JP2003077648A - Light emitting diode, and manufacturing method thereof - Google Patents

Light emitting diode, and manufacturing method thereof

Info

Publication number
JP2003077648A
JP2003077648A JP2001270112A JP2001270112A JP2003077648A JP 2003077648 A JP2003077648 A JP 2003077648A JP 2001270112 A JP2001270112 A JP 2001270112A JP 2001270112 A JP2001270112 A JP 2001270112A JP 2003077648 A JP2003077648 A JP 2003077648A
Authority
JP
Japan
Prior art keywords
light emitting
light
substrate
layer
rectangular parallelepiped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001270112A
Other languages
Japanese (ja)
Inventor
Tetsuya Sato
徹哉 佐藤
Mikiko Matsuo
三紀子 松尾
Hisanori Sugiura
久則 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001270112A priority Critical patent/JP2003077648A/en
Publication of JP2003077648A publication Critical patent/JP2003077648A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve problems that a sufficient numerical aperture is less easily obtained with a regular element for taking out the light from a lower side thereof when a light emitting element is formed on an active matrix substrate using a plurality of TFTs, the light deriving efficiency is low, and the high efficiency, the long service life and the excellent productivity cannot be satisfied at the same time. SOLUTION: Light emission can be obtained on the side (the upper side) opposite to a substrate surface even with the element having a projection structure on the substrate and formed on a regular transparent anode by forming a light emission unit on the side surface thereof in an oblique vapor deposition. The emission of high intensity can be easily obtained with high efficiency, long service life and high productivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は薄膜エレクトロルミ
ネセンス(EL)素子に関し、例えば平面型自発光表示
装置をはじめ通信、照明その他の用途に供する各種光源
として使用可能な自発光の素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film electroluminescence (EL) element, and more particularly to a self-luminous element which can be used as a light source for a flat self-luminous display device, communication, lighting and other purposes. is there.

【0002】[0002]

【従来の技術】近年平面型の表示装置としてはLCDパ
ネルが幅広く用いられているが、依然として応答速度が
遅い、視野角が狭い等の欠点があり、またこれらを改善
した多くの新方式においても特性が十分でなかったりパ
ネルとしてのコストが高くなるなどの課題がある。その
ような中で自発光で視認性に優れ、応答速度も速く広範
囲な応用が期待できる新たな発光素子としての薄膜EL
素子に期待が集まっている。特に室温で蒸着や塗布など
の簡単な成膜工程を用いることのできる有機材料を素子
の全部または一部の層に用いる薄膜EL素子は、有機EL素
子とも呼ばれ、上述の特徴に加えて製造コストの魅力も
あり多くの研究が行われている。
2. Description of the Related Art In recent years, LCD panels have been widely used as flat panel display devices, but they still have drawbacks such as slow response speed and narrow viewing angle. There are problems such as insufficient characteristics and high panel cost. In such a situation, thin-film EL as a new light-emitting element that is self-luminous, has excellent visibility, has a fast response speed, and can be expected to be applied in a wide range
Expectations are concentrated on the element. In particular, thin-film EL devices that use organic materials that can use simple film formation processes such as vapor deposition and coating at room temperature for all or part of the layers of the device are also called organic EL devices. Many studies have been conducted due to the attractiveness of costs.

【0003】薄膜EL素子(有機EL素子)は電極から
電子、正孔を注入しその再結合によって発光を得るもの
であり、古くから多くの研究がなされてきたが、一般に
その発光効率は低く実用的な発光素子への応用とは程遠
いものであった。
A thin film EL element (organic EL element) is one which injects electrons and holes from electrodes and obtains light emission by recombination thereof, and many studies have been made for a long time. It was far from being applied to conventional light emitting devices.

【0004】そのような中で1987年にTangらに
よって提案された素子(C.W.Tang and
S.A.Vanslyke:Appl.Phys.Le
tt.51(1987)913.)は、透明基板上に正
孔注入電極、正孔輸送層、発光層、陰極を有する構成の
素子であって、正孔注入電極としてITO、正孔輸送層
として膜厚75nmのジアミン誘導体層、発光層として
膜厚60nmのアルミキノリン錯体層、陰極として電子
注入性と安定性を併せ持つMgAg合金を用いたもので
あった。特に陰極の改良もさることながら、透明性に優
れたジアミン誘導体を採用することにより、75nmの
膜厚においても十分な透明性を維持することができ、且
つこの膜厚においては十分にピンホ−ル等の無い均一な
薄膜が得られるので、発光層も含めた素子の総膜厚を十
分に薄く(150nm程度)することが可能となり、比
較的低電圧で高輝度の発光が得られるようになった。具
体的には、10V以下の低い電圧で1000cd/m2
以上の高い輝度と、1.5lm/W以上の高い効率を実
現している。このTangらの報告がきっかけとなっ
て、陰極のさらなる改良や、電子注入層の挿入、正孔注
入層の挿入などの素子構成上の工夫など、現在に至るま
で活発な検討が続けられている。
Under such circumstances, the device proposed by Tang et al. In 1987 (CW Tang and
S. A. Vanslyke: Appl. Phys. Le
tt. 51 (1987) 913. ) Is an element having a structure having a hole injecting electrode, a hole transporting layer, a light emitting layer, and a cathode on a transparent substrate, wherein ITO is used as the hole injecting electrode, a diamine derivative layer having a thickness of 75 nm is used as the hole transporting layer, An aluminum quinoline complex layer having a film thickness of 60 nm was used as the light emitting layer, and a MgAg alloy having both electron injection property and stability was used as the cathode. In particular, by adopting a diamine derivative having excellent transparency as well as improving the cathode, it is possible to maintain sufficient transparency even at a film thickness of 75 nm, and at this film thickness, a sufficient pinhole is obtained. Since it is possible to obtain a uniform thin film without any defects, the total film thickness of the device including the light emitting layer can be made sufficiently thin (about 150 nm), and high brightness light emission can be obtained at a relatively low voltage. It was Specifically, 1000 cd / m 2 at a low voltage of 10 V or less
The above high brightness and high efficiency of 1.5 lm / W or more are realized. The report of Tang et al. Has been a catalyst for further improvement of the cathode, and device innovations such as insertion of an electron injection layer and insertion of a hole injection layer. .

【0005】以下、現在一般に検討されている薄膜EL
(有機EL)素子について概説する。
A thin film EL which is currently generally studied
The (organic EL) element will be outlined.

【0006】素子の各層は、透明基板上に正孔注入電
極、正孔輸送層、発光層、陰極の順に積層して形成し、
正孔注入電極と正孔輸送層間に正孔注入層を設けたり、
発光層と陰極間に電子輸送層、さらに陰極との界面に電
子注入層を設けることもある。このように各層に役割を
機能分離させて担わせる事により各層に適切な材料選択
が可能となり素子の特性も向上する。
Each layer of the device is formed by laminating a hole injecting electrode, a hole transporting layer, a light emitting layer and a cathode in this order on a transparent substrate,
Providing a hole injection layer between the hole injection electrode and the hole transport layer,
An electron transport layer may be provided between the light emitting layer and the cathode, and an electron injection layer may be provided at the interface with the cathode. In this way, by making each layer play a role by separating the functions, it is possible to select an appropriate material for each layer and improve the characteristics of the device.

【0007】透明基板としては一般にコーニング173
7等のガラス基板が広く用いられている。板厚は0.7
mm程度が強度と重量の観点から扱いやすい。
Corning 173 is generally used as the transparent substrate.
Glass substrates such as 7 are widely used. Board thickness is 0.7
About mm is easy to handle from the viewpoint of strength and weight.

【0008】正孔注入電極としてはITOのスパッタ
膜、エレクトロンビーム蒸着膜、イオンプレーティング
膜等の透明電極が用いられる。膜厚は必要とされるシー
トレジスタンス値と可視光透過率から決定されるが、有
機EL素子では比較的駆動電流密度が高いため、シート
レジスタンスを小さくするため100nm以上の厚さで
用いられることが多い。
As the hole injecting electrode, a transparent electrode such as an ITO sputtered film, an electron beam vapor deposition film, an ion plating film or the like is used. The film thickness is determined from the required sheet resistance value and visible light transmittance. However, since the organic EL element has a relatively high driving current density, it may be used in a thickness of 100 nm or more to reduce the sheet resistance. Many.

【0009】正孔輸送層はN,N’−ビス(3−メチル
フェニル)−N,N’−ジフェニルベンジジン(以下T
PDと称する)、N,N’−ビス(α−ナフチル)−
N,N’−ジフェニルベンジジン(以下NPDと称す
る)、など、Tangらの用いたジアミン誘導体、特に
日本国特許第2037475号に開示されたQ1−G−
Q2構造のジアミン誘導体の真空蒸着膜が幅広く用いら
れている。これらの材料は一般に透明性に優れ、80n
m程度の膜厚でもほぼ透明であり、且つ成膜性にも優れ
るためピンホ−ルなどの欠陥のない膜が得られ、素子の
総膜厚を100nm程度にまで薄くしても短絡など信頼
性上の問題が発生し難い特徴がある。
The hole transport layer is composed of N, N'-bis (3-methylphenyl) -N, N'-diphenylbenzidine (hereinafter referred to as T
Referred to as PD), N, N'-bis (α-naphthyl)-
N, N'-diphenylbenzidine (hereinafter referred to as NPD), etc., and the diamine derivatives used by Tang et al., Especially Q1-G- disclosed in Japanese Patent No. 2037475.
A vacuum deposition film of a diamine derivative having a Q2 structure is widely used. These materials are generally excellent in transparency and
Even if the film thickness is about m, it is almost transparent, and because it has excellent film-forming properties, a film without defects such as pinholes can be obtained. Even if the total film thickness of the device is reduced to about 100 nm, reliability such as short circuit is obtained. There is a feature that the above problem does not occur easily.

【0010】発光層もTangらの報告と同様に、トリ
ス(8−キノリノラト)アルミニウム等の電子輸送性発
光材料を真空蒸着により数十nmの膜厚に形成して用い
る構成が一般的である。種々の発光色を実現するなどの
目的で、発光層は比較的薄膜とし、電子輸送層を20n
m程度積層した、所謂ダブルヘテロ構造が採用されるこ
ともある。
Similar to the report of Tang et al., The light-emitting layer is generally formed by using an electron-transporting light-emitting material such as tris (8-quinolinolato) aluminum to form a film having a thickness of several tens of nm by vacuum vapor deposition. For the purpose of realizing various emission colors, the light emitting layer is relatively thin and the electron transport layer is 20 n
A so-called double hetero structure in which about m layers are stacked may be adopted.

【0011】陰極はTangらの提案したMgAg合金
あるいはAlLi合金など、仕事関数が低く電子注入障
壁の低い金属と比較的仕事関数が大きく安定な金属との
合金、またはLiFなど種々の電子注入層とアルミニウ
ムなどとの積層陰極が用いられることが多い。
The cathode is an alloy of a metal having a low work function and a low electron injection barrier and a metal having a relatively large work function and stable such as MgAg alloy or AlLi alloy proposed by Tang et al., Or various electron injection layers such as LiF. A laminated cathode with aluminum or the like is often used.

【0012】またこのような正孔輸送層/電子輸送性発
光層の積層構成とは別に、正孔輸送性発光層/電子輸送
層の構成や、正孔輸送層/発光層/電子輸送層の構成も
幅広く用いられている。いずれの層構成を用いた場合も
透明基板、正孔注入電極、および陰極は上述のようなも
のが同様に用いられている。
In addition to the laminated structure of the hole transporting layer / electron transporting light emitting layer, the structure of the hole transporting light emitting layer / electron transporting layer, or the hole transporting layer / light emitting layer / electron transporting layer. The structure is also widely used. Whatever the layer structure is used, the transparent substrate, the hole injecting electrode, and the cathode are the same as described above.

【0013】また、近年はアクティブ駆動方式のディス
プレイが盛んに検討されている。Journal of
the Society for Informat
ion Display、vol.8、No.2、p9
3−97には、各画素の駆動に低温ポリシリコンTFT
を用いた有機ELディスプレイが開示されている。
In recent years, active drive type displays have been actively studied. Journal of
the Society for Information
ion Display, vol. 8, No. 2, p9
3-97, low-temperature polysilicon TFT for driving each pixel
An organic EL display using is disclosed.

【0014】[0014]

【発明が解決しようとする課題】このように有機EL素
子およびそれを用いた表示素子が開示されているが、通
常は透明基板上に透明陽極、有機層、陰極の順に形成
し、陽極側から発光を取出す構成となっているが、この
構成では、特に各画素の駆動に複数の低温ポリシリコン
TFT等を用いたアクティブマトリクス有機ELディス
プレイにおいては、大きな開口率を取り難い欠点がある
他、光の取り出し効率も低く、高効率が得難かった。
Thus, an organic EL device and a display device using the same are disclosed. Usually, a transparent anode, an organic layer and a cathode are formed in this order on a transparent substrate, and the organic EL device is formed from the anode side. Although it is configured to take out light emission, this configuration has a drawback that it is difficult to obtain a large aperture ratio particularly in an active matrix organic EL display that uses a plurality of low-temperature polysilicon TFTs for driving each pixel. It was difficult to obtain high efficiency because the extraction efficiency was low.

【0015】また一般に、上部から光を取出す構造とし
た場合、大きな開口率を実現しやすい反面、上部に透明
電極を形成する際に、下層となる有機層が劣化してしま
ったり、劣化はしないまでも十分なキャリア注入特性が
得られない課題があり、効率・寿命の観点で十分な特性
の素子は得られていなかった。
In general, when the structure is such that light is extracted from the upper part, a large aperture ratio can be easily realized, but when the transparent electrode is formed on the upper part, the lower organic layer does not deteriorate or does not deteriorate. However, there is a problem that sufficient carrier injection characteristics cannot be obtained, and an element having sufficient characteristics has not been obtained in terms of efficiency and life.

