JPH1054676A - Waste heat utilizing device for industrial furnace - Google Patents

Waste heat utilizing device for industrial furnace

Info

Publication number
JPH1054676A
JPH1054676A JP8208711A JP20871196A JPH1054676A JP H1054676 A JPH1054676 A JP H1054676A JP 8208711 A JP8208711 A JP 8208711A JP 20871196 A JP20871196 A JP 20871196A JP H1054676 A JPH1054676 A JP H1054676A
Authority
JP
Japan
Prior art keywords
heat
combustion air
exhaust gas
gas discharge
air supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8208711A
Other languages
Japanese (ja)
Other versions
JP3207359B2 (en
Inventor
Yukio Shigenaga
幸夫 茂長
Yukiyoshi Okada
幸義 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Narita Mfg Ltd
Original Assignee
Kubota Corp
Narita Mfg Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp, Narita Mfg Ltd filed Critical Kubota Corp
Priority to JP20871196A priority Critical patent/JP3207359B2/en
Publication of JPH1054676A publication Critical patent/JPH1054676A/en
Application granted granted Critical
Publication of JP3207359B2 publication Critical patent/JP3207359B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Air Supply (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a waste heat utilizing device for a cupola, which is increased in a temperature efficiency, improved in the durability of the same by eliminating the factors of abrasion and prevented from generating noise and vibration by utilizing high-temperature waste gas as heating fluid. SOLUTION: A heat storage type heat exchanger 6 is provided with a heat exchanging chamber 9, having therein a plurality of heat storage elements 10 or heat exchanging elements effective the reception and radiation of heat stationary, while one side port of the heat exchanging chamber 9 is communicated with the upstream side pipeline 2a of a waste gas discharging system 2 as well as the downstream side pipeline 3a of a combustion air supplying system 3 switchably through a first flow direction control means 7 and the other side port of the heat exchanging chamber 9 is communicated with the constrain side pipeline 2b of the waste gas discharging system 2 as well as the upstream side pipeline 3b of the combustion air supplying system 3 switchably through a second flow direction control means 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、キュポラにおける
エネルギーの効率的な利用を目的とする省エネルギー技
術に関し、キュポラ等の工業炉の廃熱利用装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an energy saving technique for efficiently using energy in a cupola, and more particularly to an apparatus for utilizing waste heat of an industrial furnace such as a cupola.

【0002】[0002]

【従来の技術】従来、鋳鉄の製造等に使用するキュポラ
等の工業炉においては、炉頂より排出する排ガスを廃熱
ボイラーに導き蒸気として廃熱回収を行ったり、或は排
ガスを熱交換器に導いて回収した熱量を燃焼空気の加熱
源として利用したりしている。このような熱交換器とし
ては金属製熱交換チューブや蓄熱式熱交換器がある。金
属製熱交換チューブとしては、例えば、外筒と内筒とか
らなる二重構造形式のものがあり、内筒によって形成す
る高温流路に排ガスを流通させるとともに、内筒と外筒
の間に形成する低温流路に燃焼空気を排ガスと対向する
方向で流通させ、内筒の九十九折り状の筒壁を通して排
ガスの持つ熱を燃焼空気へ移動させている。蓄熱式熱交
換器としては、例えば、塔体内の流路を上部のガスセク
ションと下部のウィンドセクションとに区分し、塔頂部
から塔底部に向けてガスセクション及びウィンドセクシ
ョンを通して蓄熱材としてのセラミックペレットを流下
させるものがあり、ガスセクションにおいて排ガスをセ
ラミックペレットの流下方向に対向して流通させること
により排ガスの持つ熱をセラミックペレットへ受熱さ
せ、ウィンドセクションにおいて燃焼空気をセラミック
ペレットの流下方向に対向して流通させることによりセ
ラミックペレットの持つ熱を燃焼空気へ放熱させてい
る。また、塔底部に達したセラミックペレットは循環ダ
クトを通して再度塔頂部に持ち上げて循環させている。
2. Description of the Related Art Conventionally, in an industrial furnace such as a cupola used for the production of cast iron, exhaust gas discharged from the furnace top is guided to a waste heat boiler to recover waste heat as steam, or the exhaust gas is converted into a heat exchanger. And use the recovered heat as a heating source for combustion air. Such a heat exchanger includes a metal heat exchange tube and a regenerative heat exchanger. As the metal heat exchange tube, for example, there is a double structure type consisting of an outer cylinder and an inner cylinder, and while allowing exhaust gas to flow through a high-temperature flow path formed by the inner cylinder, between the inner cylinder and the outer cylinder. The combustion air is circulated in the low-temperature flow path to be formed in a direction facing the exhaust gas, and the heat of the exhaust gas is transferred to the combustion air through the 99-fold cylindrical wall of the inner cylinder. As a heat storage type heat exchanger, for example, the flow path inside the tower is divided into an upper gas section and a lower wind section, and ceramic pellets as a heat storage material are passed through the gas section and the wind section from the tower top to the tower bottom. In the gas section, the heat of the exhaust gas is received by the ceramic pellet by allowing the exhaust gas to flow in the gas pellet in the flow direction of the ceramic pellet, and the combustion air in the wind section faces the flow direction of the ceramic pellet. The heat of the ceramic pellets is radiated to the combustion air by circulating it. The ceramic pellets that have reached the bottom of the tower are again lifted to the top of the tower through the circulation duct and circulated.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記した金属
製熱交換チューブにおいては、構成部材が金属であるた
めに熱風温度の上限が500℃程度に限られ、キュポラ
から排出する排ガスを冷却して適当温度にまで減温して
後に、熱交換器に導く必要があった。このために、回収
できる熱量が限られたものとなる問題があった。また、
蓄熱式熱交換器においては、セラミックペレットを循環
ダクトを通して循環させるために、循環ダクトの摩耗や
セラミックペレット自体の摩耗が生じる問題や騒音・振
動が発生する問題があった。
However, in the above metal heat exchange tube, the upper limit of the hot air temperature is limited to about 500 ° C. because the constituent members are metal, and the exhaust gas discharged from the cupola is cooled. After reducing the temperature to an appropriate temperature, it was necessary to guide the mixture to a heat exchanger. For this reason, there has been a problem that the amount of heat that can be recovered is limited. Also,
In the regenerative heat exchanger, since the ceramic pellets are circulated through the circulation duct, there has been a problem that abrasion of the circulation duct, abrasion of the ceramic pellet itself, noise and vibration occur.

【0004】本発明は上記した課題を解決するものであ
り、加熱流体として高温の排ガスを利用することによっ
て温度効率を高め、摩耗の要因をなくして耐久性を高
め、騒音・振動が生じない工業炉の廃熱利用装置を提供
することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and uses a high-temperature exhaust gas as a heating fluid to increase temperature efficiency, eliminate wear factors, increase durability, and reduce noise and vibration. An object of the present invention is to provide a waste heat utilization device for a furnace.

【0005】[0005]

【課題を解決するための手段】上記した課題を解決する
ために、本発明の工業炉の廃熱利用装置は、基端側がキ
ュポラ等の工業炉の炉頂部に連通するとともに先端側が
排気ブロワの吸引口に連通する排ガス排出系と、基端側
が燃焼空気ブロワの吐出口に連通するとともに先端側が
工業炉の羽口に連通する燃焼空気供給系と、排ガス排出
系および燃焼空気供給系の途中に介装される蓄熱式熱交
換器とを備え、蓄熱式熱交換器は、内部に熱の受熱・放
熱を行う熱交換要素をなす複数の蓄熱エレメントを静置
する熱交換室を有し、熱交換室の一方の接続部は第1流
路切換手段を介して排ガス排出系の上流側配管および燃
焼空気供給系の下流側配管に切換可能に連通し、熱交換
室の他方の接続部は第2流路切換手段を介して排ガス排
出系の下流側配管および燃焼空気供給系の上流側配管に
切換可能に連通する構成としたものである。
In order to solve the above-mentioned problems, a waste heat utilizing apparatus for an industrial furnace according to the present invention has a base end communicating with a furnace top of an industrial furnace such as a cupola and a tip end of an exhaust blower. An exhaust gas discharge system that communicates with the suction port, a combustion air supply system whose base end communicates with the discharge port of the combustion air blower and a distal end that communicates with the tuyere of the industrial furnace, and an exhaust gas discharge system and a combustion air supply system A regenerative heat exchanger that is interposed, and the regenerative heat exchanger has a heat exchange chamber in which a plurality of heat storage elements forming a heat exchange element that receives and radiates heat are placed. One connection of the exchange chamber is switchably connected to the upstream pipe of the exhaust gas discharge system and the downstream pipe of the combustion air supply system via the first flow path switching means, and the other connection of the heat exchange chamber is connected to the first pipe. Downstream piping of exhaust gas discharge system via two flow path switching means The preliminary combustion air supply system upstream pipe is obtained by a switchably communicating configuration.

