JP2006244901A - Manufacturing method and manufacturing device of spontaneous light emitting element - Google Patents

Manufacturing method and manufacturing device of spontaneous light emitting element Download PDF

Info

Publication number
JP2006244901A
JP2006244901A JP2005060636A JP2005060636A JP2006244901A JP 2006244901 A JP2006244901 A JP 2006244901A JP 2005060636 A JP2005060636 A JP 2005060636A JP 2005060636 A JP2005060636 A JP 2005060636A JP 2006244901 A JP2006244901 A JP 2006244901A
Authority
JP
Japan
Prior art keywords
layer
film
substrate
forming
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005060636A
Other languages
Japanese (ja)
Inventor
Atsushi Sugawara
淳 菅原
Koji Fujita
幸二 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Pioneer Corp
Original Assignee
Tohoku Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Pioneer Corp filed Critical Tohoku Pioneer Corp
Priority to JP2005060636A priority Critical patent/JP2006244901A/en
Priority to TW095105634A priority patent/TW200633581A/en
Priority to KR1020060019625A priority patent/KR20060096315A/en
Publication of JP2006244901A publication Critical patent/JP2006244901A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of spontaneous light emitting element capable of improving weathering property of the spontaneous light emitting element. <P>SOLUTION: The manufacturing method of the spontaneous light emitting element, formed by forming a lower electrode on a substrate, laminating a plurality of film layers including light emitting layer on the lower electrode, and forming an upper electrode on the film layers, comprises a first layer forming process forming the first layer on the surface of the lower electrode in vacuum, a heating process applying a heat treatment to a substrate on which the first layer is formed in vacuum, and a second layer forming process forming the second layer on the surface of the first layer in vacuum after the heating process. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自発光素子の製造方法およびその製造装置に関するものである。   The present invention relates to a method for manufacturing a self-luminous element and an apparatus for manufacturing the same.

携帯電話、車載用モニタ、家電の操作モニタ、PCやテレビ等のドットマトリックスのディスプレイパネルの他に時計や宣伝用パネルの固定表示ディスプレイ、スキャナやプリンタの光源、照明、液晶のバックライト等の各種情報機器の表示部等に自発光素子が利用されている。自発光素子をドットマトリックス状に並べたものやアイコン部(固定表示部)を形成した表示部や平面状、球面状の照明器具としたものがあり、表示部の大きさも小型用から大型スクリーンなど様々である。   Mobile phone, in-vehicle monitor, home appliance operation monitor, dot matrix display panel such as PC and TV, fixed display for clock and advertising panel, scanner and printer light source, lighting, liquid crystal backlight, etc. Self-luminous elements are used in display units of information equipment. There are display elements with self-luminous elements arranged in a dot matrix, display parts with icon parts (fixed display parts), flat or spherical lighting fixtures, etc. There are various.

このような自発光素子の代表的なものとして有機EL素子がある。有機EL素子は、有機エレクトロルミネッセンス素子、有機EL(OEL)デバイス、有機発光ダイオード(OLED)デバイス、自発光素子、電場発光光源とも呼ばれ、材料に高分子有機材料、低分子有機材料等を用いるものがある。以下、上下電極に挟まれた発光層を有するものを「有機EL素子」と呼称する。   A typical example of such a self-light emitting element is an organic EL element. The organic EL element is also called an organic electroluminescence element, an organic EL (OEL) device, an organic light emitting diode (OLED) device, a self-emitting element, or an electroluminescent light source, and uses a high molecular organic material, a low molecular organic material, or the like as a material. There is something. Hereinafter, a device having a light emitting layer sandwiched between upper and lower electrodes is referred to as an “organic EL device”.

有機EL素子は、アノード(陽極、正孔注入電極)とカソード(陰極、電子注入電極)との間に成膜層を挟み込んだ構造をとっている。両電極に電圧を印加することにより、アノードから成膜層内に注入・輸送された正孔とカソードから成膜層内に注入・輸送された電子が成膜層の一つである発光層内にて再結合し、この再結合にて発光層を形成する発光材料が励起し、その励起状態から基底状態に遷移する過程で発光を得ている。   The organic EL element has a structure in which a film formation layer is sandwiched between an anode (anode, hole injection electrode) and a cathode (cathode, electron injection electrode). By applying a voltage to both electrodes, holes injected and transported from the anode into the film formation layer and electrons injected and transported from the cathode into the film formation layer are one of the film formation layers. The light emitting material that forms the light emitting layer is excited by this recombination, and light emission is obtained in the process of transition from the excited state to the ground state.

有機EL素子を構成する成膜層に電流を流すため、成膜層はナノオーダーという薄い状態で成膜しなければならない。このような薄い膜を成膜する場合には、ゴミなどの異物の存在により上下電極間でショート、リーク電流が生じやすくなるといった問題があった。リーク電流は、表示ディスプレイに自発光素子を用いた場合、リーク電流の発生により、クロストロークや、輝度ムラ等の表示品質の低下を招き、さらには不要な有機EL素子の発熱などの発光に寄与しないエネルギー消費が起こり、発光効率が低下してしまう。   In order to pass an electric current through the film-forming layer constituting the organic EL element, the film-forming layer must be formed in a thin state of nano order. When such a thin film is formed, there is a problem that a short circuit and a leakage current are likely to occur between the upper and lower electrodes due to the presence of foreign matters such as dust. When a self-luminous element is used in the display, the leakage current causes a reduction in display quality such as a black stroke and uneven brightness due to the generation of the leakage current, and contributes to light emission such as unnecessary heat generation of the organic EL element. Energy consumption does not occur, and the luminous efficiency decreases.

有機EL素子の電極間ショートやリーク電流を防ぐために、下部電極上に接する第1層目の成膜層を加熱処理するメルト法(以下、有機EL素子を構成する成膜層を加熱処理する技術を「メルト法」と定義する)がある(下記特許文献1参照)。真空蒸着にて成膜した成膜層をメルト法により加熱処理することで、下部電極上に形成された異物等や突起部を包理することで、電極間のリーク電流の発生を防いでいる。   In order to prevent a short circuit between electrodes of an organic EL element and a leakage current, a melt method in which the first film-forming layer in contact with the lower electrode is heat-treated (hereinafter, a technique of heat-treating a film-forming layer constituting the organic EL element) Is defined as “melt method” (see Patent Document 1 below). Heat treatment of the deposited layer formed by vacuum deposition using the melt method prevents foreign currents and protrusions formed on the lower electrode from occurring, thereby preventing leakage current between the electrodes. .

特開2001−68272JP 2001-68272 A

しかしながら、特許文献1に記載のような従来技術は下部電極上に付着した異物等を包理することが可能であるが、メルト法による加熱工程を大気圧の窒素雰囲気下で行うために、加熱工程や加熱工程前後の工程において第1層目の成膜層上に異物等が付着しやすくなるといった問題等を有している。   However, the conventional technique as described in Patent Document 1 is capable of embedding foreign matter and the like attached on the lower electrode. However, in order to perform the heating process by the melt method in a nitrogen atmosphere at atmospheric pressure, There is a problem that foreign matter or the like easily adheres to the first film-forming layer in the process and the process before and after the heating process.

また、特許文献1に記載のような従来技術には、メルト法による上下電極間のリーク電流を防ぎ、有機EL素子の誤発光や表示不良等を解決する手段を示唆しているが、単にメルト法による第1層目の成膜層の加熱工程だけでは、有機EL素子の寿命低下や素子の劣化による耐候性の低下、加えて耐候性の低下に従って起こる電圧上昇等といった問題を解決することはできない。   In addition, the conventional technology as described in Patent Document 1 suggests a means for preventing leakage current between the upper and lower electrodes by the melt method and solving erroneous light emission, display failure, etc. of the organic EL element. It is possible to solve problems such as a decrease in the lifetime of the organic EL element, a decrease in weather resistance due to the deterioration of the element, and a voltage increase caused by a decrease in weather resistance only by the heating process of the first film-forming layer by the method. Can not.

そこで、本発明は、このような問題に対処することを課題の一例とするものである。すなわち、有機EL素子に代表される自発光素子の長寿命化および耐候性の向上等を可能とする自発光素子の製造方法および製造装置を提供することを目的としている。   In view of this, the present invention has an example of dealing with such a problem. That is, it is an object of the present invention to provide a method and an apparatus for manufacturing a self-luminous element that can extend the life of the self-luminous element typified by an organic EL element and improve weather resistance.

上記目的を達成するために、本発明による自発光素子の製造方法および製造装置は、以下の各独立請求項に係る構成を少なくとも具備するものである。   In order to achieve the above object, a method and an apparatus for manufacturing a self-luminous element according to the present invention include at least the configurations according to the following independent claims.

本発明請求項1に記載の自発光素子の製造方法は、基板上に下部電極を形成し、下部電極上に発光層を含む複数の成膜層を積層した上に上部電極を形成する自発光素子の製造方法において、下部電極表面上に第1層目の成膜層を真空状態で成膜する第1層目成膜工程と、第1層目の成膜層を成膜した基板を真空状態で加熱処理する加熱工程と、加熱工程後に第1層目の成膜層表面上に第2層目の成膜層を真空状態で成膜する第2層目成膜工程と、を含むことを特徴とする。   According to a first aspect of the present invention, there is provided a method for manufacturing a self-luminous element comprising: forming a lower electrode on a substrate; and laminating a plurality of film-forming layers including a light-emitting layer on the lower electrode; In the element manufacturing method, a first layer film forming step for forming a first film forming layer on the surface of the lower electrode in a vacuum state, and a substrate on which the first film forming layer is formed are vacuumed. A heating process for heat treatment in a state, and a second layer deposition process for depositing a second deposition layer in a vacuum state on the surface of the first deposition layer after the heating process. It is characterized by.

本発明請求項5に記載の自発光素子の製造装置は、基板上に下部電極を形成し、下部電極上に発光層を含む複数の成膜層を積層した上に上部電極を形成する自発光素子の製造装置において、下部電極表面上に第1層目の成膜層を真空状態で成膜する第1の成膜室と、第1層目の成膜層を成膜した基板を真空状態で加熱処理する加熱室と、第1層目の成膜層表面上に第2層目の成膜層を真空状態で成膜する第2の成膜室と、を含むことを特徴とする。   According to a fifth aspect of the present invention, there is provided a self-luminous element manufacturing apparatus comprising: a lower electrode formed on a substrate; and a plurality of film-forming layers including a light-emitting layer formed on the lower electrode; In a device manufacturing apparatus, a first film formation chamber for forming a first film formation layer on a surface of a lower electrode in a vacuum state and a substrate on which the first film formation layer is formed are in a vacuum state. And a second film formation chamber for forming a second film formation layer in a vacuum state on the surface of the first film formation layer.

本発明の実施形態について、図1に記載の自発光素子の一つである有機EL素子の説明図および図2に記載の自発光素子の一つである有機EL素子の成膜装置の概略図に基づいて説明する。以下に本発明に適用する有機EL素子の構造、使用する材料、製造方法および製造装置を記載するが、特にこれに限ったものではなく、有機EL素子が奏する作用効果を奏し、発明の要旨を逸脱しない範囲であれば、設計変更などがあっても本実施の形態の範囲に含まれる。   FIG. 1 is an explanatory diagram of an organic EL element that is one of the self-light-emitting elements shown in FIG. 1 and a schematic diagram of a film forming apparatus for an organic EL element that is one of the self-light-emitting elements shown in FIG. Based on Although the structure of the organic EL element applied to this invention, the material to be used, a manufacturing method, and a manufacturing apparatus are described below, it is not restricted to this, The effect which an organic EL element show | plays, and the summary of invention is shown. Any design change is included in the scope of the present embodiment as long as it does not deviate.

図1に記載の有機EL素子の説明図では、複数の有機EL素子1が基板2上に形成されることで一つの有機ELパネル3が構成されている。ここで、基板2上に直接有機EL素子1が形成されてもよく、有機EL素子1と基板2との間にTFTやカラーフィルタ等が挿入されていても良く、有機EL素子1は単数でも複数形成しても構わない。   In the explanatory diagram of the organic EL element shown in FIG. 1, one organic EL panel 3 is configured by forming a plurality of organic EL elements 1 on a substrate 2. Here, the organic EL element 1 may be formed directly on the substrate 2, a TFT, a color filter, or the like may be inserted between the organic EL element 1 and the substrate 2. A plurality may be formed.

有機EL素子1は、下部電極11、下部電極11の表面上に第1層目の成膜層12が成膜されている。第1層目の成膜層12は成膜後に下記に説明するメルト法により、加熱工程を施している。その第1層目の成膜層12上に順次第2層目の成膜層13、第3層目の成膜層14、上部電極15が積層形成されている。図での説明を省くが、下部電極11間に絶縁膜を形成して発光画素部を形成してもよい。加えて、図での説明を省くが、上部電極15を積層した後、有機EL素子2に封止を行ってもよい。絶縁膜や封止については公知技術であり、詳細な説明を省くが、絶縁膜の材料や形状、封止工程の種類を気密封止、膜封止、固体封止など特に限定するものではない。   In the organic EL element 1, a lower electrode 11 and a first film-forming layer 12 are formed on the surface of the lower electrode 11. The first film-forming layer 12 is subjected to a heating process by the melt method described below after film formation. A second film-forming layer 13, a third film-forming layer 14, and an upper electrode 15 are sequentially stacked on the first film-forming layer 12. Although not shown in the figure, an emission film may be formed by forming an insulating film between the lower electrodes 11. In addition, although not shown in the figure, the organic EL element 2 may be sealed after the upper electrode 15 is stacked. Insulating film and sealing are known techniques and will not be described in detail. However, the material and shape of the insulating film and the type of sealing process are not particularly limited, such as airtight sealing, film sealing, and solid sealing. .

基板2としては、平板状、フィルム状、球面状等、形状は特にこだわらず、材質としてはガラス、プラスチック、石英、金属等、特に透明性を有するか否かは問わない。また、透明性を有するものとしては、ガラス、透明プラスチックが好ましい。   The substrate 2 is not particularly limited in shape, such as a flat plate shape, a film shape, and a spherical shape, and it does not matter whether the material is particularly transparent, such as glass, plastic, quartz, or metal. Moreover, as what has transparency, glass and a transparent plastic are preferable.

下部電極11、上部電極15については、一方が陰極、他方が陽極に設定されることになる。この場合、陽極は仕事関数の高い材料で構成するのがよく、クロム(Cr)、モリブデン(Mo)、ニッケル(Ni)、白金(Pt)等の金属膜やITO、IZO等の酸化金属膜等の透明導電膜が用いられる。また陰極は仕事関数の低い材料で構成するのがよいが、特に、アルカリ金属(Li,Na,K,Rb,Cs)、アルカリ土類金属(Be,Mg,Ca,Sr,Ba)、希土類金属等、仕事関数の低い金属、その化合物、又はそれらを含む合金を用いることができる。また、下部電極11、上部電極15ともに透過性を有する材料により構成した場合には、光の放出側と反対の電極側に反射膜を設けた構成とすることもできる。また、下部電極11、上部電極15ともに透過性を有する材料により構成し、基板2と下部電極11との間に反射膜を設け上面発光素子の構成としても構わない。   One of the lower electrode 11 and the upper electrode 15 is set as a cathode and the other is set as an anode. In this case, the anode is preferably made of a material having a high work function, such as a metal film such as chromium (Cr), molybdenum (Mo), nickel (Ni), platinum (Pt), or a metal oxide film such as ITO or IZO. The transparent conductive film is used. The cathode is preferably made of a material having a low work function. In particular, alkali metals (Li, Na, K, Rb, Cs), alkaline earth metals (Be, Mg, Ca, Sr, Ba), rare earth metals are used. A metal having a low work function, a compound thereof, or an alloy containing them can be used. Further, when both the lower electrode 11 and the upper electrode 15 are made of a transmissive material, a reflection film may be provided on the electrode side opposite to the light emission side. Alternatively, the lower electrode 11 and the upper electrode 15 may be made of a transmissive material, and a reflective film may be provided between the substrate 2 and the lower electrode 11 to form a top light emitting element.

基板2上に下部電極11を蒸着、スパッタリング等の方法で薄膜として形成し、フォトリソグラフィ等によって所望の形状にパターニングする。複数の成膜層は下部電極11と上部電極15の一対の電極で挟んだ構成となっており、数本ストライプ状に形成した下部電極に直交するように上部電極を数本形成し、下部電極14と上部電極15とでマトリックスを形成するようにする。上部電極15は蒸着やスパッタリング等の方法で薄膜を形成する。   A lower electrode 11 is formed on the substrate 2 as a thin film by a method such as vapor deposition or sputtering, and is patterned into a desired shape by photolithography or the like. The plurality of film formation layers are sandwiched between a pair of electrodes of the lower electrode 11 and the upper electrode 15, and several upper electrodes are formed so as to be orthogonal to the lower electrodes formed in several stripes. 14 and the upper electrode 15 form a matrix. The upper electrode 15 forms a thin film by a method such as vapor deposition or sputtering.

有機EL素子1は、第1層目の成膜層12を正孔輸送層、第2層目の成膜層13を発光層、第3層目の成膜層14を電子輸送層とした組み合わせで形成しても良い。このとき、下部電極1は正極、上部電極15は負極とする。また、下部電極11または上部電極15の正負の状態で逆に積層し、第1層目の成膜層12を電子輸送層、第2層目の成膜層13を発光層、第3層目の成膜層14を正孔輸送層とした有機EL素子1構成でも構わない。更に、発光層、正孔輸送層、電子輸送層はそれぞれ1層だけでなく複数層積層して設けても良く、正孔輸送層、電子輸送層についてはどちらかの層を省略しても、両方の層を省略しても構わない。また、正孔注入、電子注入、正孔ブロック、電子ブロック等の機能を有する成膜層を用途に応じて挿入することも可能である。   The organic EL element 1 is a combination in which the first layer 12 is a hole transport layer, the second layer 13 is a light emitting layer, and the third layer 14 is an electron transport layer. May be formed. At this time, the lower electrode 1 is a positive electrode and the upper electrode 15 is a negative electrode. In addition, the lower electrode 11 or the upper electrode 15 is laminated in a positive / negative state, the first film-forming layer 12 is an electron transport layer, the second film-forming layer 13 is a light-emitting layer, and the third layer Alternatively, the organic EL element 1 may be configured such that the film forming layer 14 is a hole transport layer. Furthermore, each of the light emitting layer, the hole transport layer, and the electron transport layer may be provided by laminating not only one layer but also a plurality of layers. For the hole transport layer and the electron transport layer, either layer may be omitted, Both layers may be omitted. It is also possible to insert a film-forming layer having functions such as hole injection, electron injection, hole block, and electron block depending on the application.

正孔輸送層は、正孔移動度が高い機能を有していれば良く、その材料としては従来公知の化合物の中から任意のものを選択して用いることができる。具体例としては、銅フタロシアニン等のポリフィリン化合物、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]−ビフェニル(NPB)等の芳香族第三アミン、4−(ジ−p−トリルアミノ)−4’−[4−(ジ−p−トリルアミノ)スチリル]スチルベンゼン等のスチルベン化合物や、トリアゾール誘導体、スチリルアミン化合物等の有機材料が用いられる。また、ポリカーボネート等の高分子中に低分子の正孔輸送用の有機材料を分散させた高分子分散系の材料、高分子材料であるPEDOT等のポリアニリン誘導体も使用できる。   The hole transport layer only needs to have a function of high hole mobility, and any material can be selected and used from conventionally known compounds. Specific examples include polyphylline compounds such as copper phthalocyanine, aromatic tertiary amines such as 4,4′-bis [N- (1-naphthyl) -N-phenylamino] -biphenyl (NPB), 4- (di- Organic materials such as stilbene compounds such as p-tolylamino) -4 ′-[4- (di-p-tolylamino) styryl] stilbenzene, triazole derivatives and styrylamine compounds are used. In addition, a polymer dispersion material in which a low molecular weight organic material for hole transport is dispersed in a polymer such as polycarbonate, or a polyaniline derivative such as PEDOT that is a polymer material can also be used.

発光層は、公知の発光材料が使用可能であり、具体例としては、4,4’−ビス(2,2’−ジフェニルビニル)−ビフェニル(DPVBi)等の芳香族ジメチリディン化合物、1,4−ビス(2−メチルスチリル)ベンゼン等のスチリルベンゼン化合物、3−(4−ビフェニル)−4−フェニル−5−t−ブチルフェニル−1,2,4−トリアゾール(TAZ)等のトリアゾール誘導体、アントラキノン誘導体、フルオノレン誘導体等の蛍光性有機材料、(8−ヒドロキシキノリナト)アルミニウム錯体(Alq)等の蛍光性有機金属化合物、ポリパラフィニレンビニレン(PPV)系、ポリアニリン系、ポリフルオレン系、ポリビニルカルバゾール(PVK)系等の高分子材料、白金錯体やイリジウム錯体等の三重項励起子からのりん光を発光に利用できる有機材料を使用できる。上述したような発光材料のみから構成されても良いし、正孔輸送材料、電子輸送材料、添加剤(ドナー、アクセプター等)または発光性ドーパント等が含有されても良いし、これらが高分子材料又は無機材料中に分散されても良い。 A known light emitting material can be used for the light emitting layer. Specific examples include aromatic dimethylidin compounds such as 4,4′-bis (2,2′-diphenylvinyl) -biphenyl (DPVBi), 1,4- Styrylbenzene compounds such as bis (2-methylstyryl) benzene, triazole derivatives such as 3- (4-biphenyl) -4-phenyl-5-t-butylphenyl-1,2,4-triazole (TAZ), anthraquinone derivatives Fluorescent organic materials such as fluorenol derivatives, fluorescent organometallic compounds such as (8-hydroxyquinolinato) aluminum complex (Alq 3 ), polyparafinylene vinylene (PPV), polyaniline, polyfluorene, polyvinylcarbazole ( Phosphorescence from triplet excitons such as high molecular weight materials such as PVK), platinum complexes and iridium complexes Organic materials that can be used for light emission can be used. It may be composed only of the light emitting material as described above, or may contain a hole transport material, an electron transport material, an additive (donor, acceptor, etc.) or a light emitting dopant, and these are polymer materials. Or you may disperse | distribute in an inorganic material.

電子輸送層は、陰極より注入された電子を発光層に伝達する機能を有していれば良く、その材料としては従来公知の化合物の中から任意のものを選択して用いることができる。具体例としては、ニトロ置換フルオレノン誘導体、アントラキノジメタン誘導体等の有機材料、8−キノリノール誘導体の金属錯体、メタルフタロシアニン等が使用できる。   The electron transport layer only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer, and any material can be selected from conventionally known compounds. Specific examples include organic materials such as nitro-substituted fluorenone derivatives and anthraquinodimethane derivatives, metal complexes of 8-quinolinol derivatives, metal phthalocyanines, and the like.

正孔輸送層、前記発光層、前記電子輸送層は、上述の材料に限ったものではなく、適宜選択可能であり、スピンコーティング法、ディッピング法等の塗布法、インクジェット法、スクリーン印刷法等の印刷法等のウェットプロセス、又は、蒸着法、レーザ転写法(LITI)等のドライプロセスで形成することができる。   The hole transport layer, the light emitting layer, and the electron transport layer are not limited to the above-mentioned materials, and can be selected as appropriate, such as a spin coating method, a coating method such as a dipping method, an ink jet method, and a screen printing method. It can be formed by a wet process such as a printing method or a dry process such as a vapor deposition method or a laser transfer method (LITI).

図2には、前述した有機EL素子の製造方法を実現するクラスタ型(枚葉型)の製造装置の一例を示す。有機EL素子の製造方法および製造装置についての工程および構成を説明する。この製造装置は2連の成膜装置20,30と封止装置40を備えるように構成されており、搬入側の成膜装置20には基板搬送室51が連接され、成膜装置20,30および封止装置40間にはそれぞれ受渡室52、53が連接され、封止装置40の搬送室側には排出室54が連接されている。図2以外の符号は図1で使用した符号を利用する。   FIG. 2 shows an example of a cluster-type (single-wafer type) manufacturing apparatus that realizes the above-described method for manufacturing an organic EL element. The process and configuration of the organic EL element manufacturing method and manufacturing apparatus will be described. This manufacturing apparatus is configured to include two film forming apparatuses 20 and 30 and a sealing apparatus 40. A substrate transfer chamber 51 is connected to the film forming apparatus 20 on the carry-in side, and the film forming apparatuses 20 and 30 are connected. Further, delivery chambers 52 and 53 are connected between the sealing device 40 and a discharge chamber 54 on the transfer chamber side of the sealing device 40, respectively. Reference numerals other than those in FIG. 2 are the same as those used in FIG.

成膜装置20には、中央に真空搬送室21が設置されており、真空搬送室21内に搬送用ロボット22が配備され、その周囲に複数の成膜室23,24,25と基板に加熱工程を行う加熱室26が配備されている。成膜装置30には、成膜装置20と同様に、中央に真空搬送室31が配置されており、真空搬送室31内に搬送用ロボット32が配備され、その周囲に複数の成膜室33,34,35,36が配備されている。また、封止装置40にも中央に搬送室41が設備されており、搬送室41内に搬送用ロボット42が配備され、その周囲に封止基板搬送室43,封止基板ストック室44,貼合室45,検査室46が配備されている。そして、各成膜室23,24,25,33,34,35,36や加熱室26、封止基板搬送室43、封止基板ストック室44、貼合室45の入り口、基板搬送室51、受渡室52,53、封止基板搬送室43、排出室54の出入り口には真空ゲートGが配備されている。   The film forming apparatus 20 is provided with a vacuum transfer chamber 21 in the center, a transfer robot 22 is provided in the vacuum transfer chamber 21, and a plurality of film forming chambers 23, 24, and 25 are heated around the substrate. A heating chamber 26 for performing the process is provided. In the film forming apparatus 30, similarly to the film forming apparatus 20, a vacuum transfer chamber 31 is disposed in the center, a transfer robot 32 is provided in the vacuum transfer chamber 31, and a plurality of film forming chambers 33 are disposed around the vacuum transfer chamber 31. , 34, 35, and 36 are provided. In addition, a transfer chamber 41 is provided in the center of the sealing device 40, and a transfer robot 42 is provided in the transfer chamber 41, and a sealing substrate transfer chamber 43, a sealing substrate stock chamber 44, and a paste are provided around it. A common room 45 and an examination room 46 are provided. And each film-forming chamber 23, 24, 25, 33, 34, 35, 36, the heating chamber 26, the sealing substrate transfer chamber 43, the sealing substrate stock chamber 44, the entrance of the bonding chamber 45, the substrate transfer chamber 51, A vacuum gate G is provided at the entrance / exit of the delivery chambers 52 and 53, the sealing substrate transfer chamber 43, and the discharge chamber 54.

このような製造装置によれば、前処理工程および洗浄工程済み基板2(下部電極11付き基板2)が基板搬送室51内に搬入されて、成膜装置20の真空搬送室21内の搬送用ロボット22の動作によって、基板2が成膜室23(第1の成膜層12を成膜する第1の成膜室)に移される。また、本発明の第1の基板搬送工程は、搬送用ロボット22を用いることに限定するわけではなく、搬送用ロボット22を利用せずにベルトコンベア等で移動させるインライン方式の製造方法であっても構わない。成膜室23内は10−2〜10−6Paまで減圧または真空状態に設定されており、基板2の下部電極11上に第1の成膜層12を抵抗加熱蒸着にて成膜する(第1層目成膜工程)。 According to such a manufacturing apparatus, the substrate 2 having been subjected to the pretreatment process and the cleaning process (the substrate 2 with the lower electrode 11) is carried into the substrate transfer chamber 51 for transfer in the vacuum transfer chamber 21 of the film forming apparatus 20. By the operation of the robot 22, the substrate 2 is moved to the film formation chamber 23 (the first film formation chamber in which the first film formation layer 12 is formed). Further, the first substrate transfer process of the present invention is not limited to using the transfer robot 22 but is an in-line manufacturing method in which the transfer is performed by a belt conveyor or the like without using the transfer robot 22. It doesn't matter. The inside of the film forming chamber 23 is set to a reduced pressure or a vacuum state of 10 −2 to 10 −6 Pa, and the first film forming layer 12 is formed on the lower electrode 11 of the substrate 2 by resistance heating vapor deposition ( First layer deposition step).

次いで、搬送用ロボット22の動作により、基板2が成膜室23から加熱室26に基板搬送室21を介して搬送される(第1の基板搬送工程)。このとき、基板搬送室21、加熱室26および成膜室23内は10−2〜10−6Paまで減圧または真空状態に設定されている。 Next, the substrate 2 is transferred from the film formation chamber 23 to the heating chamber 26 via the substrate transfer chamber 21 by the operation of the transfer robot 22 (first substrate transfer step). At this time, the inside of the substrate transfer chamber 21, the heating chamber 26, and the film forming chamber 23 is set to a reduced pressure or a vacuum state of 10 −2 to 10 −6 Pa.

加熱室26内では、第1の成膜層12を形成する有機材料のガラス転移点以上融点以下の温度で加熱する(加熱工程)。加熱工程は真空雰囲気化の加熱室26内で、基板2を基板ホルダ等に固定し、基板2に対し加熱温度を加える。加熱温度としては、第1層目を構成する有機材料のガラス転移点以上融点以下の加熱温度で、一定時間加熱手段を施す。例えば、ガラス転移点が95℃の有機材料の場合、125℃程度の温度で、20分程度の加熱時間で加熱手段を加える。加熱手段は、基板をヒータで加熱する方法、ハライドランプなどで加熱する方法等で行う。   In the heating chamber 26, heating is performed at a temperature not lower than the glass transition point and not higher than the melting point of the organic material forming the first film formation layer 12 (heating step). In the heating process, the substrate 2 is fixed to a substrate holder or the like in a heating chamber 26 in a vacuum atmosphere, and a heating temperature is applied to the substrate 2. As the heating temperature, a heating means is applied for a certain time at a heating temperature not lower than the glass transition point and not higher than the melting point of the organic material constituting the first layer. For example, in the case of an organic material having a glass transition point of 95 ° C., a heating means is added at a temperature of about 125 ° C. for a heating time of about 20 minutes. The heating means is performed by a method of heating the substrate with a heater, a method of heating with a halide lamp or the like.

加熱工程後には、搬送用ロボット22の動作により、基板2が加熱室26から成膜室24(第2の成膜層13を成膜する第2の成膜室)に基板搬送室21を介して搬送される(第2の基板搬送工程)。このとき、加熱室26,基板搬送室21および成膜室24内は10−2〜10−6Paまで減圧または真空状態に設定されている。また、本発明の第2の基板搬送工程は、搬送用ロボット22を用いることに限定するわけではなく、搬送用ロボット22を利用せずにベルトコンベア等で移動させるインライン方式の製造方法であっても構わない。さらに、図では、第1の基板搬送工程と第2の基板搬送工程を同じ基板搬送室21を使って説明したが、これに限らず異なる基板搬送室を用いてもかまわない。 After the heating step, the substrate 2 is moved from the heating chamber 26 to the film formation chamber 24 (second film formation chamber for forming the second film formation layer 13) through the substrate transfer chamber 21 by the operation of the transfer robot 22. (Second substrate transfer step). At this time, the inside of the heating chamber 26, the substrate transfer chamber 21, and the film forming chamber 24 is set to a reduced pressure or a vacuum state of 10 −2 to 10 −6 Pa. Further, the second substrate transfer process of the present invention is not limited to using the transfer robot 22 but is an in-line manufacturing method in which the transfer is performed by a belt conveyor or the like without using the transfer robot 22. It doesn't matter. Furthermore, in the figure, the first substrate transfer step and the second substrate transfer step are described using the same substrate transfer chamber 21, but the present invention is not limited to this, and different substrate transfer chambers may be used.

次いで、10−2〜10−6Paまで真空状態に設定した成膜室24内にて第1の成膜層12上に第2の成膜層13を抵抗加熱蒸着にて成膜する(第2層目成膜工程)。更に、基板2を受渡室52で、成膜装置20側の搬送用ロボット22から成膜装置30側の搬送用ロボット32への受渡がなされ、成膜装置30側の成膜室33,34,35,36にて第3の成膜層14やそれ以上積層する際の成膜層、上部電極15を順次成膜する。 Next, the second film-forming layer 13 is formed on the first film-forming layer 12 by resistance heating vapor deposition in the film-forming chamber 24 set to a vacuum state of 10 −2 to 10 −6 Pa (first Second layer deposition step). Further, the substrate 2 is transferred from the transfer robot 22 on the film forming apparatus 20 side to the transfer robot 32 on the film forming apparatus 30 side in the transfer chamber 52, and the film forming chambers 33, 34, In 35 and 36, the third film-forming layer 14 and the film-forming layer for stacking more layers and the upper electrode 15 are formed in this order.

上部電極15の成膜が行われた後、基板2が受渡室53を介して封止装置40に搬送される。封止装置40では、まず、基板2が検査室46に搬送されて、基板2上に形成された有機EL素子1の発光特性の測定が行われ、色度ずれ等の不良がないかを確認される。また、基板2が封止基板搬送室43から搬送され、封止基板ストック室44に保管してある封止基板と検査室46にて検査工程を終了した基板2とを搬送室40内の搬送用ロボット42により、貼合室45に搬送され、接着剤を介して両者の貼り合わせが行われる。貼り合わせが完了した有機ELパネルが排出室54を介して装置外へ搬出される。   After film formation of the upper electrode 15 is performed, the substrate 2 is transferred to the sealing device 40 through the delivery chamber 53. In the sealing device 40, first, the substrate 2 is transported to the inspection chamber 46, and the light emission characteristics of the organic EL element 1 formed on the substrate 2 are measured to confirm whether there is a defect such as chromaticity deviation. Is done. Further, the substrate 2 is transferred from the sealing substrate transfer chamber 43, and the sealing substrate stored in the sealing substrate stock chamber 44 and the substrate 2 that has been inspected in the inspection chamber 46 are transferred in the transfer chamber 40. The robot 42 is transported to the bonding chamber 45, where the two are bonded via an adhesive. The organic EL panel that has been bonded together is carried out of the apparatus through the discharge chamber 54.

本発明の実施の形態および以下に説明する実施例において、真空状態とは、成膜室23,24,25,33,34,35および36、加熱室26、真空搬送室21,31内の圧力を10−2〜10−6Paの範囲にした状態をいう。さらに、成膜とは、成膜室23,24,25,33,34,35および36にて、抵抗加熱法を利用した真空蒸着を行った例を示したが、これに限定するわけではなく、EB蒸着やスパッタ蒸着といった物理蒸着法、スピンコートや塗布、印刷法、さらにはCVD法といった化学蒸法着も採用することが可能である。 In the embodiment of the present invention and the examples described below, the vacuum state means the pressure in the film forming chambers 23, 24, 25, 33, 34, 35 and 36, the heating chamber 26, and the vacuum transfer chambers 21, 31. Is in the range of 10 −2 to 10 −6 Pa. Further, the film formation is shown as an example in which the vacuum deposition using the resistance heating method is performed in the film formation chambers 23, 24, 25, 33, 34, 35, and 36, but is not limited thereto. It is also possible to employ physical vapor deposition such as EB vapor deposition and sputter vapor deposition, chemical vapor deposition such as spin coating, coating, printing, and CVD.

そして、本発明の実施の形態は、クラスタ型の製造装置の説明を行ったが、インライン型の製造装置を用いても良く、有機EL素子の形態についても特に限定するものではない。例えば、基板側から光を取り出すボトムエミッション方式であっても、基板と逆側から取り出すトップエミッション方式であってもよく、駆動方式もアクティブ駆動方式でも、パッシブ駆動方式であっても良い。   In the embodiment of the present invention, the cluster type manufacturing apparatus has been described. However, an inline type manufacturing apparatus may be used, and the form of the organic EL element is not particularly limited. For example, a bottom emission method in which light is extracted from the substrate side or a top emission method in which light is extracted from the opposite side of the substrate may be used, and a driving method, an active driving method, or a passive driving method may be used.

<実施例1>ガラス製の基板上に下部電極としてITOをスパッタリングで膜厚110nmに成膜する。次いで、フォトレジストAZ6112(東京応化工業製)を、ITO上に2mmの幅でパターン形成した。レジストをパターン形成した基板を、塩化第2鉄水溶液と塩酸の混合液中に浸漬させた。これにより、レジストに覆われていない部分のITO膜がエッチングされた。エッチングされたガラス基板を、アセトン中に浸漬させた。これにより、レジストが除去され、2mmの幅に設けられたITO電極のストライプパターンが形成された。 <Example 1> An ITO film is formed as a lower electrode on a glass substrate to a film thickness of 110 nm by sputtering. Next, a photoresist AZ6112 (manufactured by Tokyo Ohka Kogyo Co., Ltd.) was patterned on the ITO with a width of 2 mm. The substrate on which the resist was patterned was immersed in a mixed solution of ferric chloride aqueous solution and hydrochloric acid. Thereby, the portion of the ITO film not covered with the resist was etched. The etched glass substrate was immersed in acetone. As a result, the resist was removed, and a stripe pattern of the ITO electrode provided with a width of 2 mm was formed.

ITO電極のストライプパターンが形成されたガラス基板を、界面活性剤にて洗浄する。その後、UVオゾン洗浄を10分間行った。UVオゾン洗浄を行った基板を、製造装置内の成膜室に投入した。10−4Paに減圧してある成膜室にて抵抗加熱蒸着を用いて、第1の成膜層としてN−フェニル−p−フェニレンジアミン(PPD)を毎秒0.16nmの成膜速度にて20nmの厚さに成膜した。 The glass substrate on which the ITO electrode stripe pattern is formed is washed with a surfactant. Thereafter, UV ozone cleaning was performed for 10 minutes. The substrate that had been subjected to UV ozone cleaning was put into a film forming chamber in the manufacturing apparatus. Using resistance heating vapor deposition in a film formation chamber whose pressure is reduced to 10 −4 Pa, N-phenyl-p-phenylenediamine (PPD) is formed as a first film formation layer at a film formation rate of 0.16 nm per second. The film was formed to a thickness of 20 nm.

次に、10−4Paの真空状態を維持しながらPPD成膜後の基板を基板搬送室を介して加熱室に搬送した。加熱室に基板を固定し、ヒータを利用してPPDのガラス転移点(Tg=150℃)以上の180℃で20分基板を加熱し、加熱工程を行った。次いで、10−4Paの真空状態を維持しながら基板を搬送室を介して第2の成膜室に搬送し、PPD上に第2の成膜層としてNPBを毎秒2.0nmの成膜速度にて10nmの厚さに成膜した。 Next, the substrate on which the PPD film was formed was transferred to the heating chamber via the substrate transfer chamber while maintaining a vacuum state of 10 −4 Pa. The substrate was fixed in a heating chamber, and the substrate was heated at 180 ° C. for 20 minutes at a temperature equal to or higher than the glass transition point (Tg = 150 ° C.) of the PPD using a heater to perform a heating process. Next, the substrate is transferred to the second film formation chamber via the transfer chamber while maintaining a vacuum state of 10 −4 Pa, and NPB is formed as a second film formation layer on the PPD at a deposition rate of 2.0 nm per second. Was deposited to a thickness of 10 nm.

次に、10−4Paの真空状態を維持しながらNPB成膜後の基板を搬送室を介して成膜室に搬送し、発光層兼電子輸送層のAlqを毎秒0.5nmの成膜速度で、60nmの厚さになるまで成膜した。次に、Alq成膜後の基板を搬送室を介して次の成膜室に搬送し、電子注入層のLiOを毎秒0.3nmの成膜速度で、0.7nmの厚さになるまで成膜した。さらに、LiO成膜後の基板を基板搬送室を介して上部電極の成膜室に搬送し、上部電極用のシャドウマスクを施し、アルミニウムを毎秒1nmの速度で100nmの厚さに真空成膜した。このとき、アルミニウムの膜は、ITO膜のストライプと直交するような方向で、2mm幅のストライプ状に成膜した。最後に、ガラス封止して実施例サンプルを形成した。 Next, while maintaining the vacuum state of 10 −4 Pa, the substrate after the NPB film formation is transferred to the film formation chamber via the transfer chamber, and Alq 3 of the light emitting layer / electron transport layer is formed at a rate of 0.5 nm per second. The film was formed at a speed until the thickness reached 60 nm. Next, the substrate after the Alq 3 film formation was transferred to the next film formation chamber through the transfer chamber, and Li 2 O of the electron injection layer was formed to a thickness of 0.7 nm at a film formation rate of 0.3 nm per second. The film was formed until Further, the substrate after Li 2 O film formation is transferred to the film formation chamber of the upper electrode through the substrate transfer chamber, a shadow mask for the upper electrode is applied, and aluminum is vacuum-formed to a thickness of 100 nm at a rate of 1 nm per second. Filmed. At this time, the aluminum film was formed into a 2 mm wide stripe in a direction orthogonal to the ITO film stripe. Finally, glass was sealed to form an example sample.

<比較例1>比較例としての有機EL素子について説明する。比較例としての有機EL素子は、実施例1として上述した有機EL素子のPPDに行う加熱工程を大気圧窒素雰囲気下で行ったものを比較サンプルとして作成した。つまり、窒素雰囲気下の加熱室中のを大気圧にて加熱工程を行った。   Comparative Example 1 An organic EL element as a comparative example will be described. An organic EL element as a comparative example was prepared as a comparative sample by performing the heating step performed on the PPD of the organic EL element described above as Example 1 in an atmospheric pressure nitrogen atmosphere. That is, the heating process was performed at atmospheric pressure in the heating chamber under a nitrogen atmosphere.

<評価>実施例サンプルと比較サンプルを次に示す耐候性試験と半減寿命試験により比較評価した。耐侯性試験は、63℃の条件で保存し、SUNTEST製の有機EL素子耐候性試験機により、サンプルの電圧上昇を検討した。実施例サンプルと比較サンプルの耐候性試験結果を図3に示す。図3より、同じ素子構成であるが、比較サンプルより実施例サンプルの方が電圧上昇を低く抑えており、有機EL素子の耐候性が優れている結果が得られた。   <Evaluation> The example sample and the comparative sample were compared and evaluated by the following weather resistance test and half-life test. The weather resistance test was stored at a temperature of 63 ° C., and the voltage increase of the sample was examined using an organic EL element weather resistance tester manufactured by SUNTEST. The weather resistance test results of the example sample and the comparative sample are shown in FIG. From FIG. 3, although the same element configuration was obtained, the example sample suppressed the voltage rise lower than the comparative sample, and the result was that the weather resistance of the organic EL element was excellent.

半減寿命試験は、85℃におけるサンプルの点灯時間における残存輝度の割合を測定し検討した。実施例サンプルと比較サンプルの半減寿命測定結果を図4に示す。図4より、同じ素子構成であるが、比較サンプルより実施例サンプルの方が有機EL素子の寿命が長い結果が得られた。したがって、図3および図4の比較結果により、実施例サンプルの方が比較サンプルよりも耐候性および寿命特性の点で優れていることが分かった。   In the half-life test, the ratio of the residual luminance during the lighting time of the sample at 85 ° C. was measured and examined. FIG. 4 shows the half-life measurement results of the example sample and the comparative sample. From FIG. 4, the results were that the life of the organic EL device was longer in the example sample than in the comparative sample, although the device configuration was the same. Therefore, from the comparison results of FIG. 3 and FIG. 4, it was found that the example samples were superior in terms of weather resistance and life characteristics to the comparative samples.

以上のとおりであって、本発明の実施形態或いは実施例は、基板上に下部電極を形成し、下部電極上に発光層を含む複数の成膜層を積層した上に上部電極を形成する自発光素子の製造方法あるいは製造装置において、仮に下部電極等の成膜不良や異物等の付着があった場合であっても、成膜欠陥部の形成を防止することができる。また、耐候性の向上や長寿命化を図ることのできる自発光素子の製造方法および製造装置を提供できる。   As described above, according to the embodiment or example of the present invention, the lower electrode is formed on the substrate, and the upper electrode is formed on the plurality of deposited layers including the light emitting layer on the lower electrode. In the light emitting element manufacturing method or manufacturing apparatus, even if a film formation defect such as the lower electrode or a foreign matter adheres, the formation of a film formation defect portion can be prevented. In addition, it is possible to provide a manufacturing method and a manufacturing apparatus of a self-luminous element that can improve weather resistance and extend the life.

自発光素子の一つである有機EL素子の説明図Explanatory drawing of organic EL element which is one of self-luminous elements 自発光素子の一つである有機EL素子の成膜装置の概略図Schematic diagram of organic EL element film-forming device, which is one of the self-luminous elements 実施例1における実施例サンプルと比較サンプルの耐侯性試験結果Results of weathering resistance test of Example sample and Comparative sample in Example 1 実施例1における実施例サンプルと比較サンプルの半減寿命試験結果Results of half-life test of Example sample and Comparative sample in Example 1

符号の説明Explanation of symbols

1・・・有機EL素子
2・・・基板
3・・・有機ELパネル
20・・・成膜装置
26・・・加熱室
21,31・・・搬送室
DESCRIPTION OF SYMBOLS 1 ... Organic EL element 2 ... Board | substrate 3 ... Organic EL panel 20 ... Film-forming apparatus 26 ... Heating chamber 21, 31 ... Transfer chamber

Claims (7)

基板上に下部電極を形成し、下部電極上に発光層を含む複数の成膜層を積層した上に上部電極を形成する自発光素子の製造方法において、
下部電極表面上に第1層目の成膜層を真空状態で成膜する第1層目成膜工程と、
第1層目の成膜層を成膜した基板を真空状態で加熱処理する加熱工程と、
加熱工程後に第1層目の成膜層表面上に第2層目の成膜層を真空状態で成膜する第2層目成膜工程と、を含むことを特徴とする自発光素子の製造方法。
In a method for manufacturing a self-luminous element in which a lower electrode is formed on a substrate and a plurality of film-forming layers including a light emitting layer are stacked on the lower electrode, the upper electrode is formed.
A first layer film forming step of forming a first film forming layer in a vacuum state on the surface of the lower electrode;
A heating step of heat-treating the substrate on which the first film-forming layer is formed in a vacuum state;
A second-layer film-forming step of forming a second-layer film-forming layer in a vacuum state on the surface of the first-layer film-forming layer after the heating step. Method.
第1層目成膜工程と加熱工程との間に真空状態で基板を搬送する第1の基板搬送工程を有することを特徴とする請求項1に記載の自発光素子の製造方法。 2. The method for manufacturing a self-luminous element according to claim 1, further comprising a first substrate transfer step of transferring the substrate in a vacuum state between the first layer film forming step and the heating step. 加熱工程と第2層目成膜工程との間に真空状態で基板を搬送する第2の基板搬送工程を有することを特徴とする請求項1に記載の自発光素子の製造方法。 2. The method for manufacturing a self-luminous element according to claim 1, further comprising a second substrate transfer step of transferring the substrate in a vacuum state between the heating step and the second layer film forming step. 自発光素子は有機EL素子であることを特徴とする請求項1〜3のいずれかに記載の自発光素子の製造方法。 The method for manufacturing a self-luminous element according to claim 1, wherein the self-luminous element is an organic EL element. 基板上に下部電極を形成し、下部電極上に発光層を含む複数の成膜層を積層した上に上部電極を形成する自発光素子の製造装置において、
下部電極表面上に第1層目の成膜層を真空状態で成膜する第1の成膜室と、
第1層目の成膜層を成膜した基板を真空状態で加熱処理する加熱室と、
第1層目の成膜層表面上に第2層目の成膜層を真空状態で成膜する第2の成膜室と、を含むことを特徴とする自発光素子の製造装置。
In a self-luminous element manufacturing apparatus in which a lower electrode is formed on a substrate and a plurality of film-forming layers including a light emitting layer are stacked on the lower electrode, and an upper electrode is formed.
A first deposition chamber for depositing a first deposition layer on the surface of the lower electrode in a vacuum state;
A heating chamber that heat-treats the substrate on which the first film-forming layer is formed in a vacuum state;
And a second film formation chamber for forming a second film formation layer in a vacuum state on the surface of the first film formation layer.
真空状態で基板を搬送する基板搬送室を有することを特徴とする請求項5に記載の自発光素子の製造装置。 The self-luminous element manufacturing apparatus according to claim 5, further comprising a substrate transfer chamber for transferring the substrate in a vacuum state. 自発光素子は有機EL素子であることを特徴とする請求項5または6に記載の自発光素子の製造装置。
The self-luminous element manufacturing apparatus according to claim 5, wherein the self-luminous element is an organic EL element.
JP2005060636A 2005-03-04 2005-03-04 Manufacturing method and manufacturing device of spontaneous light emitting element Pending JP2006244901A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005060636A JP2006244901A (en) 2005-03-04 2005-03-04 Manufacturing method and manufacturing device of spontaneous light emitting element
TW095105634A TW200633581A (en) 2005-03-04 2006-02-20 Method of and apparatus for manufacturing self-emission elements
KR1020060019625A KR20060096315A (en) 2005-03-04 2006-02-28 Method and apparatus for manufacturing self-emission elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005060636A JP2006244901A (en) 2005-03-04 2005-03-04 Manufacturing method and manufacturing device of spontaneous light emitting element

Publications (1)

Publication Number Publication Date
JP2006244901A true JP2006244901A (en) 2006-09-14

Family

ID=37051106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005060636A Pending JP2006244901A (en) 2005-03-04 2005-03-04 Manufacturing method and manufacturing device of spontaneous light emitting element

Country Status (3)

Country Link
JP (1) JP2006244901A (en)
KR (1) KR20060096315A (en)
TW (1) TW200633581A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019075318A (en) * 2017-10-18 2019-05-16 パイオニア株式会社 Method of manufacturing light emitting device
JP2019204810A (en) * 2018-05-21 2019-11-28 パイオニア株式会社 Light-emitting device and method of manufacturing light-emitting device
JP2019204811A (en) * 2018-05-21 2019-11-28 パイオニア株式会社 Light-emitting device and method of manufacturing light-emitting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294181A (en) * 1997-02-24 1998-11-04 Toray Ind Inc Organic electroluminescence element and manufacture thereof
WO2001072091A1 (en) * 2000-03-22 2001-09-27 Idemitsu Kosan Co., Ltd. Method and apparatus for manufacturing organic el display

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294181A (en) * 1997-02-24 1998-11-04 Toray Ind Inc Organic electroluminescence element and manufacture thereof
WO2001072091A1 (en) * 2000-03-22 2001-09-27 Idemitsu Kosan Co., Ltd. Method and apparatus for manufacturing organic el display

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019075318A (en) * 2017-10-18 2019-05-16 パイオニア株式会社 Method of manufacturing light emitting device
JP2019204810A (en) * 2018-05-21 2019-11-28 パイオニア株式会社 Light-emitting device and method of manufacturing light-emitting device
JP2019204811A (en) * 2018-05-21 2019-11-28 パイオニア株式会社 Light-emitting device and method of manufacturing light-emitting device

Also Published As

Publication number Publication date
TW200633581A (en) 2006-09-16
KR20060096315A (en) 2006-09-11

Similar Documents

Publication Publication Date Title
US7489075B2 (en) Double-sided light emitting organic electroluminescence display device having a reflection layer and fabrication method thereof
TWI355862B (en) Methods for producing full-color organic electrolu
US6949878B2 (en) Multicolor light emission apparatus with multiple different wavelength organic elements
US20020172813A1 (en) Transfer film and process for producing organic electroluminescent device using the same
US20080038584A1 (en) Organic electroluminescence element
JP6060361B2 (en) Organic light emitting device
WO2010068330A1 (en) Improved oled stability via doped hole transport layer
JP2004288619A (en) Efficient organic electroluminescent element
JP2007208267A (en) Oled perming area-defined multicolor light emission in single light emitting device
US20070013297A1 (en) Organic light emitting display device
KR100751464B1 (en) Organic electroluminescent device
JP2007317378A (en) Organic electroluminescent element, method of manufacturing the same, and display device
JP2006048946A (en) Organic functional element, organic el element, organic semiconductor element, organic tft element, and manufacturing method for them
WO2007086137A1 (en) Optical device and optical device manufacturing method
WO2011007480A1 (en) Organic el device, organic el device producing method, and organic el illumination device
JP2007531297A (en) Electroluminescent device interlayer and electroluminescent device
US7906901B2 (en) Organic electroluminescent device and organic electroluminescent display device
JP2000048964A (en) Organic el display
KR20140031031A (en) Organic light emitting display device
US7121912B2 (en) Method of improving stability in OLED devices
JP2006244901A (en) Manufacturing method and manufacturing device of spontaneous light emitting element
KR100605112B1 (en) Organic light emitting diodes
WO2011024346A1 (en) Organic electroluminescent element, organic electroluminescent display device, and organic electroluminescent illuminating device
JP2007250329A (en) Self light-emitting element, self light-emitting panel, manufacturing method of self light-emitting element, and manufacturing method of self light-emitting panel
JP2004152595A (en) Display apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080117

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110809