【0016】[0016]

【課題を解決するための手段】このような状況に鑑み、
筆者等は種々の構造の素子および表示装置を設計し、そ
の特性をつぶさに調べた結果、特定の素子構造を用いる
ことにより、素子内で発光した光を効率的に外部に取り
出すことが出来、極めて優れた効率と寿命を達成するこ
とができることを見出して本発明を完成させるに至っ
た。
[Means for Solving the Problems] In view of such a situation,
The authors designed elements and display devices of various structures and examined the characteristics thoroughly, and as a result, by using a specific element structure, the light emitted in the element can be efficiently extracted to the outside, The inventors have completed the present invention by finding that excellent efficiency and life can be achieved.

【0017】具体的には、本願の請求項1の発明の発光
素子は、少なくとも基板上に突起構造を有し、当該突起
構造の一部に発光部を形成し、当該突起構造の他の一部
または全部から光取り出しを行う構造を有することを特
徴とする発光素子である。
Specifically, the light emitting device according to the invention of claim 1 of the present application has a projection structure on at least a substrate, a light emitting portion is formed on a part of the projection structure, and another projection structure is provided. It is a light-emitting element having a structure for extracting light from part or all.

【0018】本願の請求項2の発明の発光素子は、請求
項1に記載の発光素子において、前記突起構造が直方体
状であり、当該直方体の側面に発光部を形成し、当該直
方体の上部より光取り出しを行う構造を有する発光素子
である。
A light emitting device according to a second aspect of the present invention is the light emitting device according to the first aspect, wherein the projection structure is a rectangular parallelepiped shape, a light emitting portion is formed on a side surface of the rectangular parallelepiped, and the rectangular parallelepiped is located above the rectangular parallelepiped. The light emitting element has a structure for extracting light.

【0019】本願の請求項3の発明の発光素子は、請求
項1または2に記載の発光素子において、前記直方体状
突起構造の、少なくとも下面が反射機能を有する発光素
子である。
A light emitting device according to a third aspect of the present invention is the light emitting device according to the first or second aspect, wherein at least the lower surface of the rectangular parallelepiped projection structure has a reflecting function.

【0020】本願の請求項4の発明の発光素子は、請求
項1から3のいずれかに記載の発光素子において、前記
直方体状突起構造の、発光部が形成された側面以外の側
面の内、少なくとも一つの側面に反射機能を有する発光
素子である。
According to a fourth aspect of the present invention, in the light emitting element according to any one of the first to third aspects, among the side surfaces of the rectangular parallelepiped protrusion structure other than the side surface on which the light emitting portion is formed, A light emitting device having a reflecting function on at least one side surface.

【0021】本願の請求項5の発明の発光素子は、請求
項1から4のいずれかに記載の発光素子において、前記
直方体状突起構造の上面から発光が取り出され、且つ当
該上面が凸形状を有する発光素子である。
According to a fifth aspect of the present invention, in the light emitting element according to any one of the first to fourth aspects, the emitted light is taken out from the upper surface of the rectangular parallelepiped projection structure, and the upper surface has a convex shape. It is a light emitting element having.

【0022】本願の請求項6の発明の発光素子は、少な
くとも基板上に凹構造を有し、当該凹構造の一部に発光
部を形成し、当該基板の凹部以外の部分の一部または全
部から光取り出しを行う構造を有する発光素子である。
According to a sixth aspect of the present invention, a light emitting device has a concave structure on at least a substrate, a light emitting portion is formed in a part of the concave structure, and a part or all of a portion other than the concave part of the substrate is formed. The light emitting element has a structure for extracting light from the light emitting element.

【0023】本願の請求項7の発明の発光素子は、少な
くとも基板上に透明電極、発光機能層、反射電極を有す
る発光素子であって、前記透明電極が基板上に形成され
た発光色に対して透明性を有する構造体に接して配置さ
れ、当該発光機能層で発光した光が、透明電極を通して
当該構造体に入射した後、外部に取り出される発素子で
ある。
The light emitting device according to the invention of claim 7 of the present application is a light emitting device having at least a transparent electrode, a light emitting functional layer, and a reflective electrode on a substrate, wherein the transparent electrode has a color of light emitted on the substrate. Is a light-emitting element that is disposed in contact with a transparent structure and is emitted to the outside after the light emitted from the light-emitting functional layer enters the structure through the transparent electrode.

【0024】本願の請求項8の発明の表示装置は、請求
項1から7のずれかに記載の発光素子を複数個有する表
示装置である。
A display device according to an eighth aspect of the present invention is a display device having a plurality of light emitting elements according to any one of the first to seventh aspects.

【0025】本願の請求項9の発明の発光素子の製造方
法は、少なくとも基板上に突起構造を有し、当該突起構
造の一部に、基板に対して斜方からの成膜手段によって
発光部を形成し、当該突起構造の他の一部または全部か
ら光取り出しを行う構造を形成する発光素子の製造方法
である。
According to a ninth aspect of the present invention, there is provided a method of manufacturing a light emitting device, wherein at least a projection structure is provided on a substrate, and a part of the projection structure is formed by a film forming means obliquely with respect to the substrate. And a structure in which light is extracted from another part or all of the protrusion structure.

【0026】本願の請求項10の発明の発光素子の製造
方法は、少なくとも基板上に凹構造を有し、当該凹構造
の一部に、基板に対して斜方からの成膜手段によって発
光部を形成し、当該基板の凹部以外の部分の一部または
全部から光取り出しを行う構造を形成する発光素子の製
造方法である。
According to a tenth aspect of the present invention, there is provided a light emitting device manufacturing method, wherein at least a concave structure is formed on a substrate, and a part of the concave structure is formed by an oblique film forming means with respect to the substrate. And a structure for performing light extraction from a part or the whole of the substrate other than the recessed part.

【0027】[0027]

【発明の実施の形態】以下、本発明の実施の形態に係る
発光素子ならびにその製造方法、およびそれらを複数個
用いた表示装置について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A light emitting device according to an embodiment of the present invention, a method for manufacturing the same, and a display device using a plurality of them will be described below.

【0028】本発明の発光素子は、少なくとも基板上に
突起構造あるいは凹形状などを有する。突起形状とは立
方体などの直方体状のものなどが考えられるがこれに限
定されるものではない。断面が台形であったり平行四辺
形であったり、また円柱や円錐、三角錐など種々の形状
が考えられる。
The light emitting device of the present invention has a projection structure or a concave shape on at least the substrate. The projection shape may be a rectangular parallelepiped shape such as a cube, but is not limited to this. The cross section may be trapezoidal, parallelogrammic, or various shapes such as a cylinder, a cone, and a triangular pyramid.

【0029】実際に光を生成する発光部は、これらの突
起構造の一部に形成される。そして発光部の形成されな
かった残りの部分の一部または全部から光が外部に取り
出されるものである。光が外部に取り出される部分の形
状は種々のレンズ形状等の、通常の幾何光学における設
計を適用した構成として、発光強度分布等を所望の設計
にすることができる。また、反射機能とは、発光部で発
光した光を反射させ得るものであればよく、Al蒸着膜
等の金属膜の他、種々の光学反射膜等が用いられること
が出来る。また、突起構造の屈折率と周囲の屈折率差を
利用して反射機能を実質的に持たせた設計とすることも
可能である。
The light emitting portion that actually generates light is formed in a part of these protrusion structures. Then, light is extracted to the outside from a part or all of the remaining portion where the light emitting portion is not formed. The shape of the portion where the light is extracted to the outside can be a desired design of the emission intensity distribution and the like by applying a configuration in the ordinary geometrical optics such as various lens shapes. Further, the reflection function may be any function as long as it can reflect the light emitted from the light emitting portion, and various optical reflection films and the like can be used in addition to a metal film such as an Al vapor deposition film. Further, it is also possible to use a difference between the refractive index of the protrusion structure and the refractive index of the surroundings so as to have a design that substantially has a reflecting function.

【0030】凹形状とは、立方体など直方体状のものな
どが考えられるがこれに限定されるものではない。凹の
断面が台形であったり平行四辺形であったり、また円柱
や円錐、三角錐など種々の形状が考えられる。また、断
面が三角形、四角形、半円形などの溝構造なども考えら
れる。凹形状の場合も、実際に光を生成する発光部はそ
の一部に形成される。そして凹形状の形成されなかった
残りの部分の一部または全部から光が外部に取り出され
るものであるが、場合によっては凹形状の一部からも光
が取り出されることを否定するものでは無い。光が外部
に取り出される部分の形状は種々のレンズ形状等の、通
常の幾何光学における設計を適用した構成として、発光
強度分布等を所望の設計にすることができるのも突起形
状を設けた場合と同じである。
The concave shape may be a rectangular parallelepiped shape such as a cube, but is not limited to this. The concave cross section may have a trapezoidal shape, a parallelogram shape, or various shapes such as a cylinder, a cone, and a triangular pyramid. Further, a groove structure having a cross section of a triangle, a quadrangle, a semicircle or the like is also conceivable. Even in the case of the concave shape, the light emitting portion that actually generates light is formed in a part thereof. The light is extracted to the outside from a part or the whole of the remaining portion where the concave shape is not formed, but in some cases, it is not denied that the light is extracted from a part of the concave shape. The shape of the part where the light is extracted to the outside is various lens shapes, etc., and the design in ordinary geometrical optics is applied, and the emission intensity distribution etc. can be designed as desired if the projection shape is provided. Is the same as.

【0031】本発明の要部は、上述のように、基板上に
特定の構造を有し、当該構造の一部に実際に光を生成す
る発光部を設け、他の部分から光を取り出す構成にあ
り、実際に光を生成する発光部自体には通常の材料およ
び構成、製造方法を幅広く用いることができる。具体的
には、透明陽極としてITO電極を用い、発光機能層を設
けた後に、陰極を設け、透明陽極側から発光を取出す構
成が幅広く用いられている。ここで発光機能層とは、実
際に発光する発光層だけでなく、正孔輸送層/電子輸送
性発光層、正孔輸送性発光層/電子輸送層、正孔輸送層
/発光層/電子輸送層のような種々の構成を総称するも
のであり、さらに陽極側に正孔注入層、陰極側に電子注
入層等を有する構成も広く用いられている。
As described above, the main part of the present invention has a structure in which a specific structure is provided on the substrate, a light emitting part for actually generating light is provided in a part of the structure, and light is taken out from other parts. In general, ordinary materials, structures, and manufacturing methods can be widely used for the light emitting portion itself that actually generates light. Specifically, a configuration in which an ITO electrode is used as a transparent anode, a cathode is provided after providing a light emitting functional layer, and light is emitted from the transparent anode side is widely used. Here, the light emitting functional layer means not only a light emitting layer which actually emits light but also a hole transporting layer / electron transporting light emitting layer, a hole transporting light emitting layer / electron transporting layer, a hole transporting layer / light emitting layer / electron transporting layer. Various structures such as layers are collectively referred to, and a structure having a hole injection layer on the anode side and an electron injection layer on the cathode side is also widely used.

【0032】本発明における基板は、光を基板面の下側
に(基板を通して)取り出すことを行なわず、上側に取り
出すため、透明である必要が無く、複数のTFT等で構成
された回路を作りこんだ基板等の不透明な基板であって
も用いることが出来る点も大きな特徴である。
The substrate of the present invention does not need to be transparent because light is not extracted to the lower side of the substrate surface (through the substrate) but is extracted to the upper side, so that a circuit composed of a plurality of TFTs or the like is formed. A major feature is that even an opaque substrate such as a dented substrate can be used.

【0033】本発明における透明陽極は、ITOなどが
好適に用いられる。本素子において発光機能層はは一般
的な正孔注入層、正孔輸送層、発光層、電子輸送層を幅
広く用いることが出来る。正孔注入層としてはITOの
表面粗さの平滑化や正孔注入効率の向上による低駆動電
圧化、長寿命化などの目的のために、スターバーストア
ミン、オリゴアミン誘導体等を用いることが多く、バッ
ファ層と称することもある。正孔輸送層としては前述の
TPD、NPDの他、特定のブレンド型正孔輸送層を用
いて優れた特性を実現する技術とも組み合わせて用いる
ことも出来る。電子輸送層としてはTangらがトリス
(8−キノリノラト)アルミニウムを用いて以来、幅広
く検討されている金属錯体系はもちろん、オキサジアゾ
ール誘導体、トリアゾール誘導体その他の材料も幅広く
用いることが出来る。
ITO or the like is preferably used for the transparent anode in the present invention. As the light emitting functional layer in this element, a general hole injection layer, hole transporting layer, light emitting layer, and electron transporting layer can be widely used. For the hole injection layer, starburst amine, oligoamine derivatives, etc. are often used for the purpose of smoothing the surface roughness of ITO and improving the hole injection efficiency to lower the driving voltage and extend the life. It may also be referred to as a buffer layer. As the hole transport layer, in addition to the above TPD and NPD, it is also possible to use it in combination with a technique for realizing excellent characteristics by using a specific blend type hole transport layer. As the electron transport layer, not only the metal complex system widely studied since Tang et al. Using tris (8-quinolinolato) aluminum, but also oxadiazole derivative, triazole derivative and other materials can be widely used.

【0034】本発明における陰極は、従来の技術で述べ
たようにTangらの提案したMgAg合金などの他、
LiF超薄膜とAlとの積層陰極、Li薄膜とAlとの積層陰極
などが幅広く用いることが出来る。
The cathode in the present invention is, in addition to the MgAg alloy proposed by Tang et al.
A laminated cathode of a LiF ultra-thin film and Al and a laminated cathode of a Li thin film and Al can be widely used.

【0035】次に具体的な実施例に基づいてさらに詳細
に説明するが、本発明の実施の形態はこれらの具体的な
実施例に限定されるものではない。個々の材料は、特に
入手先を示した化合物以外は、定法により当社研究室内
で合成して、十分な精製を行った後に用いた。
Next, more detailed description will be given based on specific examples, but the embodiment of the present invention is not limited to these specific examples. The individual materials were used after being synthesized in our laboratory by a conventional method and sufficiently purified, except for the compounds for which the suppliers were specified.

【0036】(実施例1)以下本願実施例1の発光素子
およびその製造方法ならびにそれら発光素子の集合体で
ある表示装置について、図1を参照しながら詳細に説明
する。
(Embodiment 1) A light emitting device, a method of manufacturing the same, and a display device which is an assembly of the light emitting devices according to Embodiment 1 of the present invention will be described in detail below with reference to FIG.

【0037】基板としてはアクティブマトリクス画素駆
動のためのTFT群を有するアクティブマトリクスTF
Tアレイ基板101を用いた。TFTアレイ基板の各画
素に対応させて、反射層106としてAl膜を、突起構
造102としてポリイミド膜を設けた。Al膜は真空マ
スク蒸着法により膜厚100nmに成膜したが、ベタ成
膜の後、フォトリソグラフィー工程とエッチング工程に
より所望のパターンを得ても同様の結果が得られた。突
起構造はフォトリソグラフィーを用いてポリイミド膜を
形成した。200℃で30分間のポストベークを行った
後の、膜厚は約50μmであった。
As a substrate, an active matrix TF having a TFT group for driving an active matrix pixel
The T array substrate 101 was used. An Al film was provided as the reflection layer 106 and a polyimide film was provided as the protrusion structure 102 corresponding to each pixel of the TFT array substrate. The Al film was formed to have a film thickness of 100 nm by the vacuum mask vapor deposition method, but the same result was obtained even when a desired pattern was obtained by the photolithography process and the etching process after the solid film formation. For the protrusion structure, a polyimide film was formed by using photolithography. The film thickness after post-baking at 200 ° C. for 30 minutes was about 50 μm.

【0038】次に、出光興産(株)製IDIXOターゲッ
トを用いて、透明陽極103を基板法線方向に対して斜
め45度の角度から膜厚約150nmにスパッタ成膜を
行った。成膜範囲はマスクを用いて、突起構造102の
側面部に限定した。また、透明陽極103はTFTアレ
イ基板101の各画素電極に接続させるように成膜し
た。
Next, using the IDIXO target manufactured by Idemitsu Kosan Co., Ltd., the transparent anode 103 was sputter-deposited to a film thickness of about 150 nm from an angle of 45 degrees oblique to the normal to the substrate. The film formation range was limited to the side surface of the protrusion structure 102 using a mask. The transparent anode 103 was formed so as to be connected to each pixel electrode of the TFT array substrate 101.

【0039】さらに、発光機能層104として、正孔輸
送層、発光層を真空マスク蒸着法にて積層して形成し、
反射陰極105として、電子注入陰極、陰極を同じく真
空マスク蒸着法にて積層して形成した。
Further, as the light emitting functional layer 104, a hole transport layer and a light emitting layer are formed by laminating by a vacuum mask vapor deposition method,
The reflective cathode 105 was formed by stacking an electron injection cathode and a cathode by the vacuum mask vapor deposition method.

【0040】真空マスク蒸着はいずれも市販の高真空蒸
着装置(日本真空技術株式会社製、EBV−6DA型)
を改造した装置を用いた。主たる排気装置は排気速度1
500リットル/minのターボ分子ポンプ(大阪真空
株式会社製、TC1500)であり、到達真空度は約1
×10-6Torr以下であり、全ての蒸着は2〜3×1
-6Torrの範囲で行った。また全ての蒸着はタング
ステン製の抵抗加熱式蒸着ボートに直流電源(菊水電子
株式会社製、PAK10−70A)を接続して行った。
All of the vacuum mask vapor depositions are commercially available high vacuum vapor deposition equipment (EBV-6DA type manufactured by Nippon Vacuum Technology Co., Ltd.).
A modified device was used. The main exhaust system is exhaust speed 1
It is a 500 liter / min turbo molecular pump (TC1500, manufactured by Osaka Vacuum Co., Ltd.), and the ultimate vacuum is about 1.
It is less than × 10 -6 Torr, and all vapor depositions are 2 to 3 × 1.
It was performed in the range of 0 -6 Torr. All evaporations were performed by connecting a DC power supply (PAK10-70A, manufactured by Kikusui Electronics Co., Ltd.) to a resistance heating type evaporation boat made of tungsten.

【0041】正孔輸送層としては、N,N’−ビス
(4’−ジフェニルアミノ−4−ビフェニリル)−N,
N’−ジフェニルベンジジン(TPT、保土ヶ谷化学株
式会社製)を蒸着速度0.3(nm/s)で、4−N,
N−ジフェニルアミノ−α−フェニルスチルベン(P
S)を蒸着速度0.01(nm/s)で共蒸着し、膜厚
約80(nm)のブレンド型正孔輸送層を形成した。
As the hole transport layer, N, N'-bis (4'-diphenylamino-4-biphenylyl) -N,
N'-diphenylbenzidine (TPT, manufactured by Hodogaya Chemical Co., Ltd.) at a deposition rate of 0.3 (nm / s) was used for 4-N,
N-diphenylamino-α-phenylstilbene (P
S) was co-evaporated at a vapor deposition rate of 0.01 (nm / s) to form a blended hole transport layer having a film thickness of about 80 (nm).

【0042】発光層としては、トリス(8−キノリノラ
ト)アルミニウム(Alq3、同仁化学株式会社製)を
0.3nm/sの蒸着速度で膜厚約40nmに形成し
た。
As the light emitting layer, tris (8-quinolinolato) aluminum (Alq3, manufactured by Dojindo Co., Ltd.) was formed to a film thickness of about 40 nm at a deposition rate of 0.3 nm / s.

【0043】電子注入陰極としては、Li蒸着層を膜厚
約10(nm)に形成した。
As the electron injection cathode, a Li vapor deposition layer was formed to a film thickness of about 10 (nm).

【0044】最後に陰極としては、Al蒸着膜を膜厚約
100nmに形成した。
Finally, as the cathode, an Al vapor deposition film was formed to a film thickness of about 100 nm.

【0045】このようにして作成した発光素子は、蒸着
槽内を乾燥窒素でリークした後、乾燥窒素雰囲気下で、
コーニング7059ガラス製の蓋を接着剤(アネルバ株
式会社製、商品名スーパーバックシール953−700
0)で貼り付けてサンプルとした。
The light-emitting device thus produced was leaked in the vapor deposition tank with dry nitrogen, and then, in a dry nitrogen atmosphere,
Corning 7059 glass lid with adhesive (Anerva Co., Ltd., trade name Super Back Seal 953-700
The sample was attached in step 0).

【0046】このようにして得た発光素子サンプルは、
次のようにして評価を行った。
The light emitting element sample thus obtained is
The evaluation was performed as follows.

【0047】初期の評価は素子の蒸着後ガラス蓋を接着
してから12時間後に常温常湿の通常の実験室環境で行
い、発光効率(cd/A)、1000(cd/m2)発
光時の駆動電圧を評価した。また初期輝度が1000
(cd/m2)となる電流値で、常温常湿の通常の実験
室環境で直流定電流駆動で連続発光試験を行った。この
試験から、輝度が半減(500cd/m2)に達した時
間を寿命として評価した。輝度は基板面の法線方向から
測定し、発光効率はこの輝度を駆動電流密度で割った見
かけ上の発光効率を求めた。駆動は全て、TFTアレイ
基板内に設けられた各画素毎の駆動TFTを通して行っ
た。
The initial evaluation was carried out 12 hours after the glass lid was adhered after vapor deposition of the device in a normal laboratory environment of normal temperature and normal humidity, and the luminous efficiency (cd / A) and 1000 (cd / m 2 ) were emitted. Drive voltage was evaluated. The initial brightness is 1000
At a current value of (cd / m 2 ), a continuous light emission test was performed by driving at a constant DC current in a normal laboratory environment of normal temperature and normal humidity. From this test, the time when the brightness reached to half (500 cd / m 2 ) was evaluated as the life. The luminance was measured from the direction normal to the substrate surface, and the luminous efficiency was obtained by dividing the luminance by the driving current density to obtain the apparent luminous efficiency. All driving was performed through the driving TFT for each pixel provided in the TFT array substrate.

【0048】輝度は輝度計(東京光学機械株式会社製、
商品名トプコンルミネセンスメーターBM−8)によっ
て測定した。輝度ムラ、黒点(非発光部)等の発光画像
品質は、50倍の光学顕微鏡により観察した。
The luminance is measured by a luminance meter (manufactured by Tokyo Optical Machine Co., Ltd.,
It was measured by a trade name Topcon Luminescence Meter BM-8). The luminescence image quality such as luminance unevenness and black spots (non-luminous portion) was observed with a 50 × optical microscope.

【0049】これらの評価結果を(表1)に示す。The results of these evaluations are shown in (Table 1).

【0050】[0050]

【表1】 [Table 1]

【0051】本実施例によれば、高い発光効率を有し、
低い駆動電圧で、且つ自発光で視認性に優れた発光が得
られ、連続発光試験においても輝度低下が小さく、黒点
や輝度ムラなどの不具合も無く、極めて長期間にわたっ
て安定して使用できる発光素子およびそれらの集合とし
ての表示装置を実現できた。
According to this embodiment, high luminous efficiency is obtained,
A light-emitting element that emits light with excellent visibility by self-light emission with a low driving voltage, has a small decrease in brightness in continuous light emission tests, has no defects such as black spots and uneven brightness, and can be used stably for an extremely long period of time. And the display device as a set of them could be realized.

【0052】(実施例2)実施例1で作成した突起構造
102の底面の反射層106に加えて、突起構造102
の側面(発光部と反対の側面)に反射層を形成した以外
は実施例1と同様にして発光素子サンプルを作成した。
Example 2 In addition to the reflective layer 106 on the bottom surface of the protrusion structure 102 prepared in Example 1, the protrusion structure 102 was used.
A light emitting element sample was prepared in the same manner as in Example 1 except that the reflective layer was formed on the side surface (the side surface opposite to the light emitting portion).

【0053】その結果を(表1)に示す。The results are shown in (Table 1).

【0054】(実施例3)実施例1で作成した突起構造
102の上面の形状を凸型レンズ形状とした以外は実施
例1と同様にして発光素子サンプルを作成した。
(Example 3) A light emitting element sample was prepared in the same manner as in Example 1 except that the shape of the upper surface of the projection structure 102 prepared in Example 1 was a convex lens shape.

【0055】その結果を(表1)に示す。The results are shown in (Table 1).

【0056】(実施例4)実施例1で突起形状102を
形成した代わりに、凹形状を形成し、当該凹形状の側面
に透明陽極103、発光機能層104、反射陰極105
を形成した以外は全て実施例1と同様にして発光素子サ
ンプルを作成し、実施例1に記載のように評価を行っ
た。
(Embodiment 4) Instead of forming the projection shape 102 in Embodiment 1, a concave shape is formed, and the transparent anode 103, the light emitting functional layer 104, and the reflective cathode 105 are formed on the side surfaces of the concave shape.
A light emitting device sample was prepared in the same manner as in Example 1 except that the above was formed, and evaluated as described in Example 1.

【0057】その結果を(表1)に示す。The results are shown in (Table 1).

【0058】(比較例1)透明開口部を有するTFTアレ
イ基板を用いて、透明陽極103、発光機能層104、
反射陰極105を実施例1と同じ発光部サイズで、TFT
アレイ基板の透明開口部上に形成し、TFTアレイ基板側
から(TFTアレイ基板を通して)発光を取り出した。透
明開口部の発光波長に対する透過率は90%以上であっ
た。
(Comparative Example 1) Using a TFT array substrate having a transparent opening, a transparent anode 103, a light emitting functional layer 104,
The reflective cathode 105 has the same size as the light emitting portion of the first embodiment,
It was formed on the transparent opening of the array substrate and emitted light was taken out from the TFT array substrate side (through the TFT array substrate). The transmittance of the transparent aperture for the emission wavelength was 90% or more.

【0059】透明陽極103、発光機能層104、反射
陰極105の形成は基板面と垂直に蒸着して行ったが、
同じ材料を用い、膜厚もいずれも実施例1と同じになる
ように調整した。それ以外は全て実施例1と同様にして
発光素子サンプルを作成し、実施例1に記載のように評
価を行った。
The transparent anode 103, the light emitting functional layer 104, and the reflective cathode 105 were formed by vapor deposition perpendicular to the substrate surface.
The same material was used, and the film thicknesses were adjusted to be the same as in Example 1. A light emitting device sample was prepared in the same manner as in Example 1 except for the above, and evaluated as described in Example 1.

【0060】その結果を(表1)に示す。The results are shown in (Table 1).

【0061】(表1)において略記は、TPTは、N,
N’−ビス(4’−ジフェニルアミノ−4−ビフェニリ
ル)−N,N’−ジフェニルベンジジン、PSは、4−
N,N−ジフェニルアミノ−α−フェニルスチルベン、
Alqは、トリス(8−キノリノラト)アルミニウム、
Alは、アルミニウム、Liは、リチウム、を表し、左
から積層構成を表す記号として/で区切って陽極側から
順に記載した。()内の数字は膜厚をnmで示し、+は
ドーピング混合など両成分の共存膜を示す。
In Table 1, TPT is N,
N′-bis (4′-diphenylamino-4-biphenylyl) -N, N′-diphenylbenzidine, PS is 4-
N, N-diphenylamino-α-phenylstilbene,
Alq is tris (8-quinolinolato) aluminum,
Al represents aluminum and Li represents lithium, which are described in order from the anode side by separating them with / as a symbol showing a laminated structure from the left. The numbers in parentheses indicate the film thickness in nm, and + indicates a coexisting film of both components such as doping mixture.

【0062】[0062]

【発明の効果】以上、本発明に係る発光素子およびそれ
らの製造方法およびそれらを用いた表示装置について説
明したが、本発明は、少なくとも基板上に突起構造を有
し、当該突起構造の一部に発光部を形成し、当該突起構
造の他の一部または全部から光取り出しを行う構造を有
することを特徴とする発光素子を用いることによって、
あるいはより好ましくは、前記突起構造が直方体状であ
り、当該直方体の側面に発光部を形成し、当該直方体の
上部より光取り出しを行う構造を有することを特徴とす
る発光素子を用いることによって、あるいはより好まし
くは、前記直方体状突起構造の、少なくとも下面が反射
機能を有することをことを特徴とする発光素子を用いる
ことによって、あるいはより好ましくは、前記直方体状
突起構造の、発光部が形成された側面以外の側面の内、
少なくとも一つの側面に反射機能を有することをことを
特徴とする発光素子を用いることによって、あるいはよ
り好ましくは、前記直方体状突起構造の上面から発光が
取り出され、且つ当該上面が凸形状を有することを特徴
とする発光素子を用いることによって、あるいは、少な
くとも基板上に凹構造を有し、当該凹構造の一部に発光
部を形成し、当該基板の凹部以外の部分の一部または全
部から光取り出しを行う構造を有することを特徴とする
発光素子を用いることによって、あるいは、少なくとも
基板上に透明電極、発光機能層、反射電極を有する発光
素子であって、前記透明電極が基板上に形成された発光
色に対して透明性を有する構造体に接して配置され、当
該発光機能層で発光した光が、透明電極を通して当該構
造体に入射した後、外部に取り出されることを特徴とす
る発光素子を用いることによって、高い光取り出し効率
が得られ、高い発光効率を有し、極めて長寿命で、ムラ
や黒点などの欠陥もなく、低い駆動電圧で自発光で視認
性に優れた発光が得られ、連続発光試験においても輝度
低下が小さく、少ない消費電力で、極めて長期間にわた
って安定して使用できる発光素子を実現できるものであ
る。
As described above, the light emitting device according to the present invention, the manufacturing method thereof, and the display device using the same have been described. However, the present invention has at least a protrusion structure on a substrate, and a part of the protrusion structure. By using a light-emitting element characterized in that a light-emitting portion is formed in, and light is extracted from other part or all of the protrusion structure.
Alternatively, more preferably, by using a light emitting element characterized in that the projection structure is a rectangular parallelepiped shape, a light emitting portion is formed on a side surface of the rectangular parallelepiped, and light is extracted from an upper portion of the rectangular parallelepiped, or More preferably, by using a light emitting element characterized in that at least the lower surface of the rectangular parallelepiped projection structure has a reflecting function, or more preferably, the light emitting portion of the rectangular parallelepiped projection structure is formed. Of the sides other than the side,
By using a light emitting element characterized by having a reflecting function on at least one side surface, or more preferably, emitted light is extracted from the upper surface of the rectangular parallelepiped projection structure, and the upper surface has a convex shape. By using a light-emitting element characterized by, or at least has a concave structure on the substrate, the light-emitting portion is formed in a part of the concave structure, and light is emitted from a part or the whole of the substrate except the concave part. By using a light-emitting element having a structure for taking out, or a light-emitting element having at least a transparent electrode, a light-emitting functional layer, and a reflective electrode on a substrate, the transparent electrode being formed on the substrate. After being placed in contact with a structure that is transparent to the emission color and the light emitted from the light-emitting functional layer enters the structure through the transparent electrode. By using a light emitting element that is extracted to the outside, high light extraction efficiency can be obtained, high light emission efficiency, extremely long life, no defects such as unevenness and black spots, and low drive voltage. It is possible to realize a light emitting device which can obtain light emission with excellent visibility by light emission, has a small decrease in luminance in a continuous light emission test, consumes less power, and can be stably used for an extremely long period of time.

【0063】発光素子として実施例1から4のいずれに
開示したものを用いた場合にも、高輝度で高効率、低消
費電力で動画の応答性にも優れ、極めて視認性にも優れ
た表示を実現できるものであった。また高精細高解像度
で且つ多階調の表示装置とした場合にも、クロストーク
等の不具合の全くない極めて良好な表示品位を実現でき
るものであった。また連続動作試験においても極めて長
時間にわたって輝度低下等の変化は認められない優れた
安定性を実現できるものであった。
When any of the light-emitting elements disclosed in Examples 1 to 4 is used, a display having high brightness, high efficiency, low power consumption, excellent moving image response, and excellent visibility is obtained. Was realized. Further, even in the case of a display device with high definition and high resolution and multiple gradations, it was possible to realize extremely good display quality without any problems such as crosstalk. Further, even in the continuous operation test, excellent stability was achieved in which no change such as decrease in brightness was observed over an extremely long time.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施1の発光素子の断面図FIG. 1 is a cross-sectional view of a light emitting device of Example 1.

【符号の説明】[Explanation of symbols]

101 TFTアレイ基板 102 突起構造 103 透明陽極 104 発光機能層 105 反射陰極 106 反射層 101 TFT array substrate 102 Projection structure 103 transparent anode 104 Light emitting functional layer 105 reflective cathode 106 reflective layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05B 33/14 H05B 33/14 A (72)発明者 杉浦 久則 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 3K007 AB02 AB03 AB06 AB11 AB17 AB18 BA06 BB06 BB07 CA00 CB01 CC01 DA01 DB03 EB00 FA01 5C094 AA10 AA24 AA31 AA43 BA03 BA27 CA19 DA13 DB01 EA04 EA05 EB10 ED01 ED11 FA01 FA02 FA04 FB01 FB20 GB10 5G435 AA03 AA17 BB05 CC09 FF02 FF03 GG02 HH01 HH20 KK05─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification symbol FI theme code (reference) H05B 33/14 H05B 33/14 A (72) Inventor Hisanori Sugiura 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. in the F-term (reference) 3K007 AB02 AB03 AB06 AB11 AB17 AB18 BA06 BB06 BB07 CA00 CB01 CC01 DA01 DB03 EB00 FA01 5C094 AA10 AA24 AA31 AA43 BA03 BA27 CA19 DA13 DB01 EA04 EA05 EB10 ED01 ED11 FA01 FA02 FA04 FB01 FB20 GB10 5G435 AA03 AA17 BB05 CC09 FF02 FF03 GG02 HH01 HH20 KK05

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 基板上に少なくとも突起構造を有し、前
記突起構造の一部に発光部を形成し、前記突起構造の他
の一部または全部から光取り出しを行う構造を有するこ
とを特徴とする発光素子。
1. A structure having at least a projecting structure on a substrate, a light emitting portion being formed on a part of the projecting structure, and light being extracted from another part or all of the projecting structure. Light emitting element.
【請求項2】 前記突起構造が直方体状であり、前記直
方体の側面に発光部を形成し、前記直方体の上部より光
取り出しを行う構造を有することを特徴とする請求項1
に記載の発光素子。
2. The projection structure has a rectangular parallelepiped shape, a light emitting portion is formed on a side surface of the rectangular parallelepiped, and light is extracted from an upper portion of the rectangular parallelepiped.
The light emitting device according to.
【請求項3】 前記直方体状突起構造の、少なくとも下
面が反射機能を有することを特徴とする請求項1または
2に記載の発光素子。
3. The light emitting device according to claim 1, wherein at least the lower surface of the rectangular parallelepiped projection structure has a reflecting function.
【請求項4】 前記直方体状突起構造の、発光部が形成
された側面以外の側面の内、少なくとも一つの側面に反
射機能を有することを特徴とする請求項1から3のいず
れかに記載の発光素子。
4. The at least one side surface of the rectangular parallelepiped projection structure other than the side surface on which the light emitting portion is formed has a reflecting function. Light emitting element.
【請求項5】 前記直方体状突起構造の上面から発光が
取り出され、且つ前記突起構造の上面が凸形状を有する
ことを特徴とする請求項1から4のいずれかに記載の発
光素子。
5. The light emitting device according to claim 1, wherein emitted light is extracted from the upper surface of the rectangular parallelepiped projection structure, and the upper surface of the projection structure has a convex shape.
【請求項6】 基板上に少なくとも凹構造を有し、前記
凹構造の一部に発光部を形成し、前記基板の凹部以外の
部分の一部または全部から光取り出しを行う構造を有す
ることを特徴とする発光素子。
6. A structure having at least a concave structure on a substrate, wherein a light emitting portion is formed in a part of the concave structure, and light is extracted from a part or all of a part other than the concave part of the substrate. Characteristic light emitting element.
【請求項7】 基板上に少なくとも透明電極、発光機能
層、反射電極を有する発光素子であって、前記透明電極
が基板上に形成された発光色に対して透明性を有する構
造体に接して配置され、当該発光機能層で発光した光
が、透明電極を通して当該構造体に入射した後、外部に
取り出されることを特徴とする発光素子。
7. A light emitting device having at least a transparent electrode, a light emitting functional layer, and a reflective electrode on a substrate, wherein the transparent electrode is in contact with a structure that is transparent to the emission color formed on the substrate. A light-emitting element, which is arranged and in which light emitted from the light-emitting functional layer enters the structure through a transparent electrode and is then extracted to the outside.
【請求項8】 請求項1から7のずれかに記載の発光素
子を複数個有する表示装置。
8. A display device having a plurality of light emitting elements according to claim 1. Description:
【請求項9】 基板上に少なくとも突起構造を有し、当
該突起構造の一部に、基板に対して斜方からの成膜手段
によって発光部を形成し、当該突起構造の他の一部また
は全部から光取り出しを行う構造を形成することを特徴
とする発光素子の製造方法。
9. A projection structure is provided on at least a substrate, and a light emitting portion is formed on a part of the projection structure by film forming means obliquely with respect to the substrate. A method for manufacturing a light-emitting element, which comprises forming a structure for extracting light from all.
【請求項10】 基板上に少なくとも凹構造を有し、前
記凹構造の一部に、基板に対して斜方からの成膜手段に
よって発光部を形成し、前記基板の凹部以外の部分の一
部または全部から光取り出しを行う構造を形成すること
を特徴とする発光素子の製造方法。
10. A substrate has at least a concave structure, and a light emitting portion is formed on a part of the concave structure by a film forming means obliquely with respect to the substrate. A method for manufacturing a light-emitting element, which comprises forming a structure for extracting light from a part or the whole.
JP2001270112A 2001-09-06 2001-09-06 Light emitting diode, and manufacturing method thereof Pending JP2003077648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001270112A JP2003077648A (en) 2001-09-06 2001-09-06 Light emitting diode, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001270112A JP2003077648A (en) 2001-09-06 2001-09-06 Light emitting diode, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2003077648A true JP2003077648A (en) 2003-03-14

Family

ID=19095811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001270112A Pending JP2003077648A (en) 2001-09-06 2001-09-06 Light emitting diode, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2003077648A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7572037B2 (en) 2007-03-07 2009-08-11 Sony Corporation Light emitting device, display device and a method of manufacturing display device
WO2010119395A1 (en) * 2009-04-17 2010-10-21 Koninklijke Philips Electronics N.V. Transparent oled device with high intensity
US8093801B2 (en) 2007-08-17 2012-01-10 Sony Corporation Display device having parabolic light reflecting portions for enhanced extraction of light

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7572037B2 (en) 2007-03-07 2009-08-11 Sony Corporation Light emitting device, display device and a method of manufacturing display device
US8093801B2 (en) 2007-08-17 2012-01-10 Sony Corporation Display device having parabolic light reflecting portions for enhanced extraction of light
US8410686B2 (en) 2007-08-17 2013-04-02 Sony Corporation Display device having lens portions for enhanced extraction of light
WO2010119395A1 (en) * 2009-04-17 2010-10-21 Koninklijke Philips Electronics N.V. Transparent oled device with high intensity
CN102396063A (en) * 2009-04-17 2012-03-28 皇家飞利浦电子股份有限公司 Transparent OLED device with high intensity
JP2012524368A (en) * 2009-04-17 2012-10-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Transparent organic light-emitting device with high brightness
US8405300B2 (en) 2009-04-17 2013-03-26 Koninklijke Philips Electronics N.V. Transparent OLED device with high intensity
US8901810B2 (en) 2009-04-17 2014-12-02 Koninklijke Philips N.V. Transparent OLED device with high intensity

Similar Documents

Publication Publication Date Title
JP3852509B2 (en) Electroluminescent device and manufacturing method thereof
US7741771B2 (en) Light-emitting element and display device and lighting device using same
US20060125382A1 (en) Highly efficient organic electroluminescent device
KR100735786B1 (en) Organic electroluminescence element
US9343510B2 (en) Organic light emitting display device
KR100751464B1 (en) Organic electroluminescent device
JP2002313582A (en) Light emitting element and display device
JP2004014360A (en) Organic electroluminescent element
JP2002237381A (en) Organic electroluminescence element
JPH11329731A (en) Organic electroluminescent element
JP2003338382A (en) Organic el element
KR100547055B1 (en) Organic Electroluminescent Device
JP2002313567A (en) Organic electroluminescence element and its manufacturing method
KR100605112B1 (en) Organic light emitting diodes
JP2003077648A (en) Light emitting diode, and manufacturing method thereof
JP4088471B2 (en) Organic light emitting device and method for manufacturing the same
JP4210872B2 (en) Electroluminescent device and manufacturing method thereof
JP4303011B2 (en) Top-emitting organic electroluminescence display element and method for manufacturing the same
JP2001230071A (en) Organic electroluminescence display element and its manufacturing method
JP2002313585A (en) Organic led and method of manufacturing it
JP2003092182A (en) Luminescent element and its manufacturing method
JP3740989B2 (en) Organic electroluminescence device
KR100565742B1 (en) Organic Electroluminescence Device
JP2006244901A (en) Manufacturing method and manufacturing device of spontaneous light emitting element
JP2003151779A (en) Organic led element, transfer donor substrate, and method of manufacturing organic lead element