後に燃焼させ、該燃焼による発熱で、隣接する第2凹室
42に配されるリーン混合気51を圧縮自己着火燃焼に
至らしめる。また、ステップS105で中負荷領域でな
いと判別されたときには、火花点火燃焼領域に該当する
高負荷領域であり、このときには、ステップS108へ
進み、吸気行程中に前記燃料噴射弁10から必要燃料量
を1度に全量噴射することで、燃焼室内に均一の混合気
を形成する。
Then, the rich air-fuel mixture 52 disposed in the first concave chamber 41 is burned after the top dead center by spark ignition by the ignition plug 11, and is disposed in the adjacent second concave chamber 42 by the heat generated by the combustion. The lean mixture 51 is brought to compression self-ignition combustion. If it is determined in step S105 that it is not the middle load region, it is the high load region corresponding to the spark ignition combustion region. By injecting all the fuel at once, a uniform air-fuel mixture is formed in the combustion chamber.

【0037】そして、点火プラグ11の火花点火により
前記均一な混合気を着火燃焼させる。上記のように、圧
縮自己着火燃焼領域では、ストイキ近傍のリッチ混合気
52を火花点火によって上死点後に燃焼させることによ
り、該混合気52の発熱によってリーン混合気51を圧
縮自己着火燃焼に至らしめる構成であれば、大部分の燃
焼が上死点よりも後の期間に発生することになる。
Then, the uniform mixture is ignited and burned by spark ignition of the spark plug 11. As described above, in the compression self-ignition combustion region, the rich air-fuel mixture 52 near the stoichiometry is burned after the top dead center by spark ignition, and the heat of the air-fuel mixture 52 causes the lean air-fuel mixture 51 to reach the compression self-ignition combustion. In the case of the tightening configuration, most of the combustion occurs in a period after the top dead center.

【0038】即ち、均一混合気場で圧縮自己着火燃焼さ
せる場合には、上死点付近で圧力及び温度の条件が整っ
たときに一斉に自己着火することになり、着火時期を遅
らせることができないが、上記のように、リッチ混合気
52の燃焼による発熱で、リーン混合気51を圧縮自己
着火燃焼に至らしめる構成であれば、上死点から自己着
火の時期を遅らせることができ、大部分の燃焼が上死点
より後の期間に生じることになる。
That is, in the case of compression self-ignition combustion in a homogeneous gas mixture field, self-ignition occurs simultaneously when the conditions of pressure and temperature are near the top dead center, and the ignition timing cannot be delayed. However, as described above, if the configuration is such that the lean air-fuel mixture 51 is brought to the compression self-ignition combustion by the heat generated by the combustion of the rich air-fuel mixture 52, the timing of the self-ignition can be delayed from the top dead center. Combustion occurs in a period after the top dead center.

【0039】上記のように、大部分の燃焼を上死点より
後の期間に生じさせることができれば、ノッキングの原
因となるシリンダ内の圧力上昇率が抑制され(図4参
照)、圧縮自己着火領域を燃料量の要求が増える高負荷
側に拡大することができる。また、圧縮自己着火時期を
左右するシリンダ内温度は、シリンダ内の残留ガスに影
響を受け、1度自己着火時期が進角すると、図4に示す
ように熱発生が多くなる分シリンダ内温度が上昇し、着
火時期がより進角する傾向を示し、また、自己着火時期
が遅くなるほど燃焼安定度が低下する。
As described above, if most of the combustion can be caused in a period after the top dead center, the pressure rise rate in the cylinder which causes knocking is suppressed (see FIG. 4), and the compression auto-ignition is performed. The area can be expanded to the high load side where the demand for the fuel amount increases. In addition, the temperature in the cylinder that determines the compression self-ignition timing is affected by the residual gas in the cylinder, and once the self-ignition timing is advanced, as shown in FIG. As the ignition timing increases, the ignition timing tends to be more advanced, and the combustion stability decreases as the self-ignition timing decreases.

【0040】しかし、上記のように、ストイキ近傍のリ
ッチ混合気52を火花点火によって燃焼させることによ
り、リーン混合気51を圧縮自己着火燃焼に至らしめる
構成であれば、自己着火時期を、火花点火時期を介して
制御でき、図5に示すように、ノッキング限界内でかつ
燃焼安定度を確保できる狭い範囲内に、自己着火時期を
制御することが可能となる。
However, as described above, if the rich mixture 52 in the vicinity of the stoichiometric fuel is burned by spark ignition so as to bring the lean mixture 51 to the compression self-ignition combustion, the self-ignition timing is set to the spark ignition. The self-ignition timing can be controlled through the timing, and as shown in FIG. 5, the self-ignition timing can be controlled within the knocking limit and within a narrow range in which the combustion stability can be ensured.

【0041】また、ピストン冠面の燃料噴射弁10に近
い位置に第1凹室41を設け、該第1凹室41に隣接さ
せて第2凹室42を設ける構成としたことで、リッチ混
合気52を第1凹室41に配して留めておき、リーン混
合気51を隣接する第2凹室42に配する、混合気の成
層化が容易に行え、リーン混合気51を圧縮自己着火燃
焼に至らしめるのに充分な発熱をする最低限の燃料を第
1凹室41に供給すれば良く、圧力上昇率を確実に抑制
することができる。
Further, the first concave chamber 41 is provided at a position close to the fuel injection valve 10 on the piston crown surface, and the second concave chamber 42 is provided adjacent to the first concave chamber 41, so that rich mixing is achieved. The air-fuel mixture 52 is arranged and retained in the first concave chamber 41, and the lean air-fuel mixture 51 is allocated to the adjacent second concave chamber 42, so that stratification of the air-fuel mixture can be easily performed. It is sufficient to supply the minimum amount of fuel that generates heat sufficient to bring about combustion to the first concave chamber 41, and the pressure rise rate can be reliably suppressed.

【0042】尚、上記実施形態では、前記第1凹室41
に配されるストイキ(理論空燃比)付近のリッチ混合気
52に火花点火する構成としたが、前記第1凹室41に
配されるリッチ混合気52を圧縮自己着火燃焼させ、該
燃焼による発熱で第2凹室42に配されるリーン混合気
51を圧縮自己着火燃焼に至らしめるよう構成すること
もできる。
In the above embodiment, the first concave chamber 41
The rich air-fuel mixture 52 near the stoichiometric air (stoichiometric air-fuel ratio) is ignited by sparks. However, the rich air-fuel mixture 52 arranged in the first concave chamber 41 is compressed and self-ignited to generate heat. Thus, the lean air-fuel mixture 51 disposed in the second concave chamber 42 can be configured to be brought into compression self-ignition combustion.

【0043】上記の場合も、燃焼室2内の均一な混合気
を一斉に圧縮自己着火燃焼させる場合に比べて、大部分
の燃焼を遅らせることができ、これによって、圧力上昇
率を抑制することが可能となるが、前記第1凹室41に
配されるリッチ混合気52を火花点火させる構成であれ
ば、より自己着火時期を遅らせることが可能で、かつ、
リーン混合気51の自己着火時期を制御することが可能
であるので、より安定した自己着火燃焼を行わせること
ができる。
Also in the above case, most of the combustion can be delayed as compared with the case where the homogeneous mixture in the combustion chamber 2 is simultaneously compressed and ignited, thereby suppressing the rate of pressure rise. However, if the rich mixture 52 arranged in the first concave chamber 41 is spark-ignited, the self-ignition timing can be further delayed, and
Since the self-ignition timing of the lean mixture 51 can be controlled, more stable self-ignition combustion can be performed.

【0044】ところで、上記実施形態では、第1凹室4
1にストイキ(理論空燃比)付近のリッチな混合気52
に配し、第2凹室42にストイキよりもリーンな混合気
51を配するために、同一サイクル内で2回に分けて燃
料を噴射させる構成としたが、圧縮行程中の1回の噴射
のみによって、混合気51,52の生成を行わせること
も可能である。
Incidentally, in the above embodiment, the first concave chamber 4
1 shows a rich air-fuel mixture 52 near stoichiometric air-fuel ratio.
In order to distribute the air-fuel mixture 51 leaner than the stoichiometric condition in the second concave chamber 42, the fuel is divided into two injections in the same cycle. However, one injection during the compression stroke is performed. It is also possible to generate the air-fuel mixtures 51 and 52 only by using the air-fuel mixture.

【0045】即ち、圧縮行程中に燃料を噴射すれば、燃
料噴霧が第1凹室41の底面に衝突して拡散し、第1凹
室41にリッチ混合気52が溜まる一方、隣接する第2
凹室42側にはリーン混合気51が生成される。但し、
2回に分けて燃料を噴射させる構成とした方が、高成層
度の混合気形成が安定して行え、更に、2回の噴射それ
ぞれの噴霧角を第1,2凹室のいずれに燃料を供給する
かによって異ならせることで、より高成層度な混合気形
成が可能となる。
That is, when fuel is injected during the compression stroke, the fuel spray collides with the bottom surface of the first concave chamber 41 and diffuses, and the rich air-fuel mixture 52 accumulates in the first concave chamber 41 while the adjacent second air-fuel mixture 52 accumulates.
A lean mixture 51 is generated in the concave chamber 42 side. However,
When the fuel is divided into two injections, it is possible to stably form a mixture with a high degree of stratification. In addition, the fuel injection angle of each of the two injections is set to one of the first and second concave chambers. By making them different depending on whether they are supplied, it is possible to form a mixture with a higher stratification degree.

【0046】また、図6に示すように、吸気行程でシリ
ンダ内に生成されるタンブル流(図1中の矢印A)を強
化することで、第2凹室42に生成されるリーン混合気
51が均一化して、かつ、第2凹室42に配する燃料の
拡散を抑制でき、リーン混合気51の燃焼安定度を向上
させることができる。そこで、本実施形態では、吸気ポ
ート6をストレートポートとし、吸気行程中に燃焼室2
内でタンブル流を発生し易い形状としてある。
As shown in FIG. 6, by enhancing the tumble flow (arrow A in FIG. 1) generated in the cylinder during the intake stroke, the lean air-fuel mixture 51 generated in the second concave chamber 42 is increased. And the diffusion of the fuel disposed in the second concave chamber 42 can be suppressed, and the combustion stability of the lean mixture 51 can be improved. Therefore, in this embodiment, the intake port 6 is a straight port, and the combustion chamber 2
The shape is such that a tumble flow is easily generated inside.

【0047】また、第2凹室42の開口部を、ピストン
冠面の周辺まで広がる長方形状の開口とし、かつ、底面
をタンブル流に沿うような円弧状に形成したことで、燃
焼室2内のタンブル流が保持されるようにしてある。更
に、吸気ポート6のシリンダ壁に近い側の略半分を遮蔽
する遮蔽弁61を介装し、該遮蔽弁61を閉弁させるこ
とで、タンブル流を強化するような吸気の偏流を生じさ
せるようにしてある。
The opening of the second concave chamber 42 is a rectangular opening extending to the periphery of the piston crown surface, and the bottom surface is formed in an arc shape along the tumble flow. The tumble flow is maintained. Further, a shielding valve 61 that shields substantially half of the intake port 6 on the side close to the cylinder wall is interposed, and by closing the shielding valve 61, a drift of intake air that enhances the tumble flow is generated. It is.

【0048】上記の遮蔽弁61のようにタンブル流を積
極的に強化するタンブル流強化手段を吸気ポート6に設
ければ、第2凹室42に生成されるリーン混合気51の
均一化を進め、また、第2凹室42に配する燃料の拡散
をより確実に抑制でき、自己着火燃焼の安定度をより向
上させることができる。尚、上記各実施形態では、シリ
ンダヘッド5の形状をペントルーフとしたが、例えばフ
ラットな形状としても良く、シリンダヘッド5の形状を
限定するものではない。
If the tumble flow enhancing means for positively enhancing the tumble flow like the above-mentioned shutoff valve 61 is provided in the intake port 6, the lean mixture 51 generated in the second concave chamber 42 can be made uniform. Further, the diffusion of the fuel disposed in the second concave chamber 42 can be suppressed more reliably, and the stability of the self-ignition combustion can be further improved. In each of the above embodiments, the shape of the cylinder head 5 is a pent roof, but may be, for example, a flat shape, and the shape of the cylinder head 5 is not limited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態における内燃機関の構成図。FIG. 1 is a configuration diagram of an internal combustion engine according to an embodiment.

【図2】実施形態における自己着火燃焼領域と火花点火
燃焼領域とを示す図。
FIG. 2 is a diagram showing a self-ignition combustion region and a spark ignition combustion region in the embodiment.

【図3】実施形態における燃料噴射制御の様子を示すフ
ローチャート。
FIG. 3 is a flowchart showing a state of fuel injection control in the embodiment.

【図4】圧縮自己着火時期と圧力及び発生熱量との相関
を示す線図。
FIG. 4 is a diagram showing a correlation between a compression self-ignition timing, a pressure, and an amount of generated heat.