【0006】上記した構成により、蓄熱操作時には、第
1流路切換手段および第2流路切換手段を操作し、排ガ
ス排出系の上流側配管を蓄熱式熱交換器の熱交換室に接
続するとともに、排ガス排出系の下流側配管を熱交換室
に接続する。この状態において、工業炉の炉頂部から排
出する高温排ガスは、排ガス排出系を通して蓄熱式熱交
換器の熱交換室に流入し、熱交換室内に静置した熱交換
要素をなす複数の蓄熱エレメント間の間隙を縫って流通
し、蓄熱エレメントを加熱して後に、排気ブロワの吸引
負圧に誘引されて熱交換室から排ガス排出系の下流側配
管に流出する。この間に、蓄熱式熱交換器の蓄熱エレメ
ントは高温度域の排ガスから受熱することにより高温の
熱を蓄熱することができ、温度効率が向上する。
With the above configuration, during the heat storage operation, the first flow path switching means and the second flow path switching means are operated to connect the upstream pipe of the exhaust gas discharge system to the heat exchange chamber of the heat storage type heat exchanger. Then, the downstream pipe of the exhaust gas discharge system is connected to the heat exchange chamber. In this state, the high-temperature exhaust gas discharged from the furnace top of the industrial furnace flows into the heat exchange chamber of the regenerative heat exchanger through the exhaust gas discharge system, and is interposed between the plurality of heat storage elements forming the heat exchange element that is settled in the heat exchange chamber. After the heat storage element is heated, the heat is attracted by the suction negative pressure of the exhaust blower and flows out of the heat exchange chamber to the downstream pipe of the exhaust gas discharge system. During this time, the heat storage element of the heat storage type heat exchanger can store high-temperature heat by receiving heat from the exhaust gas in the high-temperature range, thereby improving the temperature efficiency.

【0007】放熱操作時には、第1流路切換手段および
第2流路切換手段を操作し、燃焼空気供給系の上流側配
管を蓄熱式熱交換器の熱交換室に接続するとともに、燃
焼空気供給系の下流側配管を熱交換室に接続する。この
状態において、燃焼空気ブロワから供給する燃焼空気
は、燃焼空気供給系を通して蓄熱式熱交換器の熱交換室
に流入し、熱交換室内に静置した熱交換要素をなす複数
の蓄熱エレメント間の間隙を縫って流通し、蓄熱エレメ
ントが放熱する熱を奪って昇温して後に、熱交換室から
燃焼空気供給系の下流側配管を通って羽口から工業炉内
に流入する。
[0007] During the heat radiation operation, the first flow path switching means and the second flow path switching means are operated to connect the upstream pipe of the combustion air supply system to the heat exchange chamber of the regenerative heat exchanger and to supply the combustion air. Connect the downstream piping of the system to the heat exchange chamber. In this state, the combustion air supplied from the combustion air blower flows into the heat exchange chamber of the regenerative heat exchanger through the combustion air supply system, and flows between the plurality of heat storage elements forming the heat exchange element that is stationary in the heat exchange chamber. After circulating through the gap and taking the heat radiated by the heat storage element to raise the temperature, the heat flows from the heat exchange chamber through the downstream pipe of the combustion air supply system into the industrial furnace through the tuyere.

【0008】したがって、蓄熱操作時および放熱操作時
に、蓄熱エレメントは、静止する状態において排ガスま
たは燃焼空気との間において受熱・放熱を行うので、従
来のような循環ダクトの摩耗や蓄熱エレメント自体の摩
耗が生じることがなく、騒音および振動が発生すること
がない。
Therefore, during the heat storage operation and the heat radiation operation, the heat storage element receives and radiates heat between the exhaust gas and the combustion air in a stationary state, so that the conventional wear of the circulation duct and the wear of the heat storage element itself. And noise and vibration do not occur.

【0009】また、排ガス排出系および燃焼空気供給系
に対して複数の蓄熱式熱交換器を並列に接続することに
より、一つの蓄熱式熱交換器を蓄熱操作する状態におい
て他の蓄熱式熱交換器を放熱操作することができ、各蓄
熱式熱交換器において繰り返して行う蓄熱操作と放熱操
作とを相互に違えて行うことによって、排ガスと燃焼空
気との間における蓄熱エレメントを介した熱交換を連続
して行うことができ、工業炉の羽口に常に安定した温度
の燃焼空気を供給することができる。
Further, by connecting a plurality of regenerative heat exchangers in parallel to the exhaust gas discharge system and the combustion air supply system, one regenerative heat exchanger can be operated while another regenerative heat exchanger is operated. The heat exchange operation can be performed between the exhaust gas and the combustion air through the heat storage element by performing the heat storage operation and the heat radiation operation repeatedly performed in each regenerative heat exchanger differently from each other. It can be performed continuously, and combustion air at a stable temperature can always be supplied to the tuyere of the industrial furnace.

【0010】また、蓄熱エレメントが、多孔体をなすハ
ニカムセラミックや、粒体で10mm〜50mmの粒径をな
すセラミックボール等の耐熱性部材からなることによ
り、耐久性ならびに受熱・放熱時における熱伝導率が好
適なものとなる。
The heat storage element is made of a heat-resistant member such as a honeycomb ceramic having a porous body or a ceramic ball having a particle diameter of 10 mm to 50 mm. The rate is favorable.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1〜図2において、キュポラ1
は、炉頂部に排ガス排出系2が接続してあり、羽口に燃
焼空気供給系3が接続してある。排ガス排出系2は、基
端側がキュポラ1の炉頂部に連通するとともに先端側が
排気ブロワ4の吸引口に連通し、途中に助燃炉Sを有し
ており、燃焼空気供給系3は、基端側が燃焼空気ブロワ
5の吐出口に連通するとともに先端側がキュポラ1の羽
口に連通している。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1 and FIG.
Has a flue gas discharge system 2 connected to the furnace top and a combustion air supply system 3 connected to the tuyere. The exhaust gas discharge system 2 has a base end communicating with the furnace top of the cupola 1, a tip end communicating with a suction port of the exhaust blower 4, and has an auxiliary combustion furnace S in the middle thereof. The side communicates with the discharge port of the combustion air blower 5 and the tip side communicates with the tuyere of the cupola 1.

【0012】排ガス排出系2および燃焼空気供給系3の
途中には、複数の蓄熱式熱交換器6がそれぞれ第1流路
切換手段7および第2流路切換手段8を介して接続して
ある。この蓄熱式熱交換器6は単一の構成とすることも
可能である。
In the middle of the exhaust gas discharge system 2 and the combustion air supply system 3, a plurality of regenerative heat exchangers 6 are connected via first flow path switching means 7 and second flow path switching means 8, respectively. . This regenerative heat exchanger 6 may be of a single configuration.

【0013】第1流路切換手段7は、蓄熱式熱交換器6
と排ガス排出系2の上流側配管2aとの接続を制御する
第1開閉弁7aと、蓄熱式熱交換器6と燃焼空気供給系
3の下流側配管3aとの接続を制御する第2開閉弁7b
とからなり、第1開閉弁7aおよび第2開閉弁7bを操
作することによって蓄熱式熱交換器6に接続する流路を
切り換えるものである。
The first flow path switching means 7 includes a regenerative heat exchanger 6
Opening / closing valve 7a for controlling the connection between the gas and the upstream pipe 2a of the exhaust gas discharge system 2, and the second opening / closing valve for controlling the connection between the regenerative heat exchanger 6 and the downstream pipe 3a of the combustion air supply system 3. 7b
By operating the first on-off valve 7a and the second on-off valve 7b, the flow path connected to the regenerative heat exchanger 6 is switched.

【0014】第2流路切換手段8は、蓄熱式熱交換器6
と排ガス排出系2の下流側配管2bとの接続を制御する
第3開閉弁8aと、蓄熱式熱交換器6と燃焼空気供給系
3の上流側配管3bとの接続を制御する第4開閉弁8b
とからなり、第3開閉弁8aおよび第4開閉弁8bを操
作することによって蓄熱式熱交換器6に接続する流路を
切り換えるものである。
The second flow path switching means 8 includes a regenerative heat exchanger 6
Opening / closing valve 8a for controlling the connection between the heat exchanger 6 and the downstream pipe 2b of the exhaust gas discharge system 2, and the fourth opening / closing valve for controlling the connection between the regenerative heat exchanger 6 and the upstream pipe 3b of the combustion air supply system 3. 8b
The flow path connected to the regenerative heat exchanger 6 is switched by operating the third on-off valve 8a and the fourth on-off valve 8b.

