JPH04288478A - Continuous baking furnace - Google Patents
Continuous baking furnaceInfo
- Publication number
- JPH04288478A JPH04288478A JP5113991A JP5113991A JPH04288478A JP H04288478 A JPH04288478 A JP H04288478A JP 5113991 A JP5113991 A JP 5113991A JP 5113991 A JP5113991 A JP 5113991A JP H04288478 A JPH04288478 A JP H04288478A
- Authority
- JP
- Japan
- Prior art keywords
- furnace body
- air
- cooling
- zone
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001816 cooling Methods 0.000 claims abstract description 61
- 238000000034 method Methods 0.000 claims abstract description 4
- 238000010304 firing Methods 0.000 claims description 25
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000000919 ceramic Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000003985 ceramic capacitor Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000004901 spalling Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Landscapes
- Tunnel Furnaces (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、セラミックコンデンサ
やセラミック圧電部品等のセラミック電子部品の製造に
使用される連続焼成炉に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous firing furnace used for manufacturing ceramic electronic components such as ceramic capacitors and ceramic piezoelectric components.
【0002】0002
【従来の技術】一般に、セラミックコンデンサやセラミ
ック圧電部品等のセラミック電子部品の製造には、連続
焼成炉や竪型のバッチ式焼成炉が使用される。2. Description of the Related Art Generally, continuous firing furnaces and vertical batch type firing furnaces are used for manufacturing ceramic electronic components such as ceramic capacitors and ceramic piezoelectric components.
【0003】セラミック電子部品の製造に使用されてい
る従来の連続焼成炉の一例を図3に示す。図3の連続焼
成炉は、ベース1上にトンネル状の炉体2が水平に配置
されたものである。台板3上にて内部にセラミック成形
体(図示せず。)を収容して多段に積み重ねられた匣4
は、この炉体2の入口5の外部から炉体2の内部を通り
、炉体2の出口6に向かって、プッシャ7により矢印A
1で示すように、まず、炉体2の入口5に続く予熱ゾー
ン内に自動的にプッシュされる。この予熱ゾーン内にて
セラミック成形体中のバインダ(成形助剤)を燃焼させ
た後、上記台板3を炉体2の上記予熱ゾーンに続く焼成
ゾーンにプッシュしてセラミック成形体を焼成する。こ
の焼成が完了すると、セラミック成形体は、炉体2の上
記焼成ゾーンに続く冷却ゾーンにプッシュされて冷却さ
れた後、炉体2から引き出される。FIG. 3 shows an example of a conventional continuous firing furnace used for manufacturing ceramic electronic components. The continuous firing furnace shown in FIG. 3 has a tunnel-shaped furnace body 2 arranged horizontally on a base 1. Boxes 4 stacked in multiple stages on a base plate 3 and containing ceramic molded bodies (not shown) inside.
is moved from the outside of the inlet 5 of the furnace body 2 through the inside of the furnace body 2 toward the outlet 6 of the furnace body 2 by the pusher 7 as indicated by the arrow A.
1, it is first automatically pushed into the preheating zone following the inlet 5 of the furnace body 2. After the binder (molding aid) in the ceramic molded body is burned in this preheating zone, the base plate 3 is pushed to the firing zone of the furnace body 2 following the preheating zone to fire the ceramic molded body. When this firing is completed, the ceramic molded body is pushed to a cooling zone of the furnace body 2 following the firing zone, cooled, and then pulled out from the furnace body 2.
【0004】上記連続焼成炉2の炉体内の冷却ゾーンに
は、図4に示すように、隔壁8,8,…によりいくつか
の小冷却ゾーン9,9,…に分割され、各小冷却ゾーン
9毎に、側面あるいは底面に吸気口(図示せず。)を設
け、天井面もしくは側面に設置された排気口11に設け
たダンパ(図示せず。)の開閉により、自然排気もしく
は強制排気する排気量を調整している。As shown in FIG. 4, the cooling zone in the furnace body of the continuous firing furnace 2 is divided into several small cooling zones 9, 9, . . . by partition walls 8, 8, . 9, an intake port (not shown) is provided on the side or bottom surface, and natural or forced exhaust is performed by opening and closing a damper (not shown) provided at the exhaust port 11 installed on the ceiling or side surface. The exhaust volume is adjusted.
