JP2003075358A - Optical flaw-detection method - Google Patents

Optical flaw-detection method

Info

Publication number
JP2003075358A
JP2003075358A JP2001271646A JP2001271646A JP2003075358A JP 2003075358 A JP2003075358 A JP 2003075358A JP 2001271646 A JP2001271646 A JP 2001271646A JP 2001271646 A JP2001271646 A JP 2001271646A JP 2003075358 A JP2003075358 A JP 2003075358A
Authority
JP
Japan
Prior art keywords
flaw detection
flaw
detection method
optical
corner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001271646A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kojima
勝洋 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2001271646A priority Critical patent/JP2003075358A/en
Publication of JP2003075358A publication Critical patent/JP2003075358A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely detect not only a latelally cracked flaw existing in the periphery of an angle part in a rolled angle steel material but also a micro pin-hole flaw. SOLUTION: In this method for flaw-detecting the angle part C of the rolled material optically, the periphery of the angle part C in a rolled material is irradiated with a light source 11 at least from its rolled tip side at a prescribed angle, an image of the irradiated portion is image-picked up at the prescribed angle by an image pick-up camera 12, and the surface flaw in the angle part C of the rolled material is detected by a flaw detecting means 22, based on the obtained picked-up image.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光学式探傷方法に
関する。さらに詳しくは、圧延された角形鋼材の角部周
辺に存在する横割れ傷やピンホール傷を検出する光学式
探傷方法に関する。
TECHNICAL FIELD The present invention relates to an optical flaw detection method. More specifically, it relates to an optical flaw detection method for detecting lateral crack flaws and pinhole flaws existing around the corners of a rolled square steel material.

【0002】[0002]

【従来の技術】従来より、ボルトなどの機械構造部品の
素材は、圧延成形後所定長さに切断された角柱形状の鋼
材(角形鋼材)を、さらにボルトなどの製造に適した断
面形状にまで圧延して出荷されている。
2. Description of the Related Art Conventionally, the material of mechanical structural parts such as bolts is a prismatic steel material (square steel material) cut into a predetermined length after roll forming, and a cross-sectional shape suitable for manufacturing bolts and the like. It is rolled and shipped.

【0003】ここで、角形鋼材が非磁性材からなるもの
である場合、圧延工程において側面に長手方向傷が生じ
たり、角部周辺に横割れ傷や微小なピンホール傷が生じ
ることがある。鋼材にかかる傷が存在すると、後に製造
されるボルトの強度が低下するなどの問題が生じるた
め、ボルトなどの製品出荷前の製品検査のみならず、鋼
材の段階においても表面傷の有無が検査されている。
Here, when the square steel material is made of a non-magnetic material, a side surface may be scratched in the longitudinal direction in the rolling process, and lateral cracks and minute pinhole scratches may be generated around the corners. If there are scratches on the steel material, problems such as deterioration of the strength of bolts that will be manufactured later will occur.Therefore, not only the product inspection before shipping products such as bolts but also the presence of surface scratches at the steel material stage is inspected. ing.

【0004】鋼材の表面傷を検査する方法として、例え
ば図7に示すように、鋼材W´の周囲に配置された誘導
コイル101に誘導電流を流した場合に、鋼材W´の傷
周辺で温度変化が生じることを利用して探傷を行う誘導
加熱探傷法が知られている。
As a method for inspecting the surface damage of the steel material, for example, as shown in FIG. 7, when an induction current is applied to the induction coil 101 arranged around the steel material W ', the temperature around the damage of the steel material W'is An induction heating flaw detection method is known in which flaw detection is performed by utilizing the change.

【0005】しかしながら、誘導加熱探傷法において
は、誘導電流の方向と同方向の傷(横割れ傷)Kyや微
小なピンホール傷Kpの周辺では温度変化が小さいた
め、これらの傷の検出が困難である。
In the induction heating flaw detection method, however, it is difficult to detect these flaws (lateral cracks) Ky in the same direction as the direction of the induced current and the small temperature change around the minute pinhole flaw Kp, so that these flaws are difficult to detect. Is.

【0006】特開平6−109652号公報には、細線
を所定の張力で平角線材の角部に当接させた状態で平角
線材を移動させ、角部に存在する傷が細線を通過した際
の細線の張力変化から平角線材の角部の傷を検出する探
傷装置が提案されており、特開平5−126760号公
報には、連続送給される線材に光を照射するとともに、
その照射個所をCCDカメラで撮像して得られる撮像画
像に基づいて表面傷を検出する光学式探傷装置が提案さ
れている。
Japanese Unexamined Patent Publication (Kokai) No. 6-109652 discloses that when a flat wire is moved with the fine wire abutting the corner of the flat wire with a predetermined tension, the scratch existing at the corner passes through the fine wire. A flaw detection device has been proposed which detects a flaw in a corner portion of a flat wire rod from a change in tension of a thin wire, and Japanese Patent Application Laid-Open No. 5-126760 discloses irradiating a continuously fed wire rod with light.
An optical flaw detection device has been proposed which detects a surface flaw based on a captured image obtained by capturing the irradiated portion with a CCD camera.

【0007】しかしながら、特開平6−109652号
公報に提案されている探傷装置においては、微小なピン
ホール傷Kpが細線を通過してもほとんど張力が変化し
ないため、微小なピンホール傷Kpの検出が困難であ
る。また、特開平5−126760号公報に提案されて
いる光学式探傷装置は、傷が存在すると照射光が傷で乱
反射してCCDカメラの出力信号に乱れが生じることに
着目して線材の表面傷を検出するものであるが、微小な
ピンホール傷ついては信号の乱れが小さく検出が困難で
ある。
However, in the flaw detector proposed in Japanese Patent Application Laid-Open No. 6-109652, the tension hardly changes even when the minute pinhole flaw Kp passes through the fine wire, so that the minute pinhole flaw Kp is detected. Is difficult. The optical flaw detector proposed in Japanese Patent Laid-Open No. 5-126760 pays attention to the fact that when a flaw is present, the irradiation light is diffusely reflected by the flaw and the output signal of the CCD camera is disturbed. However, if a minute pinhole is scratched, signal disturbance is small and detection is difficult.

【0008】なお、出願人は、既に図8に示すように、
超音波が鋼材W´内部を長手方向に伝播するように、探
触子102から鋼材W´の角部領域に超音波を所定角度
で送信し、傷で反射する反射波を検出することにより探
傷を行う超音波斜角探傷法が提案している(特願200
0−314893号)。
It should be noted that the applicant, as already shown in FIG.
The ultrasonic wave is transmitted from the probe 102 to the corner area of the steel material W ′ at a predetermined angle so that the ultrasonic wave propagates in the longitudinal direction of the steel material W ′, and the flaw detection is performed by detecting the reflected wave reflected by the flaw. An ultrasonic bevel flaw detection method has been proposed (Patent Application 200
0-314893).

【0009】しかしながら、この超音波斜角探傷法によ
っても、微小なピンホール傷Kpについては超音波の反
射が小さく検出が困難であるという問題がある。
However, even with this ultrasonic oblique flaw detection method, there is a problem in that minute pinhole scratches Kp are difficult to detect because of small reflection of ultrasonic waves.

【0010】[0010]

【発明が解決しようとする課題】本発明はかかる従来技
術の課題に鑑みなされたものであって、圧延された角形
鋼材の角部周辺に存在する横割れ傷だけでなく、微小な
ピンホール傷をも確実に検出できる光学式探傷方法を提
供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and not only lateral cracks existing around the corners of a rolled square steel product but also minute pinhole scratches. It is an object of the present invention to provide an optical flaw detection method capable of surely detecting even.

【0011】[0011]

【課題を解決するための手段】本発明の光学式探傷方法
の第1形態は、圧延材角部を光学的に探傷する光学式探
傷方法であって、圧延材角部周辺を少なくともその圧延
先端側から所定角度にて照射し、その照射された個所を
所定角度にて撮像し、得られた撮像画像に基づいて圧延
材角部の表面傷を検出することを特徴とする。
A first mode of the optical flaw detection method of the present invention is an optical flaw detection method for optically flaw detection of a rolled material corner portion, and at least the periphery of the rolled material corner portion has its rolling tip. It is characterized in that irradiation is performed from a side at a predetermined angle, the irradiated portion is imaged at a predetermined angle, and a surface flaw of a rolled material corner portion is detected based on the obtained captured image.

【0012】本発明の光学式探傷方法の第2形態は、圧
延材角部を光学的に探傷する光学式探傷方法であって、
圧延材角部周辺を前後から所定角度にて交互に照射し、
その照射された個所を所定角度にて撮像し、得られた撮
像画像に基づいて圧延材角部の表面傷を検出することを
特徴とする。
A second embodiment of the optical flaw detection method of the present invention is an optical flaw detection method for optically flaw detection of a rolled material corner portion,
Alternately irradiate around the corner of the rolled material from the front and back at a predetermined angle,
It is characterized in that the irradiated portion is imaged at a predetermined angle, and surface scratches at the corners of the rolled material are detected based on the obtained captured image.

【0013】本発明の光学式探傷方法においては、照射
角度が30度〜80度の範囲とされ、撮像角度が45度
〜90度の範囲とされているのが好ましい。
In the optical flaw detection method of the present invention, it is preferable that the irradiation angle is in the range of 30 to 80 degrees and the imaging angle is in the range of 45 to 90 degrees.

【0014】また、本発明の光学式探傷方法において
は、輝度の低下量が閾値を超える部分を傷部とするのが
好ましい。
Further, in the optical flaw detection method of the present invention, it is preferable that the portion where the amount of decrease in brightness exceeds the threshold value is a flaw.

【0015】さらに、本発明の光学式探傷方法において
は、圧延材がステンレス等難加工材とされているのが好
ましい。
Further, in the optical flaw detection method of the present invention, it is preferable that the rolled material is a material such as stainless steel which is difficult to process.

【0016】[0016]

【作用】本発明は前記のごとく構成されているので、圧
延材の角部周辺に存在する横割れ傷だけでなく、微小な
ピンホール傷をも確実に検出できる。
Since the present invention is constructed as described above, not only lateral cracks existing around the corners of the rolled material but also minute pinholes can be reliably detected.

【0017】[0017]

【発明の実施の形態】以下、添付図面を参照しながら本
発明を実施形態に基づいて説明するが、本発明はかかる
実施形態のみに限定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described based on the embodiments with reference to the accompanying drawings, but the present invention is not limited to such embodiments.

【0018】実施形態1 本発明の実施形態1にかかる光学式探傷方法が適用され
る光学式探傷装置(以下、単に探傷装置という)の概略
図を図1に示し、この探傷装置Sは、非磁性材、とりわ
けステンレス等難加工材からなる圧延角形鋼材(被検査
材)角部の探傷に好適に用いられる。
Embodiment 1 FIG. 1 shows a schematic view of an optical flaw detector (hereinafter, simply referred to as flaw detector) to which the optical flaw detection method according to Embodiment 1 of the present invention is applied. It is suitable for use in flaw detection of the corners of rolled square steel (material to be inspected) made of magnetic material, especially difficult-to-machine material such as stainless steel.

【0019】探傷装置Sは、図1に示すように、被検査
材Wの角部C周辺を撮像する探傷部10と、探傷部10
を制御するとともに傷の検出をなす制御検出部20と、
探傷結果を出力する出力手段30とを主要構成要素とし
てなる。ここで、出力手段30は、例えばプリンタ、C
RTディスプレイなどとされる。
As shown in FIG. 1, the flaw detection apparatus S has a flaw detection section 10 for picking up an image around the corner C of the material W to be inspected and a flaw detection section 10.
A control detection unit 20 that controls the
The output means 30 for outputting the flaw detection result serves as a main component. Here, the output means 30 is, for example, a printer, C
It is used as an RT display.

【0020】探傷部10は、図1に示すように、被検査
材Wの一方の対向する角部C1およびC2周辺をそれぞ
れ撮像する第1および第2探傷部10A、10Bと、他
方の対向する角部C3およびC4周辺をそれぞれ撮像す
る第3および第4探傷部10C、10Dとからなる。各
探傷部10は、図2に示すように、対応する角部C周辺
を被検査材Wの圧延先端側から斜めに照射する光源11
と、光源11により照射された角部C周辺を被検査材W
の長手方向と垂直な方向または圧延後端側斜め方向から
撮像するCCDカメラ(撮像手段)12とを備えてな
る。
As shown in FIG. 1, the flaw detection portion 10 faces the other one of the first and second flaw detection portions 10A and 10B for picking up images around one of the opposite corners C1 and C2 of the material W to be inspected, respectively. It is composed of third and fourth flaw detection units 10C and 10D that image the periphery of the corners C3 and C4, respectively. As shown in FIG. 2, each of the flaw detection parts 10 illuminates the periphery of the corresponding corner part C obliquely from the rolling tip side of the material W to be inspected.
And around the corner C illuminated by the light source 11 to be inspected material W
And a CCD camera (image pickup means) 12 for picking up an image from a direction perpendicular to the longitudinal direction of the steel sheet or an oblique direction of the rolling rear end side.

【0021】ここで、第1および第2探傷部10A、1
0Bの光源11およびCCDカメラ12は、その光軸ま
たは受光軸が角部C1およびC2の対角面と同一面上に
位置するように配設され、また第3および第4探傷部1
0C、10Dの光源11およびCCDカメラ12は、そ
の光軸または受光軸が角部C3およびC4の対角面と同
一面上に位置するように配設されている。
Here, the first and second flaw detectors 10A, 1
The 0B light source 11 and the CCD camera 12 are arranged such that their optical axes or light receiving axes are located on the same plane as the diagonal surfaces of the corner portions C1 and C2, and the third and fourth flaw detection portions 1 are arranged.
The 0C and 10D light sources 11 and the CCD camera 12 are arranged such that their optical axes or light receiving axes are located on the same plane as the diagonal surfaces of the corner portions C3 and C4.

【0022】光源11は、具体的には、図2(a)に示
すように、被検査材Wが圧延先端を先頭にして長手方向
に搬送される場合には、光軸11aを被検査材Wの搬送
方向下流側に傾けて配設される。その逆に、図2(b)
に示すように、被検査材Wが圧延後端を先頭にして長手
方向に搬送される場合には、光軸11aを被検査材Wの
搬送方向上流側に傾けて配設される。
Specifically, as shown in FIG. 2 (a), the light source 11 uses the optical axis 11a as the material to be inspected when the material W to be inspected is conveyed in the longitudinal direction with the rolling tip as the leading end. It is disposed so as to be inclined toward the downstream side of W in the transport direction. On the contrary, Fig. 2 (b)
As shown in (1), when the material W to be inspected is conveyed in the longitudinal direction with the trailing end of the rolling as the leading end, the optical axis 11a is arranged with the optical axis 11a inclined toward the upstream side in the conveyance direction of the material to be inspected W.

【0023】ここで、光軸11aと被検査材Wの長手方
向とのなす角θ11は、30°〜80°とされる。また、
光源11の照射範囲は、隣接する探傷部10の撮像に影
響を与えないよう調整されている。例えば、角部Cの両
側側面の中央部付近までを照射するように調整されてい
る。
The angle θ 11 between the optical axis 11a and the longitudinal direction of the material W to be inspected is 30 ° to 80 °. Also,
The irradiation range of the light source 11 is adjusted so as not to affect the imaging of the adjacent flaw detection unit 10. For example, the irradiation is adjusted so as to irradiate the vicinity of the central portion on both side surfaces of the corner portion C.

【0024】CCDカメラ12は、具体的には、図2
(a)に示すように、被検査材Wが圧延先端を先頭にし
て長手方向に搬送される場合には、光源11よりも上流
において、受光軸12aを搬送方向と垂直あるいは搬送
方向上流側に傾けて、光源11により照射された角部C
周辺を撮像できる位置に配設される。その逆に、図2
(b)に示すように、被検査材Wが圧延後端を先頭にし
て長手方向に搬送される場合には、光源11よりも下流
において、受光軸12aを搬送方向と垂直あるいは搬送
方向下流側に傾けて、光源11により照射された角部C
周辺を撮像できる位置に配設される。
The CCD camera 12 is specifically shown in FIG.
As shown in (a), when the material W to be inspected is conveyed in the longitudinal direction with the leading end of the rolling as the leading end, the light receiving shaft 12a is upstream of the light source 11 and is perpendicular to the conveying direction or upstream in the conveying direction. Corner C that is tilted and illuminated by the light source 11
It is arranged at a position where the surrounding area can be imaged. On the contrary, Fig. 2
As shown in (b), when the material W to be inspected is conveyed in the longitudinal direction with the rolled rear end as the leading end, the light receiving shaft 12a is located downstream of the light source 11 in the direction perpendicular to the conveying direction or on the downstream side in the conveying direction. Corner C illuminated by the light source 11 tilted to
It is arranged at a position where the surrounding area can be imaged.

【0025】ここで、受光軸12aと被検査材Wの長手
方向とのなす角θ12は、45°〜90°とされる。ま
た、CCDカメラ12は、その撮像範囲が光源11の照
射範囲に含まれるよう調整されている。すなわち、被検
査材Wの表面に傷が存在しなければ、CCDカメラ12
の撮像範囲すべてが高輝度となるようにされている。
Here, the angle θ 12 formed by the light receiving shaft 12a and the longitudinal direction of the material W to be inspected is 45 ° to 90 °. Further, the CCD camera 12 is adjusted so that its imaging range is included in the irradiation range of the light source 11. That is, if there is no scratch on the surface of the inspection object W, the CCD camera 12
The entire image pickup range is designed to have high brightness.

【0026】制御検出部20は、探傷部10A〜10D
の光源11およびCCDカメラ12を制御する制御手段
21と、CCDカメラ12の撮像画像に基づいて傷を検
出する傷検出手段22とからなる。
The control detector 20 includes flaw detectors 10A to 10D.
The control means 21 controls the light source 11 and the CCD camera 12 and the flaw detection means 22 that detects a flaw based on the image captured by the CCD camera 12.

【0027】制御手段21は、光源11に被検査材Wの
角部Cを照射させるとともに、光源11により照射され
た角部CをCCDカメラ12に被検査材W全長にわたっ
て撮像させるものである。
The control means 21 causes the light source 11 to irradiate the corner C of the material W to be inspected and causes the CCD camera 12 to image the corner C illuminated by the light source 11 over the entire length of the material W to be inspected.

【0028】傷検出手段22は、CCDカメラ12の撮
像画像に基づいて被検査材Wの角部周辺に存在する傷K
を検出するものである。ステンレス等難加工材において
は圧延成形された角形鋼材の角部周辺に生じる横割れ傷
の溝やピンホール傷は、図2に誇張して示すように、延
先端側に向けて斜めに形成される。そのため、この傷K
が光源11により圧延先端側から斜めに照射されると、
傷部に影が生じ、図3に示すように、CCDカメラ12
の撮像画像(出力信号)の傷Kに対応する部分は、その
周囲に比べてはるかに低輝度となる。
The scratch detecting means 22 is a scratch K existing around the corner of the material W to be inspected based on the image picked up by the CCD camera 12.
Is to detect. In the case of difficult-to-machine materials such as stainless steel, lateral cracking grooves and pinhole scratches that occur around the corners of roll-formed square steel are formed obliquely toward the extended tip side, as exaggeratedly shown in FIG. It Therefore, this scratch K
Is obliquely irradiated from the rolling tip side by the light source 11,
A shadow is formed on the scratched portion, and as shown in FIG.
The portion of the captured image (output signal) corresponding to the scratch K has much lower brightness than the surrounding area.

【0029】そこで、傷検出手段22は、撮像画像から
傷Kに対応する低輝度部分を抽出するために適当な閾値
を設定し、撮像画像において輝度の低下量が閾値を超え
る部分を傷部として検出する。ここで、この閾値は、例
えば人工傷の探傷時における撮像信号に基づいて適宜設
定される。
Therefore, the flaw detecting means 22 sets an appropriate threshold value for extracting a low-luminance portion corresponding to the flaw K from the picked-up image, and designates a portion of the picked-up image in which the amount of decrease in luminance exceeds the threshold value as a flaw portion. To detect. Here, this threshold value is appropriately set based on, for example, an image pickup signal at the time of flaw detection of an artificial flaw.

【0030】なお、かかる機能を有する制御検出部20
は、例えば出力手段30を備えたコンピュータに制御手
段21および傷検出手段22の機能に対応したプログラ
ム、すなわち制御プログラムおよび傷検出プログラムを
格納することにより実現される。
The control detection unit 20 having such a function
Is realized, for example, by storing a program corresponding to the functions of the control means 21 and the flaw detection means 22, that is, a control program and a flaw detection program in a computer equipped with the output means 30.

【0031】このように、本実施形態によれば、被検査
材の角部周辺を被検査材の圧延先端側から斜めに照射す
るとともに、その照射個所を被検査材の長手方向と垂直
な方向または被検査材の圧延後端側斜め方向から撮像し
て得られた撮像画像に基づいて傷を検出しているため、
被検査材の角部周辺に存在する横割れ傷だけでなく、微
小なピンホール傷をも確実に検出できる。
As described above, according to the present embodiment, the periphery of the corner of the material to be inspected is obliquely irradiated from the rolling front side of the material to be inspected, and the irradiation location is a direction perpendicular to the longitudinal direction of the material to be inspected. Or because the flaw is detected based on the imaged image obtained by imaging from the rolling rear end side of the inspected material,
Not only lateral cracks existing around the corners of the material to be inspected but also minute pinholes can be reliably detected.

【0032】実施形態2 本発明の実施形態2にかかる光学式探傷方法が適用され
る光学式探傷装置(以下、単に探傷装置という)の概略
図を図4に示す。この探傷装置S1は、実施形態1の探
傷装置Sの探傷部10(10A〜10D)を改変し、圧
延先端を先頭にして搬送される被検査材と圧延後端を先
頭にして搬送される被検査材とが混在している場合にも
探傷をなし得るようにしたものである。具体的には、図
4および図5に示すように、各探傷部10の光源11と
対向するように光源13を配設するとともに、これに対
応させて制御手段21を制御手段21Aとしてなるもの
である。
Embodiment 2 FIG. 4 shows a schematic view of an optical flaw detector (hereinafter, simply referred to as flaw detector) to which an optical flaw detection method according to Embodiment 2 of the present invention is applied. This flaw detection device S1 is a modification of the flaw detection unit 10 (10A to 10D) of the flaw detection device S of the first embodiment. Even if the inspection material is mixed, the flaw detection can be performed. Specifically, as shown in FIGS. 4 and 5, the light source 13 is arranged so as to face the light source 11 of each flaw detection unit 10, and the control means 21 corresponds to the control means 21A. Is.

【0033】光源13は、例えば光源11が光軸11a
を搬送方向下流側に傾けて配設されていれば、光源11
よりも上流において、その光軸13aを搬送方向上流側
に傾けて配設される。ここで、光軸13aと被検査材W
の長手方向とのなす角θ13は、光軸11aと被検査材W
の長手方向とのなす角θ11と等しくされており、また光
源11と光源13との間の距離は、光軸11aと光軸1
3aとが角部Cにおいて交差するよう調整されている。
なお、本実施形態では光軸13aと被検査材Wの長手方
向とのなす角θ13は、光軸11aと被検査材Wの長手方
向とのなす角θ 11と等しくされているが、角θ13は必ず
しも角θ11と同一とされる必要はない。
In the light source 13, for example, the light source 11 has an optical axis 11a.
If the light source 11 is inclined toward the downstream side in the transport direction, the light source 11
Upstream of the optical axis 13a, the optical axis 13a is upstream in the transport direction.
It is installed at an angle. Here, the optical axis 13a and the inspection object W
Angle θ with the longitudinal direction of13Is the optical axis 11a and the inspection material W
Angle θ with the longitudinal direction of11Is equal to and also light
The distance between the light source 11 and the light source 13 is equal to the optical axis 11a and the optical axis 1
3a and 3a are adjusted to intersect at a corner C.
In the present embodiment, the optical axis 13a and the longitudinal direction of the material W to be inspected
Angle θ with the direction13Is the longitudinal direction of the optical axis 11a and the inspected material W
Angle θ with the direction 11Is equal to, but the angle θ13Is always
The angle θ11Need not be the same as.

【0034】本実施形態のCCDカメラ12は、光源1
1と光源13との中間位置において、受光軸12aを被
検査材Wの長手方向と直交させて配設されている。
The CCD camera 12 of the present embodiment includes a light source 1
The light receiving shaft 12a is arranged at an intermediate position between the light source 13 and the light source 13 so as to be orthogonal to the longitudinal direction of the inspection target material W.

【0035】制御手段21Aは、探傷部10A〜10D
の光源11、CCDカメラ12および光源13を制御す
るものである。具体的には、光源11および光源13を
交互に照射して、各光源11、13の照射ごとにCCD
カメラ12により撮像するという作業を所定間隔ごとに
行わせるものである。ここで、前記所定間隔は、角部C
を光源11により照射された場合と光源13により照射
された場合のそれぞれの場合について、被検査材W全長
にわたって撮像できるように、被検査材Wの搬送速度に
対応させて適宜設定される。
The control means 21A includes flaw detectors 10A to 10D.
The light source 11, the CCD camera 12 and the light source 13 are controlled. Specifically, the light sources 11 and 13 are alternately irradiated, and the CCD is irradiated for each of the light sources 11 and 13.
The operation of taking an image with the camera 12 is performed at predetermined intervals. Here, the predetermined interval is a corner C
In each of the case where the light is irradiated by the light source 11 and the case where the light is irradiated by the light source 13, it is appropriately set according to the transport speed of the material W to be inspected so that the image can be taken over the entire length of the material W to be inspected.

【0036】しかして、本実施形態においては、被検査
材Wが圧延先端および圧延後端のいずれを先頭にして搬
送されていても、光源11および光源13のいずれかに
より角部周辺が被検査材Wの圧延先端側から斜めに照射
されることとなるため、光源11および光源13のいず
れかを照射した際の撮像画像から被検査材Wの角部周辺
に存在する傷を検出することができる。
In the present embodiment, however, whether the material W to be inspected is conveyed with the leading edge of the rolling or the trailing edge of the rolling being the leading edge, the periphery of the corner is inspected by either the light source 11 or the light source 13. Since the material W is obliquely irradiated from the rolling tip side, it is possible to detect a scratch existing around the corner of the material W to be inspected from a captured image when the light source 11 or the light source 13 is irradiated. it can.

【0037】なお、実施形態2のその余の構成および作
用・効果は実施形態1と同様とされている。
The remaining structure, operation and effect of the second embodiment are similar to those of the first embodiment.

【0038】[0038]

【実施例】以下、本発明をより具体的な実施例に基づい
てより具体的に説明する。
EXAMPLES Hereinafter, the present invention will be described more specifically based on more specific examples.

【0039】実施例1〜4 検査サンプルとして、角部周辺にそれぞれ3.0mm×
2.0mm、1.0mm×2.0mm、0.5mm×
1.5mm、0.5mm×1.0mmのピンホール傷が
存在する4本の角形鋼材を用意した(実施例1〜4)。
Examples 1 to 4 As inspection samples, 3.0 mm × on each corner.
2.0 mm, 1.0 mm x 2.0 mm, 0.5 mm x
Four square steel materials having pinhole scratches of 1.5 mm and 0.5 mm × 1.0 mm were prepared (Examples 1 to 4).

【0040】図6に、実施例1〜4のピンホール傷が存
在する角部周辺を、圧延先端側から斜めに照射して圧延
後端側斜め方向から撮像した撮像結果を示す。ここで、
実施例1〜4においては、光源の光軸と検査サンプルの
長手方向とのなす角は、45°とされ、CCDカメラの
受光軸と検査サンプルの長手方向とのなす角は、90°
とされている。
FIG. 6 shows an image pickup result obtained by obliquely irradiating the periphery of the corner where pinhole scratches exist in Examples 1 to 4 from the rolling front side and imaging the rolling rear side obliquely. here,
In Examples 1 to 4, the angle between the optical axis of the light source and the longitudinal direction of the test sample was 45 °, and the angle between the light receiving axis of the CCD camera and the longitudinal direction of the test sample was 90 °.
It is said that.

【0041】図6より、実施例1〜4の撮像画像におい
て、ピンホール傷に対応する部分の輝度がその周囲に比
べはるかに低くなっているのがわかる。すなわち、角形
鋼材の角部周辺を圧延先端側から斜めに照射して圧延後
端側斜め方向から撮像することにより、直径が1.0m
mφという極めて微小なピンホール傷であっても検出が
可能であることが理解される。
From FIG. 6, it can be seen that in the picked-up images of Examples 1 to 4, the brightness of the portion corresponding to the pinhole scratch is much lower than that of the surrounding area. That is, by irradiating the periphery of the corner of a square steel product from the rolling front side obliquely and imaging from the oblique direction of the rolling rear end side, the diameter is 1.0 m.
It is understood that even an extremely small pinhole scratch of mφ can be detected.

【0042】以上、本発明を実施形態および実施例に基
づいて説明してきたが、本発明はかかる実施形態および
実施例に限定されるものではなく種々改変が可能であ
る。例えば、実施形態においては、被検査材(角形鋼
材)は非磁性材とされているが、磁性材とされてもよ
い。また、実施形態においては、被検査材を長手方向に
搬送しながら探傷を行っているが、被検査材を静止させ
ておき、探傷部を被検査材の長手方向に沿って移動させ
ながら探傷を行うようにしてもよい。
Although the present invention has been described based on the embodiments and examples, the present invention is not limited to the embodiments and examples, and various modifications can be made. For example, in the embodiment, the material to be inspected (square steel material) is a non-magnetic material, but it may be a magnetic material. Further, in the embodiment, the flaw detection is performed while conveying the inspected material in the longitudinal direction, but the inspected material is kept stationary, and the flaw detection part is moved along the longitudinal direction of the inspected material. It may be performed.

【0043】[0043]

【発明の効果】以上詳述したように、本発明によれば、
圧延材の角部周辺に存在する横割れ傷だけでなく、微小
なピンホール傷をも確実に検出できるという優れた効果
が得られる。
As described in detail above, according to the present invention,
An excellent effect that not only lateral cracks existing around the corners of the rolled material but also minute pinholes can be reliably detected is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態1にかかる光学式探傷方法が
適用される光学式探傷装置の概略図である。
FIG. 1 is a schematic diagram of an optical flaw detection apparatus to which an optical flaw detection method according to a first embodiment of the present invention is applied.

【図2】同装置の探傷部を図1に示す矢印の方向から見
た図であって、同(a)は被検査材が圧延先端を先頭に
して長手方向に搬送される場合を示し、同(b)は被検
査材が圧延後端を先頭にして長手方向に搬送される場合
を示す。
FIG. 2 is a view of the flaw detection part of the same device as seen from the direction of the arrow shown in FIG. 1, in which FIG. 2 (a) shows the case where the material to be inspected is conveyed in the longitudinal direction with the rolling tip as the leading end, The same (b) shows the case where the material to be inspected is conveyed in the longitudinal direction with the trailing end of the rolling as the leading end.

【図3】ピンホール傷の存在する角部周辺を撮像した撮
像結果を示すグラフ図である。
FIG. 3 is a graph showing an imaging result obtained by imaging an area around a corner where a pinhole scratch exists.

【図4】本発明の実施形態2にかかる光学式探傷方法が
適用される光学式探傷装置の概略図である。
FIG. 4 is a schematic diagram of an optical flaw detection apparatus to which an optical flaw detection method according to a second embodiment of the present invention is applied.

【図5】同装置の探傷部を図4に示す矢印の方向から見
た図である。
5 is a view of the flaw detection unit of the same device as seen from the direction of the arrow shown in FIG.

【図6】実施例1〜4検査サンプルを圧延先端側から斜
めに照射して圧延後端側斜め方向から撮像した撮像結果
を示すグラフ図であって、同(a)は実施例1を示し、
同(b)は実施例2を示し、同(c)は実施例3を示
し、同(d)は実施例4を示す。
6A and 6B are graphs showing imaging results obtained by obliquely irradiating the inspection samples of Examples 1 to 4 from the rolling front side and imaging from the rolling rear end side in an oblique direction, in which FIG. ,
The same (b) shows Example 2, the same (c) shows Example 3, and the same (d) shows Example 4.

【図7】誘導加熱探傷法の説明図である。FIG. 7 is an explanatory diagram of an induction heating flaw detection method.

【図8】本出願人の先の提案にかかる超音波斜角探傷法
の説明図である。
FIG. 8 is an explanatory diagram of an ultrasonic oblique flaw detection method according to the applicant's previous proposal.

【符号の説明】[Explanation of symbols]

10 探傷部 11、13 光源 12 CCDカメラ(撮像手段) 20 制御検出部 21 制御手段 22 傷検出手段 30 出力手段 S 光学式探傷装置 W 被検査材(角形鋼材) 10 flaw detection section 11, 13 Light source 12 CCD camera (imaging means) 20 Control detector 21 Control means 22 Scratch detection means 30 Output means S Optical flaw detector W Inspected material (square steel material)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 圧延材角部を光学的に探傷する光学式探
傷方法であって、 圧延材角部周辺を少なくともその圧延先端側から所定角
度にて照射し、その照射された個所を所定角度にて撮像
し、得られた撮像画像に基づいて圧延材角部の表面傷を
検出することを特徴とする光学式探傷方法。
1. An optical flaw detection method for optically detecting a corner of a rolled material, which comprises irradiating the periphery of the rolled material at a predetermined angle from at least the leading end side of the rolling, and irradiating the irradiated portion with a predetermined angle. The optical flaw detection method is characterized in that the surface flaw of the corner portion of the rolled material is detected based on the obtained picked-up image.
【請求項2】 圧延材角部を光学的に探傷する光学式探
傷方法であって、 圧延材角部周辺を前後から所定角度にて交互に照射し、
その照射された個所を所定角度にて撮像し、得られた撮
像画像に基づいて圧延材角部の表面傷を検出することを
特徴とする光学式探傷方法。
2. An optical flaw detection method for optically detecting a corner of a rolled material, which comprises alternately irradiating the periphery of the rolled material at a predetermined angle from the front and rear,
An optical flaw detection method, characterized in that an image of the irradiated portion is picked up at a predetermined angle, and a surface flaw at a corner of a rolled material is detected based on the obtained picked-up image.
【請求項3】 照射角度が30度〜80度の範囲とさ
れ、撮像角度が45度〜90度の範囲とされていること
を特徴とする請求項1または2記載の光学式探傷方法。
3. The optical flaw detection method according to claim 1, wherein the irradiation angle is in the range of 30 degrees to 80 degrees and the imaging angle is in the range of 45 degrees to 90 degrees.
【請求項4】 輝度の低下量が閾値を超える部分を傷部
とすることを特徴とする請求項1または2記載の光学式
探傷方法。
4. The optical flaw detection method according to claim 1, wherein a portion where the amount of decrease in luminance exceeds a threshold value is used as a flaw.
【請求項5】 圧延材がステンレス等難加工材とされて
いることを特徴とする請求項1または2記載の光学式探
傷方法。
5. The optical flaw detection method according to claim 1, wherein the rolled material is a hard-to-machine material such as stainless steel.
JP2001271646A 2001-09-07 2001-09-07 Optical flaw-detection method Withdrawn JP2003075358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001271646A JP2003075358A (en) 2001-09-07 2001-09-07 Optical flaw-detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001271646A JP2003075358A (en) 2001-09-07 2001-09-07 Optical flaw-detection method

Publications (1)

Publication Number Publication Date
JP2003075358A true JP2003075358A (en) 2003-03-12

Family

ID=19097127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001271646A Withdrawn JP2003075358A (en) 2001-09-07 2001-09-07 Optical flaw-detection method

Country Status (1)

Country Link
JP (1) JP2003075358A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090363A (en) * 2007-10-12 2009-04-30 Jfe Steel Kk Equipment and method for manufacturing square steel tube
JP2016102724A (en) * 2014-11-28 2016-06-02 日立金属株式会社 Appearance inspection method of flat enameled wire and visual inspection apparatus of flat enameled wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090363A (en) * 2007-10-12 2009-04-30 Jfe Steel Kk Equipment and method for manufacturing square steel tube
JP2016102724A (en) * 2014-11-28 2016-06-02 日立金属株式会社 Appearance inspection method of flat enameled wire and visual inspection apparatus of flat enameled wire

Similar Documents

Publication Publication Date Title
JP6295353B2 (en) Method and apparatus for detecting defects in objects
JP3088517B2 (en) Optical sheet inspection system
JP5031691B2 (en) Surface flaw inspection device
CN101952712A (en) Device and method for optically detecting surface defect of round wire rod
US6097482A (en) High speed flaw detecting system for reflective material
JP3156764U (en) Surface flaw inspection device
JP7404250B2 (en) Apparatus and method for inspecting glass sheets
EP3399302A1 (en) Egg surface inspection apparatus
JP2006226801A (en) Inspection device for glass substrate, and inspection method of glass substrate
JP2007309690A (en) Flaw detection method and flaw detector
JP2008275424A (en) Surface inspection device
JPH10148619A (en) Method and device for inspecting face defect of substrate under inspection
JP2001255275A (en) Surface defect inspection method and device
JP2000162146A (en) Surface inspecting device
JP2008286791A (en) Surface defect inspection method and apparatus
JP2020106295A (en) Sheet defect inspection device
WO2012153718A1 (en) Method for testing end face of glass sheet and device for testing end face of glass sheet
JP2003075358A (en) Optical flaw-detection method
JP2000310600A (en) Method and apparatus for detecting foreign matter of sheet material
JP2005083906A (en) Defect detector
JP4050942B2 (en) Appearance inspection device
JP2003028808A (en) Method and apparatus for surface inspection
JPH0763699A (en) Flaw inspection apparatus
JP2004333177A (en) Method and apparatus for discriminating object to be inspected
WO2011101893A1 (en) Method and device for detecting flaw on surface of flexible object to be tested

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202