JPH09229354A - Heating furnace, method and apparatus for controlling combustion of the same - Google Patents

Heating furnace, method and apparatus for controlling combustion of the same

Info

Publication number
JPH09229354A
JPH09229354A JP8036010A JP3601096A JPH09229354A JP H09229354 A JPH09229354 A JP H09229354A JP 8036010 A JP8036010 A JP 8036010A JP 3601096 A JP3601096 A JP 3601096A JP H09229354 A JPH09229354 A JP H09229354A
Authority
JP
Japan
Prior art keywords
combustion
furnace
unit
heating furnace
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8036010A
Other languages
Japanese (ja)
Other versions
JP3267140B2 (en
Inventor
Munehiro Ishioka
宗浩 石岡
Yoshimichi Hino
善道 日野
Shunichi Sugiyama
峻一 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP03601096A priority Critical patent/JP3267140B2/en
Publication of JPH09229354A publication Critical patent/JPH09229354A/en
Application granted granted Critical
Publication of JP3267140B2 publication Critical patent/JP3267140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Air Supply (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heating furnace, a method and apparatus for controlling the combustion of it which are capable of improving a thermal efficiency. SOLUTION: A heating furnace 1 comprises unit furnaces 1A and 1B provided with regenerative burners 2A to 2D on the side walls thereof. The regenerative burners 2A to 2D respectively comprise regenerators 2a to 2d and nozzles 3a to 3d. The respective unit furnaces 1A and 1B are provided with uptakes 4a and 4b. Thus, the furnace temperature of the heating furnace is uniformly controlled under a zone combustion control for changing the combustion state of the unit furnaces so that a fuel is saved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、加熱炉、その燃焼
制御方法及び燃焼制御装置に関し、詳しくは、ガラスや
アルミニウムなどの溶解炉や鋼材の熱処理炉などに用い
られるバッチ燃焼炉に係り、燃料の節約が可能なゾーン
燃焼による加熱炉、その燃焼制御方法及び燃焼制御装置
に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating furnace, a combustion control method therefor, and a combustion control device, and more particularly, to a batch combustion furnace used in a melting furnace for glass or aluminum, a heat treatment furnace for steel materials, and the like. The present invention relates to a heating furnace by zone combustion capable of saving energy, a combustion control method therefor, and a combustion control device.

【0002】[0002]

【従来の技術】従来、ガラスやアルミニウムなどの溶解
炉や鋼材の加熱炉などに用いられるバッチ燃焼装置で
は、炉内温度が均一になるように燃焼制御が行われる。
このようなバッチ燃焼炉では、排ガスの顕熱を熱回収す
ることなしにそのまま炉外に排出するか、熱交換器(レ
キュペレータ)で熱回収を行って燃焼用空気をせいぜい
600℃程度まで予熱して加熱炉内に供給していた。
2. Description of the Related Art Conventionally, in a batch combustion apparatus used in a melting furnace for glass or aluminum or a heating furnace for steel materials, combustion control is performed so that the temperature in the furnace becomes uniform.
In such a batch-burning furnace, the sensible heat of the exhaust gas is directly discharged to the outside of the furnace without heat recovery, or the heat is recovered by a heat exchanger (recuperator) to preheat combustion air to about 600 ° C at most. Was being supplied to the heating furnace.

【0003】近年、加熱炉では、燃焼用空気の炉内供給
路及び排ガスの炉外排気路にセラミックボールやセラミ
ック製のハニカム構造体などで形成した蓄熱体を設け
て、この蓄熱体を介して燃焼と排ガスの排出とを交互に
行う蓄熱型交番燃焼バーナが備えられている。この蓄熱
型交番燃焼バーナを備える加熱炉では燃焼排ガスの顕熱
を蓄熱体に蓄積し、燃焼用空気を蓄熱体に蓄積した回収
熱によって予熱して加熱炉内に供給するようにし、加熱
炉の熱回収率及び熱効率を改善するようにしている。こ
の種の蓄熱型交番燃焼バーナを備えた加熱装置は、例え
ば、特開平6−257951号公報や特開平7−4
638号公報などに記載されている。
In recent years, in a heating furnace, a heat storage body formed of ceramic balls, a ceramic honeycomb structure, or the like is provided in a combustion air supply passage in the furnace and an exhaust gas exhaust passage in the furnace, and the heat storage body is provided through the heat storage body. A heat storage type alternating combustion burner that alternately performs combustion and exhaust gas emission is provided. In a heating furnace equipped with this heat storage type alternating combustion burner, the sensible heat of the combustion exhaust gas is stored in the heat storage body, and the combustion air is preheated by the recovered heat stored in the heat storage body to be supplied into the heating furnace. The heat recovery rate and the heat efficiency are improved. A heating device provided with this type of regenerative type alternating combustion burner is disclosed, for example, in Japanese Patent Laid-Open No. 6-257951 and Japanese Patent Laid-Open No. 7-4.
No. 638 and the like.

【0004】図4に基づいて、従来の蓄熱型交番燃焼バ
ーナを備えた加熱炉について説明すると、加熱炉1には
一対の蓄熱式バーナ2A,2C、2B,2Dがそれぞれ
設けられている。蓄熱式バーナ2A〜2Dは蓄熱体2a
〜2dとノズル3a〜3dとによってそれぞれ形成され
ている。燃料は制御弁5a〜5dから供給されてノズル
3a〜3dから炉内に噴出させ、蓄熱体を通過した燃焼
用空気と反応させて燃焼させている。燃焼用空気の供給
と排ガスの排出は切換制御弁6a,6bを制御すること
によってなされている。制御弁5a〜5dと切換制御弁
6a,6bは制御装置10により制御されている。ま
た、炉内には温度センサ9が備えられている。
Referring to FIG. 4, a description will be given of a heating furnace equipped with a conventional heat storage type alternating combustion burner. The heating furnace 1 is provided with a pair of heat storage type burners 2A, 2C, 2B and 2D, respectively. The heat storage type burners 2A to 2D are heat storage bodies 2a.
2d and nozzles 3a to 3d, respectively. The fuel is supplied from the control valves 5a to 5d, ejected from the nozzles 3a to 3d into the furnace, and reacts with the combustion air that has passed through the heat storage body to burn it. The supply of combustion air and the discharge of exhaust gas are performed by controlling the switching control valves 6a and 6b. The control valves 5 a to 5 d and the switching control valves 6 a and 6 b are controlled by the control device 10. A temperature sensor 9 is provided inside the furnace.

【0005】同図では蓄熱式バーナ2B,2Cが燃焼状
態であり、蓄熱式バーナ2A,2Dが消火状態にあり、
燃焼排ガスは蓄熱体2a,2dを介して炉外に排出され
ている。所定時間が経過すると、蓄熱式バーナ2B,2
Cは消火して蓄熱式バーナ2A,2Dが燃焼を開始す
る。対となる蓄熱式バーナが燃焼と排ガスの排出を交互
に繰り返して交番燃焼を行って加熱炉内の温度を均一に
している。この蓄熱式バーナ2A〜2Dの燃焼時の発熱
量は等しい。加熱炉に蓄熱型交番燃焼バーナを備えるこ
とにより加熱炉の熱効率は改善されている。
In the figure, the regenerative burners 2B and 2C are in a combustion state, and the regenerative burners 2A and 2D are in a fire extinguishing state.
The combustion exhaust gas is discharged outside the furnace via the heat storage bodies 2a and 2d. When a predetermined time has elapsed, the regenerative burners 2B, 2
C extinguishes, and the regenerative burners 2A and 2D start burning. A pair of regenerative burners alternately repeats combustion and exhaust gas emission to perform alternating combustion to make the temperature in the heating furnace uniform. The calorific values during combustion of the regenerative burners 2A to 2D are equal. The thermal efficiency of the heating furnace is improved by providing the heating furnace with a regenerative alternating combustion burner.

【0006】[0006]

【発明が解決しようとする課題】従来の加熱炉は、熱効
率を改善するために燃焼装置として蓄熱式バーナが用い
られている。蓄熱式バーナは従来のバーナ(蓄熱体を備
えないもの)と比較して省エネルギーが達成できる優れ
た燃焼装置である。しかし、近年、バッチ燃焼炉等の加
熱炉では、更に伝熱効果を改善して燃料の節約がより一
層なし得る加熱炉が望まれており、その伝熱効率の優れ
た燃焼制御方法及び装置が望まれている。本発明は、上
述のような課題に鑑みなされたものであり、熱効率の改
善がなし得る加熱炉、その燃焼制御方法及びその燃焼制
御装置を提供することを目的とするものである。
In a conventional heating furnace, a regenerative burner is used as a combustion device in order to improve thermal efficiency. The heat storage type burner is an excellent combustion device capable of achieving energy saving as compared with a conventional burner (one without a heat storage body). However, in recent years, as a heating furnace such as a batch combustion furnace, a heating furnace capable of further improving the heat transfer effect and further saving the fuel has been desired, and a combustion control method and device having excellent heat transfer efficiency is desired. It is rare. The present invention has been made in view of the above problems, and an object thereof is to provide a heating furnace capable of improving thermal efficiency, a combustion control method thereof, and a combustion control device thereof.