【0005】また、大きな冷却能力が要求されるもので
は、炉体2の内部に強制的に冷却用のエアを供給するこ
とも行なわれている。[0005] Furthermore, in cases where a large cooling capacity is required, cooling air is forcibly supplied to the inside of the furnace body 2.
【0006】[0006]
【発明が解決しようとする課題】上記従来の焼成炉では
、吸気口から導入された冷却空気が炉体内で直接、熱交
換されて排出される熱量を調節することで、セラミック
成形体が冷却ゾーンに持ち込む熱を奪って冷却している
ので、次のような問題があった。[Problems to be Solved by the Invention] In the above-mentioned conventional firing furnace, the cooling air introduced from the intake port is directly heat-exchanged within the furnace body and the amount of heat discharged is adjusted, so that the ceramic molded body is moved to the cooling zone. Since the cooling process takes away the heat brought into the room, the following problems arise.
【0007】吸気口から供給される外気と、被焼成物と
の間の熱量交換の効率がわるく、充分な冷却が行なわれ
ない。[0007] The heat exchange efficiency between the outside air supplied from the intake port and the object to be fired is poor, and sufficient cooling is not achieved.
【0008】また、冷却効率を上げるために、導入され
る外気の量を増やした場合、打ち込んだ冷却空気が直接
接触する炉材、煉瓦あるいは被焼成物にスポーリングに
よる亀裂が生じる。[0008] Furthermore, when the amount of outside air introduced is increased in order to improve the cooling efficiency, cracks occur due to spalling in the furnace material, bricks, or objects to be fired that are in direct contact with the injected cooling air.
【0009】さらに、多量に投入される冷却空気と排気
量とのバランスをとることが困難で、炉体2の内部の雰
囲気の炉体貫通方向の流れが生じ、炉体2の内部の温度
を設定通りに調節することが困難である。Furthermore, it is difficult to balance the large amount of cooling air that is injected with the amount of exhaust air, and the atmosphere inside the furnace body 2 flows in the direction through the furnace body, causing the temperature inside the furnace body 2 to decrease. It is difficult to adjust according to the settings.
【0010】本発明の目的は、炉体の冷却ゾーンにおけ
る温度を自在に調整することができる連続焼成炉を提供
することである。An object of the present invention is to provide a continuous firing furnace in which the temperature in the cooling zone of the furnace body can be freely adjusted.
【0011】[0011]
【課題を解決するための手段】このため、本発明は、一
端開口側から他端開口側に通じるトンネル状の内部空間
を有する炉体を備え、この炉体の内部が一端開口側から
他端開口側にかけて予熱ゾーン、焼成ゾーンおよび冷却
ゾーンとなっており、被焼成物が上記一端開口から他端
開口に移動する過程で焼成される連続焼成炉であって、
上記炉体は、その冷却ゾーンの天井側および炉床側の少
なくとも一側にて各々が上記内部空間を横断するととも
に、被焼成物の移動方向に間隔をおいて配置されてなる
空冷管と、これら空冷管に冷却用エアを供給するエア供
給源と、上記空冷管に供給される冷却用エアのエア量を
制御するエア供給制御手段とを備えたことを特徴とする
連続焼成炉を提供するものである。[Means for Solving the Problems] Therefore, the present invention is provided with a furnace body having a tunnel-shaped internal space leading from one end opening side to the other end opening side, and the interior of the furnace body is from one end opening side to the other end opening side. A continuous firing furnace, which has a preheating zone, a firing zone, and a cooling zone toward the opening side, and is fired in the process of moving the object to be fired from the opening at one end to the opening at the other end,
The furnace body includes air-cooled pipes that each cross the internal space on at least one side of the ceiling side and the hearth side of the cooling zone and are arranged at intervals in the direction of movement of the object to be fired. Provided is a continuous firing furnace characterized by comprising an air supply source that supplies cooling air to these air-cooled tubes, and an air supply control means that controls the amount of cooling air supplied to the air-cooled tubes. It is something.
【0012】0012
【作用】冷却用のエアは、上記エア供給制御手段で供給
量が制御されて、上記エア供給源から各空冷管に供給さ
れる。炉体の焼成ゾーンから冷却ゾーンに持ち込まれた
熱量は、上記各空冷管を通してその内部に供給される冷
却用エアに吸収され、炉体外に取り出される。[Operation] Cooling air is supplied from the air supply source to each air cooling pipe with the supply amount controlled by the air supply control means. The amount of heat brought into the cooling zone from the firing zone of the furnace body is absorbed by the cooling air supplied into the interior through each of the air cooling tubes, and is taken out of the furnace body.
【0013】[0013]
【発明の効果】本発明によれば、炉体の焼成ゾーンから
冷却ゾーンに持ち込まれる熱量は、上記各空冷管を通し
てその内部を流れる冷却用エアに吸収され、炉体外に取
り出されるので、空冷管を通過するエアの量を制御する
ことにより、炉体内の雰囲気を全く乱すことなく、確実
に冷却ゾーン内の温度を制御することができ、しかも、
大気中に放出される排気は、空冷管の内部を通過するだ
けであるので、全くクリーンな熱風であって、暖房等種
々の用途に利用することができる。また、本発明によれ
ば、冷却ゾーンに冷却管を配置して炉体内部の冷却ゾー
ンの温度制御を行なうものであるから、構造が比較的簡
単であり、故障が少なく冷却管の交換も容易である。According to the present invention, the amount of heat brought into the cooling zone from the firing zone of the furnace body is absorbed by the cooling air flowing inside the air-cooled tubes and taken out of the furnace body. By controlling the amount of air passing through the cooling zone, it is possible to reliably control the temperature in the cooling zone without disturbing the atmosphere inside the furnace.
Since the exhaust gas released into the atmosphere only passes through the inside of the air-cooled pipe, it is completely clean hot air and can be used for various purposes such as space heating. Furthermore, according to the present invention, since the temperature of the cooling zone inside the furnace body is controlled by arranging cooling pipes in the cooling zone, the structure is relatively simple, there are few failures, and the cooling pipes can be easily replaced. It is.
【0014】[0014]
【実施例】以下に、添付の図面を参照して本発明の実施
例を説明する。本発明に係る連続焼成炉の炉体の冷却ゾ
ーンの一例の縦断面を図1に示す。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows a longitudinal section of an example of the cooling zone of the furnace body of the continuous firing furnace according to the present invention.
【0015】図1に示すように、炉体2の冷却ゾーンの
天井2a側および炉床2b側には、空冷管22,22,
…が配置されている。各空冷管22は、炭化けい素(S
iC)もしくは耐熱鋼からなり、上記冷却ゾーンを構成
している小冷却ゾーン24,24,…の天井2a側およ
び炉床2b側にて、各々が冷却ゾーンの天井2aおよび
炉床2bに沿って炉体2の上記内部空間23を横断する
とともに、矢印A2で示す被焼成物の移動方向に間隔を
おいて配置されている。これら空冷管22,22,…は
、たとえば図2に示すように配管される。As shown in FIG. 1, on the ceiling 2a side and the hearth 2b side of the cooling zone of the furnace body 2, air cooling pipes 22,
...is placed. Each air-cooled tube 22 is made of silicon carbide (S
iC) or heat-resistant steel, on the ceiling 2a side and hearth 2b side of the small cooling zones 24, 24, ... constituting the cooling zone, respectively, along the ceiling 2a and hearth 2b of the cooling zone. They traverse the internal space 23 of the furnace body 2 and are arranged at intervals in the direction of movement of the object to be fired, which is indicated by the arrow A2. These air-cooled pipes 22, 22, . . . are arranged as shown in FIG. 2, for example.
【0016】すなわち、各小冷却ゾーン24の天井2a
側の空冷管22,22,…、また、各小冷却ゾーン24
の炉床2b側の空冷管22,22,…を、その各一端に
設けられた内部を流れる冷却空気の流量を設定するため
の流量設定バルブ25を通して、一つの流量制御弁26
の出側に接続される。そして、この流量制御弁26の入
側は、送風機27に接続される。That is, the ceiling 2a of each small cooling zone 24
side air cooling pipes 22, 22,..., and each small cooling zone 24
The air cooling pipes 22, 22, .
Connected to the output side of the The inlet side of this flow rate control valve 26 is connected to a blower 27 .
【0017】上記送風機27から送り出された冷却空気
は、炉体2内の温度に応じて制御される上記流量制御弁
26を介して必要な流量に増減された後、設置された空
冷管22の本数に等しい数に分岐され、各空冷管22の
流量バランスの設定のための上記流量設定バルブ25を
経て、空冷管22内を通過し、大気中に排気される。The cooling air sent out from the blower 27 is increased or decreased to the required flow rate via the flow rate control valve 26, which is controlled according to the temperature inside the furnace body 2, and then passed through the installed air cooling pipe 22. It is branched into a number equal to the number of air-cooled pipes 22, passes through the air-cooled pipes 22 through the flow rate setting valve 25 for setting the flow rate balance of each air-cooled pipe 22, and is exhausted into the atmosphere.
【0018】このような、構成であれば、高温の炉体2
の内壁面もしくは炉体2の内部を通過する被焼成物表面
から放出される輻射エネルギは、炉体2の内部温度より
も低温に保たれている空冷管22,22,…にその温度
の割合で吸収される。そして、吸収されたエネルギは、
空冷管22,22,…内を流動している冷却空気に熱伝
達され、冷却空気の温度をその伝達された熱量分だけ増
加させて、放出される。With such a configuration, the high temperature furnace body 2
The radiant energy emitted from the inner wall surface of the furnace body 2 or the surface of the object to be fired passing through the inside of the furnace body 2 is transmitted to the air-cooled tubes 22, 22, etc., which are kept at a lower temperature than the internal temperature of the furnace body 2. It is absorbed by. And the absorbed energy is
The heat is transferred to the cooling air flowing through the air-cooled pipes 22, 22, .
【0019】炉体2の内壁面もしくは被焼成物から空冷
管22,22,…への伝熱量は、空冷管22,22,…
の表面温度で決り、空冷管22,22,…の表面温度は
、空冷管22,22,…を通過する空気流量温度と空冷
管22,22,…が吸収する輻射熱量とのバランスでき
まる。The amount of heat transferred from the inner wall surface of the furnace body 2 or the object to be fired to the air-cooled tubes 22, 22, . . .
The surface temperature of the air-cooled pipes 22, 22, . . . is determined by the balance between the air flow rate temperature passing through the air-cooled pipes 22, 22, . . . and the amount of radiant heat absorbed by the air-cooled pipes 22, 22, .
【0020】したがって、炉体2内に配置されて被焼成
物を焼成するヒータ(図示せず。)における電流と空冷
管における投入空気量を全く同様に考えることができ、
冷却空気の投入量を制御することにより、炉体2の内部
の温度を確実に制御することができる。Therefore, the current in the heater (not shown) disposed in the furnace body 2 for firing the object to be fired and the amount of air introduced into the air cooling tube can be considered in exactly the same way.
By controlling the amount of cooling air input, the temperature inside the furnace body 2 can be reliably controlled.
【0021】上記では、冷却管22,22,…は、炉体
2の内部の冷却ゾーンの天井側および炉床側に配置した
実施例について説明したが、上記冷却管22,22,…
は炉体2の内部の冷却ゾーンの天井側および炉床側の少
なくとも一方に配置されていてもよい。In the above description, an embodiment has been described in which the cooling pipes 22, 22, . . . are arranged on the ceiling side and the hearth side of the cooling zone inside the furnace body 2.
may be arranged on at least one of the ceiling side and the hearth side of the cooling zone inside the furnace body 2.
【図1】本発明に係る連続焼成炉の冷却ゾーンの構造の
一例を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing an example of the structure of a cooling zone of a continuous firing furnace according to the present invention.
【図2】図1の連続焼成炉の空冷管の配管の説明図であ
る。FIG. 2 is an explanatory diagram of air-cooled pipe piping of the continuous firing furnace in FIG. 1;
【図3】一般的な連続焼成炉の説明図である。FIG. 3 is an explanatory diagram of a general continuous firing furnace.
【図4】従来の連続焼成炉の炉体の冷却ゾーンの縦断面
図である。FIG. 4 is a longitudinal sectional view of a cooling zone of a furnace body of a conventional continuous firing furnace.
1 ベース 2 炉体 2a 天井 2b 炉床 5 入口 6 出口 8 隔壁 9 小冷却ゾーン 22 空冷管 23 内部空間 24 小冷却ゾーン 25 流量設定バルブ 26 流量制御弁 27 送風機 1 Base 2 Furnace body 2a Ceiling 2b Hearth 5 Entrance 6 Exit 8 Partition wall 9 Small cooling zone 22 Air-cooled pipe 23 Internal space 24 Small cooling zone 25 Flow rate setting valve 26 Flow control valve 27 Blower
Claims (1)
ンネル状の内部空間を有する炉体を備え、この炉体の内
部が一端開口側から他端開口側にかけて予熱ゾーン、焼
成ゾーンおよび冷却ゾーンとなっており、被焼成物が上
記一端開口から他端開口に移動する過程で焼成される連
続焼成炉であって、上記炉体は、その冷却ゾーンの天井
側および炉床側の少なくとも一側にて各々が上記内部空
間を横断するとともに、被焼成物の移動方向に間隔をお
いて配置されてなる空冷管と、これら空冷管に冷却用エ
アを供給するエア供給源と、上記空冷管に供給される冷
却用エアのエア量を制御するエア供給制御手段とを備え
たことを特徴とする連続焼成炉。Claim 1: A furnace body having a tunnel-shaped internal space communicating from one open end side to the other end open side, the interior of the furnace body extending from the one end open side to the other end open side as a preheating zone, a firing zone, and a cooling zone. It is a continuous firing furnace in which the object to be fired is fired in the process of moving from the opening at one end to the opening at the other end, and the furnace body has at least one side on the ceiling side and the hearth side of the cooling zone. air-cooled tubes, each of which crosses the internal space and is arranged at intervals in the direction of movement of the object to be fired; an air supply source that supplies cooling air to these air-cooled tubes; 1. A continuous firing furnace comprising: air supply control means for controlling the amount of cooling air supplied.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5113991A JPH04288478A (en) | 1991-03-15 | 1991-03-15 | Continuous baking furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5113991A JPH04288478A (en) | 1991-03-15 | 1991-03-15 | Continuous baking furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04288478A true JPH04288478A (en) | 1992-10-13 |
Family
ID=12878491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5113991A Pending JPH04288478A (en) | 1991-03-15 | 1991-03-15 | Continuous baking furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04288478A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008170143A (en) * | 2007-12-20 | 2008-07-24 | Koyo Thermo System Kk | Slow cooling furnace |
JP2010216737A (en) * | 2009-03-17 | 2010-09-30 | Tdk Corp | Continuous baking furnace and manufacturing system |
JP2013130366A (en) * | 2011-12-22 | 2013-07-04 | Lixil Corp | Firing furnace |
-
1991
- 1991-03-15 JP JP5113991A patent/JPH04288478A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008170143A (en) * | 2007-12-20 | 2008-07-24 | Koyo Thermo System Kk | Slow cooling furnace |
JP2010216737A (en) * | 2009-03-17 | 2010-09-30 | Tdk Corp | Continuous baking furnace and manufacturing system |
JP2013130366A (en) * | 2011-12-22 | 2013-07-04 | Lixil Corp | Firing furnace |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3172647A (en) | Continuous kiln | |
RU2489401C2 (en) | Roasting method of ceramic products and furnace for method's implementation | |
KR100293836B1 (en) | By air current | |
US2849221A (en) | Heat treating furnace | |
WO2007126340A1 (en) | Tunnel kiln for firing ceramic items | |
JPH04288478A (en) | Continuous baking furnace | |
CN102564127A (en) | Energy-saving type shuttle type kiln | |
US4249594A (en) | High efficiency furnace | |
US4444554A (en) | Heating method and apparatus | |
US4015932A (en) | Combustion air preheater | |
US2220582A (en) | Heater tube for furnaces | |
US2514084A (en) | Apparatus for supplying heated air to blast furnaces and the like | |
JPH04124586A (en) | Cooling device for continuous furnace | |
JPH0437143B2 (en) | ||
JP3235700B2 (en) | Waste gas temperature control device of regenerative burner device | |
US3280769A (en) | Preheater for furnaces | |
JPH0526580A (en) | Continuous baking furnace | |
US4921422A (en) | Method for controlling the preheating zone of a tunnel kiln | |
CN218973201U (en) | Circulation structure for reducing temperature difference between upper and lower parts of preheating zone of tunnel kiln | |
CN219607101U (en) | Incinerator shell protection and heat recovery integrated structure | |
RU2346909C2 (en) | Method of baking and baking furnace for ceramic goods | |
CN201305619Y (en) | Device for inducing residual heat of the flue gas of heating furnace | |
SU141171A1 (en) | Multizone shaft furnace | |
KR800001458B1 (en) | Tunnel kiln | |
RU1774959C (en) | Conveyer furnace for heating metal |