【0015】各蓄熱式熱交換器6は、排ガス排出系2お
よび燃焼空気供給系3の通気路をなす熱交換室9を有し
ており、熱交換室9の内部に熱の受熱・放熱を行う熱交
換要素をなす複数の蓄熱エレメント10が静置してあ
る。蓄熱エレメント10は、耐火物(セラミック材)、
金属、耐火物と金属の混成品等からなり、φ10mm〜φ
50mmの球状粒体や、一辺10mm〜50mmの角柱体ない
し中空角柱体をなすものや、多孔体をなすハニカムセラ
ミックで、ハニカムセラミックはセルピッチ2.54m
m、隔壁厚さ0.43mm程度のものである。尚、蓄熱エ
レメント10は、形状が球状、角柱体等に限られるもの
ではなく、熱伝導率を良好なものとすることができれば
良く、多孔体や外周面に伝熱フィンを有するものなど種
々の形状が考えられる。
Each regenerative heat exchanger 6 has a heat exchange chamber 9 forming an air passage for the exhaust gas discharge system 2 and the combustion air supply system 3, and receives and receives heat inside the heat exchange chamber 9. A plurality of heat storage elements 10 constituting a heat exchange element to be performed are settled. The heat storage element 10 includes a refractory (ceramic material),
Composed of metal, refractory and metal hybrid products, φ10mm ~ φ
50 mm spherical granules, 10 mm to 50 mm square prisms or hollow prisms, or honeycomb ceramics that are porous. Honeycomb ceramics have a cell pitch of 2.54 m.
m, and the partition wall thickness is about 0.43 mm. The shape of the heat storage element 10 is not limited to a spherical shape, a prismatic body, or the like, but may be any shape as long as the heat conductivity can be improved. Shape is conceivable.

【0016】以下、上記した構成における作用を説明す
る。各蓄熱式熱交換器6における蓄熱操作および放熱操
作は同じであるで、ここでは一つの蓄熱式熱交換器6に
おける作用を例示的に説明する。
The operation of the above configuration will be described below. Since the heat storage operation and the heat radiation operation in each heat storage type heat exchanger 6 are the same, the operation in one heat storage type heat exchanger 6 will be exemplarily described here.

【0017】蓄熱操作時には、第1流路切換手段7の第
1開閉弁7aを開放するとともに第2開閉弁7bを閉栓
し、第2流路切換手段8の第3開閉弁8aを開放すると
ともに第4開閉弁8bを閉栓し、排ガス排出系2の上流
側配管2aを蓄熱式熱交換器6の熱交換室9に接続する
とともに、排ガス排出系2の下流側配管2bを熱交換室
9に接続する。
During the heat storage operation, the first opening / closing valve 7a of the first flow path switching means 7 is opened, the second opening / closing valve 7b is closed, and the third opening / closing valve 8a of the second flow path switching means 8 is opened. The fourth on-off valve 8b is closed, the upstream pipe 2a of the exhaust gas discharge system 2 is connected to the heat exchange chamber 9 of the regenerative heat exchanger 6, and the downstream pipe 2b of the exhaust gas discharge system 2 is connected to the heat exchange chamber 9. Connecting.

【0018】この状態において、キュポラ1の炉頂部か
ら排出する高温排ガス(約980℃)は、排ガス排出系
2の上流側配管2aを通して蓄熱式熱交換器6の熱交換
室9に流入し、熱交換室9に静置した熱交換要素をなす
複数の蓄熱エレメント10の相互の間隙を縫って流通
し、蓄熱エレメント10を加熱して約200℃位に低温
化した後に、排気ブロワ4の吸引負圧に誘引されて熱交
換室9から排ガス排出系2の下流側配管2bに流出す
る。この間に、蓄熱式熱交換器6の蓄熱エレメント10
は高温度域の排ガスから受熱することにより高温の熱を
蓄熱することができ、温度効率が向上する。
In this state, high-temperature exhaust gas (about 980 ° C.) discharged from the furnace top of the cupola 1 flows into the heat exchange chamber 9 of the regenerative heat exchanger 6 through the upstream pipe 2 a of the exhaust gas discharge system 2, After circulating through the gap between the plurality of heat storage elements 10 forming the heat exchange element which is settled in the exchange chamber 9, the heat storage element 10 is heated to a temperature of about 200 ° C., and then the suction blow of the exhaust blower 4 is performed. The water is drawn by the pressure and flows out of the heat exchange chamber 9 into the downstream pipe 2 b of the exhaust gas discharge system 2. During this time, the heat storage element 10 of the heat storage heat exchanger 6
Can store high-temperature heat by receiving heat from exhaust gas in a high-temperature range, thereby improving temperature efficiency.

【0019】放熱操作時には、第1流路切換手段7の第
1開閉弁7aを閉栓するとともに第2開閉弁7bを開放
し、第2流路切換手段8の第3開閉弁8aを閉栓すると
ともに第4開閉弁8bを開放し、燃焼空気供給系3の上
流側配管3bを蓄熱式熱交換器6の熱交換室9に接続す
るとともに、燃焼空気供給系3の下流側配管3aを熱交
換室9に接続する。この状態において、燃焼空気ブロワ
5から供給する燃焼空気(室温)は、燃焼空気供給系3
の上流側配管3bを通して蓄熱式熱交換器6の熱交換室
9に流入し、熱交換室9に静置した複数の蓄熱エレメン
ト10の相互の間隙を縫って流通し、蓄熱エレメント1
0が放熱する熱を奪って昇温(約750℃)して後に、
熱交換室9から燃焼空気供給系3の下流側配管3aを通
って羽口からキュポラ1に流入する。
During the heat radiation operation, the first on-off valve 7a of the first flow path switching means 7 is closed and the second on-off valve 7b is opened, and the third on-off valve 8a of the second flow path switching means 8 is closed. The fourth on-off valve 8b is opened, the upstream pipe 3b of the combustion air supply system 3 is connected to the heat exchange chamber 9 of the regenerative heat exchanger 6, and the downstream pipe 3a of the combustion air supply system 3 is connected to the heat exchange chamber. 9 In this state, the combustion air (room temperature) supplied from the combustion air blower 5 is supplied to the combustion air supply system 3.
Flows into the heat exchange chamber 9 of the regenerative heat exchanger 6 through the upstream pipe 3b, and flows through the gaps between the plurality of heat storage elements 10 which are settled in the heat exchange chamber 9 to flow therethrough.
0 takes away the heat radiated and raises the temperature (about 750 ° C),
The heat flows from the heat exchange chamber 9 into the cupola 1 through the tuyere through the downstream pipe 3 a of the combustion air supply system 3.

【0020】図2に示すように、NO.1,NO.2,NO.3の3
基の各蓄熱式熱交換器6においては、繰り返して行う蓄
熱操作と放熱操作とを相互に違えて行っている。今、N
O.1の蓄熱式熱交換器6が蓄熱操作(加熱)を行ってい
る過程において、NO.2の蓄熱式熱交換器6は放熱操作
(送風)の後半過程にあり、NO.3の蓄熱式熱交換器6は
放熱操作(送風)の前半過程にある。
As shown in FIG. 2, three of NO.1, NO.2 and NO.3
In each of the base regenerative heat exchangers 6, the repetitive heat storage operation and the heat release operation are performed differently. Now N
In the process in which the heat storage heat exchanger 6 of O.1 is performing the heat storage operation (heating), the heat storage heat exchanger 6 of NO.2 is in the latter half of the heat radiation operation (blowing), and the heat storage operation of NO.3 is performed. The heat exchanger 6 is in the first half of the heat radiation operation (blowing).

【0021】したがって、一つの蓄熱式熱交換器6を蓄
熱操作する状態において他の蓄熱式熱交換器6を放熱操
作するので、排ガスと燃焼空気との間における蓄熱エレ
メント10を介した熱交換を連続して行うことができ、
キュポラ1の羽口に常に安定した温度(約750℃)の
燃焼空気を供給することができる。しかも、3基の蓄熱
式熱交換器6を全過程の3分の1ずつの位相差をもって
運転するので、熱交換器6の放熱操作(送風)の後半過
程における放熱量の弱まりに伴う送風温度の低下を、他
の蓄熱式熱交換器6の放熱操作(送風)の前半過程にお
ける豊富な放熱量によって補うことができ、燃焼空気の
温度変化を小さくすることができる。
Therefore, while one heat storage type heat exchanger 6 is operated for heat storage, the other heat storage type heat exchanger 6 is operated to radiate heat, so that heat exchange between the exhaust gas and the combustion air via the heat storage element 10 is performed. Can be performed continuously,
Combustion air at a stable temperature (about 750 ° C.) can always be supplied to the tuyere of the cupola 1. Moreover, since the three regenerative heat exchangers 6 are operated with a phase difference of one-third of the entire process, the blast temperature accompanying the weakening of the amount of radiated heat in the latter half of the radiating operation (blowing) of the heat exchanger 6. Can be compensated for by the abundant heat release in the first half of the heat release operation (blowing) of the other heat storage type heat exchanger 6, and the temperature change of the combustion air can be reduced.

【0022】[0022]

【発明の効果】以上述べたように、本発明によれば、蓄
熱操作時および放熱操作時に、蓄熱エレメントは、静止
する状態において排ガスまたは燃焼空気との間において
受熱・放熱を行うので、従来のような循環ダクトの摩耗
や蓄熱エレメント自体の摩耗が生じることがなく、騒音
および振動が発生することがない。また、排ガス排出系
および燃焼空気供給系に対して複数の蓄熱式熱交換器を
並列に接続し、各蓄熱式熱交換器において繰り返して行
う蓄熱操作と放熱操作とを相互に違えて行うことによっ
て、排ガスと燃焼空気との間における蓄熱エレメントを
介した熱交換を連続して行うことができ、工業炉の羽口
に常に安定した温度の燃焼空気を供給することができ
る。
As described above, according to the present invention, during the heat storage operation and the heat radiation operation, the heat storage element receives and radiates heat with the exhaust gas or the combustion air in a stationary state. Such wear of the circulation duct and wear of the heat storage element itself do not occur, and noise and vibration do not occur. Also, by connecting a plurality of regenerative heat exchangers in parallel to the exhaust gas discharge system and the combustion air supply system, and performing the heat storage operation and the heat radiation operation repeatedly performed in each heat storage heat exchanger differently In addition, the heat exchange between the exhaust gas and the combustion air through the heat storage element can be continuously performed, and the combustion air at a stable temperature can always be supplied to the tuyere of the industrial furnace.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態におけるキュポラの廃熱利用
装置の模式図である。
FIG. 1 is a schematic diagram of a cupola waste heat utilization apparatus according to an embodiment of the present invention.

【図2】同実施形態における運転サイクルを示す説明図
である。
FIG. 2 is an explanatory diagram showing an operation cycle in the embodiment.

【符号の説明】[Explanation of symbols]

1 キュポラ 2 排ガス排出系 3 燃焼空気供給系 4 排気ブロワ 5 燃焼空気ブロワ 6 蓄熱式熱交換器 7 第1流路切換手段 8 第2流路切換手段 9 熱交換室 10 蓄熱エレメント DESCRIPTION OF SYMBOLS 1 Cupola 2 Exhaust gas discharge system 3 Combustion air supply system 4 Exhaust blower 5 Combustion air blower 6 Heat storage type heat exchanger 7 First flow switching means 8 Second flow switching means 9 Heat exchange chamber 10 Heat storage element

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基端側がキュポラ等の工業炉の炉頂部に
連通するとともに先端側が排気ブロワの吸引口に連通す
る排ガス排出系と、基端側が燃焼空気ブロワの吐出口に
連通するとともに先端側が工業炉の羽口に連通する燃焼
空気供給系と、排ガス排出系および燃焼空気供給系の途
中に介装される蓄熱式熱交換器とを備え、蓄熱式熱交換
器は、内部に熱の受熱・放熱を行う熱交換要素をなす複
数の蓄熱エレメントを静置する熱交換室を有し、熱交換
室の一方の接続部は第1流路切換手段を介して排ガス排
出系の上流側配管および燃焼空気供給系の下流側配管に
切換可能に連通し、熱交換室の他方の接続部は第2流路
切換手段を介して排ガス排出系の下流側配管および燃焼
空気供給系の上流側配管に切換可能に連通することを特
徴とする工業炉の廃熱利用装置。
An exhaust gas discharge system having a base end communicating with a furnace top of an industrial furnace such as a cupola and a tip end communicating with a suction port of an exhaust blower, a base end communicating with a discharge port of a combustion air blower and a tip end communicating It has a combustion air supply system communicating with the tuyere of an industrial furnace, and a regenerative heat exchanger interposed in the exhaust gas discharge system and the combustion air supply system, and the regenerative heat exchanger internally receives heat. A heat exchange chamber in which a plurality of heat storage elements forming a heat exchange element for radiating heat are provided, and one connection of the heat exchange chamber is connected to an upstream pipe of an exhaust gas discharge system via a first flow path switching unit; The other connection of the heat exchange chamber is connected to the downstream pipe of the combustion air supply system via a second flow path switching means to the downstream pipe of the exhaust gas discharge system and the upstream pipe of the combustion air supply system. Discontinuation of industrial furnaces characterized by switchable communication Heat utilization equipment.
【請求項2】 排ガス排出系および燃焼空気供給系に対
して、複数の蓄熱式熱交換器を並列に接続したことを特
徴とする請求項1記載の工業炉の廃熱利用装置。
2. The industrial furnace waste heat utilization apparatus according to claim 1, wherein a plurality of regenerative heat exchangers are connected in parallel to the exhaust gas discharge system and the combustion air supply system.
【請求項3】 蓄熱エレメントは、多孔体をなすハニカ
ムセラミックや、粒体で10mm〜50mmの粒径をなすセ
ラミックボール等の耐熱性部材からなることを特徴とす
る請求項1または2記載の工業炉の廃熱利用装置。
3. The industrial device according to claim 1, wherein the heat storage element comprises a heat-resistant member such as a honeycomb ceramic having a porous body or a ceramic ball having a particle diameter of 10 to 50 mm. Furnace waste heat utilization equipment.
JP20871196A 1996-08-08 1996-08-08 Industrial furnace waste heat utilization equipment Expired - Fee Related JP3207359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20871196A JP3207359B2 (en) 1996-08-08 1996-08-08 Industrial furnace waste heat utilization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20871196A JP3207359B2 (en) 1996-08-08 1996-08-08 Industrial furnace waste heat utilization equipment

Publications (2)

Publication Number Publication Date
JPH1054676A true JPH1054676A (en) 1998-02-24
JP3207359B2 JP3207359B2 (en) 2001-09-10

Family

ID=16560824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20871196A Expired - Fee Related JP3207359B2 (en) 1996-08-08 1996-08-08 Industrial furnace waste heat utilization equipment

Country Status (1)

Country Link
JP (1) JP3207359B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333218A (en) * 2006-05-15 2007-12-27 Miyamoto Kogyosho Co Ltd Heating furnace for regenerative burner
CN109520318A (en) * 2018-12-06 2019-03-26 中国科学院工程热物理研究所 A kind of heat-accumulating type high-temperature smoke waste heat utilization system
CN117208989A (en) * 2023-11-08 2023-12-12 天津市正方科技发展有限公司 Oil field waste heat recycling system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679750A (en) * 2012-05-28 2012-09-19 浙江特拉建材有限公司 Water recycling structure for baking bricks

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333218A (en) * 2006-05-15 2007-12-27 Miyamoto Kogyosho Co Ltd Heating furnace for regenerative burner
CN109520318A (en) * 2018-12-06 2019-03-26 中国科学院工程热物理研究所 A kind of heat-accumulating type high-temperature smoke waste heat utilization system
CN109520318B (en) * 2018-12-06 2023-09-12 中国科学院工程热物理研究所 Heat accumulating type high-temperature flue gas waste heat utilization system
CN117208989A (en) * 2023-11-08 2023-12-12 天津市正方科技发展有限公司 Oil field waste heat recycling system

Also Published As

Publication number Publication date
JP3207359B2 (en) 2001-09-10

Similar Documents

Publication Publication Date Title
WO2016150100A1 (en) Heat-accumulating lime rotary kiln
CN202066385U (en) Novel waste heat recovery and use device
CN101307985B (en) Calcining method and calcining device
JP3207359B2 (en) Industrial furnace waste heat utilization equipment
CN101915502A (en) Method for regulating oxygen atmosphere in fuel oil (gas) reverberatory furnace by using recovered fume
CN102564127A (en) Energy-saving type shuttle type kiln
WO2020177302A1 (en) Method for utilizing cold-air heat of blast furnace axial flow blower, and hot blast stove system
CN201155919Y (en) Cement rotary kiln using coal gas as fuel
CN210426131U (en) Flue gas circulating system
CN210688201U (en) Cooling equipment for circulating fluidized bed boiler
CN210481213U (en) Electric lime kiln
CN208983854U (en) A kind of compound kiln of splitlevel energy conservation
CN112629275A (en) Double-box heat accumulating type heat exchanger
CN201907972U (en) Energy-saving consumption-reducing production line for carbon products
CN201482469U (en) Hot air heating device for water reducer reaction kettle
CN104501609A (en) Afterheat utilization system and afterheat utilization method of hot solid material
CN216115326U (en) Roasting kiln with cooling function
CN214333488U (en) High-temperature flue gas heat exchange structure
CN220907529U (en) Hot-blast stove for double-cross amplitude limiting combustion control of hot-blast furnace
CN218931985U (en) Straight-channel double-chamber lime kiln
TWI640737B (en) Structure of regenerative combustion furnace body
CN217031245U (en) System for heating by utilizing waste heat
CN217274048U (en) Heat exchange structure for gas making furnace and cyclone dust removal device
CN212538876U (en) Cold and hot gas mixing cooling device
CN211695843U (en) Chain melting furnace of two operation modes

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees