JP4385454B2 - Atmospheric gas heating temperature adjustment method and heating temperature adjustment device - Google Patents

Atmospheric gas heating temperature adjustment method and heating temperature adjustment device Download PDF

Info

Publication number
JP4385454B2
JP4385454B2 JP32041999A JP32041999A JP4385454B2 JP 4385454 B2 JP4385454 B2 JP 4385454B2 JP 32041999 A JP32041999 A JP 32041999A JP 32041999 A JP32041999 A JP 32041999A JP 4385454 B2 JP4385454 B2 JP 4385454B2
Authority
JP
Japan
Prior art keywords
gas
heat storage
temperature
atmospheric
storage chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32041999A
Other languages
Japanese (ja)
Other versions
JP2001131633A (en
Inventor
純也 尾前
一成 安達
一晃 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP32041999A priority Critical patent/JP4385454B2/en
Publication of JP2001131633A publication Critical patent/JP2001131633A/en
Application granted granted Critical
Publication of JP4385454B2 publication Critical patent/JP4385454B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は加熱炉等に供給する加熱用雰囲気ガスを加熱するためのガス加熱方法および装置に係り、特に蓄熱式加熱器を3基以上備え、これらを燃焼状態、雰囲気ガス加熱状態、および雰囲気ガス吸引状態の順に順次切り替えて、加熱された雰囲気ガスを連続的に供給し続ける蓄熱式ガス加熱装置における雰囲気ガスの温度調整方法およびその調整・制御装置に関する。
【0002】
【従来の技術】
鋼材等を無酸化あるいは還元雰囲気の下で加熱するための加熱方式として、ラジアントチューブ式、直火還元加熱式、二層雰囲気燃焼式等の方式が提案され、用途に応じて採用されているが、近年、加熱炉に加熱された雰囲気ガスを直接供給し、これにより鋼材を希望する雰囲気の下で効率よく加熱する方式が提案されている。その代表的なものとして国際公開番号WO98/38344号公報において提案されている手段がある。
【0003】
この手段は、バーナ装置と、当該バーナ装置からの燃焼排ガスの排気経路に設けられた蓄熱室とを備えた蓄熱式加熱器を3基以上用いて雰囲気ガスを加熱する蓄熱式雰囲気ガス加熱方法であって、前記3基以上の蓄熱式加熱器のうち少なくとも1基以上の蓄熱式加熱器ではバーナ装置を燃焼させて、その燃焼排ガスのみ又は略燃焼排ガスのみを蓄熱室内に通して排気することで当該蓄熱室内に蓄熱する燃焼状態とし、且つ少なくとも他の1基以上の蓄熱式加熱器では蓄熱室内に雰囲気ガスを通して当該雰囲気ガスを加熱供給する雰囲気ガス供給状態とし、且つ他の少なくとも1基以上の蓄熱式加熱器では雰囲気ガスを吸引する吸引状態とし、これらの各蓄熱式加熱器を燃焼状態、雰囲気ガス加熱状態、および雰囲気ガス吸引状態の順に順次切り替えて、加熱された雰囲気ガスを連続的に供給し続ける手段である。
【0004】
【発明が解決しようとする課題】
上記提案により、加熱された雰囲気ガスを連続的に供給し続けるとともに、余剰となる雰囲気ガスを連続的に回収してそれを次の雰囲気ガス加熱供給に再使用することが可能となり、これにより熱効率の向上と資源(雰囲気ガス)の再利用により、低ランニングコストでの加熱が可能となる等の利点がある。
【0005】
しかしながら、上記手段を利用して雰囲気ガスを加熱供給する場合、加熱炉へ供給される雰囲気ガスの温度は、1基の蓄熱式加熱器の蓄熱室内に雰囲気ガスを通して当該雰囲気ガスを加熱供給する期間中次第に低下する。次いで雰囲気ガスの加熱を他の蓄熱室によるように切り替えると再上昇するが、時間の経過とともに再び低下する。このようなサイクルが繰り返されるために、上記手段によって冷延鋼板の連続加熱を行うと、鋼板温度が鋼板の搬送方向(長手方向)でばらつき、そのため均一な特性を有する鋼板を得ることが困難になることがあった。
【0006】
本発明は、上記蓄熱式加熱器を3基以上備え、これらを燃焼状態、雰囲気ガス加熱状態、および雰囲気ガス吸引状態の順に順次切り替えて、加熱された雰囲気ガスを連続的に供給し続ける蓄熱式ガス加熱装置の有する問題点、すなわち加熱された雰囲気ガス温度が時系列的に変動するという問題を解決することを目的とし、これによって鋼帯などの連続加熱における加熱温度の時系列的ばらつきを抑制することを目的とする。
【0007】
【課題を解決するための手段】
本発明者等は上記課題を解決するために、雰囲気ガス加熱状態にある蓄熱室から放出される雰囲気ガスに冷却ガスを混じ、加熱炉に供給される雰囲気ガス温度の調整を図ることを着想し、本発明を完成した。具体的には、本発明は、雰囲気ガスの加熱温度調整方法を、バーナ装置からの燃焼排ガスにより加熱・蓄熱される第1蓄熱室と雰囲気ガスの吸引経路に設けられた第2蓄熱室を有する蓄熱式加熱器を3基以上用い、上記各蓄熱式加熱器を燃焼状態、雰囲気ガス加熱状態、雰囲気ガス吸引状態の順に順次切り替えて加熱された雰囲気ガスを連続的に供給する雰囲気ガスの加熱・供給方法において、前記雰囲気ガス加熱状態の蓄熱式加熱器の第1蓄熱室から排出される雰囲気ガスに冷却ガスを混ずることとするものである。
【0008】
また、本発明は上記雰囲気ガスの加熱温度調整方法を実施するための蓄熱式雰囲気ガスの加熱温度調整装置を、燃焼バーナと、当該バーナからの燃焼排ガスの排気経路に設けられた第1蓄熱室と、雰囲気ガスの吸引経路に設けられた第2蓄熱室を備えてなる蓄熱式加熱器を3基以上備え、上記各蓄熱式加熱器を燃焼状態、雰囲気ガス加熱状態、雰囲気ガス吸引状態の順に順次切り替えて加熱された雰囲気ガスを連続的に供給する蓄熱式雰囲気ガス加熱装置において、前記蓄熱式加熱器の第1蓄熱室から加熱設備に通ずる通路に冷却ガス供給口を設けてなるものとする。
【0009】
さらに、上記装置において、前記雰囲気ガス通路に第1蓄熱室出側ガス温度測定器が設置され、前記第1蓄熱室への雰囲気ガス供給経路に第1蓄熱室ガス流量調節弁が設置され、かつ、前記雰囲気ガス通路に設けられた冷却ガス供給口に至る冷却ガス供給経路に冷却ガス流量調節弁が設置されるとともに、
前記第1蓄熱室出側ガス温度測定器の温度信号に基づき、
t・Tg・Cpg=Qr・Tr・Cpr+Qc・Tc・Cpc
t=Qr+Qc
を満足するように前記第1蓄熱室ガス流量調節弁および前記冷却ガス流量調節弁を制御するガス流量調節装置が設置されているものとして、加熱炉等への供給ガス温度を常に目標温度に維持する制御機構を有せしめることを好適とする。
ここにQt:混合ガス流量
g:混合ガス温度
Cpg:混合ガス定圧比熱
r:第1蓄熱室出側ガス流量
r:第1蓄熱室出側ガス温度
Cpr:第1蓄熱室出側ガス定圧比熱
c:冷却ガス流量
c:冷却ガス温度
Cpc:冷却ガス定圧比熱
【0010】
本発明は、上記制御方法に代えて、前記雰囲気ガス通路に前記第1蓄熱室から供給される雰囲気ガスと前記冷却ガス供給口から供給される冷却ガスとの混合ガスの温度を測定する混合ガス温度測定装置が設置され、前記第1蓄熱室への雰囲気ガス供給経路に第1蓄熱室ガス流量調節弁が設置され、かつ、前記雰囲気ガス通路に設けられた前記冷却ガス供給口に至る冷却ガス供給経路に冷却ガス流量調節弁が設置されるとともに、
前記混合ガス温度測定器の温度測定結果に基づき、該測定結果に基づく温度を目標値に維持するように前記第1蓄熱室ガス流量調節弁および冷却ガス流量調節弁を制御するガス流量調節装置が設置されているものとすることもできる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して具体的に説明する。図1は、本発明に係る雰囲気加熱方法を実施するための蓄熱式雰囲気ガス加熱装置の概略構成図である。
【0012】
図1から明らかなように、加熱炉20には、3基の蓄熱式加熱器1A〜1Cが1セットとして取り付けられている。また、これらの各蓄熱式加熱器1A〜1Cは、何れも、第1蓄熱室3A〜3Cおよび第2蓄熱室4A〜4Cを有している。これら各蓄熱室3A〜3Cおよび4A〜4Cには、例えばセラミックス等からなる球状または円筒状の蓄熱体が充填されている。
【0013】
上記第1蓄熱室3A〜3Cは、その一方が炉20の内部に開口され、雰囲気ガス通路22A 〜22Cを形成している。他の一方は排気弁7A〜7Cおよび排気ファン11を介して排気経路に接続されているとともに、後述するように雰囲気ガス供給源15にも接続されている。
【0014】
一方、第2蓄熱室4A〜4Cはそれぞれ、雰囲気ガス回収弁9A〜9Cおよび雰囲気ガス回収ファン13を介して雰囲気ガス供給源15に接続されているとともに、空気弁10A〜10Cおよび空気ファン14を介して空気供給経路に接続されている。
【0015】
上記第1蓄熱室3A〜3Cには、それぞれバーナ装置2A〜2Cが取り付けられており、該バーナ装置2A〜2Cは燃焼ガスの供給を制御する燃焼ガス制御弁6A〜6Cを介して燃焼ガス供給源(図示しない)に接続されている。また、このバーナ装置2A〜2Cの燃焼室5A〜5Cは加熱炉20の内部に雰囲気ガス通路22A〜22Cを介して連通している。
【0016】
前記雰囲気ガス供給源15は、共通の雰囲気ガスタンク16を備える。この雰囲気ガスタンク16は、前記雰囲気ガス回収弁9A〜9Cおよび雰囲気ガス回収ファン13、さらにCO2除去装置19を介して前記第2蓄熱室4A〜4Bに接続されている。また、上記雰囲気ガスタンク16は、O2除去装置17、雰囲気ガス吹き込みファン12さらには雰囲気ガス吹き込み弁8A〜8Cを介して各蓄熱式加熱器1A〜1Cの第1蓄熱室3A〜3Cに接続されている。さらにこの雰囲気ガスタンク16には、加熱炉20からの排気分を補う雰囲気ガス補給経路が接続されている。
【0017】
上記蓄熱式雰囲気ガス加熱装置は、さらに雰囲気ガスタンク16、O2除去装置17、雰囲気ガス吹き込みファン12から雰囲気ガス吹き込み弁8A〜8Cに至る経路から分岐し、冷却ガス吹き込み弁21A〜21Cを経て前記第1蓄熱室5A〜5Cから炉20に至る雰囲気ガス通路22A〜22Cに接続されている。
【0018】
上記設備の作動状態の概略を以下に説明する。図1に示す状態は、左端の蓄熱式加熱器(以下第1の蓄熱式加熱器という)1A系が燃焼状態であり、中央の蓄熱式加熱器(以下第2の蓄熱式加熱器という)1B系が雰囲気ガス加熱状態であり、右端の蓄熱式加熱器(以下第3の蓄熱式加熱器という)1Cが雰囲気ガス吸引状態にある。ここに、燃焼状態とは、バーナ装置2A〜2Cを燃焼させている状態であり、雰囲気ガス加熱状態とは、雰囲気ガスを加熱しそれを炉内に供給している状態であり、また、雰囲気ガス吸引状体とは雰囲気ガスを加熱炉内から吸引している状態をいう。
【0019】
この状態で、第1の蓄熱式加熱器1A系ではバーナ装置2Aが燃焼状態であり、第1蓄熱室3Aが蓄熱状態になっている。その際、バーナー装置2Aには、第2蓄熱器4Aで予熱された空気が供給されている。第2の蓄熱式加熱器1B系では、それまでの燃焼状態にあった第1蓄熱室3Bに雰囲気ガス供給源15から雰囲気ガスを通し、それを加熱して加熱炉20に供給している。雰囲気ガス吸引状態にある蓄熱式加熱器1C系では、第2蓄熱室4Cに加熱炉内の雰囲気ガスを通してその顕熱を蓄熱する。なお、第1蓄熱室3C、第2蓄熱室4Bは待機中である。
【0020】
この状態を継続すると、雰囲気ガス加熱状態にある第2の第1蓄熱式加熱器1Bから加熱炉20内に供給される雰囲気ガス温度は次第に低下する。一方、燃焼状態にある第1の蓄熱式加熱器1Aの第1蓄熱室3Aの温度が次第に上昇する。そこで、上記温度が一定の限界値に達したとき、あるいは、所定時間を経過したときにはそれまで燃焼状態にあった第1の蓄熱式加熱器1A系を雰囲気ガス加熱状態に、加熱状態にあった第2の蓄熱式加熱器1B系を雰囲気ガス吸引状態に切り替える。また、第3の蓄熱式加熱器1C系を燃焼状態に切り替える。これにより、再び高温の雰囲気ガスを加熱炉20内に供給することが可能になる。上記状態を継続した後、例えば加熱炉20へ供給する雰囲気ガス温度が限界値以下となったとき、第1の蓄熱式加熱器1A系を吸引状態に、第2の蓄熱式加熱器1B系を燃焼状態に、第3の蓄熱式加熱器1C系を加熱状態にする。
【0021】
上記操作を順次所定のタイミングで周期的に繰り返すことにより連続的に加熱された雰囲気ガスを加熱炉20内に供給することができる。しかしながら、加熱炉20内に供給される雰囲気ガスの温度は上記説明から明らかなように一定の幅で周期的に変動する。本発明においては、この問題を解決するため、雰囲気ガス加熱状態の蓄熱式加熱器の第1蓄熱室から排出される雰囲気ガスに低温の温度調整用の冷却ガスを混ずることとする。
【0022】
図1を用い、加熱状態にある蓄熱式加熱器1B系から炉20に供給される雰囲気ガスの温度制御を例にとって説明すれば、第1蓄熱室3Bから加熱炉20に供給される高温雰囲気ガスに、雰囲気ガスタンク16から冷却ガス吹き込み弁21Bを経由して、雰囲気ガス通路22Bに冷却ガスを吹き込み、加熱炉20に供給される雰囲気ガス温度をほぼ一定に維持するようその量を調整する。この操作は、上記切替操作毎に加熱状態にある蓄熱式加熱器に対して行われ、したがって、各蓄熱式加熱器1A系〜1C系の各雰囲気ガス通路22A〜22Cには雰囲気ガスタンク16から冷却ガスをバイパスして流すための冷却ガス供給口23A〜23Cが設けられている。
【0023】
上記温度調整ガスの吹き込み量の調整は、公知の種々の手段をとることが可能であるが、図2に示すフィードフォワード方式あるいは図3に示すフィードバック方式をとるのが好ましい。あるいは、これらの方式を併用することもできる。
【0024】
図2は、フィードフォワード方式による加熱雰囲気ガス温度の制御システムを蓄熱式加熱器1Bについて示した概念図である。ここに示されているように、蓄熱式加熱器1Bを構成する第1蓄熱室3Bの雰囲気ガス通路22B内に、第1蓄熱室出側ガスの温度を測定する測定器を設け、その測定結果をガス流量調節装置34Bに入力するようになっている。ガス流量調節装置34Bは加熱炉20に供給すべきガスの温度および量に基づき第1蓄熱室3Bからのガス量および温度調整ガス量を演算し、第1蓄熱室ガス流量調節弁31Bおよび冷却ガス流量調節弁32Bの開度を調整制御する。
【0025】
その場合、上記ガス流量(Q)、ガス温度(T)および比熱(Cp)の間には
t・Tg・Cpg=Qr・Tr・Cpr+Qc・Tc・Cpc
t=Qr+Qc
の関係を満足するようにし、一定の温度および流量の加熱ガスが加熱炉に流入するようにするのがよい。
ここにQt:混合ガス流量
g:混合ガス温度
Cpg:混合ガス定圧比熱
r:第2蓄熱室出側ガス流量
r:第2蓄熱室出側ガス温度
Cpr:第2蓄熱室出側ガス定圧比熱
c:冷却ガス流量
c:冷却ガス温度
Cpc:冷却ガス定圧比熱
である。
【0026】
図3は、フィードバック方式による加熱雰囲気ガス温度の制御システムを蓄熱式加熱器1Bについて示した概念図である。ここに示されているように、蓄熱式加熱器1Bから炉20に至る雰囲気ガス通路22Bに炉20に供給される雰囲気ガス、すなわち、蓄熱室3Aから排出される高温ガスと冷却ガス供給口から投入される冷却ガスの混合ガスの温度を測定する測定器を設け、その測定結果をガス流量調節装置34Bに入力するようになっている。ガス流量調節装置34Bは加熱炉20に供給すべきガスの温度および量に基づき第1蓄熱室3Bからのガス量および温度調整ガス量を演算し、第1蓄熱室ガス流量調節弁31Bおよび冷却ガス流量調節弁32Bの開度を調整制御する。
【0027】
従来蓄熱式加熱器から供給されるガス温度が周期的に変動し、最大では約200℃に達していたが、ていたものが、本発明により、変動幅は著しく減少し、特に前記フィードフォワード制御など制御形式を適切にとった場合は、変動幅がほぼ±5℃となった。
【0028】
以上、本発明の実施形態を、その最も代表的な形式について説明したが、本発明の適用はこれに留まるものではなく、例えば、雰囲気ガスについて還元ガスを用いることを妨げない。また、冷却ガスの供給について、本例にあるように加熱ガス経路から分岐するのではなく、別個独立に設けた冷却ガス供給経路から予め温度を調整したガスを供給するようにしても良い。また、本例では、加熱された雰囲気ガスは加熱炉に供給されているが、特に用途が限定されるものではなく、例えば、製鋼用のタンディッシュ加熱に用いるようにしても良い。
【0029】
【発明の効果】
本発明は、上記のように、蓄熱式加熱器から排出されるガス温度を冷却ガスによって温度調整して加熱炉などに供給するようにしたから、高い熱効率を維持しながら加熱炉などに供給される雰囲気ガス温度を極めて均一にすることができる。
【図面の簡単な説明】
【図1】 本発明に係る雰囲気加熱方法を実施するための蓄熱式雰囲気ガス加熱装置の概略構成図である。
【図2】 フィードフォワード方式による加熱ガス温度の制御システムの概念図である。
【図3】 フィードバック方式による加熱ガス温度の制御システムの概念図である。
【符号の説明】
1A〜1C:蓄熱式加熱器
2A〜2C:バーナ装置
3A〜3C:第1蓄熱室
4A〜4C:第2蓄熱室
5A〜5C:燃焼室
6A〜6C:燃焼ガス制御弁
7A〜7C:排気弁
8A〜8C:雰囲気ガス吹き込み弁
9A〜9C:雰囲気ガス回収弁
10A〜10C:空気弁
11:排気ファン
12:雰囲気ガス吹き込みファン
13:雰囲気ガス回収ファン
14:空気ファン
15:雰囲気ガス供給源
16:雰囲気ガスタンク
17:O2除去装置
19:CO2除去装置
20:加熱炉
21A〜21C:冷却ガス吹き込み弁
22A〜22C:雰囲気ガス通路
23A〜23C:冷却ガス供給口
31B:第1蓄熱室ガス流量調節弁
32B:冷却ガス流量調節弁
33B:第1蓄熱室ガス出側温度測定器
34B:ガス流量調節装置
35B:混合ガス温度測定器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas heating method and apparatus for heating an atmospheric gas for heating supplied to a heating furnace or the like, and more particularly includes three or more regenerative heaters, which are in a combustion state, an atmospheric gas heating state, and an atmospheric gas. The present invention relates to a method for adjusting the temperature of an atmospheric gas in a regenerative gas heating apparatus that sequentially switches the order of suction and continuously supplies heated atmospheric gas, and an adjustment / control device thereof.
[0002]
[Prior art]
As heating methods for heating steel materials, etc. in a non-oxidizing or reducing atmosphere, methods such as a radiant tube method, a direct flame reduction heating method, and a two-layer atmosphere combustion method have been proposed and adopted depending on the application. In recent years, a method has been proposed in which a heated atmosphere gas is directly supplied to a heating furnace, whereby the steel material is efficiently heated under a desired atmosphere. A typical example is the means proposed in International Publication No. WO98 / 38344.
[0003]