【図5】圧縮自己着火時期とノック強度及び燃焼安定度
との相関を示す線図。
FIG. 5 is a diagram showing a correlation between compression self-ignition timing, knock strength, and combustion stability.

【図6】タンブル流の強度と燃焼安定度との相関を示す
線図。
FIG. 6 is a diagram showing a correlation between the intensity of the tumble flow and the combustion stability.

【符号の説明】[Explanation of symbols]

1…内燃機関 2…燃焼室 3…シリンダ 4…ピストン 4a…冠面 5…シリンダヘッド 6…吸気ポート 7…吸気バルブ 8…排気ポート 9…排気バルブ 10…燃料噴射弁 11…点火プラグ 20…エンジンコントロールユニット(ECU) 21…燃焼パターン判定部 22…火花点火燃焼制御部 23…自己着火燃焼制御部 41…第1凹室 42…第2凹室 51…リーン混合気 52…リッチ混合気 61…遮蔽弁 DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Combustion chamber 3 ... Cylinder 4 ... Piston 4a ... Crown surface 5 ... Cylinder head 6 ... Intake port 7 ... Intake valve 8 ... Exhaust port 9 ... Exhaust valve 10 ... Fuel injection valve 11 ... Spark plug 20 ... Engine Control unit (ECU) 21: combustion pattern determination unit 22: spark ignition combustion control unit 23: self-ignition combustion control unit 41: first concave chamber 42: second concave chamber 51: lean mixture 52: rich mixture 61: shielding valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 41/02 351 F02D 41/02 351 380 380G 41/38 41/38 B 41/40 41/40 D F02F 3/26 F02F 3/26 C B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) F02D 41/02 351 F02D 41/02 351 380 380G 41/38 41/38 B 41/40 41/40 D F02F 3/26 F02F 3/26 C B

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】燃焼室の周辺部に燃料噴射弁を備える一
方、 ピストン冠面の前記燃料噴射弁側の端部に第1凹室を形
成すると共に、 該第1凹室に対して前記燃料噴射弁の軸線方向に隣接す
る第2凹室を形成したことを特徴とする筒内直接噴射式
内燃機関。
1. A fuel injection valve is provided at a peripheral portion of a combustion chamber, a first concave chamber is formed at an end of a piston crown on the side of the fuel injection valve, and the fuel is provided with respect to the first concave chamber. An in-cylinder direct injection internal combustion engine, wherein a second concave chamber is formed adjacent to the injection valve in the axial direction.
【請求項2】前記第1凹室のピストン冠面における開口
面積が、前記第2凹室の開口面積よりも小さいことを特
徴とする請求項1記載の筒内直接噴射式内燃機関。
2. An in-cylinder direct injection internal combustion engine according to claim 1, wherein an opening area of said first concave chamber in a piston crown surface is smaller than an opening area of said second concave chamber.
【請求項3】前記第1凹室の深さが、前記第2凹室の深
さよりも浅いことを特徴とする請求項1又は2記載の筒
内直接噴射式内燃機関。
3. The direct injection internal combustion engine according to claim 1, wherein a depth of said first concave chamber is smaller than a depth of said second concave chamber.
【請求項4】前記第2凹室が、燃料噴射弁の軸線方向に
おける断面で円弧状であって、開口部がピストン冠面の
周辺部にまで広がる略長方形状に形成されることを特徴
とする請求項1〜3のいずれか1つに記載の筒内直接噴
射式内燃機関。
4. The fuel injection valve according to claim 4, wherein the second concave chamber has an arc-shaped cross section in the axial direction of the fuel injection valve, and the opening is formed in a substantially rectangular shape extending to a peripheral portion of the piston crown surface. An in-cylinder direct injection internal combustion engine according to any one of claims 1 to 3.
【請求項5】吸気ポート内に吸気行程でシリンダ内に形
成されるタンブル流を強化するタンブル流強化手段を備
えることを特徴とする請求項1〜4のいずれか1つに記
載の筒内直接噴射式内燃機関。
5. The cylinder direct in cylinder according to claim 1, further comprising a tumble flow enhancing means for enhancing a tumble flow formed in the cylinder during an intake stroke in the intake port. Injection type internal combustion engine.
【請求項6】前記タンブル流強化手段が、吸気ポートを
部分的に開閉する遮断弁であり、該遮断弁を閉じること
で吸気に偏流を生じさせ、吸気行程でシリンダ内に形成
されるタンブル流を強化することを特徴とする請求項5
記載の筒内直接噴射式内燃機関。
6. The tumble flow enhancing means is a shut-off valve that partially opens and closes an intake port. When the shut-off valve is closed, a drift occurs in intake air, and a tumble flow formed in a cylinder during an intake stroke. 6. The method according to claim 5, wherein
An in-cylinder direct injection internal combustion engine.
【請求項7】前記第1凹室にリッチな混合気を配し、前
記第2凹室にリーンな混合気を配することを特徴とする
請求項1〜6のいずれか1つに記載の筒内直接噴射式内
燃機関。
7. The air conditioner according to claim 1, wherein a rich air-fuel mixture is disposed in the first concave chamber, and a lean air-fuel mixture is disposed in the second concave chamber. In-cylinder direct injection internal combustion engine.
【請求項8】前記第1凹室に配したリッチな混合気が上
死点近傍において圧縮自己着火に至る混合気であり、該
第1凹室に配したリッチな混合気の圧縮自己着火によ
り、前記第2凹室に配したリーンな混合気を圧縮自己着
火燃焼に至らしめることを特徴とする請求項7記載の筒
内直接噴射式内燃機関。
8. A rich air-fuel mixture disposed in the first recessed chamber is a fuel-air mixture which leads to compression self-ignition near the top dead center, and is provided by the compression self-ignition of the rich air-fuel mixture disposed in the first recessed chamber. 8. The direct injection internal combustion engine according to claim 7, wherein a lean air-fuel mixture disposed in said second concave chamber is brought to compression self-ignition combustion.
【請求項9】前記第1凹室に配したリッチな混合気を点
火プラグの火花点火によって着火させることにより、前
記第2凹室に配したリーンな混合気を圧縮自己着火燃焼
に至らしめることを特徴とする請求項7記載の筒内直接
噴射式内燃機関。
9. A lean fuel-air mixture disposed in the second concave chamber is brought to compression self-ignition combustion by igniting a rich air-fuel mixture disposed in the first concave chamber by spark ignition of a spark plug. The direct injection internal combustion engine according to claim 7, characterized in that:
【請求項10】圧縮行程中に前記燃料噴射弁から燃料を
噴射させることにより、前記第1凹室にリッチな混合気
を配し、前記第2凹室にリーンな混合気を配することを
特徴とする請求項7〜9のいずれか1つに記載の筒内直
接噴射式内燃機関。
10. A method for distributing a rich air-fuel mixture in the first concave chamber and distributing a lean air-fuel mixture in the second concave chamber by injecting fuel from the fuel injection valve during a compression stroke. An in-cylinder direct injection internal combustion engine according to any one of claims 7 to 9, wherein:
【請求項11】同一サイクル内において、圧縮行程後半
から上死点近傍における燃料噴射と、該噴射時期よりも
前の燃料噴射との少なくとも2回に分けて燃料を噴射さ
せることで、前記第1凹室にリッチな混合気を配し、前
記第2凹室にリーンな混合気を配することことを特徴と
する請求項7〜9のいずれか1つに記載の筒内直接噴射
式内燃機関。
11. In the same cycle, the fuel is injected at least twice in the second half of the compression stroke, that is, fuel injection near the top dead center and fuel injection prior to the injection timing, whereby the first fuel injection is performed. The direct injection internal combustion engine according to any one of claims 7 to 9, wherein a rich air-fuel mixture is disposed in the concave chamber, and a lean air-fuel mixture is disposed in the second concave chamber. .
JP2000391161A 2000-12-22 2000-12-22 In-cylinder direct injection internal combustion engine Expired - Fee Related JP3945158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000391161A JP3945158B2 (en) 2000-12-22 2000-12-22 In-cylinder direct injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000391161A JP3945158B2 (en) 2000-12-22 2000-12-22 In-cylinder direct injection internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002195040A true JP2002195040A (en) 2002-07-10
JP3945158B2 JP3945158B2 (en) 2007-07-18

Family

ID=18857368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000391161A Expired - Fee Related JP3945158B2 (en) 2000-12-22 2000-12-22 In-cylinder direct injection internal combustion engine

Country Status (1)

Country Link
JP (1) JP3945158B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190587A (en) * 2002-12-12 2004-07-08 Toyota Motor Corp Engine with a plurality of recessed portions at piston top
WO2005095768A1 (en) * 2004-03-30 2005-10-13 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine enabling premixed compression self-ignition operation
JP2006500509A (en) * 2002-09-24 2006-01-05 ダイムラークライスラー・アクチェンゲゼルシャフト Self-igniting internal combustion engine
JP2006257999A (en) * 2005-03-17 2006-09-28 Toyota Motor Corp Internal combustion engine
JP2007120330A (en) * 2005-10-25 2007-05-17 Toyota Industries Corp Internal combustion engine performing premixed compression ignition combustion
JP2008057407A (en) * 2006-08-31 2008-03-13 Yanmar Co Ltd Method for operating premixed compression ignition type engine
JP2008180221A (en) * 2007-01-25 2008-08-07 Andreas Stihl Ag & Co Kg Operation method of internal combustion engine
JP2018204507A (en) * 2017-06-02 2018-12-27 マツダ株式会社 Combustion chamber structure for engine
JP2018204505A (en) * 2017-06-02 2018-12-27 マツダ株式会社 Combustion chamber structure for engine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006500509A (en) * 2002-09-24 2006-01-05 ダイムラークライスラー・アクチェンゲゼルシャフト Self-igniting internal combustion engine
JP2004190587A (en) * 2002-12-12 2004-07-08 Toyota Motor Corp Engine with a plurality of recessed portions at piston top
WO2005095768A1 (en) * 2004-03-30 2005-10-13 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine enabling premixed compression self-ignition operation
JP2005282542A (en) * 2004-03-30 2005-10-13 Toyota Motor Corp Control device for internal combustion engine capable of premixed compression self ignition operation
US7421999B2 (en) 2004-03-30 2008-09-09 Toyota Jidosha Kabushiki Kaisha Control apparatus for an internal combustion engine capable of pre-mixed charge compression ignition
JP2006257999A (en) * 2005-03-17 2006-09-28 Toyota Motor Corp Internal combustion engine
JP2007120330A (en) * 2005-10-25 2007-05-17 Toyota Industries Corp Internal combustion engine performing premixed compression ignition combustion
JP2008057407A (en) * 2006-08-31 2008-03-13 Yanmar Co Ltd Method for operating premixed compression ignition type engine
US7802556B2 (en) 2006-08-31 2010-09-28 Yanmar Co., Ltd Homogeneous charge compressed ignition engine operating method
JP2008180221A (en) * 2007-01-25 2008-08-07 Andreas Stihl Ag & Co Kg Operation method of internal combustion engine
JP2018204507A (en) * 2017-06-02 2018-12-27 マツダ株式会社 Combustion chamber structure for engine
JP2018204505A (en) * 2017-06-02 2018-12-27 マツダ株式会社 Combustion chamber structure for engine

Also Published As

Publication number Publication date
JP3945158B2 (en) 2007-07-18

Similar Documents

Publication Publication Date Title
JP3975702B2 (en) Control device for self-igniting engine
JP3325232B2 (en) In-cylinder injection engine
JP4447002B2 (en) Internal combustion engine
KR101016924B1 (en) Fuel injection control apparatus and fuel injection control method of internal combustion engine
US7690348B2 (en) Direct-injection spark-ignition internal combustion engine
JPH0835429A (en) Cylinder fuel injection-type spark ignition engine
WO2000008329A1 (en) Catalyst light-off method and device for direct injection engine
JP2001254660A (en) Stratified charge combustion internal combustion engine of spark ignition type
JP2002188448A (en) Cylinder fuel injection type gasoline engine where fuel is injected inside the cylinder
JP2003090239A (en) Internal combustion engine of cylinder direct injection type
JP2002195040A (en) Cylinder direct-injection of fuel type internal combustion engine
JP3952710B2 (en) Compression self-ignition internal combustion engine
JP3945174B2 (en) Combustion control device for internal combustion engine
JPH1182030A (en) Fuel injection control device for cylinder direct injection type spark ignition engine
JP2007064187A (en) Knock suppression device for internal combustion engine
JP3627546B2 (en) Direct cylinder injection spark ignition engine
JP2001207890A (en) Combustion control device of internal combustion engine
JPH11101127A (en) Combustion control device
JP2000265891A (en) Cylinder injection control device
KR940011340B1 (en) Stratified charge internal combustion engine with fuel injection time controlling function
JP2002285844A (en) Compression self-ignition type internal combustion engine
JP3879155B2 (en) Direct in-cylinder spark ignition engine
JP3832043B2 (en) In-cylinder injection engine
JP4108806B2 (en) Combustion chamber structure of in-cylinder direct injection spark ignition engine
JP3978965B2 (en) Combustion control device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees