JP2003086180A - Positive electrode active material of nonaqueous electrolyte secondary battery and secondary battery using it - Google Patents

Positive electrode active material of nonaqueous electrolyte secondary battery and secondary battery using it

Info

Publication number
JP2003086180A
JP2003086180A JP2001274598A JP2001274598A JP2003086180A JP 2003086180 A JP2003086180 A JP 2003086180A JP 2001274598 A JP2001274598 A JP 2001274598A JP 2001274598 A JP2001274598 A JP 2001274598A JP 2003086180 A JP2003086180 A JP 2003086180A
Authority
JP
Japan
Prior art keywords
secondary battery
limno
positive electrode
orthorhombic
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001274598A
Other languages
Japanese (ja)
Inventor
Masayuki Yoshio
真幸 芳尾
Rinjo Ri
侖城 李
Kazuyuki Adachi
和之 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Original Assignee
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc filed Critical Kyushu Electric Power Co Inc
Priority to JP2001274598A priority Critical patent/JP2003086180A/en
Publication of JP2003086180A publication Critical patent/JP2003086180A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material of a nonaqueous secondary battery having a high capacity and an excellent cycle characteristic. SOLUTION: The positive electrode active material of the nonaqueous secondary battery is a rhombic system LiMnO2 where manganese ions have an average oxidation number of not less than 3.03 nor more than 3.08, with a BET specific surface ration of 8 m<2> /g or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水溶液系二次電
池正極活物質およびこれを用いる二次電池に関する。詳
しくは、斜方晶系LiMnOで、マンガンイオンの平
均酸化数が、3.03以上3.08以下であり、かつB
ET比表面積を8m/gとすることによって、高容量
でサイクル特性に優れた正極活物質およびこれを用いる
二次電池に係るものである。
TECHNICAL FIELD The present invention relates to a non-aqueous secondary battery positive electrode active material and a secondary battery using the same. Specifically, in orthorhombic LiMnO 2 , the average oxidation number of manganese ions is 3.03 or more and 3.08 or less, and B
The present invention relates to a positive electrode active material having a high capacity and excellent cycle characteristics by setting the ET specific surface area to 8 m 2 / g, and a secondary battery using the same.

【0002】[0002]

【従来の技術】4ボルト系高エネルギー密度型のリチウ
ム二次電池用正極活物質としては、LiMnOの他、
LiCoO、LiMnが使用可能である。Li
CoO を正極活物質とする電池は既に市販されてい
る。しかしコバルトは資源量が少なく且つ高価であるた
め、電池の普及に伴う大量生産には向かない。資源量や
価格の面から考えるとマンガン化合物が有望な正極材料
である。原料として使用可能な二酸化マンガンは現在乾
電池材料として大量に生産されているため廉価である。
2. Description of the Related Art A 4-volt high energy density type lithium battery
As a positive electrode active material for a lithium secondary battery, LiMnO 2TwoOther
LiCoOTwo, LiMnTwoOFourCan be used. Li
CoO TwoBatteries using as a positive electrode active material are already on the market.
It However, cobalt has a small amount of resources and is expensive.
Therefore, it is not suitable for mass production due to the spread of batteries. Resource amount
Positive electrode materials with promising manganese compounds in terms of price
Is. Manganese dioxide, which can be used as a raw material, is currently dry.
It is inexpensive because it is mass-produced as a battery material.

【0003】斜方晶系o−LiMnOは4V領域と3
V領域に充放電プロファイルを有する化合物であるが、
従来報告されている室温での充放電挙動では、始め非常
に小さな容量例えば40mAh/g前後であり、次第に
充放電を繰り返し、50サイクル前後では容量が100
mAh/g以上となり、最高容量に達するという挙動を
示している。この様に電池材料としては容量が小さいこ
と、とくにはじめの数十回のサイクル時の容量が低いと
いう致命的な欠陥を有することを認めた。これらの挙動
を改善し、容量を上げるには、斜方晶系構造の安定化を
図るとともに、4〜3Vの幅広い領域での充放電によっ
てもリチウムイオンが拡散可能なように表面構造の安定
化を図る必要がある。
The orthorhombic o-LiMnO 2 has a 4 V region and 3
Although it is a compound having a charge / discharge profile in the V region,
In the charge / discharge behavior at room temperature, which has been conventionally reported, the capacity is very small at the beginning, for example, about 40 mAh / g, and the charge / discharge is gradually repeated until the capacity becomes 100 at about 50 cycles.
It shows a behavior of reaching mAh / g or more and reaching the maximum capacity. As described above, it was confirmed that the battery material has a small capacity, and particularly has a fatal defect that the capacity is low during the first several tens of cycles. To improve these behaviors and increase the capacity, stabilize the orthorhombic structure and stabilize the surface structure so that lithium ions can be diffused even by charging and discharging in a wide range of 4 to 3V. It is necessary to plan.

【0004】構造の安定化については、斜方晶構造に岩
塩構造のLiMnOの微量の存在が好適であること
を見出した。LiMnOのマンガンイオンの酸化数
は4であるのに対し、LiMnOのマンガンイオンの
酸化数は3であるので、マンガンイオンの平均酸化数の
制御により、構造安定化LiMnOの合成を図る必要
がある。
Regarding the structure stabilization, it has been found that the presence of a trace amount of Li 2 MnO 3 having a rock salt structure is suitable for the orthorhombic structure. The oxidation number of the manganese ion of Li 2 MnO 3 is 4, whereas the oxidation number of the manganese ion of LiMnO 2 is 3. Therefore, the structure-stabilized LiMnO 2 can be synthesized by controlling the average oxidation number of the manganese ion. It is necessary to plan.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、スピネ
ル構造のLiMnはサイクルを重ねると容量が低
下する欠点があり、この欠点を改善するためにMgやZ
n等の添加(Thackerayら、Solid State Ionics,69,59
(1994))やCo,Ni,Cr等の添加(岡田ら、電池技
術,Vol.5,(1993))が行われ、その有効性が既に明らか
にされている。しかしこの添加を行うことにより、容量
は低下し、100〜120mAh/gとなるため、エネ
ルギー密度が低下する欠点がある。
However, LiMn 2 O 4 having a spinel structure has a drawback that the capacity decreases with repeated cycles, and in order to improve this drawback, Mg and Z are added.
n addition (Thackeray et al., Solid State Ionics, 69, 59
(1994)) and addition of Co, Ni, Cr, etc. (Okada et al., Battery Technology, Vol.5, (1993)), and their effectiveness has already been clarified. However, when this addition is carried out, the capacity is lowered to 100 to 120 mAh / g, so that the energy density is lowered.

【0006】一方斜方晶LiMnOの容量は190m
Ah/g以上の大きな容量を有するので、スピネル構造
LiMnよりエネルギー密度の高い正極材料とな
ることが知られている。この化合物は合成法により次の
2種の材料が存在することが知られている。すなわち低
温焼成(LT、o−LiMnO)および高温焼成(H
T、o−LiMnO、800℃以上で焼成)の2種で
ある。LT、o−LiMnOは450℃以下で焼成さ
れているが、正極として使用するとその構造はスピネル
構造に変化するため、容量は減少していき、サイクル特
性が悪いことが知られている。例えばJ.N.Reimersら,J.
Electrochem.Soc.,140,3396(1993)を参照。
On the other hand, the capacity of orthorhombic LiMnO 2 is 190 m.
Since it has a large capacity of Ah / g or more, it is known to be a positive electrode material having a higher energy density than spinel structure LiMn 2 O 4 . It is known that this compound has the following two kinds of materials by a synthetic method. That is, low temperature firing (LT, o-LiMnO 2 ) and high temperature firing (H
T, o-LiMnO 2 , and baked at 800 ° C. or higher). It is known that LT and o-LiMnO 2 are fired at 450 ° C. or lower, but when used as a positive electrode, their structure changes to a spinel structure, so that the capacity decreases and the cycle characteristics are poor. For example JNReimers et al., J.
See Electrochem. Soc., 140, 3396 (1993).

【0007】HT、o−LiMnOに関しても室温で
は4.4Vと2.0V間のサイクル特性は良好である
が、55℃でのサイクル特性は悪いことが報告されてい
る。例えばY.M.Chiangら、J.Electrochem.Solid-State
Left.,2,1(1999)を参照。従って従来のたんに焼成する
だけでは、高エネルギー密度の電池材料とはならないこ
とがわかってきた。
It has been reported that HT and o-LiMnO 2 also have good cycle characteristics between 4.4 V and 2.0 V at room temperature, but poor cycle characteristics at 55 ° C. For example YM Chiang et al., J. Electrochem. Solid-State
See Left., 2, 1 (1999). Therefore, it has been found that conventional firing alone does not provide a battery material having a high energy density.

【0008】本発明は、以上の点に鑑みて創案されたも
のであり、高容量でサイクル特性の優れた斜方晶系Li
MnOについて鋭意検討した結果、X線回折法で認め
られる程度の岩塩構造LiMnOが斜方晶系LiM
nOの構造の安定化を図るという知見に至った。そこ
で本発明は、この知見に基づいてなされたものであり、
高容量でかつサイクル特性の良好な非水溶液系二次電池
正極活物質およびこれを用いる二次電池を提供すること
を目的とするものである。
The present invention was devised in view of the above points, and has an orthorhombic Li system having a high capacity and excellent cycle characteristics.
As a result of diligent study on MnO 2, it was found that the rock salt structure Li 2 MnO 3 as observed by the X-ray diffraction method was orthorhombic LiM.
The inventors have come to the finding that the structure of nO 2 should be stabilized. Therefore, the present invention is based on this finding,
It is an object of the present invention to provide a non-aqueous solution secondary battery positive electrode active material having a high capacity and good cycle characteristics, and a secondary battery using the same.

【0009】上記の目的を達成するために、本発明に係
る非水溶液系二次電池正極活物質は、斜方晶系LiMn
であって、そのLiMnOのマンガンイオンの平
均酸化数が3.03以上3.08以下であり、かつBE
T比表面積が8m/g以上であるものである。
To achieve the above object, the non-aqueous secondary battery positive electrode active material according to the present invention is an orthorhombic LiMn.
O 2 , the average oxidation number of manganese ions of LiMnO 2 is 3.03 or more and 3.08 or less, and BE
The T specific surface area is 8 m 2 / g or more.

【0010】ここで、マンガンイオンの平均酸化数が
3.03未満の斜方晶LiMnOの合成は困難である
し、マンガンイオンの平均酸化数が3.08を超えると
電池特性が劣化する。
Here, it is difficult to synthesize orthorhombic LiMnO 2 having an average oxidation number of manganese ions of less than 3.03, and if the average oxidation number of manganese ions exceeds 3.08, battery characteristics are deteriorated.

【0011】またBET比表面積については、8m
g以上でないと、電池の充放電容量が充分に確保できな
いため8m/g以上とする。
The BET specific surface area is 8 m 2 /
If it is not more than g, the charge / discharge capacity of the battery cannot be sufficiently secured, so the amount is set to 8 m 2 / g or more.

【0012】また、本発明に係る非水溶液系二次電池正
極活物質は、斜方晶系LiMnOの酸化イオンの一部
を、塩化物イオンあるいはフッ化物イオンで置換したL
iMnO2−X(Z=ClあるいはF、0<X<
0.10)であって、その斜方晶系LiMnO2−X
のBET比表面積が8m/g以上であるものであ
る。
In the non-aqueous solution type secondary battery positive electrode active material according to the present invention, L is obtained by substituting a part of oxide ions of orthorhombic LiMnO 2 with chloride ions or fluoride ions.
iMnO 2-X Z X (Z = Cl or F, 0 <X <
0.10) and its orthorhombic LiMnO2 - XZ.
The BET specific surface area of X is 8 m 2 / g or more.

【0013】ここで、X≧0.10になると斜方晶の構
造を有することができず、サイクル特性の劣化も大きい
のでX<0.10とする。
When X ≧ 0.10, the orthorhombic structure cannot be provided and the cycle characteristics are greatly deteriorated. Therefore, X <0.10.

【0014】またBET比表面積については、8m
g以上でないと、電池の充放電容量が充分に確保できな
いため8m/g以上とする。
The BET specific surface area is 8 m 2 /
If it is not more than g, the charge / discharge capacity of the battery cannot be sufficiently secured, so the amount is set to 8 m 2 / g or more.

【0015】更に、本発明に係る非水溶液系二次電池正
極活物質は、斜方晶系LiMnOの酸素イオンの一部
を、塩素イオンあるいはフッ素イオンで置換したLiM
nO 2−X(Z=ClあるいはF、0<X<0.1
0)であって、その斜方晶系LiMnO2−Xのマ
ンガンイオンの平均酸化数が3.05より大きく3.2
5未満であり、かつBET比表面積が8m/g以上で
あるものである。
Further, the non-aqueous solution type secondary battery according to the present invention is positive.
The polar active material is orthorhombic LiMnO 2.TwoSome of the oxygen ions of
LiM substituted with chlorine ion or fluorine ion
nO 2-XZX(Z = Cl or F, 0 <X <0.1
0) and its orthorhombic LiMnO2-XZXThe Ma
The average oxidation number of gangan ions is greater than 3.05 and 3.2.
Less than 5 and BET specific surface area of 8 mTwo/ G or more
There is something.

【0016】ここで、X≧0.10になると斜方晶の構
造を有することができず、サイクル特性の劣化も大きい
のでX<0.10とすることは前記と同様である。
Here, if X ≧ 0.10, the structure cannot have an orthorhombic structure and the deterioration of the cycle characteristics is large, so that X <0.10 is the same as above.

【0017】また、この場合にはマンガンイオンの平均
酸化数が3.25以上になると斜方晶系構造が安定では
ないし、逆にマンガンイオンの平均酸化数が3.05以
下のアニオンドープ斜方晶LiMnOの合成は困難で
ある。
Further, in this case, the orthorhombic structure is not stable when the average oxidation number of manganese ions is 3.25 or more, and conversely, the anion-doped orthorhombic structure in which the average oxidation number of manganese ions is 3.05 or less. Of crystalline LiMnO 2 is difficult.

【0018】また、BET比表面積については、8m
/g以上ないと、電池の充放電容量が十分に確保できな
いため8m/g以上とすることは前記と同様である。
The BET specific surface area is 8 m 2
If it is not more than / g, the charge / discharge capacity of the battery cannot be sufficiently secured, so that it is set to 8 m 2 / g or more as in the above.

【0019】[0019]

【実施例】以下、本発明の具体的な実施例を比較例と共
に図面を参酌しながら説明し、本発明の理解に供する
が、本発明がこの実施例に限定されるものでないことは
いうまでもない。
EXAMPLES Hereinafter, specific examples of the present invention will be described together with comparative examples with reference to the drawings for the understanding of the present invention, but it goes without saying that the present invention is not limited to these examples. Nor.

【0020】実施例1 水酸化リチウムおよびMnとを、リチウムとマン
ガンのモル比1:1のモル比で混合紛砕する。これを、
1000℃で10時間加熱し、電気炉から取り出し、直
ちに空気中で急冷した。この化合物のX線回折図を図1
に示す。高温での焼成のためX線解析的に高結晶な高温
型斜方晶LiMnOが得られている。一方、斜方晶L
iMnOのピークの他に、微量のLiMnOのピ
ークが認められている。マンガンイオンの平均酸化数は
3より大きく3.053となった。この化合物を紛砕
し、BET比表面積の異なる紛体を得た。また紛砕後の
マンガンイオンの平均酸化数は3.053から3.05
6に上昇した。上記試料25mgと、導電性バインダー
10mgを用いてフィルム状合剤を作成し、ステンレス
スチール製メッシュに圧着して正極とした。正極は13
0℃で真空乾燥して使用した。負極には金属リチウム
を、電解液にはLiPF−EC・DMC(体積比1:
2)を用いた。充放電電流は1mA(0.4mA/cm
)とし、充放電電圧範囲は4.3〜2.0Vとした。
また、充放電テストは50℃で行った。以下の実施例、
比較例での評価は全て上記の条件によるものとする。B
ET比表面積と第1回目の充放電容量との関係は次のよ
うになった。即ち、BET比表面積8,10,13,1
5m/gの活物質の第1回目の4.3〜2.0V間の
充放電容量は、190,210,200,205mAh
/gであった。これからBET比表面積は8m/g以
上が望ましいことがわかる。
Example 1 Lithium hydroxide and Mn 3 O 4 were mixed and pulverized in a molar ratio of lithium and manganese of 1: 1. this,
It was heated at 1000 ° C. for 10 hours, taken out from the electric furnace, and immediately quenched in air. The X-ray diffraction diagram of this compound is shown in FIG.
Shown in. High-temperature orthorhombic LiMnO 2 that is highly crystalline by X-ray analysis has been obtained because of firing at high temperature. On the other hand, orthorhombic L
In addition to the iMnO 2 peak, a small amount of Li 2 MnO 3 peak is recognized. The average oxidation number of manganese ion was larger than 3 and was 3.053. This compound was pulverized to obtain powders having different BET specific surface areas. The average oxidation number of manganese ions after milling is 3.053 to 3.05.
Rose to 6. A film-like mixture was prepared using 25 mg of the above sample and 10 mg of a conductive binder, and was pressed onto a stainless steel mesh to obtain a positive electrode. The positive electrode is 13
It was vacuum dried at 0 ° C. before use. Metallic lithium was used for the negative electrode, and LiPF 6 -EC • DMC (volume ratio 1:
2) was used. Charge / discharge current is 1mA (0.4mA / cm
2 ) and the charge / discharge voltage range was 4.3 to 2.0V.
The charge / discharge test was performed at 50 ° C. Examples below,
All the evaluations in the comparative examples are based on the above conditions. B
The relationship between the ET specific surface area and the first charge / discharge capacity was as follows. That is, BET specific surface area 8, 10, 13, 1
The first charge / discharge capacity between 4.3 and 2.0 V of 5 m 2 / g of the active material was 190, 210, 200, 205 mAh.
/ G. From this, it is understood that the BET specific surface area is preferably 8 m 2 / g or more.

【0021】実施例2 水酸化ナトリウムおよびMnとをリチウムとマン
ガンのモル比1:1のモル比で混合紛砕する。これを、
1050℃で10時間加熱し、電気炉から取り出し、直
ちに空気中で急冷した。この化合物のX線回折図には斜
方晶LiMnOのピークの他に、極少量のLiMn
のピークが認められた。このためマンガンイオンの
平均酸化数は3より大きく3.308となった。この化
合物を紛砕し、BET比表面積11m/g、マンガン
イオンの平均酸化数3.041の紛体を得た。充放電サ
イクルテストの結果を図2に示す。25℃、50℃のい
ずれにおいても良好なサイクル特性を示している。
Example 2 Sodium hydroxide and Mn 3 O 4 were mixed and pulverized in a molar ratio of lithium and manganese of 1: 1. this,
It was heated at 1050 ° C. for 10 hours, taken out of the electric furnace, and immediately cooled in air. In the X-ray diffraction pattern of this compound, in addition to the orthorhombic LiMnO 2 peak, a very small amount of Li 2 Mn
A peak of O 3 was observed. Therefore, the average oxidation number of manganese ions was 3.308, which was greater than 3. This compound was pulverized to obtain a powder having a BET specific surface area of 11 m 2 / g and an average oxidation number of manganese ion of 3.041. The results of the charge / discharge cycle test are shown in FIG. Good cycle characteristics are exhibited at both 25 ° C and 50 ° C.

【0022】実施例3 水酸化リチウムおよびMnおよびLiFとをリチ
ウムとマンガンとフッ化物のモル比1:1:0.05の
モル比で混合紛砕する。これを、1050℃で10時間
加熱し、電気炉から取り出し、直ちに空気中で急冷し
た。この化合物を紛砕し、BET比表面積11m
g、マンガンイオンの平均酸化数3.21の紛体を得
た。充放電サイクルテストの結果、容量220mA/g
で25℃、50℃のいずれにおいても良好なサイクル特
性を示した。フッ化物イオンや塩化物イオンをドープし
た斜方晶系LiMnOの場合、マンガンイオンの平均
酸化数が3.25以上になると、斜方晶系構造は安定で
はなく、LiMnOが多量に生成して斜方晶系に混
入してくる。あるいはスピネル相が混入してくる。この
場合容量が低く、かつサイクル特性も悪いので電池特性
は劣化する。従ってマンガンイオンの平均酸化数は3.
25未満が望ましい。またマンガンイオンの平均酸化数
が3.05以下のアニオンドープ斜方晶LiMnO
合成は困難である。更に、X≦0.10になると斜方晶
の構造を有することができず、サイクル特性の劣化も大
きかった。
Example 3 Lithium hydroxide, Mn 3 O 4 and LiF were mixed and pulverized in a molar ratio of lithium: manganese: fluoride of 1: 1: 0.05. This was heated at 1050 ° C. for 10 hours, taken out from the electric furnace, and immediately quenched in air. This compound was pulverized to obtain a BET specific surface area of 11 m 2 /
Thus, a powder having an average oxidation number of manganese ions of 3.21 was obtained. 220 mA / g capacity as a result of charge / discharge cycle test
At 25 ° C. and 50 ° C., good cycle characteristics were exhibited. In the case of orthorhombic LiMnO 2 doped with fluoride ions or chloride ions, when the average oxidation number of manganese ions is 3.25 or more, the orthorhombic structure is not stable and a large amount of Li 2 MnO 3 is contained. It forms and mixes into the orthorhombic system. Or spinel phase is mixed. In this case, since the capacity is low and the cycle characteristics are poor, the battery characteristics are deteriorated. Therefore, the average oxidation number of manganese ion is 3.
It is preferably less than 25. Further, it is difficult to synthesize anion-doped orthorhombic LiMnO 2 having an average oxidation number of manganese ions of 3.05 or less. Further, when X ≦ 0.10, the orthorhombic structure could not be formed, and the cycle characteristics were significantly deteriorated.

【0023】比較例1 水酸化リチウムおよびMnとをリチウムとマンガ
ンのモル比1:1のモル比で混合粉砕する。これを、1
100℃で10時間加熱し、電気炉から取り出し、直ち
に空気中で急冷した。この化合物のX線回折図には斜方
晶LiMnOのピークの他に、若干多めのLiMn
のピークが認められた。このためマンガンイオンの
平均酸化数は3よりかなり大きく3.149となった。
この化合物の第1回目の放電容量は40mAh/gと小
さく、50回のサイクル後の容量も100mAh/g以
下であった。マンガンイオンの平均酸化数が3.08を
超えると、斜方晶系構造は安定ではなく、LiMnO
が多量に生成して斜方晶系に混入してくる。あるいは
スピネル相が混入してくる。この場合容量が低くかつサ
イクル特性も悪いので、電池特性は劣化する。従ってマ
ンガンイオンの平均酸化数は3.08以下が望ましい。
またマンガンイオンの平均酸化数が3.03未満の斜方
晶LiMnOの合成は困難である。また、BET比表
面積8m/gの活物質の第1回目の4.3〜2.0V
間の放電容量は150mAh/gであり、表面積8m
/gが限界で、これより小さくなると初回の容量が急減
するのでBET比表面積は上述した如く、8m/g以
上が望ましいことがわかる。
Comparative Example 1 Lithium hydroxide and Mn 3 O 4 were mixed and pulverized in a molar ratio of lithium and manganese of 1: 1. This one
It was heated at 100 ° C. for 10 hours, taken out of the electric furnace, and immediately cooled in air. In the X-ray diffraction pattern of this compound, in addition to the orthorhombic LiMnO 2 peak, a little more Li 2 Mn
A peak of O 3 was observed. Therefore, the average oxidation number of manganese ions was 3.149, which was considerably higher than 3.
The first-time discharge capacity of this compound was as small as 40 mAh / g, and the capacity after 50 cycles was 100 mAh / g or less. When the average oxidation number of manganese ions exceeds 3.08, the orthorhombic structure is not stable and Li 2 MnO
A large amount of 3 is generated and mixed into the orthorhombic system. Or spinel phase is mixed. In this case, since the capacity is low and the cycle characteristics are poor, the battery characteristics are deteriorated. Therefore, the average oxidation number of manganese ions is preferably 3.08 or less.
Further, it is difficult to synthesize orthorhombic LiMnO 2 having an average oxidation number of manganese ions of less than 3.03. In addition, the first active material having a BET specific surface area of 8 m 2 / g is 4.3 to 2.0 V for the first time.
Discharge capacity is 150 mAh / g, surface area 8 m 2
/ G is the limit, and if it is smaller than this, the initial capacity decreases sharply. Therefore, it is understood that the BET specific surface area is preferably 8 m 2 / g or more as described above.

【0024】比較例2 水酸化リチウムおよびMnとをリチウムとマンガ
ンのモル比1:1のモル比で混合粉砕する。これを、9
50℃で10時間加熱し、電気炉から取り出し、直ちに
空気中で急冷した。この化合物のX線回折図には斜方晶
LiMnOのピークの他に、少量のLi MnO
ピークが認められた。このためマンガンイオンの平均酸
化数は3より僅かに大きく3.067となった。そのB
ET比表面積は0.6m/gであった。この物質を用
いた電池充放電サイクル図を図3に示す。酸化数は適切
であっても、BET比表面積が小さいと室温における電
池特性は下記のように劣ることを示す。即ち、図3に示
すように、25℃における初期放電容量はかなり低く約
40mAh/gであった。100サイクル後も130m
Ah/g程度でかなり小さい値を示した。但し高温にお
ける電池特性は図3に示すように良好であった。
Comparative Example 2 Lithium hydroxide and MnThreeOFourAnd lithium and manga
The mixture is ground in a molar ratio of 1: 1. This is 9
Heat at 50 ° C for 10 hours, remove from electric furnace and immediately
Quenched in air. The X-ray diffraction diagram of this compound shows
LiMnOTwoIn addition to the peak of TwoMnOThreeof
A peak was observed. Therefore, the average acid of manganese ion
The chemical number was 3.067, which was slightly larger than 3. That B
ET specific surface area is 0.6mTwo/ G. Use this substance
The battery charge / discharge cycle diagram is shown in FIG. Oxidation number is appropriate
However, if the BET specific surface area is small, the charge at room temperature is
Pond characteristics are inferior as shown below. That is, as shown in FIG.
Therefore, the initial discharge capacity at 25 ° C is considerably low.
It was 40 mAh / g. 130m after 100 cycles
The value was considerably small at about Ah / g. However, at high temperature
The battery characteristics were good as shown in FIG.

【0025】次にマンガンイオンの平均酸化数の測定法
を示す。まずLiMnOを酸等により溶解し、全マン
ガン量をキレート滴定法を用いて測定する。別に酸化還
元法によりマンガンイオンの平均酸化数を求めた。酸化
還元法としては基本的に小沢の方法によった。A.Kozaw
a,Memories of the Faculty of Engineering,Nagoya Un
iversity,vol.11(No.1-2,243(1959)を参照)。即ち試料
を鉄濃度既知の硫酸酸性FeSO溶液中に溶解し、残
存Fe(2価)イオン濃度を、濃度既知のKMnO
液滴定を行った。これらの分析結果から平均酸化数を求
めた。
Next, a method for measuring the average oxidation number of manganese ion will be described. First, LiMnO 2 is dissolved with an acid or the like, and the total amount of manganese is measured by the chelate titration method. Separately, the average oxidation number of manganese ion was determined by the redox method. The redox method was basically Ozawa's method. A. Kozaw
a, Memories of the Faculty of Engineering, Nagoya Un
iversity, vol.11 (see No.1-2,243 (1959)). That is, the sample was dissolved in a sulfuric acid acidic FeSO 4 solution having a known iron concentration, and the residual Fe (divalent) ion concentration was titrated with a KMnO 4 solution having a known concentration. The average oxidation number was obtained from these analysis results.

【0026】上記実施例1、実施例2及び実施例3に示
すように、本発明による非水溶液系二次電池正極活物質
は、優れたサイクル特性と容量190mAh/g程度あ
るいはそれ以上を有することがわかる。また、3V領域
に電圧プラトーを有するため、3V領域に達した時点で
電池は機器の動作可能であると共に、充電開始のトリガ
ーとすることも可能であり、一種の燃料計としての作用
も期待できるものである。
As shown in Examples 1, 2 and 3, the non-aqueous secondary battery positive electrode active material according to the present invention has excellent cycle characteristics and a capacity of about 190 mAh / g or more. I understand. Further, since it has a voltage plateau in the 3V region, the battery can operate the device at the time when the voltage reaches the 3V region, and can also be used as a trigger to start charging, and an action as a kind of fuel gauge can be expected. It is a thing.

【0027】[0027]

【発明の効果】以上述べて来た如く、本発明によれば、
従来の斜方晶系LiMnOは初期容量が小さく、一定
の容量に達するまでに数十回の充放電サイクルを要し、
しかも放電容量も小さかったのを改善し、容量を大きく
できると共に、充放電サイクルの向上が図れるという効
果を奏する。特にCl、Fイオンによる置換により
マンガンイオンの酸化数の制御に成功した。また広い電
圧範囲で動作可能なため、高エネルギー密度電力貯蔵用
電池など多くの分野の電池材料となり得るものである。
As described above, according to the present invention,
The conventional orthorhombic LiMnO 2 has a small initial capacity, and it requires several tens of charge / discharge cycles to reach a certain capacity.
In addition, the discharge capacity is small, and the capacity can be increased, and the charging / discharging cycle can be improved. In particular, the substitution of Cl and F ions succeeded in controlling the oxidation number of manganese ions. Further, since it can operate in a wide voltage range, it can be used as a battery material in many fields such as a high energy density power storage battery.

【0028】また、本発明によれば、3V領域に電圧プ
ラトーを有するため、電池電圧が3Vに達した時点で、
充電開始のトリガーを発生するなど、電池の燃料計とし
ての役割を果たすことも可能であるという効果も有する
ものである。
Further, according to the present invention, since the voltage plateau is in the 3V region, when the battery voltage reaches 3V,
It also has an effect that it can also serve as a fuel gauge for the battery, such as by generating a trigger for starting charging.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1のLiMnOのX線回折図である。1 is an X-ray diffraction diagram of LiMnO 2 of Example 1. FIG.

【図2】上図(a)は、実施例2のLiMnOの25
℃における充放電曲線で電圧と容量の関係を示すグラフ
であり、図中の数字はサイクル数を示す。下図(b)
は、実施例2のLiMnOの25℃および50℃にお
ける放電容量とサイクル数の関係を示すグラフである。
FIG. 2 (a) is a graph of LiMnO 2 of Example 2 of 25.
It is a graph showing the relationship between voltage and capacity on a charge-discharge curve at ° C, and the numbers in the figure show the number of cycles. Figure below (b)
4 is a graph showing the relationship between the discharge capacity and the number of cycles of LiMnO 2 of Example 2 at 25 ° C. and 50 ° C.

【図3】比較例2のLiMnOの25℃(a)および
50℃(b)における放電容量とサイクル数の関係を示
すグラフである。
FIG. 3 is a graph showing the relationship between the discharge capacity and the number of cycles of LiMnO 2 of Comparative Example 2 at 25 ° C. (a) and 50 ° C. (b).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 李 侖城 佐賀県佐賀市本庄町大字本庄1147番地5サ ウスコート317号 (72)発明者 足立 和之 福岡県福岡市中央区渡辺通二丁目1番82号 九州電力株式会社内 Fターム(参考) 4G048 AA04 AB05 AC06 AD06 AE05 5H029 AJ03 AJ05 AK03 AL12 AM03 AM05 AM07 DJ17 HJ00 HJ02 HJ07 5H050 AA07 AA08 BA15 BA16 CA09 CB12 FA19 HA00 HA02 HA07   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Lee Yong-jo             5147 Honjo, Honjo, Honjo-cho, Saga City, Saga Prefecture             Uscoat 317 (72) Inventor Kazuyuki Adachi             2-82 Watanabe Dori, Chuo-ku, Fukuoka-shi, Fukuoka               Kyushu Electric Power Co., Inc. F-term (reference) 4G048 AA04 AB05 AC06 AD06 AE05                 5H029 AJ03 AJ05 AK03 AL12 AM03                       AM05 AM07 DJ17 HJ00 HJ02                       HJ07                 5H050 AA07 AA08 BA15 BA16 CA09                       CB12 FA19 HA00 HA02 HA07

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 斜方晶系LiMnOであって、 該斜方晶系LiMnOのマンガンイオンの平均酸化数
が、3.03以上3.08以下であり、かつそのBET
比表面積が8m/g以上であることを特徴とする非水
溶液系二次電池正極活物質。
1. An orthorhombic LiMnO 2 having an average oxidation number of manganese ions of the orthorhombic LiMnO 2 of 3.03 or more and 3.08 or less, and BET thereof.
A non-aqueous secondary battery positive electrode active material having a specific surface area of 8 m 2 / g or more.
【請求項2】 斜方晶系LiMnOの酸化イオンの一
部を、塩化物イオンあるいはフッ化物イオンで置換した
LiMnO2−X(Z=ClあるいはF、0<X<
0.10)であって、 該斜方晶系LiMnO2−XのBET比表面積が8
/g以上であることを特徴とする非水溶液系二次電
池正極活物質。
2. LiMnO 2−X Z X (Z = Cl or F, 0 <X <, in which a part of oxide ions of orthorhombic LiMnO 2 is substituted with chloride ions or fluoride ions.
A 0.10), BET specific surface area of the swash orthorhombic system LiMnO 2-X Z X 8
A non-aqueous secondary battery positive electrode active material, characterized in that it is at least m 2 / g.
【請求項3】 斜方晶系LiMnOの酸素イオンの一
部を、塩化物イオンあるいはフッ化物イオンで置換した
LiMnO2−X(Z=ClあるいはF、0<X<
0.10)であって、 該斜方晶系LiMnO2−Xのマンガンイオンの平
均酸化数が3.05より大きく3.25未満であり、か
つBET比表面積が8m/g以上であることを特徴と
する非水溶液系二次電池正極活物質。
3. LiMnO 2−X Z X (Z = Cl or F, 0 <X <, in which a part of oxygen ions of orthorhombic LiMnO 2 is substituted with chloride ions or fluoride ions.
0.10), the average oxidation number of the manganese ion of the orthorhombic LiMnO 2 -X Z X is more than 3.05 and less than 3.25, and the BET specific surface area is 8 m 2 / g or more. A non-aqueous secondary battery positive electrode active material characterized by being present.
【請求項4】 請求項1、請求項2又は請求項3に記載
の非水溶液系二次電池正極活物質により作製されること
を特徴とする非水溶液系二次電池。
4. A non-aqueous solution secondary battery, which is made of the non-aqueous solution secondary battery positive electrode active material according to claim 1, claim 2, or claim 3.
JP2001274598A 2001-09-11 2001-09-11 Positive electrode active material of nonaqueous electrolyte secondary battery and secondary battery using it Pending JP2003086180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001274598A JP2003086180A (en) 2001-09-11 2001-09-11 Positive electrode active material of nonaqueous electrolyte secondary battery and secondary battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001274598A JP2003086180A (en) 2001-09-11 2001-09-11 Positive electrode active material of nonaqueous electrolyte secondary battery and secondary battery using it

Publications (1)

Publication Number Publication Date
JP2003086180A true JP2003086180A (en) 2003-03-20

Family

ID=19099603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001274598A Pending JP2003086180A (en) 2001-09-11 2001-09-11 Positive electrode active material of nonaqueous electrolyte secondary battery and secondary battery using it

Country Status (1)

Country Link
JP (1) JP2003086180A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148489A1 (en) * 2010-05-27 2011-12-01 富士通株式会社 Secondary battery and dendrite formation inhibitor used in the secondary battery
WO2013157587A1 (en) 2012-04-20 2013-10-24 東ソー株式会社 Manganese(iii, iv) oxide and method for producing same
WO2014054750A1 (en) 2012-10-03 2014-04-10 東ソー株式会社 Trimanganese tetraoxide and method for producing same
KR101392795B1 (en) 2007-07-13 2014-05-08 주식회사 엘지화학 Lithium Manganese Oxide for Cathode Active Material and Lithium Secondary Battery Containing the Same
JP2018085324A (en) * 2016-11-15 2018-05-31 パナソニックIpマネジメント株式会社 Cathode active material for battery, and battery using cathode active material
WO2022118545A1 (en) * 2020-12-02 2022-06-09 パナソニックIpマネジメント株式会社 Positive electrode active material, lithium secondary battery, and method for producing positive electrode active material
JP2022553967A (en) * 2019-10-22 2022-12-27 ダイソン・テクノロジー・リミテッド LMO cathode composition
JP2022554128A (en) * 2019-10-22 2022-12-28 ダイソン・テクノロジー・リミテッド LMO cathode composition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07101728A (en) * 1993-10-01 1995-04-18 Tosoh Corp Lithium manganese double oxide, its production and application
JPH08171900A (en) * 1994-12-16 1996-07-02 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte lithium secondary battery
JPH10130025A (en) * 1996-10-29 1998-05-19 Honjiyou Chem Kk Production of lithium-manganese double oxide having spinel structure
JPH10330118A (en) * 1997-05-29 1998-12-15 Showa Denko Kk Production of lithium-manganese oxide by quenching method
JPH11130438A (en) * 1997-08-18 1999-05-18 Agency Of Ind Science & Technol Production of lithium manganese double oxide particulate composition and utilization of the same for lithium ion secondary battery
WO1999052826A1 (en) * 1998-04-14 1999-10-21 Commissariat A L'energie Atomique Lithium battery operating up to an upper voltage boundary of 3.5 volts
JP2000195550A (en) * 1998-12-28 2000-07-14 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2000251886A (en) * 1999-02-24 2000-09-14 Sony Corp Nonaqueous electrolyte battery
JP2002321919A (en) * 2001-04-24 2002-11-08 Nissan Motor Co Ltd Lithium manganese compound oxide and lithium secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07101728A (en) * 1993-10-01 1995-04-18 Tosoh Corp Lithium manganese double oxide, its production and application
JPH08171900A (en) * 1994-12-16 1996-07-02 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte lithium secondary battery
JPH10130025A (en) * 1996-10-29 1998-05-19 Honjiyou Chem Kk Production of lithium-manganese double oxide having spinel structure
JPH10330118A (en) * 1997-05-29 1998-12-15 Showa Denko Kk Production of lithium-manganese oxide by quenching method
JPH11130438A (en) * 1997-08-18 1999-05-18 Agency Of Ind Science & Technol Production of lithium manganese double oxide particulate composition and utilization of the same for lithium ion secondary battery
WO1999052826A1 (en) * 1998-04-14 1999-10-21 Commissariat A L'energie Atomique Lithium battery operating up to an upper voltage boundary of 3.5 volts
JP2000195550A (en) * 1998-12-28 2000-07-14 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2000251886A (en) * 1999-02-24 2000-09-14 Sony Corp Nonaqueous electrolyte battery
JP2002321919A (en) * 2001-04-24 2002-11-08 Nissan Motor Co Ltd Lithium manganese compound oxide and lithium secondary battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101392795B1 (en) 2007-07-13 2014-05-08 주식회사 엘지화학 Lithium Manganese Oxide for Cathode Active Material and Lithium Secondary Battery Containing the Same
WO2011148489A1 (en) * 2010-05-27 2011-12-01 富士通株式会社 Secondary battery and dendrite formation inhibitor used in the secondary battery
WO2013157587A1 (en) 2012-04-20 2013-10-24 東ソー株式会社 Manganese(iii, iv) oxide and method for producing same
US9487883B2 (en) 2012-04-20 2016-11-08 Tosoh Corporation Trimanganese tetraoxide and its production process
KR20150010705A (en) 2012-04-20 2015-01-28 도소 가부시키가이샤 Manganese(iii, iv) oxide and method for producing same
US9440860B2 (en) 2012-10-03 2016-09-13 Tosoh Corporation Trimanganese tetraoxide and its production process
KR20150063399A (en) 2012-10-03 2015-06-09 도소 가부시키가이샤 Trimanganese tetraoxide and method for producing same
WO2014054750A1 (en) 2012-10-03 2014-04-10 東ソー株式会社 Trimanganese tetraoxide and method for producing same
JP2018085324A (en) * 2016-11-15 2018-05-31 パナソニックIpマネジメント株式会社 Cathode active material for battery, and battery using cathode active material
JP2022553967A (en) * 2019-10-22 2022-12-27 ダイソン・テクノロジー・リミテッド LMO cathode composition
JP2022554128A (en) * 2019-10-22 2022-12-28 ダイソン・テクノロジー・リミテッド LMO cathode composition
WO2022118545A1 (en) * 2020-12-02 2022-06-09 パナソニックIpマネジメント株式会社 Positive electrode active material, lithium secondary battery, and method for producing positive electrode active material
CN116490466A (en) * 2020-12-02 2023-07-25 松下知识产权经营株式会社 Positive electrode active material, lithium secondary battery, and method for producing positive electrode active material

Similar Documents

Publication Publication Date Title
JP2004253174A (en) Positive pole active material for nonaqueous electrolytic secondary battery
JPH1140156A (en) Nonaqueous electrolyte secondary battery
US7008608B2 (en) Li-Co-Mn oxide as cathode material for lithium batteries and method of synthesis of the same
JP3325423B2 (en) Non-aqueous electrolyte secondary battery, positive electrode active material for battery and method for producing the same
JPH10188986A (en) Manufacture of positive electrode active material for lithium secondary battery
KR100300334B1 (en) Positive active material for lithium secondary battery and method of preparing the same
JP2004014296A (en) Positive electrode active material for lithium ion secondary battery
Huang et al. A 3 volt lithium manganese oxide cathode for rechargeable lithium batteries
JPH09270259A (en) Electrode and lithium secondary battery
KR101418060B1 (en) Preparation method of a positive active for a lithium secondary battery
JP3653210B2 (en) Method for producing spinel manganese oxide for lithium secondary battery
JP2003086180A (en) Positive electrode active material of nonaqueous electrolyte secondary battery and secondary battery using it
JPH10270044A (en) High capacity limn2o4 secondary battery cathode compound preparing method
US10516156B2 (en) Chlorinated lithium manganese oxide spinel cathode material with charge transfer catalyst coating, method of preparing the same, and Li electrochemical cell containing the same
JP2002270181A (en) Non-aqueous electrolyte battery
US20220140330A1 (en) GROUP VIII PERIOD 4 ELEMENT (Fe, Co, Ni) METAL SITE AND Cl &#34;O&#34; SITE MODIFIED LITHIUM MANGANESE BASED CATHODE MATERIAL, METHOD OF PREPARING THE SAME, AND LI ELECTROCHEMICAL CELL CONTAINING THE SAME
JP3441652B2 (en) Method for producing positive electrode material for lithium secondary battery
JP3928836B2 (en) Positive electrode material for lithium secondary battery and lithium secondary battery
JP3331373B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the positive electrode material
JP2007053116A (en) Non-aqueous electrolyte battery
JP3793054B2 (en) Nonaqueous electrolyte secondary battery
KR101598186B1 (en) Synthesizing method of complex metal oxides for cathode active materials and electrode, lithium secondary battery, capacitor thereof
JP3487941B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte battery
JP4639432B2 (en) Non-aqueous secondary battery
JP2004006293A (en) Positive electrode material, its manufacturing method, and battery using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120612