This means is a regenerative atmospheric gas heating method in which the atmospheric gas is heated using three or more regenerative heaters including a burner device and a heat storage chamber provided in the exhaust passage of the combustion exhaust gas from the burner device. In at least one or more regenerative heaters among the three or more regenerative heaters, the burner device is burned, and only the combustion exhaust gas or only the combustion exhaust gas is exhausted through the heat storage chamber. A combustion state in which heat is stored in the heat storage chamber, and an atmosphere gas supply state in which the atmosphere gas is heated and supplied through the atmosphere gas in at least one other heat storage heater, and at least one other heat storage heater is used. In the regenerative heater, the atmospheric gas is sucked in, and each of these regenerative heaters is sequentially switched in the order of the combustion state, the atmospheric gas heating state, and the atmospheric gas suction state. Instead it is a means to keep continuously supplying heated ambient gas.
[0004]
[Problems to be solved by the invention]
By the above proposal, it is possible to continuously supply the heated atmospheric gas and to continuously recover the surplus atmospheric gas and reuse it for the next atmospheric gas heating supply, thereby improving the thermal efficiency. There are advantages such that heating at a low running cost is possible by improving the temperature and reusing resources (atmospheric gas).
[0005]
However, when the atmospheric gas is heated and supplied using the above means, the temperature of the atmospheric gas supplied to the heating furnace is a period during which the atmospheric gas is heated and supplied through the atmospheric gas into the heat storage chamber of one regenerative heater. Decreases gradually. Next, when the heating of the atmospheric gas is switched as in another heat storage chamber, it rises again, but it falls again as time passes. Since such a cycle is repeated, when the cold-rolled steel sheet is continuously heated by the above means, the steel sheet temperature varies in the conveying direction (longitudinal direction) of the steel sheet, and thus it is difficult to obtain a steel sheet having uniform characteristics. There was.
[0006]
The present invention comprises three or more heat storage heaters as described above, which are sequentially switched in the order of the combustion state, the atmospheric gas heating state, and the atmospheric gas suction state, and continuously supply the heated atmospheric gas. The objective is to solve the problem of gas heating devices, that is, the problem that the temperature of the heated atmospheric gas fluctuates in time series, thereby suppressing the time series variation of the heating temperature in continuous heating of steel strips, etc. The purpose is to do.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have conceived of adjusting the temperature of the atmospheric gas supplied to the heating furnace by mixing the cooling gas with the atmospheric gas discharged from the heat storage chamber in the atmospheric gas heating state. The present invention has been completed. Specifically, the present invention includes a first heat storage chamber that is heated and stored by combustion exhaust gas from a burner device and a second heat storage chamber that is provided in the suction path for the atmosphere gas, as a method for adjusting the heating temperature of the atmosphere gas. Use three or more regenerative heaters, and heat each of the regenerative heaters in order to continuously supply heated atmospheric gas by sequentially switching the combustion state, the atmospheric gas heating state, and the atmospheric gas suction state. In the supply method, the cooling gas is mixed with the atmospheric gas discharged from the first heat storage chamber of the regenerative heater in the atmospheric gas heating state.
[0008]
Further, the present invention provides a heat storage type atmospheric gas heating temperature adjusting device for carrying out the above atmospheric gas heating temperature adjusting method, a combustion burner, and a first heat storage chamber provided in an exhaust path of combustion exhaust gas from the burner. And three or more regenerative heaters each including a second heat storage chamber provided in the atmospheric gas suction path, and each of the regenerative heaters is in order of a combustion state, an atmospheric gas heating state, and an atmospheric gas suction state. In the regenerative atmospheric gas heating apparatus that continuously supplies the atmospheric gas heated by switching sequentially, a cooling gas supply port is provided in a passage from the first thermal storage chamber of the regenerative heater to the heating facility. .
[0009]
Further, in the above-mentioned apparatus, the atmosphere is first regenerator outlet side gas temperature measuring device placed in the gas passage, a first regenerator gas flow control valve is installed in the atmospheric gas supply path to the first heat storage chamber, and A cooling gas flow rate adjustment valve is installed in the cooling gas supply path leading to the cooling gas supply port provided in the atmospheric gas passage ,
Based on the temperature signal of the first heat storage chamber outlet gas temperature measuring device,
Q t · T g · Cp g = Q r · T r · Cp r + Q c · T c · Cp c
Q t = Q r + Q c
As the gas flow rate control device for controlling the first regenerator gas flow control valve and the cooling gas flow rate control valve so as to satisfy is installed, always maintained at the target temperature feed gas temperature to the heating furnace or the like It is preferable to provide a control mechanism that performs this.
Here Q t: flow rate of the mixed gas T g: mixed gas temperature Cp g: mixed gas pressure specific heat Q r: first regenerator outlet side gas flow T r: first regenerator outlet side gas temperature Cp r: first regenerative chamber out-side gas specific heat at constant pressure Q c: cooling gas flow rate T c: cooling gas temperature Cp c: cooling gas specific heat at constant pressure [0010]
This invention replaces with the said control method, and is mixed gas which measures the temperature of the mixed gas of the atmospheric gas supplied from the said 1st thermal storage chamber to the said atmospheric gas channel, and the cooling gas supplied from the said cooling gas supply port A cooling gas which is provided with a temperature measuring device, a first heat storage chamber gas flow rate adjustment valve is installed in the atmosphere gas supply path to the first heat storage chamber , and reaches the cooling gas supply port provided in the atmosphere gas passage A cooling gas flow control valve is installed in the supply path ,
A gas flow rate control device that controls the first heat storage chamber gas flow rate control valve and the cooling gas flow rate control valve based on the temperature measurement result of the mixed gas temperature measuring device so as to maintain the temperature based on the measurement result at a target value. It can also be installed .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of a regenerative atmosphere gas heating apparatus for carrying out the atmosphere heating method according to the present invention.
[0012]
As apparent from FIG. 1, three regenerative heaters 1 </ b> A to 1 </ b> C are attached to the heating furnace 20 as one set. Each of these regenerative heaters 1A to 1C has first heat storage chambers 3A to 3C and second heat storage chambers 4A to 4C. Each of the heat storage chambers 3A to 3C and 4A to 4C is filled with a spherical or cylindrical heat storage body made of, for example, ceramics.
[0013]
One of the first heat storage chambers 3 </ b> A to 3 </ b> C is opened inside the furnace 20, thereby forming atmospheric gas passages 22 </ b> A to 22 </ b> C. The other one is connected to the exhaust path via the exhaust valves 7A to 7C and the exhaust fan 11, and is also connected to the atmospheric gas supply source 15 as will be described later.
[0014]
On the other hand, the second heat storage chambers 4A to 4C are connected to the atmospheric gas supply source 15 via the atmospheric gas recovery valves 9A to 9C and the atmospheric gas recovery fan 13, respectively, and the air valves 10A to 10C and the air fan 14 are connected. Via the air supply path.
[0015]
Burner devices 2A to 2C are attached to the first heat storage chambers 3A to 3C, respectively, and the burner devices 2A to 2C supply combustion gas via combustion gas control valves 6A to 6C for controlling supply of combustion gas. Connected to a source (not shown). In addition, the combustion chambers 5A to 5C of the burner devices 2A to 2C communicate with the inside of the heating furnace 20 through the atmospheric gas passages 22A to 22C.
[0016]
The atmospheric gas supply source 15 includes a common atmospheric gas tank 16. The atmospheric gas tank 16 is connected to the second heat storage chambers 4A to 4B via the atmospheric gas recovery valves 9A to 9C, the atmospheric gas recovery fan 13, and the CO 2 removal device 19. The atmosphere gas tank 16 is connected to the first heat storage chambers 3A to 3C of the heat storage heaters 1A to 1C via the O 2 removal device 17, the atmosphere gas blowing fan 12, and the atmosphere gas blowing valves 8A to 8C. ing. Further, an atmospheric gas supply path for supplementing the exhaust gas from the heating furnace 20 is connected to the atmospheric gas tank 16.
[0017]
The regenerative atmospheric gas heating device further branches from the atmospheric gas tank 16, the O 2 removing device 17, the path from the atmospheric gas blowing fan 12 to the atmospheric gas blowing valves 8A to 8C, and passes through the cooling gas blowing valves 21A to 21C. The first heat storage chambers 5 </ b> A to 5 </ b> C are connected to the atmospheric gas passages 22 </ b> A to 22 </ b> C that reach the furnace 20.
[0018]
An outline of the operating state of the equipment will be described below. The state shown in FIG. 1 is that the leftmost regenerative heater (hereinafter referred to as the first regenerative heater) 1A system is in a combustion state, and the central regenerative heater (hereinafter referred to as the second regenerative heater) 1B. The system is in the atmospheric gas heating state, and the rightmost regenerative heater (hereinafter referred to as the third regenerative heater) 1C is in the atmospheric gas suction state. Here, the combustion state is a state where the burner devices 2A to 2C are combusted, and the atmospheric gas heating state is a state where the atmospheric gas is heated and supplied to the furnace, and the atmosphere A gas suction-like body means a state where atmospheric gas is sucked from the inside of the heating furnace.
[0019]
In this state, in the first heat storage heater 1A system, the burner device 2A is in the combustion state, and the first heat storage chamber 3A is in the heat storage state. At that time, the air preheated by the second heat accumulator 4A is supplied to the burner device 2A. In the second regenerative heater 1B system, the atmospheric gas is supplied from the atmospheric gas supply source 15 to the first heat storage chamber 3B that has been in the combustion state so far, and is heated and supplied to the heating furnace 20. In the regenerative heater 1C system in the atmosphere gas suction state, the sensible heat is stored in the second heat storage chamber 4C through the atmosphere gas in the heating furnace. The first heat storage chamber 3C and the second heat storage chamber 4B are on standby.
[0020]
If this state is continued, the atmospheric gas temperature supplied into the heating furnace 20 from the second first regenerative heater 1B in the atmospheric gas heating state gradually decreases. On the other hand, the temperature of the first heat storage chamber 3A of the first heat storage heater 1A in the combustion state gradually increases. Therefore, when the temperature reaches a certain limit value or when a predetermined time has elapsed, the first regenerative heater 1A system that has been in the combustion state until then has been heated to the atmospheric gas heating state. The second regenerative heater 1B system is switched to the atmospheric gas suction state. Further, the third regenerative heater 1C system is switched to the combustion state. Thereby, it becomes possible to supply the high-temperature atmosphere gas into the heating furnace 20 again. After the above state is continued, for example, when the ambient gas temperature supplied to the heating furnace 20 is lower than the limit value, the first regenerative heater 1A system is brought into the suction state, and the second regenerative heater 1B system is The 3rd heat storage type heater 1C system is made into a heating state in the combustion state.
[0021]
The atmospheric gas heated continuously can be supplied into the heating furnace 20 by repeating the above operations periodically at predetermined timing. However, as is clear from the above description, the temperature of the atmospheric gas supplied into the heating furnace 20 periodically varies with a certain width. In the present invention, in order to solve this problem, a low-temperature cooling gas for temperature adjustment is mixed with the atmospheric gas discharged from the first heat storage chamber of the regenerative heater in the atmospheric gas heating state.
[0022]
The temperature control of the atmospheric gas supplied from the regenerative heater 1B system in the heated state to the furnace 20 will be described as an example with reference to FIG. 1, and the high temperature atmospheric gas supplied from the first heat storage chamber 3B to the heating furnace 20 will be described. In addition, the cooling gas is blown into the atmospheric gas passage 22B from the atmospheric gas tank 16 via the cooling gas injection valve 21B, and the amount of the atmospheric gas supplied to the heating furnace 20 is adjusted so as to be kept substantially constant. This operation is performed on the regenerative heater in a heated state every time the switching operation is performed. Therefore, the ambient gas passages 22A to 22C of each of the regenerative heaters 1A to 1C are cooled from the ambient gas tank 16. Cooling gas supply ports 23A to 23C for bypassing and flowing the gas are provided.
[0023]
Various adjustments of the temperature adjusting gas can be performed by using various known means, but it is preferable to use the feed forward system shown in FIG. 2 or the feedback system shown in FIG. Alternatively, these methods can be used in combination.
[0024]
FIG. 2 is a conceptual view showing a control system for a heating atmosphere gas temperature by a feed-forward method for the regenerative heater 1B. As shown here, a measuring device for measuring the temperature of the first heat storage chamber outlet gas is provided in the atmosphere gas passage 22B of the first heat storage chamber 3B constituting the heat storage heater 1B, and the measurement result Is input to the gas flow rate adjusting device 34B. The gas flow rate adjusting device 34B calculates the gas amount and the temperature adjustment gas amount from the first heat storage chamber 3B based on the temperature and amount of the gas to be supplied to the heating furnace 20, and the first heat storage chamber gas flow rate adjustment valve 31B and the cooling gas. The opening degree of the flow control valve 32B is adjusted and controlled.
[0025]
In that case, the gas flow rate (Q), the gas temperature (T) and between the specific heat (Cp) Q t · T g · Cp g = Q r · T r · Cp r + Q c · T c · Cp c
Q t = Q r + Q c
It is preferable that the heating gas having a constant temperature and flow rate flows into the heating furnace.
Where Q t : mixed gas flow rate T g : mixed gas temperature Cp g : mixed gas constant pressure specific heat Q r : second heat storage chamber outlet side gas flow rate T r : second heat storage chamber outlet side gas temperature Cp r : second heat storage chamber exit-side gas pressure specific heat Q c: cooling gas flow T c: cooling gas temperature Cp c: a cooling gas specific heat at constant pressure.
[0026]
FIG. 3 is a conceptual diagram showing the control system for the heating atmosphere gas temperature by the feedback method for the regenerative heater 1B. As shown here, the atmospheric gas supplied to the furnace 20 to the atmospheric gas passage 22B from the regenerative heater 1B to the furnace 20, that is, from the high temperature gas and cooling gas supply port discharged from the heat storage chamber 3A A measuring device for measuring the temperature of the mixed gas of the cooling gas to be input is provided, and the measurement result is input to the gas flow rate adjusting device 34B. The gas flow rate adjusting device 34B calculates the gas amount and the temperature adjustment gas amount from the first heat storage chamber 3B based on the temperature and amount of the gas to be supplied to the heating furnace 20, and the first heat storage chamber gas flow rate adjustment valve 31B and the cooling gas. The opening degree of the flow control valve 32B is adjusted and controlled.
[0027]
Conventionally, the temperature of the gas supplied from the regenerative heater has periodically fluctuated, and has reached about 200 ° C. at the maximum. However, according to the present invention, the fluctuation range is remarkably reduced. When the control format was properly taken, the fluctuation range was approximately ± 5 ° C.
[0028]
As mentioned above, although embodiment of this invention was described about the most typical form, application of this invention does not stop in this, For example, it does not prevent using reducing gas about atmospheric gas. As for the supply of the cooling gas, instead of branching from the heating gas path as in this example, a gas whose temperature has been adjusted in advance may be supplied from a cooling gas supply path provided separately and independently. Moreover, in this example, although the heated atmospheric gas is supplied to the heating furnace, the application is not particularly limited, and for example, it may be used for tundish heating for steel making.
[0029]
【The invention's effect】
In the present invention, as described above, the gas temperature discharged from the regenerative heater is adjusted to the temperature by the cooling gas and supplied to the heating furnace or the like, so that it is supplied to the heating furnace or the like while maintaining high thermal efficiency. The atmospheric gas temperature can be made extremely uniform.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a regenerative atmosphere gas heating apparatus for carrying out an atmosphere heating method according to the present invention.
FIG. 2 is a conceptual diagram of a heating gas temperature control system using a feed-forward method.
FIG. 3 is a conceptual diagram of a heating gas temperature control system using a feedback method.
[Explanation of symbols]
1A to 1C: Regenerative heaters 2A to 2C: Burner devices 3A to 3C: First heat storage chambers 4A to 4C: Second heat storage chambers 5A to 5C: Combustion chambers 6A to 6C: Combustion gas control valves 7A to 7C: Exhaust valves 8A to 8C: Atmospheric gas blowing valves 9A to 9C: Atmospheric gas recovery valves 10A to 10C: Air valve 11: Exhaust fan 12: Atmospheric gas blowing fan 13: Atmospheric gas recovery fan 14: Air fan 15: Atmospheric gas supply source 16: Atmospheric gas tank 17: O 2 removing device 19: CO 2 removing device 20: heating furnaces 21A to 21C: cooling gas injection valves 22A to 22C: atmospheric gas passages 23A to 23C: cooling gas supply port 31B: first heat storage chamber gas flow rate adjustment Valve 32B: Cooling gas flow rate adjusting valve 33B: First heat storage chamber gas outlet temperature measuring device 34B: Gas flow rate adjusting device 35B: Mixed gas temperature measuring device

Claims (4)

バーナ装置からの燃焼排ガスにより加熱・蓄熱される第1蓄熱室と雰囲気ガスの吸引経路に設けられた第2蓄熱室を有する蓄熱式加熱器を3基以上用い、上記各蓄熱式加熱器を燃焼状態、雰囲気ガス加熱状態、雰囲気ガス吸引状態の順に順次切り替えて加熱された雰囲気ガスを連続的に供給する雰囲気ガスの加熱・供給方法において、
前記雰囲気ガス加熱状態の蓄熱式加熱器の第1蓄熱室から排出される雰囲気ガスに冷却ガスを混ずることを特徴とする雰囲気ガスの加熱温度調整方法。
Three or more regenerative heaters having a first heat accumulator heated and stored by combustion exhaust gas from a burner device and a second heat accumulator provided in an atmosphere gas suction path are used to burn each of the regenerator heaters. In the method for heating and supplying the atmospheric gas, the heated atmospheric gas is continuously switched by sequentially switching the state, the atmospheric gas heating state, and the atmospheric gas suction state in this order.
A method for adjusting a heating temperature of an atmospheric gas, wherein a cooling gas is mixed with the atmospheric gas discharged from the first heat storage chamber of the regenerative heater in the atmospheric gas heating state.
燃焼バーナと、当該バーナからの燃焼排ガスの排気経路に設けられた第1蓄熱室と、雰囲気ガスの吸引経路に設けられた第2蓄熱室を備えてなる蓄熱式加熱器を3基以上備え、上記各蓄熱式加熱器を燃焼状態、雰囲気ガス加熱状態、雰囲気ガス吸引状態の順に順次切り替えて加熱された雰囲気ガスを連続的に供給する蓄熱式雰囲気ガス加熱装置において、
前記蓄熱式加熱器の第1蓄熱室から加熱設備に至る雰囲気ガス通路に冷却ガス供給口を設けてなる蓄熱式雰囲気ガスの加熱温度調整装置。
Three or more regenerative heaters comprising a combustion burner, a first heat storage chamber provided in the exhaust path of the combustion exhaust gas from the burner, and a second heat storage chamber provided in the suction path for the atmospheric gas, In the regenerative atmospheric gas heating device that continuously supplies the heated atmospheric gas by sequentially switching the respective regenerative heaters in the order of the combustion state, the atmospheric gas heating state, and the atmospheric gas suction state,
An apparatus for adjusting a heating temperature of a regenerative atmospheric gas, wherein a cooling gas supply port is provided in an atmospheric gas passage extending from a first thermal storage chamber to a heating facility of the regenerative heater.
前記雰囲気ガス通路に第1蓄熱室出側ガス温度測定器が設置され、前記第1蓄熱室への雰囲気ガス供給経路に第1蓄熱室ガス流量調節弁が設置され、かつ、前記雰囲気ガス通路に設けられた冷却ガス供給口に至る冷却ガス供給経路に冷却ガス流量調節弁が設置されるとともに、
前記第1蓄熱室出側ガス温度測定器の温度信号に基づき、
t・Tg・Cpg=Qr・Tr・Cpr+Qc・Tc・Cpc
t=Qr+Qc
を満足するように前記第1蓄熱室ガス流量調節弁および前記冷却ガス流量調節弁を制御するガス流量調節装置が設置されていることを特徴とする請求項2記載の蓄熱式雰囲気ガスの加熱温度調整装置。
ここにQt:混合ガス流量
g:混合ガス温度
Cpg:混合ガス定圧比熱
r:第1蓄熱室出側ガス流量
r:第1蓄熱室出側ガス温度
Cpr:第1蓄熱室出側ガス定圧比熱
c:冷却ガス流量
c:冷却ガス温度
Cpc:冷却ガス定圧比熱
A first heat storage chamber outlet gas temperature measuring device is installed in the atmosphere gas passage, a first heat storage chamber gas flow rate control valve is installed in the atmosphere gas supply path to the first heat storage chamber , and the atmosphere gas passage is provided in the atmosphere gas passage. A cooling gas flow rate adjustment valve is installed in the cooling gas supply path to the provided cooling gas supply port ,
Based on the temperature signal of the first heat storage chamber outlet gas temperature measuring device,
Q t · T g · Cp g = Q r · T r · Cp r + Q c · T c · Cp c
Q t = Q r + Q c
3. The heating temperature of the regenerative atmospheric gas according to claim 2, wherein a gas flow rate control device for controlling the first heat storage chamber gas flow rate control valve and the cooling gas flow rate control valve is installed so as to satisfy Adjustment device.
Here Q t: flow rate of the mixed gas T g: mixed gas temperature Cp g: mixed gas pressure specific heat Q r: first regenerator outlet side gas flow T r: first regenerator outlet side gas temperature Cp r: first regenerative chamber exit-side gas pressure specific heat Q c: cooling gas flow T c: cooling gas temperature Cp c: cooling gas specific heat at constant pressure
前記雰囲気ガス通路に前記第1蓄熱室から供給される雰囲気ガスと前記冷却ガス供給口から供給される冷却ガスとの混合ガスの温度を測定する混合ガス温度測定装置が設置され、前記第1蓄熱室への雰囲気ガス供給経路に第1蓄熱室ガス流量調節弁が設置され、かつ、前記雰囲気ガス通路に設けられた前記冷却ガス供給口に至る冷却ガス供給経路に冷却ガス流量調節弁が設置されるとともに、
前記混合ガス温度測定器の温度測定結果に基づき、該測定結果に基づく温度を目標値に維持するように前記第1蓄熱室ガス流量調節弁および冷却ガス流量調節弁を制御するガス流量調節装置が設置されていることを特徴とする請求項2記載の蓄熱式雰囲気ガスの加熱温度調整装置。
A mixed gas temperature measuring device for measuring the temperature of the mixed gas of the atmospheric gas supplied from the first heat storage chamber and the cooling gas supplied from the cooling gas supply port is installed in the atmosphere gas passage, and the first heat storage A first heat storage chamber gas flow rate adjustment valve is installed in the atmosphere gas supply path to the chamber , and a cooling gas flow rate adjustment valve is installed in the cooling gas supply path leading to the cooling gas supply port provided in the atmosphere gas passage And
A gas flow rate control device that controls the first heat storage chamber gas flow rate control valve and the cooling gas flow rate control valve based on the temperature measurement result of the mixed gas temperature measuring device so as to maintain the temperature based on the measurement result at a target value. The apparatus for adjusting a heating temperature of a regenerative atmosphere gas according to claim 2, wherein the apparatus is installed .
JP32041999A 1999-11-11 1999-11-11 Atmospheric gas heating temperature adjustment method and heating temperature adjustment device Expired - Lifetime JP4385454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32041999A JP4385454B2 (en) 1999-11-11 1999-11-11 Atmospheric gas heating temperature adjustment method and heating temperature adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32041999A JP4385454B2 (en) 1999-11-11 1999-11-11 Atmospheric gas heating temperature adjustment method and heating temperature adjustment device

Publications (2)

Publication Number Publication Date
JP2001131633A JP2001131633A (en) 2001-05-15
JP4385454B2 true JP4385454B2 (en) 2009-12-16

Family

ID=18121257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32041999A Expired - Lifetime JP4385454B2 (en) 1999-11-11 1999-11-11 Atmospheric gas heating temperature adjustment method and heating temperature adjustment device

Country Status (1)

Country Link
JP (1) JP4385454B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104457302A (en) * 2013-09-24 2015-03-25 湖南巴陵炉窑节能股份有限公司 Regenerative combustion device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI115834B (en) * 2004-06-09 2005-07-29 Tamglass Ltd Oy Heating glass panels in heating oven involves heating the glass panel from above and below with convection air or with a combination of convection air and radiation heat, where convection air is heated using heat accumulator
JP5495378B2 (en) * 2010-03-01 2014-05-21 新日鉄住金エンジニアリング株式会社 Method and apparatus for purging exhaust gas piping

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104457302A (en) * 2013-09-24 2015-03-25 湖南巴陵炉窑节能股份有限公司 Regenerative combustion device

Also Published As

Publication number Publication date
JP2001131633A (en) 2001-05-15

Similar Documents

Publication Publication Date Title
US20100119983A1 (en) Regenerator burner
JP4385454B2 (en) Atmospheric gas heating temperature adjustment method and heating temperature adjustment device
JP2009139086A (en) Burner device
JPH11323431A (en) Method and device for controlling temperature of heating furnace
JPH09229354A (en) Heating furnace, method and apparatus for controlling combustion of the same
JP2002115836A (en) Regenerative exhaust gas processing unit
JP2005146347A (en) Hot-blast temperature control method for hot-blast stove
JP2000039143A (en) Combustion control method of heat storage type burner device and burner device therefor
JP3617169B2 (en) Temperature control method for furnace equipped with heat storage combustion device
KR101879078B1 (en) Apparatus for preheating fuel supplied to heating furnace
JPH1047664A (en) Furnace temperature control method for continuous heating furnace
JP3680252B2 (en) How to use a regenerative burner
KR100368830B1 (en) Oxygen supply method for regenerative burner and device
JP3414942B2 (en) heating furnace
JP2003056840A (en) Waste heat using device for industrial furnace and temperature control method for it
JPH11323432A (en) Heating furnace device
JP2001073031A (en) Apparatus for heating atmospheric gas
JP3767414B2 (en) Operation method of regenerative burner furnace and regenerative burner furnace
KR101020358B1 (en) Waste heat recovery Apparatus for reheating furnace
JP2584193B2 (en) Combustion system using a regenerative burner
JP2000097431A (en) Exhaust gas suction quantity control method in regenerative combustion apparatus
JP2000104918A (en) Heat storage combujstion controller
JP2000130745A (en) Operating method for heating furnace
JP2004003712A (en) Burner for generating high temperature gas, and high temperature gas generating method
JPS61207504A (en) Method for controlling combustion in hot stove

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3