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を達
成するためになされたものであり、請求項1の発明は、
単位炉毎に炉内温度を設定し得る単位炉を備える加熱炉
であって、燃焼時の発熱量の高い単位炉と燃焼時の発熱
量が低いか或いは燃焼による発熱量が零の単位炉との燃
焼状態を切替えながら燃焼制御することを特徴とする加
熱炉である。
Means for Solving the Problems The present invention has been made to achieve the above object, and the invention of claim 1 has the following features.
A heating furnace having a unit furnace capable of setting the furnace temperature for each unit furnace, including a unit furnace having a high calorific value during combustion and a unit furnace having a low calorific value during combustion or a calorific value due to combustion of zero. The heating furnace is characterized in that combustion control is performed while switching the combustion state of.

【0008】上記請求項1の発明は、高温燃焼ゾーン
(燃焼時の発熱量が高い単位炉)と低温燃焼ゾーン(燃
焼時の発熱量が零を含む単位炉)を切替えながら加熱炉
の温度を制御するものであり、伝熱速度は燃焼ガス温度
の4乗の関数として扱えることから、高温になれば飛躍
的に伝熱速度が向上することを意味しており、この高伝
熱速度のポテンシャルを利用して加熱炉を燃焼制御する
ものである。更に説明を加えると、加熱炉を燃焼ガス温
度Tg で均一に加熱するよりも、単位炉毎に、(Tg +
ΔTg )の高温燃焼ゾーンと(Tg −ΔTg )の低温燃
焼ゾーンとを設けて燃焼させることにより、Tg よりも
(Tg +ΔTg )と(Tg −ΔTg )の伝熱速度は燃焼
ガス温度の4乗の関数に依存することから飛躍的に大き
くなる。従って、高温燃焼ゾーンと低温燃焼ゾーンを切
替えて燃焼制御することにより、被加熱物への伝熱効率
が改善されることになる。すなわち、高温燃焼ゾーンと
低温燃焼ゾーンからの被加熱物への全放射伝熱量は、平
均燃焼ガス温度の燃焼ガス放射伝熱量よりも増加するの
で、同一の伝熱量を得るために必要な燃料は、燃焼ガス
温度Tg を均一に加熱するよりも、高温燃焼ゾーンと低
温燃焼ゾーンを分けて燃焼制御する方が燃料の節約とな
り、加熱炉の熱効率が改善できるものである。
According to the first aspect of the present invention, the temperature of the heating furnace is changed while switching between the high temperature combustion zone (unit furnace having a high calorific value during combustion) and the low temperature combustion zone (unit furnace having a calorific value during combustion of zero). Since the heat transfer rate can be treated as a function of the fourth power of the combustion gas temperature, it means that the heat transfer rate is dramatically improved when the temperature becomes high. Is used to control the combustion of the heating furnace. To further explain, rather than uniformly heating the heating furnace at the combustion gas temperature Tg, (Tg +
By providing a high temperature combustion zone of (ΔTg) and a low temperature combustion zone of (Tg-ΔTg) for combustion, the heat transfer rate of (Tg + ΔTg) and (Tg-ΔTg) rather than Tg is the fourth power of the combustion gas temperature. Because it depends on the function, it will be dramatically increased. Therefore, the heat transfer efficiency to the object to be heated is improved by switching the high temperature combustion zone and the low temperature combustion zone to control combustion. That is, the total radiative heat transfer from the high temperature combustion zone and the low temperature combustion zone to the object to be heated is larger than the combustion gas radiative heat transfer at the average combustion gas temperature, so the fuel required to obtain the same heat transfer is In contrast to uniformly heating the combustion gas temperature Tg, controlling combustion by dividing the high temperature combustion zone and the low temperature combustion zone saves fuel and improves the thermal efficiency of the heating furnace.

【0009】また、請求項2の発明は、請求項1の発明
に於いて、単位炉毎に炉内温度を設定し得る単位炉を備
える加熱炉であって、前記単位炉毎に燃焼ガスを排出す
る煙路を設けたことを特徴とする加熱炉であり、上記の
伝熱法則による熱効率の改善に加えて、煙路から排出さ
れる排ガス量によって、高温燃焼ゾーンの単位炉から低
温燃焼ゾーン(特に、燃焼時の発熱量が零)の単位炉側
に燃焼ガスの流れを発生させて燃焼ガスの顕熱を有効に
利用できるようにして熱効率を高めるものできる。
The invention according to claim 2 is the heating furnace according to the invention according to claim 1, which comprises a unit furnace capable of setting the temperature inside the unit furnace, wherein combustion gas is supplied to each unit furnace. It is a heating furnace characterized by providing a smoke path for discharging, in addition to improving the thermal efficiency by the above heat transfer law, depending on the amount of exhaust gas discharged from the smoke path, from the unit furnace of the high temperature combustion zone to the low temperature combustion zone It is possible to improve the thermal efficiency by generating a flow of the combustion gas on the unit furnace side (in particular, the calorific value during combustion is zero) so that the sensible heat of the combustion gas can be effectively used.

【0010】また、請求項3の発明は、請求項1又は2
に記載の発明の加熱炉に於いて、前記加熱炉の各単位炉
間に開口を有する仕切を設けたことを特徴とする加熱炉
であり、各単位炉の独立性を保ちながら、燃焼排ガスの
流動を可能にして熱効率の改善を図ることができる。ま
た、請求項4の発明は、請求項1,2又は3に記載の発
明の加熱炉に於いて、前記単位炉に少なくとも1組の蓄
熱式バーナを備えることを特徴とする加熱炉であり、各
単位炉に少なくとも1組の蓄熱式バーナを備えることに
よって蓄熱式交番燃焼バーナを形成することが可能であ
り、熱効率を高めることができるものである。
[0010] The invention of claim 3 is based on claim 1 or 2.
In the heating furnace of the invention described in, a heating furnace characterized by providing a partition having an opening between each unit furnace of the heating furnace, while maintaining the independence of each unit furnace, It is possible to enable flow and improve thermal efficiency. The invention according to claim 4 is the heating furnace according to any one of claims 1, 2 and 3, wherein the unit furnace is provided with at least one set of regenerative burners, By providing at least one set of regenerative burners in each unit furnace, it is possible to form a regenerative alternating combustion burner and to improve the thermal efficiency.

【0011】また、請求項5の発明は、燃焼装置を備え
る単位炉からなる加熱炉における燃焼制御方法に於い
て、燃焼時の発熱量の高い単位炉と燃焼時の発熱量が低
いか或いは非燃焼状態の単位炉とを一対として炉内温度
を制御するようにし、一対の単位炉の燃焼状態をある時
間間隔で交互に切替えて前記炉内温度を所定温度に設定
することを特徴とする加熱炉の燃焼制御方法であり、高
温燃焼ゾーンと低温燃焼ゾーンを交互に切り換えること
によって、前記加熱炉内温度を所定温度に設定すること
によって熱効率の改善ができる。
According to a fifth aspect of the present invention, there is provided a combustion control method for a heating furnace comprising a unit furnace equipped with a combustion device, wherein the unit furnace having a high calorific value during combustion and the calorific value during a combustion is low or non- The heating is characterized in that the furnace temperature is controlled with a unit furnace in a combustion state as a pair, and the combustion state of the pair of unit furnaces is alternately switched at a certain time interval to set the furnace temperature to a predetermined temperature. This is a method for controlling combustion in a furnace. By alternately switching between a high temperature combustion zone and a low temperature combustion zone, the thermal efficiency can be improved by setting the temperature inside the heating furnace to a predetermined temperature.

【0012】また、請求項6の発明は、燃焼装置を備え
る単位炉からなる加熱炉における燃焼制御方法に於い
て、単位炉の燃焼装置が蓄熱バーナであって、燃焼時の
発熱量の高い単位炉と燃焼時の発熱量が低いか或いは非
燃焼状態の単位炉とを一対として炉内温度を制御するよ
うにし、一対の単位炉の燃焼状態をある時間間隔で交互
に切替えて前記炉内温度を所定温度に設定し、前記燃焼
状態の切替え時間を前記蓄熱バーナによる交番燃焼時間
の整数倍に設定したことを特徴とする加熱炉の燃焼制御
方法であり、ゾーン燃焼の切替え時間を交番燃焼時間の
整数倍に設定して、ゾーン燃焼切替えを蓄熱式バーナの
燃焼サイクルに同期させて燃焼制御することにより、ゾ
ーン毎の蓄熱式バーナの燃焼による熱容量を制御するよ
うにして熱効率の改善を図る燃焼制御方法である。
According to a sixth aspect of the present invention, there is provided a combustion control method for a heating furnace comprising a unit furnace equipped with a combustion device, wherein the combustion device of the unit furnace is a heat storage burner and a unit having a high calorific value during combustion. The furnace temperature is controlled by setting a pair of a furnace and a unit furnace that has a low calorific value during combustion or is in a non-combustion state, and the combustion state of the pair of unit furnaces is alternately switched at a certain time interval. Is a predetermined temperature, the combustion state switching time is a combustion control method of the heating furnace, characterized in that it is set to an integral multiple of the alternating combustion time by the heat storage burner, the zone combustion switching time the alternating combustion time Is set to an integral multiple of 1 and the combustion control is performed by synchronizing the zone combustion switching with the combustion cycle of the heat storage type burner to control the heat capacity by combustion of the heat storage type burner for each zone. A combustion control method to achieve.

【0013】また、請求項7の発明は、燃焼装置を備え
る単位炉からなる加熱炉における燃焼制御方法に於い
て、燃焼時の発熱量の高い単位炉と非燃焼状態の単位炉
を一対として燃焼制御する加熱炉であって、前記単位炉
の燃焼状態をある時間間隔で交互に切替えて前記加熱炉
の炉内温度を制御するとともに、燃焼状態にある単位炉
の燃焼ガスを前記非燃焼状態にある単位炉の煙路から排
出して前記加熱炉の炉内温度を制御することを特徴とす
る加熱炉の燃焼制御方法であり、煙路から燃焼ガスを排
出することにより、燃焼ガスの加熱炉単位炉間の流動が
可能であり、流動燃焼ガスによる熱を利用することがで
きるので、熱効率の改善ができる燃焼制御方法である。
According to a seventh aspect of the present invention, there is provided a combustion control method for a heating furnace comprising a unit furnace equipped with a combustion device, wherein a unit furnace having a high calorific value during combustion and a unit furnace in a non-combustion state are burned as a pair. A heating furnace to be controlled, the combustion state of the unit furnace is alternately switched at a certain time interval to control the temperature inside the heating furnace, and the combustion gas of the unit furnace in the combustion state is set to the non-combustion state. A combustion control method for a heating furnace, characterized in that the temperature inside the heating furnace is controlled by discharging it from a smoke path of a unit furnace. This is a combustion control method that can improve the thermal efficiency because the flow between unit furnaces is possible and the heat from the flowing combustion gas can be used.

【0014】また、請求項8の発明は、燃焼装置を備え
る単位炉からなる加熱炉における燃焼方法において、前
記加熱炉を一対の単位炉として燃焼制御する前記燃焼状
態の切替えのための時間間隔を5乃至30分の間に設定
したことを特徴とする請求項5乃至7の何れかに記載の
加熱炉の燃焼制御方法であり、ゾーンの燃焼切替え時間
を余り長くすると、被加熱物の温度の均一化が達成出来
ないが、また、短すぎるとゾーン燃焼による伝熱効果が
達成できないことから、加熱炉の熱慣性や炉熱損失と被
加熱物の熱容量等で決まる値であり、通常のバッチ燃焼
炉を想定し、下限値は加熱炉の熱慣性が2〜3分程度で
あることから概ね5分に設定し、上限値は被加熱物の熱
容量や炉熱損失等で決まり概ね30分に設定する。この
ような観点から5乃至30分の範囲にゾーン燃焼の切替
え時間(周期)を設定することにより加熱炉の熱効率が
改善できる燃焼制御方法である。
According to an eighth aspect of the present invention, in a combustion method in a heating furnace comprising a unit furnace equipped with a combustion device, a time interval for switching the combustion state in which the heating furnace is combustion controlled as a pair of unit furnaces is set. The combustion control method for a heating furnace according to any one of claims 5 to 7, characterized in that the temperature is set to 5 to 30 minutes. Even if homogenization cannot be achieved, and if it is too short, the heat transfer effect due to zone combustion cannot be achieved.Therefore, it is a value determined by the thermal inertia of the heating furnace, the furnace heat loss, the heat capacity of the heated object, etc. Assuming a combustion furnace, the lower limit is set to about 5 minutes because the thermal inertia of the heating furnace is about 2 to 3 minutes, and the upper limit is determined by the heat capacity of the object to be heated, furnace heat loss, etc., and is set to about 30 minutes. Set. From this point of view, the combustion control method is capable of improving the thermal efficiency of the heating furnace by setting the zone combustion switching time (cycle) in the range of 5 to 30 minutes.

【0015】また、請求項9の発明は、燃焼装置を備え
る単位炉からなる加熱炉における燃焼制御装置に於い
て、燃焼状態とする第1単位炉と燃焼時の発熱量が低い
か或いは非燃焼状態とする第2単位炉の燃焼状態をある
時間間隔で交互に切替える燃焼切替制御手段と、前記第
1単位炉の燃焼ガスを前記第2単位炉側から炉外に排出
して燃焼制御する排ガス排出手段とを備えることを特徴
とする加熱炉の燃焼制御装置であり、燃焼制御装置によ
って、設定した排ガス量を蓄熱式バーナの場合は蓄熱体
を通し、また、煙路から排出して最適な熱効率を達成す
るものであり、燃焼切替制御手段によって設定される切
替え時間の設定をし、且つ、排ガス排出手段により蓄熱
式バーナから排気される排ガス排出量や煙路から排気さ
れる排ガス排出量を制御して最適な燃焼制御を達成する
ものである。
According to a ninth aspect of the present invention, there is provided a combustion control device for a heating furnace comprising a unit furnace equipped with a combustion device, wherein the calorific value at the time of combustion with the first unit furnace which is in a combustion state is low or non-combustion. Combustion switching control means for alternately switching the combustion state of the second unit furnace in a certain state at certain time intervals, and exhaust gas for controlling combustion by discharging the combustion gas of the first unit furnace from the second unit furnace side to the outside of the furnace. A combustion control device for a heating furnace characterized by comprising an exhausting means, wherein the combustion control device allows the set exhaust gas amount to pass through a heat storage body in the case of a regenerative burner, and is optimally discharged from a smoke path. In order to achieve thermal efficiency, the switching time set by the combustion switching control means is set, and the exhaust gas exhaust amount exhausted from the regenerative burner and the exhaust gas exhaust amount from the smoke path are set by the exhaust gas exhausting means. It is intended to achieve optimum combustion control to control.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態につい
て図を参照して説明する。本発明の一つは加熱炉に関
し、他の発明は加熱炉の燃焼制御方法及びその燃焼制御
装置に関するものである。図1は、本発明に係る加熱炉
の一実施形態を示す斜視図であり、この加熱炉は特にガ
ラスやアルミニウム等を溶融するバッチ燃焼炉に適した
ものである。加熱炉1は単位炉1A,1Bからなり、単
位炉1Aの炉側壁には、蓄熱体2a,2cが接続された
配管1a,1cが設けられ、配管1a,1cに燃料を噴
射するノズル3a,3cが設けられている。単位炉1B
の側壁には、蓄熱体2b,2dが接続された配管1b,
1dが設けられ、配管1b,1dに燃料を噴射するノズ
ル3b,3dが設けられている。蓄熱式バーナ2A〜2
Dは蓄熱体2a〜2dとノズル3a〜3dとをそれぞれ
組み合わせて形成されている。また、単位炉1A,1B
には余剰排ガスを排出する煙路4a,4bが設けられ、
単位炉1A,1B間には部分的に開口を有する仕切、例
えば炉上部より垂下する仕切りが設けられ、独立して単
位炉内温度を制御し得るようになされている。
Embodiments of the present invention will be described below with reference to the drawings. One of the present inventions relates to a heating furnace, and the other invention relates to a combustion control method and a combustion control apparatus for the heating furnace. FIG. 1 is a perspective view showing an embodiment of a heating furnace according to the present invention, and this heating furnace is particularly suitable for a batch combustion furnace for melting glass, aluminum or the like. The heating furnace 1 is composed of unit furnaces 1A and 1B, and pipes 1a and 1c to which heat storage bodies 2a and 2c are connected are provided on a furnace side wall of the unit furnace 1A, and nozzles 3a for injecting fuel into the pipes 1a and 1c are provided. 3c is provided. Unit furnace 1B
On the side wall of the pipe 1b to which the heat storage bodies 2b and 2d are connected,
1d is provided, and nozzles 3b and 3d for injecting fuel into the pipes 1b and 1d are provided. Heat storage type burners 2A-2
D is formed by combining the heat storage bodies 2a to 2d and the nozzles 3a to 3d, respectively. In addition, unit furnaces 1A, 1B
Is provided with smoke passages 4a and 4b for discharging excess exhaust gas,
A partition partially having an opening, for example, a partition hanging from the upper part of the furnace is provided between the unit furnaces 1A and 1B so that the temperature inside the unit furnace can be controlled independently.

【0017】なお、図1では、仕切が設けられてそれぞ
れに一対の蓄熱式バーナを備える単位炉が2つ設けられ
た加熱炉が図示されているが、2つ以上の単位炉であっ
てもよく、その場合であってもそれぞれの単位炉には少
なくとも一対の蓄熱式バーナと煙路が設けられる。ま
た、図1の実施形態では、単位炉毎に煙路が設けられて
いるが、例えば、単位炉間に渡って燃焼ガスを流動させ
て燃焼制御する以外は、この煙路は必要としない。しか
し、本実施形態は燃焼装置として蓄熱式バーナを用いて
いるが、通常方式のバーナ(蓄熱体を有しないバーナ)
を用いる場合には各単位炉毎に煙路を設ける必要があ
る。
Although FIG. 1 shows a heating furnace provided with two unit furnaces each having a partition and a pair of regenerative burners, a heating furnace having two or more unit furnaces is also shown. Of course, even in that case, each unit furnace is provided with at least a pair of regenerative burners and a flue. Further, in the embodiment of FIG. 1, a smoke passage is provided for each unit furnace, but this smoke passage is not required, for example, except that the combustion gas is flowed across the unit furnaces for combustion control. However, although the present embodiment uses the heat storage type burner as the combustion device, it is a normal type burner (burner having no heat storage body).
When using, it is necessary to provide a smoke path for each unit furnace.

【0018】次に、図2を参照して、上記加熱炉の燃焼
制御装置及び燃焼制御方法について説明する。同図は燃
焼空気、燃料ガス及び燃焼排ガスの配管系と、制御弁、
切替制御弁及び制御ファンの電気系統が示されている。
蓄熱式バーナ2A〜2Dには切替制御弁6a,6bによ
って燃焼空気の供給と燃焼排ガスの排出が制御され、制
御弁5a〜5dを制御することにより、ノズル3a〜3
dから燃料ガスが蓄熱式バーナ2A〜2Dに供給して炉
内に噴出するようになされている。同図の燃焼状態は、
切替制御弁6a,6bから蓄熱式バーナ2B,2Cを介
して炉内に燃焼空気が供給され、制御弁5b,5cは開
かれて燃料ガスがノズル3b,3cを介して炉内に供給
され、制御弁5a,5dは閉じられて燃料ガスは遮断さ
れている。蓄熱体2a,2dから燃焼排ガスが切替制御
弁6a,6bを介して排出されるように調節されてい
る。又、単位炉1A,1Bには煙路4a,4bが設けら
れ、煙路4a,4bから燃焼排ガスの排出量を排気する
場合は、制御ファン7a,7bによって排出量が制御さ
れている。各単位炉には温度センサ9a,9bが設けら
れ、炉内温度が計測されている。
Next, referring to FIG. 2, a combustion control device and a combustion control method for the heating furnace will be described. This figure shows the piping system of combustion air, fuel gas and combustion exhaust gas, control valve,
The electrical system of the switching control valve and control fan is shown.
In the heat storage type burners 2A to 2D, the supply of combustion air and the discharge of combustion exhaust gas are controlled by switching control valves 6a and 6b, and the nozzles 3a to 3d are controlled by controlling the control valves 5a to 5d.
The fuel gas is supplied from d to the regenerative burners 2A to 2D and jetted into the furnace. The combustion state in the figure is
Combustion air is supplied from the switching control valves 6a and 6b into the furnace through the regenerative burners 2B and 2C, the control valves 5b and 5c are opened, and fuel gas is supplied into the furnace through the nozzles 3b and 3c. The control valves 5a and 5d are closed and the fuel gas is shut off. The combustion exhaust gas is adjusted so as to be discharged from the heat storage bodies 2a and 2d through the switching control valves 6a and 6b. Further, the unit furnaces 1A and 1B are provided with smoke passages 4a and 4b, and when exhausting the discharge amount of the combustion exhaust gas from the smoke passages 4a and 4b, the discharge amount is controlled by the control fans 7a and 7b. Each unit furnace is provided with temperature sensors 9a and 9b to measure the temperature inside the furnace.

【0019】制御装置8は、温度センサ9a,9bによ
って各単位炉内の温度計測値や流量計からの計測値等が
入力され、予め書き込まれたプログラムに従って、制御
弁5a〜5d、切替制御弁6a,6b及び制御ファン7
a,7bが制御されている。同図では、蓄熱式バーナ2
B,2Cが燃焼状態にあり、蓄熱式バーナ2A,2Dが
消火状態(非燃焼状態)にある。切替制御弁6a,6b
によって、蓄熱式バーナ2B,2Cに燃焼空気を供給
し、蓄熱式バーナ2A,2Dからは排ガスが引き抜かれ
るように調節されている。蓄熱式バーナ2B側の制御弁
5bは開かれ、蓄熱式バーナ2C側の制御弁5cは多少
絞られた状態とし、他の制御弁5a,5dは遮断状態に
調節されている。
The control device 8 receives temperature measurement values in each unit furnace, measurement values from a flow meter, etc. by the temperature sensors 9a and 9b, and controls valves 5a to 5d and switching control valves according to a program written in advance. 6a, 6b and control fan 7
a and 7b are controlled. In the figure, the regenerative burner 2
B and 2C are in a combustion state, and the regenerative burners 2A and 2D are in a fire extinguishing state (non-combustion state). Switching control valves 6a, 6b
By this, combustion air is supplied to the regenerative burners 2B and 2C, and exhaust gas is extracted from the regenerative burners 2A and 2D. The control valve 5b on the side of the heat storage burner 2B is opened, the control valve 5c on the side of the heat storage burner 2C is in a slightly throttled state, and the other control valves 5a and 5d are adjusted to be in the closed state.

【0020】このように制御することにより、蓄熱式バ
ーナ2Bの燃焼による発熱量は大きくして単位炉1Bを
高温燃焼ゾーンとし、蓄熱式バーナ2Cの燃焼による発
熱量は小さく設定されて単位炉1Aを低温燃焼ゾーンと
している。一対の蓄熱式バーナ2A,2Cは所定の時間
間隔(周期)で交番燃焼を繰り返し、蓄熱式バーナ2
B,2Dも同様に所定の時間間隔(周期)で交番燃焼を
繰り返している。単位炉1Aと1Bの燃焼時の発熱量は
異なり、単位炉1Aは高温燃焼ゾーンと単位炉1Bは低
温燃焼ゾーンとし、単位炉1A,1Bの燃焼状態はある
時間間隔で交互に切替えられ、高温燃焼ゾーンに設定し
た単位炉を低温燃焼ゾーン、低温燃焼ゾーンの単位炉を
高温燃焼ゾーンへと、各単位炉の燃焼状態を交互に切り
返て加熱炉内温度が均一に制御するようになされてい
る。低温燃焼ゾーンと高温燃焼ゾーンとの切替時間(ゾ
ーン燃焼の切替時間)は、交番燃焼バーナの周期の整数
倍の値とし、交番燃焼バーナの周期の整数倍の時刻で行
うことにより、各ゾーンの蓄熱式バーナが同時に燃焼す
ることがなく、燃焼を効率的に行うことができる。この
燃焼制御方法をゾーン燃焼制御方法と呼ぶ。
By controlling in this manner, the calorific value due to the combustion of the regenerative burner 2B is increased to make the unit furnace 1B a high temperature combustion zone, and the calorific value due to the combustion of the regenerative burner 2C is set to a small value and the unit furnace 1A is set. Is the low temperature combustion zone. The pair of regenerative burners 2A and 2C repeat alternating combustion at predetermined time intervals (cycles), and the regenerative burner 2
Similarly, B and 2D also repeat alternating combustion at predetermined time intervals (cycles). The calorific values of the unit furnaces 1A and 1B at the time of combustion are different, the unit furnace 1A is a high temperature combustion zone and the unit furnace 1B is a low temperature combustion zone, and the combustion states of the unit furnaces 1A and 1B are alternately switched at a certain time interval, and The unit furnace set in the combustion zone is switched to the low temperature combustion zone, the unit furnace in the low temperature combustion zone is switched to the high temperature combustion zone, and the combustion state of each unit furnace is alternately switched back to control the temperature in the heating furnace uniformly. There is. The switching time between the low-temperature combustion zone and the high-temperature combustion zone (zone combustion switching time) is set to a value that is an integer multiple of the cycle of the alternating combustion burner, and is performed at a time that is an integer multiple of the cycle of the alternating combustion burner. The regenerative burner does not burn at the same time, and the combustion can be performed efficiently. This combustion control method is called a zone combustion control method.

【0021】無論、単位炉は2つ以上の場合もあり、例
えば、3個の単位炉が連設された加熱炉である場合は、
被加熱物を一定温度に加熱するのに、順番に高温燃焼ゾ
ーン(第1単位炉)、低温燃焼ゾーン(第2単位炉)、
高温燃焼ゾーン(第3単位炉)に設定し、次の周期で低
温燃焼ゾーン(第1単位炉)、高温燃焼ゾーン(第2単
位炉)、低温燃焼ゾーン(第3単位炉)のように切り替
えながら燃焼状態を制御して、炉内温度を制御してもよ
いことは明らかである。
Of course, there may be two or more unit furnaces. For example, in the case of a heating furnace in which three unit furnaces are connected in series,
In order to heat the object to be heated to a constant temperature, a high temperature combustion zone (first unit furnace), a low temperature combustion zone (second unit furnace),
Set to the high temperature combustion zone (3rd unit furnace) and switch to the low temperature combustion zone (1st unit furnace), high temperature combustion zone (2nd unit furnace), low temperature combustion zone (3rd unit furnace) in the next cycle However, it is obvious that the combustion state may be controlled to control the temperature in the furnace.

【0022】無論、実施形態では単位炉に一対の蓄熱式
バーナが設けられているが、従来式バーナ(蓄熱体を有
しないもの)によっても高温燃焼ゾーンと低温燃焼ゾー
ンを交互に切替えるゾーン燃焼制御は可能であり、蓄熱
式バーナに限定するものではない。このような従来式の
バーナによって各単位炉を燃焼加熱する場合は、各単位
炉に煙路を設ける必要がある。更に、図2を参照して加
熱炉の他の燃焼制御方法について説明すると、例えば、
単位炉1Aを燃焼状態とし、他方の単位炉1Bを非燃焼
状態(燃焼による発熱量が零)とする。そして、単位炉
1A内の燃焼ガスを単位炉1B側の煙路4bから引き抜
くようにし、この燃焼状態と非燃焼状態を交互に切り換
えるゾーン燃焼制御によって伝熱効率を高める燃焼方法
がある。無論、単位炉に一対の蓄熱式バーナによる蓄熱
型交番燃焼バーナを設けてゾーン燃焼制御をすることに
よって加熱炉の熱効率を一層高めることができることは
周知である。
Of course, in the embodiment, the unit furnace is provided with a pair of regenerative burners, but a conventional burner (without a regenerator) is also used for zone combustion control for alternately switching between the high temperature combustion zone and the low temperature combustion zone. Is possible and is not limited to regenerative burners. When burning and heating each unit furnace by such a conventional burner, it is necessary to provide a smoke path in each unit furnace. Further, another combustion control method of the heating furnace will be described with reference to FIG.
The unit furnace 1A is set in a combustion state, and the other unit furnace 1B is set in a non-combustion state (the amount of heat generated by combustion is zero). Then, there is a combustion method in which the combustion gas in the unit furnace 1A is extracted from the smoke passage 4b on the unit furnace 1B side, and the zone combustion control which alternately switches the combustion state and the non-combustion state enhances the heat transfer efficiency. As a matter of course, it is well known that the thermal efficiency of the heating furnace can be further enhanced by providing the unit furnace with a heat storage type alternating combustion burner by a pair of heat storage type burners for zone combustion control.

【0023】次に、本発明の他の実施形態について図3
を参照して説明する。同図は、他のゾーン燃焼制御装置
を示しており、ある周期の燃焼状態を示している。蓄熱
式バーナ2B,2Dが燃焼状態にあり、蓄熱式バーナ2
A,2Cが非燃焼状態にある。次の周期で蓄熱式バーナ
2B,2Dを非燃焼状態とし、蓄熱式バーナ2A,2C
を燃焼状態に切り換える。蓄熱式バーナ2B,2Dが燃
焼状態にある場合、燃焼用空気は切替制御弁6を介して
蓄熱式バーナ2B,2Dに供給され、排ガスは蓄熱式バ
ーナ2A,2Cから切替制御弁6を介して引き抜かれて
いる。先に説明したように、燃料供給は切替制御弁6の
動作と同期させて制御弁3a〜3dの開放と遮断を繰り
返すことによって燃焼制御されている。このように燃焼
制御することにより、燃焼ガスと排ガスは単位炉1A,
1B間を流れ、加熱炉1内の被加熱物の温度を制御する
ことができる。
Next, another embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIG. The figure shows another zone combustion control device, and shows the combustion state of a certain cycle. The regenerative burners 2B and 2D are in a combustion state, and the regenerative burner 2
A and 2C are in a non-combustion state. In the next cycle, the heat storage type burners 2B and 2D are set to the non-combustion state, and the heat storage type burners 2A and 2C are
To the combustion state. When the regenerative burners 2B and 2D are in a combustion state, the combustion air is supplied to the regenerative burners 2B and 2D via the switching control valve 6, and the exhaust gas from the regenerative burners 2A and 2C via the switching control valve 6. It has been pulled out. As described above, the fuel supply is combustion-controlled by synchronizing the operation of the switching control valve 6 and repeatedly opening and closing the control valves 3a to 3d. By controlling combustion in this way, the combustion gas and the exhaust gas are
The temperature of the object to be heated in the heating furnace 1 can be controlled by flowing between 1B.

【0024】また、非燃焼状態にある蓄熱式バーナから
燃焼排ガスが引き抜かれることによって単位炉1A,1
B間に燃焼排ガスの流れが形成されるが、更に、煙路4
a,4bが加熱炉1内の燃焼ガスの流れを制御するのに
用いられる。例えば、図3では制御ファン7aによって
燃焼ガスを煙路4aから炉外に引き抜くことにより、単
位炉1Bから非燃焼状態の単位炉1Aに燃焼ガスを流し
込むことができる。また、煙路から排出される燃焼ガス
量は、蓄熱体側から引き抜かれる排ガス量によって異な
り、制御ファン7a,7bの排気量によって制御でき
る。これらの流量制御は制御装置8の制御プログラムに
従って行われる。このように非燃焼状態にある単位炉に
燃焼ガスを流すことによって熱効率を高めることができ
る。制御装置8はゾーン燃焼のために切替時間の設定
と、煙路4a,4bから排出され燃焼排ガス量を設定す
る排ガス排出量を調整する制御手段を有する。
Further, the combustion exhaust gas is extracted from the heat storage type burner in the non-combustion state so that the unit furnaces 1A, 1A
A flow of combustion exhaust gas is formed between B and the smoke passage 4
a and 4b are used to control the flow of combustion gas in the heating furnace 1. For example, in FIG. 3, the combustion gas can be poured from the unit furnace 1B to the unit furnace 1A in the non-combustion state by drawing the combustion gas from the smoke passage 4a to the outside of the furnace by the control fan 7a. Further, the amount of combustion gas discharged from the smoke passage varies depending on the amount of exhaust gas extracted from the heat storage body side, and can be controlled by the amount of exhaust of the control fans 7a and 7b. These flow rate controls are performed according to the control program of the controller 8. In this way, the thermal efficiency can be improved by flowing the combustion gas into the unit furnace in the non-combustion state. The control device 8 has control means for setting the switching time for zone combustion and adjusting the exhaust gas discharge amount for setting the combustion exhaust gas amount discharged from the smoke passages 4a, 4b.

【0025】また、図3の実施形態において、単位炉毎
の蓄熱式バーナ2A,2C及び2B,2Dをそれぞれ交
番燃焼させて、高温単位炉(高温燃焼ゾーン)と非燃焼
状態の単位炉(低温燃焼ゾーン)を交互に切り換えてゾ
ーン燃焼制御を行ってもよいことは明らかである。その
際、高温燃焼ゾーンから低温燃焼ゾーンに燃焼ガスを流
すことによって、炉内の被加熱物の温度を一定に制御す
る。この実施形態では、加熱炉1は上記実施形態と同一
のものであるが、制御弁等の制御方法によって周辺の制
御系は簡素化できる。
In the embodiment shown in FIG. 3, the regenerative burners 2A, 2C and 2B, 2D for each unit furnace are alternately burned to produce a high temperature unit furnace (high temperature combustion zone) and a unit furnace in a non-combustion state (low temperature unit). It is obvious that the zone combustion control may be performed by alternately switching the combustion zones). At that time, the temperature of the object to be heated in the furnace is controlled to be constant by flowing the combustion gas from the high temperature combustion zone to the low temperature combustion zone. In this embodiment, the heating furnace 1 is the same as that in the above embodiment, but the peripheral control system can be simplified by a control method such as a control valve.

【0026】次に、本実施形態のゾーン燃焼制御方法と
従来例の燃焼制御方法とによる熱効率を比較して説明す
る。その比較例を表1に示した。この例は、図1で説明
した溶解炉について行った実験である。先ず、加熱炉内
の被加熱物の表面温度を約1000℃(一定)とし、燃
焼用空気を予熱した後の燃焼ガス温度は約200℃とし
た。高温燃焼ゾーンと低温燃焼ゾーンのゾーン燃焼切替
時間は15分に設定して実験を行った。
Next, thermal efficiency between the zone combustion control method of this embodiment and the conventional combustion control method will be described in comparison. The comparative example is shown in Table 1. This example is an experiment conducted on the melting furnace described in FIG. First, the surface temperature of the object to be heated in the heating furnace was set to about 1000 ° C. (constant), and the combustion gas temperature after preheating the combustion air was set to about 200 ° C. The experiment was conducted by setting the zone combustion switching time between the high temperature combustion zone and the low temperature combustion zone to 15 minutes.

【0027】加熱炉内の平均炉内温度Tg は約1200
℃に設定するものとし、燃焼用空気の予熱をしない場合
(空気温度25℃)を基準とし、その時の熱効率を1と
する。また、燃焼用空気の予熱温度を、500℃と10
00℃に設定して行った。表1の実施例1,2はゾーン
燃焼制御を行った場合であり、従来例1,2は二つのゾ
ーンを1200℃で均一な温度に加熱して、ゾーン燃焼
制御を行わない場合である。なお、実施例1は燃焼用空
気の予熱温度を500℃とし、実施例2は1000℃と
している。実施例1,2は、図2に示した実施形態にお
ける加熱炉の燃焼状態(高温燃焼ゾーン,低温燃焼ゾー
ン)で実験を行った。
The average furnace temperature Tg in the heating furnace is about 1200.
The temperature is set to 0 ° C, and the thermal efficiency at that time is set to 1 with reference to the case where the combustion air is not preheated (air temperature 25 ° C). In addition, the preheating temperature of the combustion air is set to 500 ° C and 10
The setting was performed at 00 ° C. Examples 1 and 2 in Table 1 are cases where the zone combustion control is performed, and Conventional Examples 1 and 2 are cases where the two zones are heated to a uniform temperature of 1200 ° C. and the zone combustion control is not performed. In the first embodiment, the preheating temperature of the combustion air is 500 ° C, and in the second embodiment, it is 1000 ° C. In Examples 1 and 2, the experiment was conducted in the combustion state (high temperature combustion zone, low temperature combustion zone) of the heating furnace in the embodiment shown in FIG.

【0028】[0028]

【表1】 [Table 1]

【0029】表1の実施例1は、平均炉内温度(124
0/1150)と表示した意味は、高温燃焼ゾーンが1
240℃に設定され、低温燃焼ゾーンが1150℃に設
定されることを示し、その平均炉内温度は従来例1と略
等しい1200℃(1195℃)に設定されている。実
施例2及び従来例1,2は表1の通りである。この結果
から明らかなように、燃焼用空気の予熱温度が高温にな
るに伴って、熱効率が向上する。加熱炉の各単位炉を均
一な温度に加熱する場合と比較すると、空気予熱温度に
よらず本実施例によるゾーン燃焼制御の方が熱効率が向
上することを示しており、伝熱効果が向上する分、加熱
炉で消費される燃料が節約できることを意味している。
In Example 1 of Table 1, the average furnace temperature (124
0/1150) means that the high temperature combustion zone is 1
It is set to 240 ° C., indicating that the low temperature combustion zone is set to 1150 ° C., and its average furnace temperature is set to 1200 ° C. (1195 ° C.) which is almost equal to that in Conventional Example 1. Example 2 and conventional examples 1 and 2 are as shown in Table 1. As is clear from this result, the thermal efficiency improves as the preheating temperature of the combustion air becomes higher. Compared with the case where each unit furnace of the heating furnace is heated to a uniform temperature, it is shown that the zone combustion control according to the present embodiment improves the thermal efficiency regardless of the air preheating temperature, and the heat transfer effect is improved. This means that the fuel consumed in the heating furnace can be saved.

【0030】上述のように本発明の加熱炉は、バッチ燃
焼設備に適したものであって、開口を有する仕切りを設
けることによって2つ以上の単位炉が設けられた加熱炉
であって、各単位炉が独立して温度制御できるものであ
る。また、燃焼時の発熱量が高い単位炉(高温燃焼ゾー
ン)と、燃焼時の発熱量が小さい低温単位炉或いは非燃
焼状態の単位炉(低温燃焼ゾーン)とをある時間間隔で
燃焼状態を切り替えるゾーン燃焼制御によって、加熱し
ている。炉内の伝熱は放射が主体であり、伝熱速度は燃
焼ガス温度の4乗の関数であり、高温になれば飛躍的に
伝熱速度が向上することを意味しており、燃焼ガス温度
の伝熱速度を高めることによって伝熱効率を高めて、加
熱炉内の被加熱物を加熱する燃焼制御である。すなわ
ち、本発明の加熱炉は高温燃焼ゾーンと低温燃焼ゾーン
からの加熱炉内の被加熱物への全放射伝熱量は、両者単
位炉を均一に燃焼する燃焼ガスからの放射伝熱量よりも
増加することを利用したものである。
As described above, the heating furnace of the present invention is suitable for batch combustion equipment, and is a heating furnace in which two or more unit furnaces are provided by providing a partition having an opening. The unit furnace can control the temperature independently. Further, the combustion state is switched at a certain time interval between a unit furnace having a high calorific value during combustion (high temperature combustion zone) and a low temperature unit furnace having a low calorific value during combustion or a unit furnace in a non-combustion state (low temperature combustion zone). It is heated by zone combustion control. The heat transfer in the furnace is mainly due to radiation, and the heat transfer rate is a function of the fourth power of the combustion gas temperature, which means that the heat transfer rate dramatically increases at high temperatures. Is a combustion control in which the heat transfer efficiency is increased by increasing the heat transfer rate to heat the object to be heated in the heating furnace. That is, in the heating furnace of the present invention, the total radiant heat transfer amount from the high temperature combustion zone and the low temperature combustion zone to the object to be heated in the heating furnace is larger than the radiant heat transfer amount from the combustion gas that uniformly burns both unit furnaces. It is what you do.

【0031】更に、ゾーン燃焼制御時に、制御ファンに
より煙路から加熱炉外に引き抜くことにより、高温燃焼
ゾーンから低温燃焼ゾーンへと燃焼ガスを流動させるこ
とによって、燃料を一層節約することが可能であり、煙
路を用いて燃焼ガスを流動させる燃焼方法は、蓄熱式バ
ーナを使用しない従来方式バーナに適している。すなわ
ち、熱回収を蓄熱体に依存することなく、非燃焼状態の
単位炉に流すようにして加熱炉を燃焼制御するものであ
り、このゾーン燃焼制御方法は、従来の単位炉を均一に
加熱する燃焼制御方法よりも燃料を節約することができ
る。
Further, at the time of zone combustion control, the control fan pulls the smoke out of the furnace to the outside of the heating furnace to flow the combustion gas from the high temperature combustion zone to the low temperature combustion zone, thereby further saving fuel. However, the combustion method in which the combustion gas is caused to flow using the smoke passage is suitable for the conventional type burner that does not use the regenerative burner. That is, the heating furnace is burned and controlled by allowing the heat recovery to flow through the unit furnace in the non-combustion state without depending on the heat storage body, and this zone combustion control method uniformly heats the conventional unit furnace. It saves more fuel than the combustion control method.

【0032】また、ゾーン燃焼制御による単位炉毎のゾ
ーン燃焼切替時間は、あまり長くすると被加熱物の温度
均一化が達成されず、又短すぎるとこのゾーン燃焼制御
の効果が得られない。従って、ゾーン燃焼制御における
単位炉毎のゾーン燃焼切替時間は、被燃焼物によっても
異なるが概ね5〜30分の間が好ましい。このゾーン燃
焼切替時間は、加熱炉の熱慣性や炉熱損失と被加熱物の
熱容量等で決まる値であり、下限値は加熱炉の熱慣性が
2〜3分程度であるので炉内の熱慣性が存在する間にゾ
ーン燃焼切替えを行えば、単位炉の被加熱物の加熱が充
分に行えないことになり、従って、炉内の熱慣性が解消
されて燃焼による加熱効果が現れるに充分な時間として
概ね5分に設定される。また、上限値は被加熱物の熱容
量等で決まり、燃焼を停止して被加熱物の温度が低下す
る以前に燃焼を開始する必要があり、概ね30分に設定
される。この時間範囲で燃焼切替時間を設定することよ
り、加熱炉の熱効率の改善がなし得る。
If the zone combustion switching time for each unit furnace by the zone combustion control is too long, the temperature uniformity of the object to be heated cannot be achieved, and if it is too short, the zone combustion control effect cannot be obtained. Therefore, the zone combustion switching time for each unit furnace in zone combustion control is preferably approximately 5 to 30 minutes, although it varies depending on the material to be burned. This zone combustion switching time is a value determined by the thermal inertia of the heating furnace, the heat loss of the furnace, the heat capacity of the object to be heated, etc., and the lower limit value is the heat inertia of the heating furnace is about 2 to 3 minutes. If the zone combustion is switched while the inertia is present, the heating of the object to be heated in the unit furnace cannot be performed sufficiently. Therefore, the thermal inertia in the furnace is eliminated and the heating effect by combustion is sufficient. The time is set to about 5 minutes. The upper limit value is determined by the heat capacity of the object to be heated, etc., and it is necessary to stop the combustion and start the combustion before the temperature of the object to be heated falls, and it is set to about 30 minutes. By setting the combustion switching time within this time range, the thermal efficiency of the heating furnace can be improved.

【0033】また、本発明に加熱炉は、加熱炉に設置さ
れるバーナは、上記実施形態に示したものに限定するこ
となく、従来式バーナや蓄熱式バーナの何れであっても
よい。また、省エネルギーの観点から均一な高温場を形
成するには、蓄熱式バーナが最も好ましい。また、高温
燃焼ゾーンから低温燃焼ゾーンに燃焼ガスを導いて燃焼
制御することにより、更に省エネルギー化が達成でき
る。また、上記実施形態では、二つの単位炉を組み合わ
せたものであるが、炉内に設けられる仕切りによって三
つ以上の単位炉を設けたものであってもよい。例えば、
単位炉が高温燃焼ゾーンと低温燃焼ゾーンを順番に切り
替えるようにして燃焼制御を行う。
Further, in the heating furnace of the present invention, the burner installed in the heating furnace is not limited to the burner shown in the above embodiment, and may be a conventional burner or a regenerative burner. Further, a heat storage type burner is most preferable in order to form a uniform high temperature field from the viewpoint of energy saving. Further, by controlling the combustion by guiding the combustion gas from the high temperature combustion zone to the low temperature combustion zone, further energy saving can be achieved. Further, in the above embodiment, two unit furnaces are combined, but three or more unit furnaces may be provided by partitions provided in the furnace. For example,
Combustion control is performed by switching the high temperature combustion zone and the low temperature combustion zone in order in the unit furnace.

【0034】[0034]

【発明の効果】上記説明したように、本発明によれば、
高温燃焼ゾーンと低温燃焼ゾーンを交互に切替えてゾー
ン燃焼制御させることによって、加熱炉の被加熱物への
伝熱効率が改善され、従来の燃焼制御方法よりも燃料消
費量が低減できるので、加熱炉の熱効率が向上し、省エ
ネルギー化が達成できる利点がある。無論、加熱炉を形
成する単位炉に蓄熱式バーナを用いることにより、一層
熱効率を改善することができる。また、各単位炉に煙路
を設けることより、単位炉間の燃焼ガスの流れを容易に
形成することが可能であり、高温燃焼ゾーンから低温燃
焼ゾーンに燃焼ガスを流動させて加熱炉の炉内温度を均
一に制御することが可能であり、加熱炉の熱効率が改善
できる利点があり、燃料消費を一層低減することができ
る利点がある。
As described above, according to the present invention,
By alternately switching between the high-temperature combustion zone and the low-temperature combustion zone for zone combustion control, the efficiency of heat transfer to the heated object in the heating furnace is improved, and the fuel consumption can be reduced compared to the conventional combustion control method. There is an advantage that the thermal efficiency of is improved and energy saving can be achieved. Of course, the thermal efficiency can be further improved by using the regenerative burner in the unit furnace forming the heating furnace. In addition, by providing a smoke channel in each unit furnace, it is possible to easily form a flow of combustion gas between unit furnaces, and the combustion gas is caused to flow from the high temperature combustion zone to the low temperature combustion zone to make the furnace of the heating furnace. The internal temperature can be controlled uniformly, the thermal efficiency of the heating furnace can be improved, and the fuel consumption can be further reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る加熱炉の一実施形態を示す斜視図
である。
FIG. 1 is a perspective view showing an embodiment of a heating furnace according to the present invention.

【図2】上記実施形態の燃焼制御装置を示す図である。FIG. 2 is a diagram showing a combustion control device of the above embodiment.

【図3】上記実施形態の他の燃焼制御装置を示す図であ
る。
FIG. 3 is a diagram showing another combustion control device of the embodiment.

【図4】従来の燃焼制御装置を示す図である。FIG. 4 is a diagram showing a conventional combustion control device.

【符号の説明】[Explanation of symbols]

1 加熱炉 1A,1B 単位炉 1a〜1d 配管 2A〜2D 蓄熱式バーナ 2a〜2d 蓄熱体 3a〜3d ノズル 4a,4b 煙路 5a〜5d 制御弁 6a,6b 切替制御弁 7a,7b 制御ファン 8 制御装置 9a,9b 温度センサ DESCRIPTION OF SYMBOLS 1 Heating furnace 1A, 1B Unit furnace 1a-1d Piping 2A-2D Heat storage type burner 2a-2d Heat storage body 3a-3d Nozzle 4a, 4b Smoke path 5a-5d Control valve 6a, 6b Switching control valve 7a, 7b Control fan 8 Control Device 9a, 9b Temperature sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F27B 3/20 F27B 3/20 F27D 17/00 101 F27D 17/00 101A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location F27B 3/20 F27B 3/20 F27D 17/00 101 F27D 17/00 101A

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 単位炉毎に炉内温度を設定し得る単位炉
を備える加熱炉であって、燃焼時の発熱量の高い単位炉
と燃焼時の発熱量が低いか或いは燃焼による発熱量が零
の単位炉との燃焼状態を切替えながら燃焼制御すること
を特徴とする加熱炉。
1. A heating furnace comprising a unit furnace capable of setting a temperature inside the furnace for each unit furnace, wherein the unit furnace has a high calorific value during combustion and the calorific value during combustion is low or the calorific value due to combustion is low. A heating furnace that controls combustion while switching the combustion state between zero unit furnaces.
【請求項2】 単位炉毎に炉内温度を設定し得る単位炉
を備える加熱炉であって、前記単位炉毎に燃焼ガスを排
出する煙路を設けたことを特徴とする請求項1に記載の
加熱炉。
2. A heating furnace including a unit furnace capable of setting the temperature inside the unit furnace, wherein a smoke passage for discharging combustion gas is provided for each unit furnace. The heating furnace described.
【請求項3】 請求項1又は2に記載の加熱炉に於い
て、前記加熱炉の単位炉間に開口を有する仕切を設けた
ことを特徴とする加熱炉。
3. The heating furnace according to claim 1, wherein a partition having an opening is provided between the unit furnaces of the heating furnace.
【請求項4】 請求項1,2又は3に記載の加熱炉に於
いて、前記単位炉に少なくとも1組の蓄熱式バーナを備
えることを特徴とする加熱炉。
4. The heating furnace according to claim 1, 2, or 3, wherein the unit furnace is provided with at least one set of regenerative burners.
【請求項5】 燃焼装置を備える単位炉からなる加熱炉
における燃焼制御方法に於いて、 燃焼時の発熱量の高い単位炉と燃焼時の発熱量が低いか
或いは非燃焼状態の単位炉の燃焼状態を切り換えて炉内
温度を制御して、少なくとも2つの単位炉の燃焼状態を
ある時間間隔で切替えて前記炉内温度を所定温度に設定
することを特徴とする加熱炉の燃焼制御方法。
5. A combustion control method for a heating furnace comprising a unit furnace equipped with a combustion device, comprising: burning a unit furnace having a high calorific value during combustion and a unit furnace having a low calorific value during combustion or a non-combustion state. A combustion control method for a heating furnace, characterized in that the furnace temperature is controlled by switching the state and the combustion state of at least two unit furnaces is switched at a certain time interval to set the furnace temperature to a predetermined temperature.
【請求項6】 燃焼装置を備える単位炉からなる加熱炉
における燃焼制御方法に於いて、 単位炉の燃焼装置が蓄熱式バーナであって、燃焼時の発
熱量の高い単位炉と燃焼時の発熱量が低いか或いは非燃
焼状態の単位炉との燃焼状態を切替えて炉内温度を制御
するようにし、一対の単位炉の燃焼状態をある時間間隔
で交互に切替えて前記炉内温度を所定温度に設定し、前
記燃焼状態の切替え時間を前記蓄熱式バーナによる交番
燃焼時間の整数倍に設定したことを特徴とする加熱炉の
燃焼制御方法。
6. A combustion control method in a heating furnace comprising a unit furnace equipped with a combustion device, wherein the combustion device of the unit furnace is a regenerative burner, and the unit furnace having a high calorific value during combustion and the heat generation during combustion. The furnace temperature is controlled by switching the combustion state with a unit furnace with a low amount or non-combustion state, and the combustion state of the pair of unit furnaces is alternately switched at a certain time interval to set the furnace temperature to a predetermined temperature. And the switching time of the combustion state is set to an integral multiple of the alternating combustion time by the heat storage type burner.
【請求項7】 燃焼装置を備える単位炉からなる加熱炉
における燃焼制御方法に於いて、 燃焼時の発熱量の高い単位炉と非燃焼状態の単位炉を一
対として燃焼制御する加熱炉であって、前記単位炉の燃
焼状態をある時間間隔で交互に切替えて前記加熱炉の炉
内温度を制御するとともに、燃焼状態にある単位炉の燃
焼ガスを前記非燃焼状態にある単位炉の煙路から排出し
て前記加熱炉の炉内温度を制御することを特徴とする加
熱炉の燃焼制御方法。
7. A combustion control method for a heating furnace comprising a unit furnace equipped with a combustion device, wherein the unit furnace having a high calorific value during combustion and the unit furnace in a non-combustion state are paired for combustion control. , The combustion state of the unit furnace is alternately switched at a certain time interval to control the furnace temperature of the heating furnace, and the combustion gas of the unit furnace in the combustion state is output from the smoke path of the unit furnace in the non-combustion state. A combustion control method for a heating furnace, which comprises discharging and controlling the temperature inside the heating furnace.
【請求項8】 燃焼装置を備える単位炉からなる加熱炉
における燃焼制御方法に於いて、 前記加熱炉を一対の単位炉として燃焼制御する前記燃焼
状態の切替えのための時間間隔を5乃至30分の間に設
定したことを特徴とする請求項5乃至7の何れかに記載
の加熱炉の燃焼制御方法。
8. A combustion control method in a heating furnace comprising a unit furnace equipped with a combustion device, wherein a time interval for switching the combustion state in which the heating furnace is combustion controlled as a pair of unit furnaces is 5 to 30 minutes. 8. The combustion control method for a heating furnace according to claim 5, wherein the combustion control method is set during the period.
【請求項9】 燃焼装置を備える単位炉からなる加熱炉
における燃焼制御装置に於いて、 燃焼状態とする第1単位炉と燃焼時の発熱量が低いか或
いは非燃焼状態とする第2単位炉の燃焼状態をある時間
間隔で交互に切替える燃焼切替制御手段と、 前記第1単位炉の燃焼ガスを前記第2単位炉側から炉外
に排出して燃焼制御する排ガス排出手段とを具備するこ
とを特徴とする加熱炉の燃焼制御装置。
9. A combustion control device in a heating furnace comprising a unit furnace equipped with a combustion device, wherein a first unit furnace which is in a combustion state and a second unit furnace which has a low calorific value during combustion or is in a non-combustion state. Combustion switching control means for alternately switching the combustion state of the second unit furnace at a certain time interval, and exhaust gas discharging means for controlling combustion by discharging the combustion gas of the first unit furnace from the second unit furnace side to the outside of the furnace. A combustion control device for a heating furnace.
JP03601096A 1996-02-23 1996-02-23 Heating furnace, combustion control method thereof, and combustion control device Expired - Fee Related JP3267140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03601096A JP3267140B2 (en) 1996-02-23 1996-02-23 Heating furnace, combustion control method thereof, and combustion control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03601096A JP3267140B2 (en) 1996-02-23 1996-02-23 Heating furnace, combustion control method thereof, and combustion control device

Publications (2)

Publication Number Publication Date
JPH09229354A true JPH09229354A (en) 1997-09-05
JP3267140B2 JP3267140B2 (en) 2002-03-18

Family

ID=12457796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03601096A Expired - Fee Related JP3267140B2 (en) 1996-02-23 1996-02-23 Heating furnace, combustion control method thereof, and combustion control device

Country Status (1)

Country Link
JP (1) JP3267140B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009501124A (en) * 2005-07-13 2009-01-15 サン−ゴバン イゾベ Method for preparing glass
CN103322793A (en) * 2013-06-18 2013-09-25 长兴三重窑炉科技有限公司 Double-chamber heating furnace
CN104456616A (en) * 2013-09-24 2015-03-25 湖南巴陵炉窑节能股份有限公司 Control method of regenerative combustion equipment
JP2016142441A (en) * 2015-01-30 2016-08-08 大阪瓦斯株式会社 Alternate combustion burner device and heating furnace
KR20200013500A (en) * 2018-07-30 2020-02-07 주식회사 포스코 System and method for controlling exhausting gas pressure of heating section of continuous annealing furnace

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8632816B2 (en) 2007-12-17 2014-01-21 Elc Management, Llc Compositions comprising solid particles entrapped in collapsed polymeric microspheres, and methods of making the same
US20090155371A1 (en) 2007-12-17 2009-06-18 Sojka Milan F Compositions Comprising Solid Particles Entrapped In Collapsed Polymeric Microspheres, And Methods Of Making The Same
EP3282290B1 (en) 2016-08-09 2018-10-17 Essilor International Composition for the manufacture of an ophtalmic lens comprising an encapsulated light-absorbing additive

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009501124A (en) * 2005-07-13 2009-01-15 サン−ゴバン イゾベ Method for preparing glass
CN103322793A (en) * 2013-06-18 2013-09-25 长兴三重窑炉科技有限公司 Double-chamber heating furnace
CN104456616A (en) * 2013-09-24 2015-03-25 湖南巴陵炉窑节能股份有限公司 Control method of regenerative combustion equipment
CN104456616B (en) * 2013-09-24 2017-01-25 湖南巴陵炉窑节能股份有限公司 Control method of regenerative combustion equipment
CN104456617B (en) * 2013-09-24 2017-01-25 湖南巴陵炉窑节能股份有限公司 Control method of regenerative combustion device
JP2016142441A (en) * 2015-01-30 2016-08-08 大阪瓦斯株式会社 Alternate combustion burner device and heating furnace
KR20200013500A (en) * 2018-07-30 2020-02-07 주식회사 포스코 System and method for controlling exhausting gas pressure of heating section of continuous annealing furnace

Also Published As

Publication number Publication date
JP3267140B2 (en) 2002-03-18

Similar Documents

Publication Publication Date Title
JP3267140B2 (en) Heating furnace, combustion control method thereof, and combustion control device
EA016077B1 (en) Method of reheating in a furnace using a fuel of low calorific power, and furnace using this method
CN208155050U (en) A kind of novel high-efficient energy-saving crucible furnace
JP3095964B2 (en) Combustion control method for regenerative combustion burner system
JP3198207B2 (en) Aluminum melting furnace
JPH09287013A (en) Device for utilizing heat in hot stove
JPH0987750A (en) Method and device for heating strip
CN206056234U (en) Gas-fired cupola
CN106052377B (en) Gas-fired cupola
JP3799841B2 (en) Operating method of heating furnace
JPH09243056A (en) Heat accumulation switching burner
JP3617169B2 (en) Temperature control method for furnace equipped with heat storage combustion device
JP3341542B2 (en) Heating furnace, regenerative combustion device and combustion method
JP2584193B2 (en) Combustion system using a regenerative burner
JP3767414B2 (en) Operation method of regenerative burner furnace and regenerative burner furnace
CN2646637Y (en) Low nitrogen oxide and highly effective heat-accumulating industrial furnace
KR100368830B1 (en) Oxygen supply method for regenerative burner and device
JP2587588B2 (en) Thermal storage radiant tube burner device
JPH09229351A (en) Combustion method for heating furnace
JPH08319520A (en) Continuous annealing furnace
JP2001065822A (en) Regenerative burner apparatus equipped with preheating mechanism for fuel gas
JP2001012731A (en) Using method for heat storage type burner
JP3425705B2 (en) Method of controlling regenerative burner group
JP2000273535A (en) Regenerative combustion device
JPS61264127A (en) Heater for furnace

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees