JP2003056840A - Waste heat using device for industrial furnace and temperature control method for it - Google Patents

Waste heat using device for industrial furnace and temperature control method for it

Info

Publication number
JP2003056840A
JP2003056840A JP2001239054A JP2001239054A JP2003056840A JP 2003056840 A JP2003056840 A JP 2003056840A JP 2001239054 A JP2001239054 A JP 2001239054A JP 2001239054 A JP2001239054 A JP 2001239054A JP 2003056840 A JP2003056840 A JP 2003056840A
Authority
JP
Japan
Prior art keywords
exhaust gas
temperature
air supply
combustion air
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001239054A
Other languages
Japanese (ja)
Inventor
Yukiyoshi Okada
幸義 岡田
Yoshihide Ichikawa
善英 市川
Yoshihiro Nakamura
義弘 中村
Susumu Yamada
進 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NARITA TECHNO KK
Toho Gas Co Ltd
Original Assignee
NARITA TECHNO KK
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NARITA TECHNO KK, Toho Gas Co Ltd filed Critical NARITA TECHNO KK
Priority to JP2001239054A priority Critical patent/JP2003056840A/en
Publication of JP2003056840A publication Critical patent/JP2003056840A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PROBLEM TO BE SOLVED: To provide a high temperature furnace in which even when temperature in an industrial furnace exceeds 1300 deg.C, the heat exchange of waste gas can be carried out and a thermal efficiency is improved by preheating air to a temperature in the range of 800 to 1000 deg.C. SOLUTION: The industrial furnace 1 comprises an exhaust gas exhaust system 3, a combustion air supply system 4 and N sets of passage switching heat storage type heat exchangers 10. When the temperature of combustion exhaust gas in the flue 5 of the exhaust gas exhaust system of the waste heat using device of the industrial furnace 1 exceeds 1300 deg.C, the opening degree of a cooling air quantity adjusting valve 19 of a cooling air supply system 15 is adjusted by an exhaust gas temperature control means 17 upon detection of the temperature of the exhaust gas by a detecting means 16 by an exhaust gas temperature control means 17 to suck air to be cooled, control the temperature of the exhaust gas to 1300 deg.C or lower and store heat in the heat storage element 12 of the heat storage type heat exchanger. The heat storage type heat exchanger is switched to change the passage from the exhaust gas exhaust system to the combustion air supply system. Then, the combustion air of the combustion air supply system is supplied to the industrial furnace as the preheated air in the range of 800 to 1000 deg.C by the heat exchanger.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、工業炉の排ガス
排出系と燃焼空気供給系の途中に流路切換式蓄熱型熱交
換器を備えた工業炉の廃熱利用装置において、工業炉の
廃熱をより効率的に利用でき、省エネルギーを図ること
ができ、高温炉を達成できる工業炉の廃熱利用装置およ
びその温度制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an industrial furnace waste heat utilization apparatus provided with a flow path switching heat storage type heat exchanger in the middle of an exhaust gas discharge system and a combustion air supply system of an industrial furnace. The present invention relates to a waste heat utilization device for an industrial furnace that can use heat more efficiently, save energy, and achieve a high-temperature furnace, and a temperature control method thereof.

【0002】[0002]

【従来の技術】従来、高温の燃焼廃熱を回収するための
熱交換器としては、トリジェネシステムがある。アルミ
ナボールを蓄熱体として、常温の燃焼空気と燃焼排ガス
を連続して熱交換させて、800℃から1000℃の高
温の予熱空気を得ることができるシステムである。
2. Description of the Related Art Conventionally, as a heat exchanger for recovering high-temperature combustion waste heat, there is a trigene system. This is a system that can obtain high-temperature preheated air of 800 ° C. to 1000 ° C. by continuously exchanging heat between combustion air at normal temperature and combustion exhaust gas using alumina balls as a heat storage body.

【0003】[0003]

【発明が解決しようとする課題】しかし、トリジェネシ
ステムを炉内温度1300℃を越える工業炉へ適用する
場合、次の課題があった。ア、トリジェネシステムは金
属加熱炉を対象に設計されており、熱交換器本体および
切替弁の耐熱性の点から、適用可能な燃焼排ガス温度は
1300℃以下である。このため、1300℃を越える
燃焼排ガスから直接熱回収をすることはできないので、
工業炉で使用できなかった。イ、トリジェネシステムを
用いて、1300℃を越える燃焼排ガスから燃焼空気の
予熱に利用した例はない。
However, when the trigene system is applied to an industrial furnace whose internal temperature exceeds 1300 ° C., the following problems occur. A. The trigene system is designed for metal heating furnaces, and the applicable combustion exhaust gas temperature is 1300 ° C or lower in terms of heat resistance of the heat exchanger body and the switching valve. For this reason, it is not possible to directly recover heat from combustion exhaust gas exceeding 1300 ° C.
It could not be used in an industrial furnace. B. There is no example of using the trigene system to preheat combustion air from combustion exhaust gas exceeding 1300 ° C.

【0004】この発明の発明者は上記課題を解決するた
めに、廃熱利用装置を用い、工業炉の煙道に排出される
燃焼排ガスの温度(廃熱)が1300℃を越える場合
に、冷却手段で1300℃以下に冷却して蓄熱型熱交換
器に取り入れて高温の蓄熱を可能とし、その高温蓄熱に
よる放熱で燃焼空気の温度を従来ではできない高温の8
00℃から1000℃の高温の予熱空気として工業炉に
送り込んで熱効率を高くして炉内温度が1300℃以上
の高温炉を得ることができ、省エネルギーを図ると共に
高温炉で高品質の焼成品を製造できることを見出した。
そこで、この発明は、工業炉の炉内温度が1300℃を
越える高温であっても廃熱を効率的に利用でき、省エネ
ルギーを図り、また予熱空気の温度を800℃から10
00℃の高温として、1300℃を越える高温炉、特に
1500℃から2000℃の高温炉とできる工業炉の廃
熱利用装置およびその温度制御方法を提供することを目
的とする。
In order to solve the above problems, the inventor of the present invention uses a device for utilizing waste heat and cools it when the temperature (waste heat) of combustion exhaust gas discharged to the flue of an industrial furnace exceeds 1300 ° C. It is cooled to less than 1300 ° C by means and is taken into a heat storage type heat exchanger to enable high temperature heat storage.
It is possible to send high temperature preheated air from 00 ℃ to 1000 ℃ into an industrial furnace to increase the thermal efficiency and obtain a high temperature furnace with an internal temperature of 1300 ℃ or higher, which saves energy and produces high quality fired products in the high temperature furnace. It was found that it can be manufactured.
Therefore, according to the present invention, the waste heat can be efficiently used even when the temperature in the industrial furnace exceeds 1300 ° C, the energy can be saved, and the temperature of the preheated air can be increased from 800 ° C to 10 ° C.
An object of the present invention is to provide a waste heat utilization apparatus for an industrial furnace which can be a high temperature furnace having a high temperature of 00 ° C and a temperature higher than 1300 ° C, particularly 1500 ° C to 2000 ° C, and a method for controlling the temperature thereof.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するこの
発明の請求項1記載の工業炉の廃熱利用装置は、基端側
が工業炉1に設けた煙道5に連通するとともに先端側が
排気フアン7の吸引口に連通する排ガス排出系3と、基
端側が空気フアン8の吐出口に連通するとともに先端側
が工業炉1の燃焼空気供給口に連通する燃焼空気供給系
4と、排ガス排出系3および燃焼空気供給系4の途中に
介装され、内部に複数の蓄熱エレメント12を収納した
熱交換室11を有し、各熱交換室11の一方の接続部は
それぞれ第1流路切換手段13を介して排ガス排出系3
の上流側配管3aおよび燃焼空気供給系4の下流側配管
4bに切換可能に連通し、各熱交換室11の他方の接続
部はそれぞれ第2流路切換手段14を介して排ガス排出
系3の下流側配管3bおよび燃焼空気供給系4の上流側
配管4aに切換可能に連通し、かつ各第1流路切換手
段、第2流路切換手段の切換操作を全過程のN分の1づ
つの位相差をもって相互に違えて運転する少なくとも3
基以上のN基の流路切換式蓄熱型熱交換器10とを備え
た工業炉の廃熱利用装置であって、該工業炉1の廃熱利
用装置の排ガス排出系3の上流配管3aに設けられ、排
ガスを冷却するために吸引する空気量を調整するための
冷却空気量調整バルブ19が備えられた冷却空気供給系
15と、該冷却空気供給系より下流に排ガス温度を検知
する検知手段16と、該検知手段で検知した排ガス温度
が設定温度を越えるとき、前記冷却空気量調整バルブを
開き、かつ設定温度以下のとき、前記冷却空気量調整バ
ルブを閉じるための排ガス温度制御手段17とを備えた
ことを要旨とする。
In the waste heat utilization apparatus for an industrial furnace according to claim 1 of the present invention which solves the above-mentioned problems, the base end side communicates with the flue 5 provided in the industrial furnace 1 and the front end side exhausts. An exhaust gas discharge system 3 communicating with the suction port of the fan 7, a combustion air supply system 4 having a base end side communicating with the discharge port of the air fan 8 and a tip end side communicating with the combustion air supply port of the industrial furnace 1, and an exhaust gas discharge system. 3 and the combustion air supply system 4 have a heat exchange chamber 11 that accommodates a plurality of heat storage elements 12 therein, and one connection portion of each heat exchange chamber 11 is the first flow path switching means. Exhaust gas exhaust system 3 via 13
Of the exhaust gas discharge system 3 via the second flow path switching means 14 and the other connecting portion of each heat exchange chamber 11 communicates with the upstream pipe 3a and the downstream pipe 4b of the combustion air supply system 4 in a switchable manner. The downstream pipe 3b and the upstream pipe 4a of the combustion air supply system 4 are switchably connected to each other, and the switching operation of each of the first flow path switching means and the second flow path switching means is performed by N / N of the whole process. At least 3 driving with mutually different phases
A waste heat utilization device for an industrial furnace, comprising: N or more N flow path switching heat storage type heat exchangers, the upstream pipe 3a of the exhaust gas discharge system 3 of the waste heat utilization device of the industrial furnace 1. A cooling air supply system 15 provided with a cooling air amount adjusting valve 19 for adjusting the amount of air sucked to cool the exhaust gas, and a detection means for detecting the exhaust gas temperature downstream from the cooling air supply system. 16 and an exhaust gas temperature control means 17 for opening the cooling air amount adjusting valve when the exhaust gas temperature detected by the detecting means exceeds a set temperature and closing the cooling air amount adjusting valve when the exhaust gas temperature is below the set temperature. The summary is that

【0006】この発明の請求項2記載の工業炉の廃熱利
用装置は、請求項1の前記排ガス排出系3の下流側配管
3bに備えられ、排ガス量を調整する排ガス量調整バル
ブ21と、前記燃焼空気供給系4の上流側配管4aに備
えられ、燃焼空気供給量を調整する燃焼空気供給量調整
バルブ23と、工業炉の炉内温度を検知手段30で検知
して燃料供給量を調整する燃料調整バルブ28とを温度
制御手段31を介して備えたことを要旨とする。
The waste heat utilization apparatus for an industrial furnace according to claim 2 of the present invention is provided in the downstream side pipe 3b of the exhaust gas discharge system 3 of claim 1, and an exhaust gas amount adjusting valve 21 for adjusting the exhaust gas amount, A combustion air supply amount adjusting valve 23 provided in the upstream pipe 4a of the combustion air supply system 4 for adjusting the combustion air supply amount, and the furnace temperature of the industrial furnace are detected by the detecting means 30 to adjust the fuel supply amount. The gist is that the fuel control valve 28 for controlling the temperature is provided via the temperature control means 31.

【0007】この発明の請求項3記載の工業炉の廃熱利
用装置の温度制御方法は、基端側が工業炉1に設けた煙
道に連通するとともに先端側が排気フアン7の吸引口に
連通する排ガス排出系3と、基端側が空気フアン8の吐
出口に連通するとともに先端側が工業炉1の燃焼空気供
給口に連通する燃焼空気供給系4と、第1流路切換手段
13、第2流路切換手段14の切換操作で排ガス排出系
と燃焼空気供給系の流路を切換えるN基の流路切換式蓄
熱型熱交換器10を備えた工業炉1の廃熱利用装置の排
ガス排出系3の煙道5における燃焼排ガスの温度が13
00℃を越える場合、その排ガス温度を検知手段16で
検出時に排ガス温度制御手段17により冷却空気供給系
15の冷却空気量調整バルブ19の開度を調整して冷却
する空気を吸引して排ガス温度を1300℃以下に温度
制御して前記蓄熱型熱交換器10における蓄熱エレメン
ト12に蓄熱させ、前記蓄熱型熱交換器10の第1流路
切換手段13、第2流路切換手段14の切換操作で流路
を排ガス排出系3から燃焼空気供給系4に切換操作後、
燃焼空気供給系4で供給される燃焼空気を前記排ガス温
度で蓄熱した熱交換器10における蓄熱エレメント12
の放熱により800℃から1000℃の予熱空気として
工業炉に送り込むことを要旨とする。
According to a third aspect of the present invention, in the temperature control method for the waste heat utilization apparatus for the industrial furnace, the base end side communicates with the flue provided in the industrial furnace 1, and the front end side communicates with the suction port of the exhaust fan 7. The exhaust gas discharge system 3, the combustion air supply system 4 having the base end side communicating with the discharge port of the air fan 8 and the tip end side communicating with the combustion air supply port of the industrial furnace 1, the first flow path switching means 13, the second flow Exhaust gas exhaust system 3 of a waste heat utilization device of an industrial furnace 1 equipped with N-type flow path heat storage type heat exchangers 10 for switching the flow paths of the exhaust gas exhaust system and the combustion air supply system by switching operation of the path switching means 14. The temperature of the flue gas in the flue 5 is 13
When the temperature exceeds 00 ° C., when the exhaust gas temperature is detected by the detection means 16, the exhaust gas temperature control means 17 adjusts the opening degree of the cooling air amount adjustment valve 19 of the cooling air supply system 15 to suck the cooling air and exhaust gas temperature. Is controlled to a temperature of 1300 ° C. or lower to store heat in the heat storage element 12 of the heat storage type heat exchanger 10, and a switching operation of the first flow path switching means 13 and the second flow path switching means 14 of the heat storage type heat exchanger 10. After switching the flow path from the exhaust gas exhaust system 3 to the combustion air supply system 4,
The heat storage element 12 in the heat exchanger 10 that stores the combustion air supplied from the combustion air supply system 4 at the exhaust gas temperature.
The point is to send it as preheated air at 800 ° C to 1000 ° C to the industrial furnace by radiating heat.

【0008】上記構成を有するこの発明の請求項1記載
の工業炉の廃熱利用装置は、蓄熱操作時には、第1流路
切換手段および第2流路切換手段を操作して、排ガス排
出系の上流配管を蓄熱型熱交換器の熱交換室に接続する
と共に、排ガス排出系の下流側配管を熱交換室に接続す
る。この状態で、工業炉から排出される排ガスは煙道を
介して煙突に排出され、その煙道から分岐した煙道に排
気フアンにより吸引される排ガスの温度を検知手段で検
知して、その温度が熱交換器に取り入れる設定温度(許
容温度)より高い場合には冷却空気系の調整バルブを開
いて冷却する空気を吸引して混合させ、排ガスの温度を
設定温度以下に下げて熱交換器に取り入れて蓄熱エレメ
ントに蓄熱する。熱交換器に取り入れる排ガス温度が、
設定温度以下であるので、熱交換器に不具合を生ずるこ
となく、熱交換ができる。そして第1流路切換手段およ
び第2流路切換手段を切換操作後に、空気フアンから供
給される燃焼空気を熱交換室で蓄熱された蓄熱エレメン
トの放熱で従来より高温の予熱空気として工業炉に送り
込み、熱効率を向上することができる。
In the waste heat utilization apparatus for an industrial furnace according to claim 1 of the present invention having the above-mentioned structure, during the heat storage operation, the first flow path switching means and the second flow path switching means are operated to operate the exhaust gas discharge system. The upstream pipe is connected to the heat exchange chamber of the heat storage heat exchanger, and the downstream pipe of the exhaust gas discharge system is connected to the heat exchange chamber. In this state, the exhaust gas discharged from the industrial furnace is discharged to the chimney via the flue, and the temperature of the exhaust gas sucked by the exhaust fan into the flue branched from the flue is detected by the detection means, and the temperature is detected. If the temperature is higher than the set temperature (allowable temperature) to be taken into the heat exchanger, open the adjustment valve of the cooling air system to suck in the cooling air and mix it, and lower the exhaust gas temperature below the set temperature to the heat exchanger. Take in and store heat in the heat storage element. The temperature of the exhaust gas taken into the heat exchanger is
Since the temperature is below the set temperature, heat exchange can be performed without causing a problem in the heat exchanger. Then, after the switching operation of the first flow path switching means and the second flow path switching means, the combustion air supplied from the air fan is released into the industrial furnace as preheated air having a higher temperature than before by the heat radiation of the heat storage element which has stored heat in the heat exchange chamber. It is possible to improve the heat transfer efficiency.

【0009】上記構成を有するこの発明の請求項2記載
の工業炉の廃熱利用装置は、燃料調整バルブ28と燃焼
空気供給量調整バルブ23とを温度制御手段31で制御
して燃料供給量と燃焼空気の供給量と排ガス排出量をリ
ンクさせて調整でき、また、廃熱利用装置の熱交換器の
調整は、排ガス量調整バルブ21と燃焼空気供給量調整
バルブ23とを温度制御手段31により制御して燃焼排
ガス量を燃焼空気量の供給量とリンクさせて調整でき、
余剰の燃焼排ガスは煙突より大気開放する。
In the waste heat utilization apparatus for an industrial furnace according to claim 2 of the present invention having the above-mentioned structure, the temperature control means 31 controls the fuel control valve 28 and the combustion air supply control valve 23 to control the fuel supply amount. The supply amount of combustion air and the exhaust gas discharge amount can be linked and adjusted, and the heat exchanger of the waste heat utilization device can be adjusted by the exhaust gas amount adjustment valve 21 and the combustion air supply amount adjustment valve 23 by the temperature control means 31. It is possible to control and adjust the amount of flue gas by linking it with the amount of combustion air supplied.
Excess combustion exhaust gas is released to the atmosphere through the chimney.

【0010】上記構成を有するこの発明の請求項3記載
の工業炉の廃熱利用装置の温度制御方法は、工業炉の炉
内温度が1300℃を越えて、排ガス排出系の煙道にお
ける排ガス温度が1300℃を越える場合、その排ガス
温度を検知手段で検出して温度制御手段により冷却空気
供給系の冷却空気量調整バルブの開度を調整して冷却す
る空気を吸引して排ガスと混合させ、排ガス温度を熱交
換器に取り入れてよい温度(設定温度)の1300℃以
下に温度制御して蓄熱型熱交換器に取り入れて蓄熱エレ
メントに高温で蓄熱させ、前記蓄熱型熱交換器の第1流
路切換手段、第2流路切換手段の切換操作で排ガス排出
系から燃焼空気供給系に切換操作後、燃焼空気供給系で
供給される燃焼空気を前記排ガス温度で蓄熱した熱交換
器における蓄熱エレメントの放熱により800℃から1
000℃の高温の予熱空気として工業炉に送り込むこと
ができる。従って、熱効率を向上させ、炉内温度を13
00℃を越える高温まで上げることができ、省エネを図
ることができる。すなわち、この発明の温度制御方法に
よれば、蓄熱型熱交換器で予熱空気を800℃から10
00℃の高温として炉に送るので、1300℃を越える
高温炉、特に1500℃から2000℃にもなる高温炉
を提供できる。また、排ガス温度が1300℃を越える
高温であっても、冷却して設定温度の1300℃以下に
下げるので、この発明に使用するN基の蓄熱型熱交換器
であれば、不具合を生ずることがない。
According to a third aspect of the present invention having the above-mentioned structure, the method for controlling the temperature of the waste heat utilization apparatus for an industrial furnace according to the present invention is such that the temperature inside the industrial furnace exceeds 1300 ° C. and the exhaust gas temperature in the flue of the exhaust gas discharge system is high. When the temperature exceeds 1300 ° C., the temperature of the exhaust gas is detected by the detection means, and the temperature control means adjusts the opening degree of the cooling air amount adjusting valve of the cooling air supply system to suck the cooling air and mix it with the exhaust gas. The exhaust gas temperature is controlled to 1300 ° C. or lower, which is a temperature (set temperature) that can be taken into the heat exchanger, and is taken into the heat storage type heat exchanger to store heat at a high temperature in the heat storage element, and the first flow of the heat storage type heat exchanger. After the switching operation from the exhaust gas discharge system to the combustion air supply system by the switching operation of the path switching means and the second flow path switching means, the heat storage energy in the heat exchanger that stores the combustion air supplied by the combustion air supply system at the exhaust gas temperature. From 800 ℃ by the radiation of the instrument 1
It can be fed into an industrial furnace as preheated air at a high temperature of 000 ° C. Therefore, the thermal efficiency is improved and the temperature inside the furnace is reduced to 13
It is possible to raise the temperature to higher than 00 ° C and save energy. That is, according to the temperature control method of the present invention, the preheated air is heated from 800 ° C. to 10 ° C. in the heat storage type heat exchanger.
Since it is sent to the furnace as a high temperature of 00 ° C., it is possible to provide a high temperature furnace of over 1300 ° C., particularly a high temperature furnace of 1500 to 2000 ° C. Further, even if the exhaust gas temperature is higher than 1300 ° C., it is cooled and lowered to the set temperature of 1300 ° C. or lower. Therefore, the N-type heat storage type heat exchanger used in the present invention may cause a problem. Absent.

【0011】[0011]

【発明の実施の形態】以下この発明の工業炉の廃熱利用
装置として、焼成炉の廃熱利用装置の実施形態を図面に
基づいて説明する。図1はこの発明の焼成炉の廃熱利用
装置を示す模式図、図2は廃熱利用装置の拡大図、図3
は焼成炉の拡大図である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of a waste heat utilization device of a firing furnace as a waste heat utilization device of an industrial furnace of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing a waste heat utilization device of a firing furnace of the present invention, FIG. 2 is an enlarged view of the waste heat utilization device, FIG.
[Fig. 3] is an enlarged view of a firing furnace.

【0012】図1乃至図3において、焼成炉1は炉頂部
にバーナ2が備えられ、その側部に排ガス排出系3が接
続され、かつ炉頂部のバーナ2に燃焼空気供給系4が接
続されている。焼成炉1の側部の煙道5に煙突6が設け
られている。煙道5は途中で分岐され、一方の煙道が煙
突6、他方の煙道が廃熱を利用する排ガス排出系3とさ
れる。排ガス排出系3は、前記煙道5の途中で分岐した
煙道5にその基端側が連通されるとともに先端側が排気
フアン7の吸引口に連通されている。排ガス排出系には
排気フアンの作動時に吸引による負圧がかかる。この排
ガス排出系3は廃熱を利用するために蓄熱型熱交換器1
0を通す。3aは排ガス排出系の煙道5と熱交換器10
間の上流側配管、3bは熱交換器10と排気フアン間の
下流側配管である。また、燃焼空気供給系4は基端側が
空気フアン8の吐出口に連通されるとともに先端側が工
業炉の燃焼空気供給口に連通される。燃焼空気供給系4
には空気フアン8の作動時にフアンによる送気圧で燃焼
炉へ燃焼空気が供給される。この燃焼空気供給系4も廃
熱利用のために前記熱交換器を通す。4aは燃焼空気供
給系の空気フアンと熱交換器10の間の上流側配管、4
bは熱交換器と工業炉との間の下流側配管である。この
工業炉の燃焼空気供給口とは、例えば、焼成炉1のバー
ナ2の空気取り入れ口2aである。なお、前記煙突6に
排出される排ガスの熱を利用するために、煙突に関連し
て各種予熱利用装置を設けるのが好ましい。例えば、煙
突6から高温の排ガスを利用する予熱利用装置として、
煙突に材料の予熱装置、或いは温水製造装置等を関連し
て備えて、排ガスを材料の予熱、温水の製造等に有効利
用し、省エネルギー化することができる。
1 to 3, the firing furnace 1 is provided with a burner 2 at the top of the furnace, an exhaust gas discharge system 3 is connected to the side thereof, and a combustion air supply system 4 is connected to the burner 2 at the top of the furnace. ing. A chimney 6 is provided on a side flue 5 of the firing furnace 1. The flue 5 is branched on the way, and one flue serves as a chimney 6 and the other flue serves as an exhaust gas discharge system 3 that utilizes waste heat. The exhaust gas discharge system 3 has a flue 5 branching in the middle of the flue 5 at the base end side and at the tip end at the suction port of the exhaust fan 7. Negative pressure due to suction is applied to the exhaust gas exhaust system during operation of the exhaust fan. The exhaust gas discharge system 3 uses the waste heat to store the heat in the heat storage type heat exchanger 1.
Pass 0. 3a is a flue gas exhaust system 5 and a heat exchanger 10.
The upstream pipe 3b is a downstream pipe between the heat exchanger 10 and the exhaust fan. Further, the combustion air supply system 4 has its base end side connected to the discharge port of the air fan 8 and its front end side connected to the combustion air supply port of the industrial furnace. Combustion air supply system 4
When the air fan 8 is operating, combustion air is supplied to the combustion furnace by air pressure supplied by the fan. The combustion air supply system 4 also passes through the heat exchanger to utilize waste heat. 4a is an upstream pipe between the air fan of the combustion air supply system and the heat exchanger 10,
b is a downstream pipe between the heat exchanger and the industrial furnace. The combustion air supply port of this industrial furnace is, for example, the air intake port 2a of the burner 2 of the firing furnace 1. In addition, in order to utilize the heat of the exhaust gas discharged to the chimney 6, it is preferable to provide various preheating utilization devices in association with the chimney. For example, as a preheating utilization device that utilizes high-temperature exhaust gas from the chimney 6,
The chimney may be provided with a material preheating device, a hot water producing device, or the like, and the exhaust gas can be effectively used for preheating the material, producing hot water, and the like to save energy.

【0013】排ガス排出系3および燃焼空気供給系4の
途中には、少なくとも3基以上の蓄熱型熱交換器10が
並列に備えられ、それぞれ第1流路切換手段13および
第2流路切換手段14を介して接続してある。第1流路
切換手段および第2流路切換手段を切換操作して、排気
ガス排出系の流路と燃焼空気供給系の流路のいずれかの
流路に切り換える。第1流路切換手段13、第2流路切
換手段14の切換操作を全過程のN分の1づつの位相差
をもって相互に違えて運転する。実施形態はトリジェネ
システムで蓄熱型熱交換器10を3基とした場合で、第
1流路切換手段13、第2流路切換手段14の切換操作
を全過程の3分の1づつの位相差をもって相互に違えて
運転する。
At least three heat storage type heat exchangers 10 are provided in parallel in the middle of the exhaust gas discharge system 3 and the combustion air supply system 4, and the first flow path switching means 13 and the second flow path switching means are respectively provided. It is connected through 14. The first flow path switching means and the second flow path switching means are switched to switch to either the flow path of the exhaust gas discharge system or the flow path of the combustion air supply system. The switching operation of the first flow path switching means 13 and the second flow path switching means 14 is operated with a phase difference of 1 / N during the whole process. The embodiment is a case where three heat storage type heat exchangers 10 are used in the trigene system, and the switching operation of the first flow path switching means 13 and the second flow path switching means 14 is performed by one third of the whole process. They drive with different phases.

【0014】各蓄熱型熱交換器10は、排ガス排出系3
および燃焼空気供給系4の通気路をなす熱交換室11を
有しており、熱交換室11の内部に熱の受熱・放熱を行
う熱交換要素をなす複数の蓄熱エレメント12が収納さ
れている。蓄熱エレメント12は、耐火物(セラミック
材)、金属、耐火物と金属の混成品等からなり、φ10
mm〜φ50mmの球状粒体や、一辺10mm〜50m
mの角柱体ないし中空角柱体をなすものや、多孔体をな
すハニカムセラミックで、ハニカムセラミックはセルピ
ッチ2.54mm、隔壁厚さ0.43mm程度のもので
ある。尚、蓄熱エレメント12は、形状が球状、角柱体
等に限られるものではなく、熱伝導率を良好なものとす
ることができればよく、多孔体や外周面に伝熱フインを
有するものなど種々の形状が考えられる。熱交換器10
には、熱交換室11に静置する蓄熱エレメントの球状粒
体として、セラミックボールを使用すれば、その寿命は
半永久的である。熱交換室には球状粒体を取り換えるた
めの取出し口を設け、球状粒体が汚れた場合には取り出
して洗浄して再利用できる。
Each heat storage type heat exchanger 10 includes an exhaust gas discharge system 3
And a heat exchange chamber 11 that forms a ventilation path of the combustion air supply system 4, and a plurality of heat storage elements 12 that are heat exchange elements that receive and release heat are housed inside the heat exchange chamber 11. . The heat storage element 12 is made of a refractory material (ceramic material), a metal, a mixed material of a refractory material and a metal, and has a diameter of 10 mm.
mm ~ φ50mm spherical particles and one side 10mm ~ 50m
m is a prism or a hollow prism, or a honeycomb ceramic is a porous body, and the honeycomb ceramic has a cell pitch of 2.54 mm and a partition wall thickness of about 0.43 mm. The heat storage element 12 is not limited to a spherical shape, a prismatic body, or the like as long as it can have a good thermal conductivity, and various types such as a porous body or a heat transfer fin on the outer peripheral surface can be used. The shape is conceivable. Heat exchanger 10
If a ceramic ball is used as the spherical particle of the heat storage element that is allowed to stand in the heat exchange chamber 11, the life thereof is semi-permanent. The heat exchange chamber is provided with an outlet for replacing the spherical particles, and when the spherical particles become dirty, they can be taken out, washed and reused.

【0015】第1流路切換手段13は、蓄熱型熱交換器
10と排ガス排出系3の上流配管3aとの接続を制御す
る第1開閉バルブ13aと、蓄熱型熱交換器10と燃焼
空気供給系4の下流側配管4aとの接続を制御する第2
開閉バルブ13bとからなり、第1開閉バルブ13aお
よび第2開閉バルブ13bを操作することによって蓄熱
型熱交換器10に接続する流路を燃焼空気供給流路と排
ガス排出流路のいずれかに切換えるものである。
The first flow path switching means 13 includes a first opening / closing valve 13a for controlling the connection between the heat storage type heat exchanger 10 and the upstream pipe 3a of the exhaust gas discharge system 3, the heat storage type heat exchanger 10 and combustion air supply. Second for controlling the connection of the system 4 with the downstream pipe 4a
An opening / closing valve 13b, and by operating the first opening / closing valve 13a and the second opening / closing valve 13b, the flow path connected to the heat storage heat exchanger 10 is switched to either the combustion air supply flow path or the exhaust gas discharge flow path. It is a thing.

【0016】第2流路切換手段14は、蓄熱型熱交換器
10と排ガス排出系3の下流側配管3bとの接続を制御
する第3開閉バルブ14aと、蓄熱型熱交換器10と燃
焼空気供給系4の上流側配管4bとの接続を制御する第
4開閉バルブ14bとからなり、第3開閉バルブ14a
および第4開閉バルブ14bを操作することによって蓄
熱型熱交換器10に接続する流路を燃焼空気供給流路と
排ガス排出流路のいずれかに切り換えるものである。
The second flow path switching means 14 includes a third opening / closing valve 14a for controlling the connection between the heat storage type heat exchanger 10 and the downstream pipe 3b of the exhaust gas discharge system 3, the heat storage type heat exchanger 10 and the combustion air. A fourth opening / closing valve 14b for controlling connection with the upstream pipe 4b of the supply system 4, and a third opening / closing valve 14a.
By operating the fourth opening / closing valve 14b, the flow path connected to the heat storage heat exchanger 10 is switched to either the combustion air supply flow path or the exhaust gas discharge flow path.

【0017】3基の蓄熱型熱交換器10の各第1流路切
換手段13、第2流路切換手段14の切換操作を全過程
の3分の1づつの位相差をもって相互に違えて切換操作
をして、3基の蓄熱型熱交換器10は、全過程の3分の
1ずつの位相差をもって運転される。この各第1流路切
換手段、第2流路切換手段の切換操作は制御装置でプロ
グラムに基づいて自動又は手動で切換操作される。
The switching operation of each of the first flow path switching means 13 and the second flow path switching means 14 of the three heat storage type heat exchangers 10 is switched by mutually making a phase difference of one third of the whole process. In operation, the three heat storage heat exchangers 10 are operated with a phase difference of one-third of the whole process. The switching operation of each of the first flow path switching means and the second flow path switching means is automatically or manually switched based on a program by the control device.

【0018】この発明の工業炉の廃熱利用装置は、前記
したように基端側が工業炉1に設けた煙道5に連通する
とともに先端側が排気フアン7の吸引口に連通する排ガ
ス排出系3と、基端側が空気フアン8の吐出口に連通す
るとともに先端側が工業炉1のバーナ2に連通する燃焼
空気供給系4と、排ガス排出系3および燃焼空気供給系
4の途中に介装され、内部に複数の蓄熱エレメント12
を収納した熱交換室11を有し、各熱交換室11の一方
の接続部はそれぞれ第1流路切換手段13を介して排ガ
ス排出系3の上流側配管3aおよび燃焼空気供給系4の
下流側配管4bに切換可能に連通し、各熱交換室11の
他方の接続部はそれぞれ第2流路切換手段14を介して
排ガス排出系3の下流側配管3bおよび燃焼空気供給系
4の上流側配管4aに切換可能に連通し、かつ各第1流
路切換手段13、第2流路切換手段14の切換操作を全
過程の3分の1づつの位相差をもって相互に違えて運転
する3基の流路切換式蓄熱型熱交換器10とを備えた工
業炉の廃熱利用装置にであって、冷却空気供給系15
と、検知手段16と、排ガス温度制御手段17を備えた
ことを特徴とする。
In the industrial furnace waste heat utilization apparatus of the present invention, as described above, the exhaust gas discharge system 3 is connected such that the base end side communicates with the flue 5 provided in the industrial furnace 1 and the tip end side communicates with the suction port of the exhaust fan 7. And a combustion air supply system 4 having a base end side communicating with a discharge port of an air fan 8 and a tip end side communicating with a burner 2 of an industrial furnace 1, and an exhaust gas discharge system 3 and a combustion air supply system 4 are provided midway. Multiple heat storage elements 12 inside
Has a heat exchange chamber 11 accommodating therein, and one connection portion of each heat exchange chamber 11 is connected to the upstream side pipe 3a of the exhaust gas discharge system 3 and the downstream side of the combustion air supply system 4 via the first flow path switching means 13, respectively. The heat exchange chamber 11 is connected to the side pipe 4b in a switchable manner, and the other connecting portion of each heat exchange chamber 11 is connected to the downstream pipe 3b of the exhaust gas discharge system 3 and the upstream side of the combustion air supply system 4 via the second flow path switching means 14, respectively. Three units that are connected to the pipe 4a so as to be switchable and that are operated by switching the first flow path switching unit 13 and the second flow path switching unit 14 with a phase difference of one-third of the entire process. A waste heat utilization apparatus for an industrial furnace, comprising: the flow path switching type heat storage type heat exchanger 10;
A detection means 16 and an exhaust gas temperature control means 17.

【0019】図1乃至図3において、冷却空気供給系1
5は、工業炉1の煙突6に通ずる煙道5を分岐して、そ
の分岐した煙道5の途中、すなわち、排ガス排出系3の
上流側配管3aに空気供給管15aが連通して接続され
る。実施例では、分岐した煙道5に直交する方向に空気
供給管15aが設けられている。排ガス排出系は排気フ
アン8で吸引負圧がかかっているので、空気供給管には
室温(約20℃、常温)の外気が冷却用として吸引され
る。この空気供給管15aに高温の排ガスを冷却するた
めに吸引する空気量を調整するための冷却空気量調整バ
ルブ19が制御モータ20で開閉可能に軸支され、該制
御モータ20を排ガス温度制御手段17と関連させて備
え、その指令で制御モータ20を可動して調整バルブ1
9が開閉作動されて空気供給管の空気の吸引量が可変調
整される。排ガス温度検知手段16として、熱電対が用
い、排ガス温度制御手段17として排ガス温度調節計
(TIC)を用いる。
1 to 3, the cooling air supply system 1 is shown.
Reference numeral 5 branches a flue 5 communicating with a chimney 6 of the industrial furnace 1, and an air supply pipe 15a is connected to the midway of the branched flue 5, that is, an upstream pipe 3a of the exhaust gas discharge system 3 so as to communicate therewith. It In the embodiment, the air supply pipe 15a is provided in the direction orthogonal to the branched flue 5. Since the exhaust gas exhaust system is under suction negative pressure by the exhaust fan 8, outside air at room temperature (about 20 ° C., room temperature) is sucked into the air supply pipe for cooling. A cooling air amount adjusting valve 19 for adjusting the amount of air sucked into the air supply pipe 15a to cool the high temperature exhaust gas is pivotally supported by a control motor 20 so as to be openable and closable, and the control motor 20 is controlled by the exhaust gas temperature control means. 17, the control motor 20 is moved by the command, and the adjustment valve 1 is provided.
9 is opened and closed to variably adjust the suction amount of air in the air supply pipe. A thermocouple is used as the exhaust gas temperature detection means 16, and an exhaust gas temperature controller (TIC) is used as the exhaust gas temperature control means 17.

【0020】排ガス温度調節計17は前記冷却空気供給
系15より下流の排ガス排出系3に排ガス温度を検知す
る熱電対16と冷却空気量調整バルブ19の制御モータ
20とに配線で接続される。実施例では、分岐した煙道
5の前記冷却空気供給系15より下流位置で、蓄熱型熱
交換器の流路切換手段までの間に熱電対16が排ガス管
の内部に臨ませて備えられ、該熱電対が前記排ガス温度
調節計17に接続されて、熱電対で検知した排ガス温度
を排ガス温度調節計17で判断して制御モータ20に信
号が送られ、該熱電対16で検知した排ガス温度が設定
温度を越えるとき、前記冷却空気量調整バルブ19を開
き、かつ設定温度以下のとき、前記冷却空気量調整バル
ブ19を閉じる。この実施例の場合、蓄熱型熱交換器1
0の構造、材質等よりそれに取り入れる排ガスの設定温
度を予め1300℃以下と決めてあるので、燃焼排ガス
の温度が1300℃を越える場合には、それを熱電対1
6で検出して、排ガス温度調節計17で判断して信号で
冷却空気量調整バルブ19が開かれて冷却するための室
温の空気が吸引されて1300℃を越える排ガスの温度
が設定温度の1300℃以下に下げられる。
The exhaust gas temperature controller 17 is connected to the exhaust gas exhaust system 3 downstream of the cooling air supply system 15 by a wire to a thermocouple 16 for detecting the exhaust gas temperature and a control motor 20 of the cooling air amount adjusting valve 19. In the embodiment, a thermocouple 16 is provided facing the inside of the exhaust gas pipe at a position downstream of the cooling air supply system 15 of the branched flue 5 and up to the flow path switching means of the heat storage heat exchanger. The thermocouple is connected to the exhaust gas temperature controller 17, the exhaust gas temperature controller 17 determines the exhaust gas temperature detected by the thermocouple, and a signal is sent to the control motor 20 to detect the exhaust gas temperature by the thermocouple 16. When the temperature exceeds the set temperature, the cooling air amount adjusting valve 19 is opened, and when the temperature is below the set temperature, the cooling air amount adjusting valve 19 is closed. In the case of this embodiment, the heat storage type heat exchanger 1
Since the set temperature of the exhaust gas to be taken into it is set to 1300 ° C or less in advance due to the structure, material, etc. of 0, if the temperature of the combustion exhaust gas exceeds 1300 ° C, set it to the thermocouple 1
6, the exhaust gas temperature controller 17 makes a judgment and a signal opens the cooling air amount adjusting valve 19 to suck air at room temperature for cooling, and the exhaust gas temperature exceeding 1300 ° C. is set to 1300 ° C. It can be lowered below ℃.

【0021】排ガス量と燃焼空気量の間には相関関係が
ある。若し、不測の事態で排ガスフアン8による排ガス
の吸引量が増加して燃焼空気量との相関関係が崩れる
と、燃焼空気温度が計画値より高くなり、各種燃焼制御
機器に不具合を生じさせる可能性がある。また、その逆
の場合、すなわち排ガスフアン8の吸引量が減少する場
合には、燃焼空気温度が計画値以下となり省エネルギー
率が低下する。
There is a correlation between the amount of exhaust gas and the amount of combustion air. If, in an unexpected situation, the amount of exhaust gas sucked by the exhaust gas fan 8 increases and the correlation with the combustion air amount collapses, the combustion air temperature rises above the planned value, which may cause malfunctions in various combustion control devices. There is a nature. Further, in the opposite case, that is, when the suction amount of the exhaust gas fan 8 decreases, the combustion air temperature becomes lower than the planned value and the energy saving rate decreases.

【0022】この発明の温度制御装置では、それを解決
するために、前記排気ガス排出系3の下流側配管3bに
備えられ、排ガス量を調整する排ガス量調整バルブ21
と、燃焼空気供給系4の上流側配管4aに備えられ、燃
焼空気供給量を調整する燃焼空気供給量調整バルブ23
と、工業炉の炉内温度を検知手段30で検知して燃料供
給量を調整する燃料調整バルブ28とが、温度制御手段
(TIC)31を介して備えられている。
In the temperature control device of the present invention, in order to solve this, an exhaust gas amount adjusting valve 21 provided in the downstream pipe 3b of the exhaust gas exhaust system 3 for adjusting the exhaust gas amount.
And a combustion air supply amount adjusting valve 23 provided in the upstream pipe 4a of the combustion air supply system 4 for adjusting the combustion air supply amount.
And a fuel adjusting valve 28 for detecting the temperature inside the industrial furnace by the detecting means 30 and adjusting the fuel supply amount, are provided via a temperature control means (TIC) 31.

【0023】21は排ガス量を調整する排ガス量調整バ
ルブで、熱交換器10の下流で、排気フアン8の上流の
排気ガス排出系3の下流側配管3bに備えられる。23
は燃焼空気供給量を調整する燃焼空気供給量調整バルブ
で、空気フアン7と熱交換器10の間の燃焼空気供給系
4の上流側配管4aに備えられる。そして、この排ガス
量調整バルブ21には制御モータ22、燃焼空気供給量
調整バルブ23には制御モータ24が備えられ、この制
御モータ22、24が温度制御手段31と配線25で接
続される。温度制御手段31の指令で排ガス量調整バル
ブ21の制御モータ22、燃焼空気供給量調整バルブ2
3の制御モータ24、そして後述の燃料調整バルブ28
の制御モータ29を制御する。或いは排ガス量調整バル
ブ21の制御モータ22と燃焼空気供給量調整バルブ2
3の制御モータ24との間に連動機構を備えて共動可能
とし、その連動機構を温度制御手段31と接続すること
もできる。このようにすれば、排ガス量調整バルブ21
と燃焼空気供給量調整バルブ23をリンクして温度制御
手段31の指令で同時に開閉制御できる。
Reference numeral 21 is an exhaust gas amount adjusting valve for adjusting the amount of exhaust gas, which is provided downstream of the heat exchanger 10 and in the downstream pipe 3b of the exhaust gas discharge system 3 upstream of the exhaust fan 8. 23
Is a combustion air supply amount adjusting valve for adjusting the combustion air supply amount, and is provided in the upstream pipe 4a of the combustion air supply system 4 between the air fan 7 and the heat exchanger 10. The exhaust gas amount adjusting valve 21 is provided with a control motor 22, and the combustion air supply amount adjusting valve 23 is provided with a control motor 24. The control motors 22 and 24 are connected to the temperature control means 31 by a wire 25. The control motor 22 of the exhaust gas amount adjusting valve 21 and the combustion air supply amount adjusting valve 2 are instructed by the temperature control means 31.
3 control motor 24, and a fuel adjustment valve 28 described later.
The control motor 29 is controlled. Alternatively, the control motor 22 of the exhaust gas amount adjusting valve 21 and the combustion air supply amount adjusting valve 2
It is also possible to provide an interlocking mechanism with the control motor 24 of No. 3 so as to be able to co-operate, and connect the interlocking mechanism to the temperature control means 31. In this way, the exhaust gas amount adjustment valve 21
And the combustion air supply amount adjusting valve 23 are linked to each other, and opening / closing control can be simultaneously performed by a command from the temperature control means 31.

【0024】27は焼成炉等工業炉に燃料を供給する燃
料供給系で、燃料調整バルブ28が備えられ、該調整バ
ルブの制御モータ29が配線32で温度制御手段31に
接続される。燃料は都市ガス13Aなどの気体燃料、液
体燃料のどちらでも使用できる。また、30は焼成炉等
工業炉の燃焼室内の温度を測定するための検知手段で、
検知手段としては熱電対を炉内に臨ませて備える。この
検知手段30を配線33で前記温度制御手段31と接続
させる。31は温度制御手段で、実施例では温度調節計
を用い、前記検知手段30と接続するとともに、該温度
調節計を燃料供給系27に備えた燃料調整バルブ28の
制御モータ29と配線32で接続し、検知手段30で炉
内の温度が設定温度に対して低い場合に温度調節計の指
令で燃料調整バルブ28を開いて燃料を増加して炉内温
度を上昇させる。また、この温度制御手段31には、前
記のように排ガス量調整バルブ21の制御モータ22、
燃焼空気供給量調整バルブ23の制御モータ24が配線
で接続されている。工業炉の炉内温度調節は、燃料の供
給量と燃焼空気の供給量、排ガスの排出量をリンクして
調整することにより行う。従って、炉内温度に対応して
燃料調整バルブを開閉し、燃料の増減に応じて、燃焼空
気供給量調整バルブ23が開閉され、燃焼空気量を増減
し、また排ガス量調整バルブ21が開閉され、排ガス量
を増減する。炉の温度の増減に応じて、燃焼量を増加又
は減少すると、燃焼空気量もそれに追従し、空気比を一
定で運転できる。例えば、炉内の温度を熱電対30で測
定して、予め設定した炉内温度1800℃で燃焼させる
ときに、その設定温度より温度が低下するときには、温
度調節計31で燃料調整バルブ28を開いて燃料を増加
して設定温度まで温度を上昇させ、それに応じて燃焼空
気の供給量、排ガスの排出量も増加させる。炉の燃焼を
常時良好に保つようにできる。また、廃熱利用装置の熱
交換器の調節は、燃焼排ガス量の吸引量を燃焼空気量の
供給量とリンクさせ、余剰の燃焼排ガスは煙突より大気
に開放する。燃焼排ガスの吸引量の増減に応じて燃焼空
気量の供給量も増減させる。燃焼空気の供給量と排ガス
の排出量を一定比率にできるので、熱交換器において、
燃焼空気温度が計画値より高くなることなく、熱交換器
に不具合を生ずるのを防ぐことができる。また、若し、
不測の事態で排ガスフアンの吸引量が増加した場合に
は、燃焼空気量との相関関係を保つために燃焼空気量調
整バルブを開いて燃焼空気量を増大させ、燃焼空気温度
を計画値に保ち、各種燃焼制御機器に不具合を生じない
ようにする。
Reference numeral 27 denotes a fuel supply system for supplying fuel to an industrial furnace such as a firing furnace, which is provided with a fuel adjusting valve 28, and a control motor 29 of the adjusting valve is connected to a temperature control means 31 by a wiring 32. As the fuel, either gas fuel such as city gas 13A or liquid fuel can be used. Further, 30 is a detection means for measuring the temperature in the combustion chamber of an industrial furnace such as a firing furnace,
As the detection means, a thermocouple is provided facing the inside of the furnace. The detection means 30 is connected to the temperature control means 31 by a wiring 33. Reference numeral 31 is a temperature control means, which is a temperature controller in the embodiment, is connected to the detection means 30 and is connected to the control motor 29 of the fuel adjusting valve 28 provided in the fuel supply system 27 by the wiring 32. Then, when the temperature inside the furnace is lower than the set temperature by the detection means 30, the fuel adjusting valve 28 is opened by the command of the temperature controller to increase the fuel and raise the temperature inside the furnace. In addition, the temperature control means 31 includes the control motor 22 for the exhaust gas amount adjusting valve 21, as described above.
The control motor 24 of the combustion air supply amount adjusting valve 23 is connected by wiring. The temperature inside the industrial furnace is controlled by linking the fuel supply amount, the combustion air supply amount, and the exhaust gas discharge amount. Therefore, the fuel adjustment valve is opened / closed according to the temperature in the furnace, the combustion air supply amount adjustment valve 23 is opened / closed according to the increase / decrease of the fuel, the combustion air amount is increased / decreased, and the exhaust gas amount adjustment valve 21 is opened / closed. Increase or decrease the amount of exhaust gas. When the combustion amount is increased or decreased according to the increase or decrease in the temperature of the furnace, the combustion air amount also follows it, and it is possible to operate at a constant air ratio. For example, when the temperature inside the furnace is measured by the thermocouple 30 and when the temperature falls below the preset temperature when burning at a preset furnace temperature of 1800 ° C., the fuel controller 28 is opened by the temperature controller 31. The amount of fuel is increased to raise the temperature to the set temperature, and the supply amount of combustion air and the exhaust gas amount are increased accordingly. It is possible to keep the combustion of the furnace good at all times. Further, the adjustment of the heat exchanger of the waste heat utilization device links the suction amount of the combustion exhaust gas amount with the supply amount of the combustion air amount, and releases the surplus combustion exhaust gas from the chimney to the atmosphere. The supply amount of the combustion air amount is also increased / decreased according to the increase / decrease of the suction amount of the combustion exhaust gas. Since the amount of combustion air supplied and the amount of exhaust gas discharged can be made constant,
It is possible to prevent malfunction of the heat exchanger without the combustion air temperature becoming higher than the planned value. Again,
If the suction amount of exhaust gas fan increases due to an unexpected situation, open the combustion air amount adjustment valve to increase the combustion air amount and maintain the combustion air temperature at the planned value in order to maintain the correlation with the combustion air amount. , Make sure that various combustion control devices do not malfunction.

【0025】工業炉の廃熱利用装置の温度制御方法は、
基端側が工業炉1に設けた煙道5に連通するとともに先
端側が排気フアン7の吸引口に連通する排ガス排出系3
と、基端側が空気フアン8の吐出口に連通するとともに
先端側が工業炉の燃焼空気供給口に連通する燃焼空気供
給系4と、第1流路切換手段13、第2流路切換手段1
4の切換操作で排ガス排出系と燃焼空気供給系の流路を
切換える3基の流路切換式蓄熱型熱交換器を備えた工業
炉の廃熱利用装置の排ガス排出系の煙道における排ガス
温度が略1300℃を越える場合、その排ガスの温度を
検知手段で検出時に排ガス温度制御手段17により冷却
空気供給系15の冷却空気量調整バルブ19の開度を調
整して冷却する空気を吸引させて混合させ、排ガス温度
を1300℃以下に温度制御して該熱交換器10におけ
る蓄熱エレメント12に蓄熱させ、前記蓄熱型熱交換器
10の第1流路切換手段13、第2流路切換手段14の
切換操作で排ガス排出系3から燃焼空気供給系4に切換
操作後、燃焼空気供給系4で供給される燃焼空気を前記
排ガス温度で蓄熱した熱交換器における蓄熱エレメント
12の放熱により800℃から1000℃の予熱空気と
して工業炉1に送り込むことができる。従って、工業炉
の熱効率を向上させ、省エネを図り、炉内温度を130
0℃を越える高温炉、特に1500℃から2000℃の
高温炉とすることができる。この高温炉の上限は200
0℃に限定するものではない。焼成炉では、未焼成の陶
磁器等の製品を1300℃越える温度、例えば1800
℃の高温で安定して焼成することにより、高品質の焼成
品を製造できる。煙道5の排ガス温度が1300℃以下
の場合は、冷却する空気の取り入れを停止し、その時の
排ガス温度と一定比率を保持した燃焼空気温度が得ら
れ、高効率の省エネルギーが達成できる。従って、この
温度制御方法によれば、炉内温度が1300℃を越える
工業炉の燃焼排ガスの廃熱回収ができ、また熱交換によ
り燃焼空気供給系で供給される燃焼空気を800℃から
1000℃の予熱空気として工業炉に送り込むことがで
きる。従って、前記構成と都市ガス(13A)専燃で、
例えば1500℃を越える高温の加熱が可能となる。ま
た、冷却空気量と燃焼排ガス吸引量を調節することで、
一定範囲内で任意の予熱空気温度をうることができる。
The temperature control method for the waste heat utilization device of the industrial furnace is as follows:
Exhaust gas discharge system 3 whose base side communicates with the flue 5 provided in the industrial furnace 1 and whose tip side communicates with the suction port of the exhaust fan 7.
And a combustion air supply system 4, the base end side of which communicates with the discharge port of the air fan 8 and the tip end side of which communicates with the combustion air supply port of the industrial furnace, the first flow path switching means 13, and the second flow path switching means 1
Exhaust gas temperature in the flue of the exhaust gas exhaust system of the industrial furnace waste heat utilization device equipped with three flow path switching heat storage type heat exchangers that switch the flow paths of the exhaust gas exhaust system and the combustion air supply system by switching operation of No. 4 Temperature exceeds about 1300 ° C., when the temperature of the exhaust gas is detected by the detecting means, the exhaust gas temperature control means 17 adjusts the opening degree of the cooling air amount adjusting valve 19 of the cooling air supply system 15 to suck the cooling air. The mixture is mixed and the temperature of the exhaust gas is controlled to 1300 ° C. or lower to store heat in the heat storage element 12 of the heat exchanger 10, and the first flow path switching means 13 and the second flow path switching means 14 of the heat storage type heat exchanger 10 are mixed. After the switching operation from the exhaust gas exhaust system 3 to the combustion air supply system 4 by the switching operation of the above, the heat is dissipated by the heat storage element 12 in the heat exchanger that stores the combustion air supplied by the combustion air supply system 4 at the exhaust gas temperature. From 00 ° C. it can be fed to the industrial furnace 1 as 1000 ° C. preheated air. Therefore, the thermal efficiency of the industrial furnace is improved to save energy, and the temperature inside the furnace is increased to 130
It can be a high temperature furnace above 0 ° C., especially 1500 ° C. to 2000 ° C. The upper limit of this high temperature furnace is 200
It is not limited to 0 ° C. In the firing furnace, the temperature exceeds that of unfired products such as ceramics by 1300 ° C, for example, 1800
By stably firing at a high temperature of ℃, it is possible to produce a high-quality fired product. When the exhaust gas temperature of the flue 5 is 1300 ° C. or less, the intake of the cooling air is stopped, the combustion air temperature that maintains a constant ratio with the exhaust gas temperature at that time is obtained, and highly efficient energy saving can be achieved. Therefore, according to this temperature control method, it is possible to recover the waste heat of the combustion exhaust gas of the industrial furnace in which the temperature inside the furnace exceeds 1300 ° C., and the combustion air supplied by the combustion air supply system by heat exchange is changed from 800 ° C. to 1000 ° C. Can be sent to the industrial furnace as preheated air. Therefore, with the above configuration and exclusive combustion of city gas (13A),
For example, heating at a high temperature exceeding 1500 ° C. is possible. Also, by adjusting the cooling air amount and the combustion exhaust gas suction amount,
Any preheated air temperature can be obtained within a certain range.

【0026】以下に、上記した構成における作用を説明
する。各蓄熱型熱交換器における蓄熱操作および放熱操
作は同じである。ここでは、1つの蓄熱型熱交換器10
における作用を説明する。
The operation of the above configuration will be described below. The heat storage operation and the heat radiation operation in each heat storage type heat exchanger are the same. Here, one heat storage type heat exchanger 10
The action of will be described.

【0027】蓄熱操作時には、第1流路切換手段13の
第1開閉バルブ13aを開放するとともに第2開閉バル
ブ13bを閉栓し、第2流路切換手段14の第3開閉バ
ルブ14aを開放すると共に第4開閉バルブ14bを閉
栓し、排ガス排出系3の上流側配管3aを蓄熱型熱交換
器10の熱交換室11に接続するとともに、排ガス排出
系3の下流側3bを熱交換室11に接続する。
During the heat storage operation, the first opening / closing valve 13a of the first flow path switching means 13 is opened, the second opening / closing valve 13b is closed, and the third opening / closing valve 14a of the second flow path switching means 14 is opened. The fourth opening / closing valve 14b is closed, the upstream pipe 3a of the exhaust gas discharge system 3 is connected to the heat exchange chamber 11 of the heat storage heat exchanger 10, and the downstream side 3b of the exhaust gas discharge system 3 is connected to the heat exchange chamber 11. To do.

【0028】この状態で、焼成炉1の煙道5の分岐した
煙道に排出される高温排ガスの温度が例えば1800℃
の場合、熱電対16でその温度を検出すると温度調節計
17の指令で制御モータにより空気供給管の冷却空気調
整バルブ19が開かれて冷却する空気が排ガスフアンの
負圧吸引力で吸引され、高温排ガスに混合されて130
0℃まで下げられて、熱交換器10に取り入れられる。
1300℃の排ガスが熱交換室の熱交換要素をなす複数
の蓄熱エレメントの間隙を通り、蓄熱エレメントは高温
の蓄熱がされる。蓄熱エレメントを通過した排ガスは温
度が約200℃(図では170℃)に下がり、排気フア
ンの吸引負圧に誘引されて熱交換室から排ガス排出系の
下流側配管を通じて排出される。
In this state, the temperature of the high-temperature exhaust gas discharged to the flue branched from the flue 5 of the firing furnace 1 is, for example, 1800 ° C.
In the case of, when the temperature is detected by the thermocouple 16, the cooling air adjusting valve 19 of the air supply pipe is opened by the control motor by the command of the temperature controller 17 and the cooling air is sucked by the negative pressure suction force of the exhaust gas fan, 130 when mixed with high temperature exhaust gas
It is lowered to 0 ° C. and taken into the heat exchanger 10.
The exhaust gas at 1300 ° C. passes through the gaps between the plurality of heat storage elements that form the heat exchange element of the heat exchange chamber, and the heat storage element stores high temperature heat. The temperature of the exhaust gas that has passed through the heat storage element drops to about 200 ° C. (170 ° C. in the figure), and is attracted by the suction negative pressure of the exhaust fan to be discharged from the heat exchange chamber through the downstream side pipe of the exhaust gas discharge system.

【0029】一方、放熱操作時には、第1流路切換手段
13の第1開閉バルブ13aを閉栓するとともに第2開
閉バルブ13bを開放し、第2流路切換手段14の第3
開閉バルブ14aを閉栓するとともに第4開閉バルブ1
4bを開放し、燃焼空気供給系4の上流側配管4bを蓄
熱型熱交換器10の熱交換室11に接続するとともに、
空気フアン7から供給する燃焼空気(外気、室温約20
℃)は、燃焼空気供給系4の上流側配管4bを通じて蓄
熱型熱交換器10の熱交換室11に流入し、熱交換室1
1に収納した複数の蓄熱エレメント12の相互の間隙を
通って、蓄熱エレメント12が放熱する熱を奪って90
0℃に昇温させ、その900℃に予熱した空気を熱交換
室から燃焼空気供給系4の下流側配管4aを通って焼成
炉のバーナに送り込む。
On the other hand, at the time of heat radiation operation, the first opening / closing valve 13a of the first flow path switching means 13 is closed, the second opening / closing valve 13b is opened, and the third flow path switching means 14 is opened.
The fourth opening / closing valve 1 is provided while closing the opening / closing valve 14a.
4b is opened, the upstream side pipe 4b of the combustion air supply system 4 is connected to the heat exchange chamber 11 of the heat storage type heat exchanger 10, and
Combustion air supplied from air fan 7 (outside air, room temperature about 20
C) flows into the heat exchange chamber 11 of the heat storage type heat exchanger 10 through the upstream pipe 4b of the combustion air supply system 4, and the heat exchange chamber 1
The heat radiated by the heat storage element 12 is removed through the gap between the plurality of heat storage elements 12 housed in
Air heated to 0 ° C. and preheated to 900 ° C. is sent from the heat exchange chamber to the burner of the firing furnace through the downstream side pipe 4 a of the combustion air supply system 4.

【0030】3基の蓄熱型熱交換器は、繰り返して行う
蓄熱操作と放熱操作とを相互に違えて行う。例えば、N
o.1の蓄熱型熱交換器10が蓄熱操作(加熱)を行っ
ている場合、No.2の蓄熱型熱交換器10は放熱操作
(送風)の後半の過程にあり、No.3の蓄熱型熱交換
器10は放熱操作(送風)の前半過程にある。
The three heat storage type heat exchangers perform repetitive heat storage operation and heat radiation operation mutually differently. For example, N
o. When the heat storage type heat exchanger 10 of No. 1 is performing heat storage operation (heating), No. The heat storage type heat exchanger 10 of No. 2 is in the latter half of the process of the heat radiation operation (blowing), and No. The heat storage type heat exchanger 10 of 3 is in the first half process of the heat radiation operation (blowing).

【0031】1つの熱交換器10を蓄熱操作する状態に
おいて、他の蓄熱型熱交換器10を放熱操作するので、
排ガスと燃焼空気との間における蓄熱エレメント12を
介した熱交換を連続して行うことができる。焼成炉のバ
ーナに常に安定した900℃の燃焼空気を供給すること
ができる。3基の蓄熱型熱交換器10を全過程の3分の
1ずつの位相差をもって運転するので、熱交換器の放熱
操作の後半過程における放熱量の弱まりに伴う送風温度
の低下を、他の蓄熱型熱交換器10の放熱操作の前半過
程における豊富な放熱量によって補うことができ、燃焼
空気の温度変化を小さくすることができる。実施例では
熱交換器の放熱で燃焼空気を900℃に昇温する場合を
説明したが、燃焼空気を800℃から1000℃に昇温
できる。
In a state in which one heat exchanger 10 is operated to store heat, the other heat storage type heat exchanger 10 is operated to radiate heat.
The heat exchange between the exhaust gas and the combustion air via the heat storage element 12 can be continuously performed. It is possible to constantly supply stable combustion air at 900 ° C. to the burner of the firing furnace. Since the three heat storage type heat exchangers 10 are operated with a phase difference of one-third of the entire process, a decrease in the blast temperature due to a decrease in the heat radiation amount in the latter half of the heat radiation operation of the heat exchanger can be reduced by other factors. This can be compensated by the abundant amount of heat radiation in the first half of the heat radiation operation of the heat storage type heat exchanger 10, and the temperature change of the combustion air can be reduced. In the embodiment, the case where the temperature of the combustion air is raised to 900 ° C. by the heat radiation of the heat exchanger has been described, but the temperature of the combustion air can be raised from 800 ° C. to 1000 ° C.

【0032】以上この発明の実施の形態の一例について
説明したが、この発明はこうした実施の形態に何等限定
されるものではなく、この発明の要旨を逸脱しない範囲
において種々なる形態で実施し得ることは勿論である。
実施形態では焼成炉で説明したが、これに限られるもの
ではなく、金属加熱炉、ガラス加熱炉、キュポラ、窯業
用焼成炉等各種の工業炉に適用することができる。
Although one example of the embodiment of the present invention has been described above, the present invention is not limited to the embodiment and can be implemented in various forms without departing from the scope of the present invention. Of course.
Although the firing furnace has been described in the embodiment, the present invention is not limited to this, and can be applied to various industrial furnaces such as a metal heating furnace, a glass heating furnace, a cupola, and a kiln for ceramics.

【0033】[0033]

【発明の効果】この発明は、以上説明したような形態で
実施され、以下に記載されるような効果を奏する。
The present invention is carried out in the form described above, and has the following effects.

【0034】この発明の工業炉の廃熱利用装置は、蓄熱
操作時には、工業炉の排ガス排出系の煙道で排ガス温度
が設定温度(許容温度)より高い場合には冷却空気供給
系の調整バルブを開いて冷却する空気を吸引して排ガス
の温度を設定温度以下の温度として熱交換器に取り入れ
て蓄熱でき、第1流路切換手段および第2流路切換手段
を切換操作後に、空気フアンから供給される燃焼空気を
熱交換室で蓄熱された高温の放熱で燃焼空気を従来より
高温として工業炉に送り込み、熱効率を向上し、本熱交
換器による省エネ化は従来の金属製熱交換器に比べて約
2倍の省エネルギーを図ることができる。
In the waste heat utilization apparatus for an industrial furnace of the present invention, during the heat storage operation, when the exhaust gas temperature is higher than the set temperature (permissible temperature) in the flue of the exhaust gas exhaust system of the industrial furnace, the regulating valve of the cooling air supply system is used. To cool the air by sucking in the air to be cooled and taking the temperature of the exhaust gas into the heat exchanger as a temperature equal to or lower than the set temperature. After the switching operation of the first flow path switching means and the second flow path switching means, the air fan is removed from the air fan. The supplied combustion air is sent to the industrial furnace at a higher temperature than before due to the high-temperature heat accumulated in the heat exchange chamber, which improves thermal efficiency and saves energy with this heat exchanger compared to the conventional metal heat exchanger. Compared with this, it is possible to save energy about twice.

【0035】また、工業炉の廃熱利用装置は、炉の炉内
温度の増減に応じて、燃料の供給量を増減して炉内温度
を炉の設定温度に維持でき、温度制御手段で燃料調整バ
ルブと燃焼空気供給量調整バルブ、排ガス量調整バルブ
の開度を調整して流量を調整でき、燃料供給量と燃焼空
気量と排ガス吸引量をリンクさせて調整できる。炉の燃
焼を常時良好に保ち、また、排ガス吸引量と燃焼空気量
を一定比率として熱交換器に不具合を生じないようにで
きる。
Further, the waste heat utilization device of the industrial furnace can increase or decrease the supply amount of fuel according to the increase or decrease of the temperature inside the furnace to maintain the temperature inside the furnace at the set temperature of the furnace, and the temperature control means can control the fuel. The flow rate can be adjusted by adjusting the openings of the adjustment valve, the combustion air supply amount adjustment valve, and the exhaust gas amount adjustment valve, and the fuel supply amount, the combustion air amount, and the exhaust gas suction amount can be linked and adjusted. It is possible to keep the combustion in the furnace good at all times, and to prevent the heat exchanger from malfunctioning by making the exhaust gas suction amount and the combustion air amount constant.

【0036】この発明の工業炉の廃熱利用装置の温度制
御方法は、工業炉の炉内温度、煙道における排ガスの温
度が1300℃を越える温度となる場合、温度制御手段
により冷却空気供給系の冷却空気量調整バルブの開度を
調整して冷却する空気を吸引して排ガス温度を1300
℃以下の温度として熱交換器に取り入れ蓄熱エレメント
に高温蓄熱させることができ、炉内温度が1300℃を
越える工業炉の燃焼排ガスの廃熱回収ができる。かつ、
熱交換により燃焼空気供給系で供給される燃焼空気を8
00℃から1000℃の予熱空気として工業炉に送り込
むことができる。従って、都市ガス(13A)専燃で、
高温の加熱が可能となる。また、冷却空気量と燃焼排ガ
ス吸引量を調節することで、一定範囲内で任意の予熱空
気温度をうることができる。
According to the temperature control method for the waste heat utilization apparatus of the industrial furnace of the present invention, when the temperature inside the industrial furnace and the temperature of the exhaust gas in the flue exceed 1300 ° C., the cooling air supply system is provided by the temperature control means. The cooling air amount adjusting valve is adjusted to open the cooling air by adjusting the opening of the cooling air amount adjusting valve to set the exhaust gas temperature to 1300
It can be taken into a heat exchanger as a temperature of ℃ or less and stored in a heat storage element at high temperature, and waste heat of combustion exhaust gas of an industrial furnace whose temperature in the furnace exceeds 1300 ° C can be recovered. And,
The combustion air supplied by the combustion air supply system by heat exchange is
It can be fed into an industrial furnace as preheated air from 00 ° C to 1000 ° C. Therefore, with the exclusive use of city gas (13A),
High temperature heating is possible. Further, by adjusting the cooling air amount and the combustion exhaust gas suction amount, it is possible to obtain an arbitrary preheated air temperature within a certain range.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1はこの発明の工業炉の廃熱利用装置の模写
図である。
FIG. 1 is a copy diagram of an industrial furnace waste heat utilization apparatus of the present invention.

【図2】この発明の工業炉の廃熱利用装置の蓄熱型熱交
換器の拡大図である。
FIG. 2 is an enlarged view of the heat storage type heat exchanger of the industrial furnace waste heat utilization apparatus of the present invention.

【図3】同工業炉の廃熱利用装置の焼成炉の拡大図であ
る。
FIG. 3 is an enlarged view of a firing furnace of a waste heat utilization device of the industrial furnace.

【符号の説明】[Explanation of symbols]

1 焼成炉 3 排ガス排出系 4 燃焼空気供給系 5 煙道 6 煙突 7 排気フアン 8 空気フアン 10 蓄熱型熱交換器 11 熱交換室 12 蓄熱エレメント 13 第1流路切換手段 14 第2流路切換手段 15 冷却空気供給系 16 検知手段 17 排ガス温度制御手段 19 冷却空気量調整バルブ 21 排ガス量調整バルブ 23 燃焼空気量調整バルブ 28 燃料調整バルブ 30 検知手段 31 温度制御手段 1 firing furnace 3 Exhaust gas exhaust system 4 Combustion air supply system 5 flue 6 chimney 7 exhaust fan 8 air fans 10 Heat storage type heat exchanger 11 heat exchange room 12 Heat storage element 13 First flow path switching means 14 Second flow path switching means 15 Cooling air supply system 16 Detection means 17 Exhaust gas temperature control means 19 Cooling air amount adjustment valve 21 Exhaust gas amount adjustment valve 23 Combustion air amount control valve 28 Fuel adjustment valve 30 Detection means 31 temperature control means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 市川 善英 愛知県瀬戸市上陣屋町20番地 株式会社ナ リタテクノ内 (72)発明者 中村 義弘 愛知県東海市新宝町507の2 東邦瓦斯株 式会社内 (72)発明者 山田 進 愛知県東海市新宝町507の2 東邦瓦斯株 式会社内 Fターム(参考) 3K023 QA18 QB02 QB18 QB19 QB20 QC01 QC08 3K070 DA09 DA47 DA50 DA58 DA64 DA66 DA75    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoshihide Ichikawa             20 Kamijinya-cho, Seto City, Aichi Prefecture             Inside Rita Techno (72) Inventor Yoshihiro Nakamura             2 Toho Gas Co., Ltd., 507, Shinbaocho, Tokai City, Aichi Prefecture             Inside the company (72) Inventor Susumu Yamada             2 Toho Gas Co., Ltd., 507, Shinbaocho, Tokai City, Aichi Prefecture             Inside the company F term (reference) 3K023 QA18 QB02 QB18 QB19 QB20                       QC01 QC08                 3K070 DA09 DA47 DA50 DA58 DA64                       DA66 DA75

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基端側が工業炉に設けた煙道に連通する
とともに先端側が排気フアンの吸引口に連通する排ガス
排出系と、 基端側が空気フアンの吐出口に連通するとともに先端側
が工業炉の燃焼空気供給口に連通する燃焼空気供給系
と、 排ガス排出系および燃焼空気供給系の途中に介装され、
内部に複数の蓄熱エレメントを収納した熱交換室を有
し、各熱交換室の一方の接続部はそれぞれ第1流路切換
手段を介して排ガス排出系の上流側配管および燃焼空気
供給系の下流側配管に切換可能に連通し、各熱交換室の
他方の接続部はそれぞれ第2流路切換手段を介して排ガ
ス排出系の下流側配管および燃焼空気供給系の上流側配
管に切換可能に連通し、かつ各第1流路切換手段、第2
流路切換手段の切換操作を全過程のN分の1づつの位相
差をもって相互に違えて運転する少なくとも3基以上の
N基の流路切換式蓄熱型熱交換器とを備えた工業炉の廃
熱利用装置であって、 該工業炉の廃熱利用装置の排ガス排出系の上流配管に設
けられ、排ガスを冷却するために吸引する空気量を調整
するための冷却空気量調整バルブが備えられた冷却空気
供給系と、 該冷却空気供給系より下流に排ガス温度を検知する検知
手段と、 該検知手段で検知した排ガス温度が設定温度を越えると
き、前記冷却空気量調整バルブを開き、かつ設定温度以
下のとき、前記冷却空気量調整バルブを閉じるための排
ガス温度制御手段とを備えたことを特徴とする工業炉の
廃熱利用装置。
1. An exhaust gas discharge system having a base end side communicating with a flue provided in an industrial furnace and a tip end side communicating with an exhaust fan suction port, and a base end side communicating with an air fan discharge port and a tip end side being an industrial furnace. Is installed in the middle of the combustion air supply system, the exhaust gas discharge system and the combustion air supply system,
A heat exchange chamber having a plurality of heat storage elements accommodated therein is provided, and one connection portion of each heat exchange chamber is connected to the upstream side pipe of the exhaust gas discharge system and the downstream side of the combustion air supply system via the first flow path switching means. Switchable communication with the side pipe, and the other connection part of each heat exchange chamber is switchably connected with the downstream pipe of the exhaust gas discharge system and the upstream pipe of the combustion air supply system via the second flow path switching means. And each first flow path switching means, second
An industrial furnace equipped with at least three or more N flow path switching heat storage type heat exchangers which are operated so that the switching operation of the flow path switching means is different from each other with a phase difference of 1 / N in the whole process. A waste heat utilization device, which is provided in an upstream pipe of an exhaust gas discharge system of the waste heat utilization device of the industrial furnace, and is provided with a cooling air amount adjusting valve for adjusting an amount of air sucked to cool the exhaust gas. A cooling air supply system, detection means for detecting the exhaust gas temperature downstream of the cooling air supply system, and when the exhaust gas temperature detected by the detection means exceeds a set temperature, the cooling air amount adjusting valve is opened and set. A waste heat utilization device for an industrial furnace, comprising: an exhaust gas temperature control means for closing the cooling air amount adjusting valve when the temperature is equal to or lower than the temperature.
【請求項2】 前記排気ガス排出系の下流側配管に備え
られ、排ガス量を調整する排ガス量調整バルブと、 前記燃焼空気供給系の上流側配管に備えられ、燃焼空気
供給量を調整する燃焼空気供給量調整バルブと、 工業炉の炉内温度を検知する検知手段で検知して燃料供
給量を調整する燃料調整バルブとを温度制御手段を介し
て備えたことを特徴とする請求項1記載の工業炉の廃熱
利用装置。
2. An exhaust gas amount adjusting valve which is provided in a downstream pipe of the exhaust gas exhaust system and adjusts an exhaust gas amount, and a combustion which is provided in an upstream pipe of the combustion air supply system and adjusts a combustion air supply amount. 2. An air supply amount adjusting valve and a fuel adjusting valve for adjusting the fuel supply amount by detecting with a detecting means for detecting the temperature inside the furnace of the industrial furnace are provided through the temperature control means. Waste heat utilization equipment for industrial furnaces.
【請求項3】 基端側が工業炉に設けた煙道に連通する
とともに先端側が排気フアンの吸引口に連通する排ガス
排出系と、基端側が空気フアンの吐出口に連通するとと
もに先端側が工業炉の燃焼空気供給口に連通する燃焼空
気供給系と、第1流路切換手段、第2流路切換手段の切
換操作で排ガス排出系と燃焼空気供給系の流路を切換え
るN基の流路切換式蓄熱型熱交換器を備えた工業炉の廃
熱利用装置の排ガス排出系の煙道における燃焼排ガスの
温度が1300℃を越える場合、その排ガス温度を検知
手段で検出時に排ガス温度制御手段により冷却空気供給
系の冷却空気量調整バルブの開度を調整して冷却する空
気を吸引して排ガス温度を1300℃以下に温度制御し
て前記蓄熱型熱交換器に取り入れて蓄熱エレメントに蓄
熱させ、 前記蓄熱型熱交換器の第1流路切換手段、第2流路切換
手段の切換操作で流路を排ガス排出系から燃焼空気供給
系に切換操作後、 燃焼空気供給系で供給される燃焼空気を前記排ガス温度
で蓄熱した熱交換器における蓄熱エレメントの放熱によ
り800℃から1000℃の予熱空気として工業炉に送
り込むことを特徴とする工業炉の廃熱利用装置の温度制
御方法。
3. An exhaust gas exhaust system having a base end side communicating with a flue provided in an industrial furnace and a tip end side communicating with an exhaust fan suction port, and a base end side communicating with an air fan discharge port and a tip end side being an industrial furnace. Of the combustion air supply system that communicates with the combustion air supply port, and the flow paths of the exhaust gas discharge system and the combustion air supply system by switching the first flow path switching means and the second flow path switching means. When the temperature of the combustion exhaust gas in the flue of the exhaust gas discharge system of the waste heat utilization device of the industrial furnace equipped with the heat storage type heat exchanger exceeds 1300 ° C, the exhaust gas temperature is cooled by the exhaust gas temperature control means when detected by the detection means. The opening of a cooling air amount adjusting valve of the air supply system is adjusted to suck the cooling air to control the exhaust gas temperature to 1300 ° C. or less and take it into the heat storage type heat exchanger to store heat in the heat storage element, Heat storage After switching the flow path from the exhaust gas discharge system to the combustion air supply system by the switching operation of the first flow path switching means and the second flow path switching means of the heat exchanger, the combustion air supplied by the combustion air supply system is changed to the exhaust gas. A method for controlling the temperature of a waste heat utilization device for an industrial furnace, characterized in that preheated air at 800 ° C to 1000 ° C is sent to the industrial furnace by heat radiation from a heat storage element in a heat exchanger that has stored heat at a temperature.
JP2001239054A 2001-08-07 2001-08-07 Waste heat using device for industrial furnace and temperature control method for it Pending JP2003056840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001239054A JP2003056840A (en) 2001-08-07 2001-08-07 Waste heat using device for industrial furnace and temperature control method for it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001239054A JP2003056840A (en) 2001-08-07 2001-08-07 Waste heat using device for industrial furnace and temperature control method for it

Publications (1)

Publication Number Publication Date
JP2003056840A true JP2003056840A (en) 2003-02-26

Family

ID=19069870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001239054A Pending JP2003056840A (en) 2001-08-07 2001-08-07 Waste heat using device for industrial furnace and temperature control method for it

Country Status (1)

Country Link
JP (1) JP2003056840A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101893385A (en) * 2010-06-09 2010-11-24 河南昇扬硅业科技发展有限公司 Device for power generation from waste heat of metallic silicon smelting electric furnace and process flow thereof
CN110343834A (en) * 2019-08-15 2019-10-18 沈阳东大三建工业炉制造有限公司 A kind of 6 heat-treatment furnace flue gas waste heat utilization device of aluminum alloy T and method
CN116518499A (en) * 2023-02-01 2023-08-01 山东岱荣节能环保科技有限公司 Waste heat recovery type ventilation equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101893385A (en) * 2010-06-09 2010-11-24 河南昇扬硅业科技发展有限公司 Device for power generation from waste heat of metallic silicon smelting electric furnace and process flow thereof
CN110343834A (en) * 2019-08-15 2019-10-18 沈阳东大三建工业炉制造有限公司 A kind of 6 heat-treatment furnace flue gas waste heat utilization device of aluminum alloy T and method
CN116518499A (en) * 2023-02-01 2023-08-01 山东岱荣节能环保科技有限公司 Waste heat recovery type ventilation equipment
CN116518499B (en) * 2023-02-01 2023-09-19 山东岱荣节能环保科技有限公司 Waste heat recovery type ventilation equipment

Similar Documents

Publication Publication Date Title
US6693263B2 (en) Convection type brazing apparatus for metal workpieces
KR20130093502A (en) Grain-drying facility
CN206959570U (en) Insulating brick with residual neat recovering system fires tunnel cave
TWI548847B (en) Grain-drying facilities
CN103727784A (en) System energy saving method for domestic ceramic oxygen-enriched combustion shuttle kiln
JP2003056840A (en) Waste heat using device for industrial furnace and temperature control method for it
KR101108617B1 (en) Combustion waste gas heat recovery system in reheating furnace
JP2005226157A (en) Method and device for controlling furnace temperature of continuous annealing furnace
JPH09229354A (en) Heating furnace, method and apparatus for controlling combustion of the same
JP2002115836A (en) Regenerative exhaust gas processing unit
JP4385454B2 (en) Atmospheric gas heating temperature adjustment method and heating temperature adjustment device
JP2009291762A (en) Painting apparatus
KR100782703B1 (en) Quick lime manufacturing apparatus with exhaust gas path adjustment function
JP3680252B2 (en) How to use a regenerative burner
KR100368830B1 (en) Oxygen supply method for regenerative burner and device
JP7136145B2 (en) Cooling device and cooling method for continuous steel heating furnace
JP3414942B2 (en) heating furnace
JP2008195902A (en) Method and apparatus for combustion of coke oven
JP3274931B2 (en) Aluminum chip melting furnace
JPH1054676A (en) Waste heat utilizing device for industrial furnace
KR20050070369A (en) Apparatus for controlling surface layer temperature of sintered ore using waste heat of exhaust gas from boiler and method for controlling the same
JPS61106721A (en) Soaking pit
JPH0665619B2 (en) Ingot cooling device
JPH09217925A (en) Temperature control method for furnace having heat accumulation combustion device
JPH04288478A (en) Continuous baking furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100112