JP2003023099A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JP2003023099A
JP2003023099A JP2001209355A JP2001209355A JP2003023099A JP 2003023099 A JP2003023099 A JP 2003023099A JP 2001209355 A JP2001209355 A JP 2001209355A JP 2001209355 A JP2001209355 A JP 2001209355A JP 2003023099 A JP2003023099 A JP 2003023099A
Authority
JP
Japan
Prior art keywords
region
type sic
effect transistor
field effect
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001209355A
Other languages
Japanese (ja)
Inventor
Masakatsu Hoshi
星  正勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001209355A priority Critical patent/JP2003023099A/en
Publication of JP2003023099A publication Critical patent/JP2003023099A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1087Substrate region of field-effect devices of field-effect transistors with insulated gate characterised by the contact structure of the substrate region, e.g. for controlling or preventing bipolar effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a field effect transistor wherein the power loss of a built-in diode is suppressed by reducing the forward voltage drop of the built-in diode which bypasses the reverse current between a drain and a source. SOLUTION: On the surface layer of one main side of a P-type SiC substrate 10, a P<+> -type SiC region 20, an N<+> -type SiC source region 30, and both N-type SiC drain region 40 and N<+> -type SiC drain region 50, located away from the P<+> -type SiC region 20 and the N<+> -type SiC source region 30, are formed. A gate insulating film 70 is formed so as to cover the surface of a P-type region between the N<+> -type SiC source region 30 and the N-type SiC drain region 40. Further, a gate electrode 80, a source electrode 100, and a drain electrode 110 are formed. A Schottky connection 120 is formed between a part of the drain electrode 110 and a P-type SiC substrate 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電界効果トランジ
スタに係り、特にドレイン・基板間の逆方向電流バイパ
ス用のダイオードを内蔵した電界効果トランジスタに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field effect transistor, and more particularly to a field effect transistor having a diode for a reverse current bypass between a drain and a substrate incorporated therein.

【0002】[0002]

【従来の技術】従来のSiC(炭化珪素)電界効果トラ
ンジスタとしては、例えば特開平9−74191号公報
に記載されたものがある。図9は上記従来例の構造を示
す断面図である。
2. Description of the Related Art As a conventional SiC (silicon carbide) field effect transistor, for example, there is one described in Japanese Patent Application Laid-Open No. 9-74191. FIG. 9 is a sectional view showing the structure of the conventional example.

【0003】図9において、N+型SiC基板135の
上にN型SiCエピタキシャル領域145が形成されて
いる。さらにN型SiCエピタキシャル領域145の上
にP型SiCエピタキシャル領域140が形成され、該
P型SiCエピタキシャル領域145内に溝155およ
びN+型SiCソース領域30が形成されている。ま
た、溝155の側壁にN型SiCチャンネル領域180
が形成され、溝155内にはゲート絶縁膜70を介して
ゲート電極80が形成されている。そして、ゲート電極
80とは絶縁膜90により絶縁されてソース電極100
が形成されている。また、N+型SiC基板135の裏
面にはドレイン電極110が形成されている。
In FIG. 9, an N-type SiC epitaxial region 145 is formed on an N + -type SiC substrate 135. Further, a P-type SiC epitaxial region 140 is formed on the N-type SiC epitaxial region 145, and a groove 155 and an N + -type SiC source region 30 are formed in the P-type SiC epitaxial region 145. In addition, the N-type SiC channel region 180 is formed on the sidewall of the groove 155.
And a gate electrode 80 is formed in the groove 155 via the gate insulating film 70. Then, the source electrode 100 is insulated from the gate electrode 80 by the insulating film 90.
Are formed. A drain electrode 110 is formed on the back surface of the N + type SiC substrate 135.

【0004】このSiC電界効果トランジスタは、ドレ
イン電極110とソース電極100との間に電圧が印加
された状態で、ゲート電極80に電圧が印加されると、
ゲート電極80に対向したN型SiCチャンネル領域1
80の表面にN型蓄積層チャンネル領域が形成され、ド
レイン電極110からソース電極100に電流が流れ
る。
In this SiC field effect transistor, when a voltage is applied to the gate electrode 80 while a voltage is applied between the drain electrode 110 and the source electrode 100,
N-type SiC channel region 1 facing the gate electrode 80
An N-type storage layer channel region is formed on the surface of 80, and a current flows from the drain electrode 110 to the source electrode 100.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、図9に
示した従来例においては、P型SiCエピタキシャル領
域140とN型SiCエピタキシャル領域で構成される
内蔵ダイオードをL負荷駆動用のフリーホイルダイオー
ドとして用いる時、SiCのビルトインポテンシャルが
高いため内蔵ダイオードの順方向電圧ドロップが大き
く、内蔵ダイオードの電力損失が大きいという問題点が
あった。また、ドレイン電極110に高電圧のサージ電
圧が印加されたとき、ゲート絶縁膜70に電圧が加わる
ので、ゲート絶縁膜の信頼性が低下するという問題点が
あった。
However, in the conventional example shown in FIG. 9, the built-in diode composed of the P-type SiC epitaxial region 140 and the N-type SiC epitaxial region is used as a free wheel diode for driving the L load. At this time, since the built-in potential of SiC is high, the forward voltage drop of the built-in diode is large and the power loss of the built-in diode is large. Further, when a high-voltage surge voltage is applied to the drain electrode 110, a voltage is applied to the gate insulating film 70, so that there is a problem that reliability of the gate insulating film is lowered.

【0006】以上の問題点に鑑み、本発明の目的は、ド
レイン・ソース間の逆方向電流をバイパスする内蔵ダイ
オードの順方向電圧ドロップを低下させ、内蔵ダイオー
ドの電力損失を抑制した電界効果トランジスタを提供す
ることである。
In view of the above problems, an object of the present invention is to provide a field effect transistor in which a forward voltage drop of a built-in diode that bypasses a reverse current between a drain and a source is reduced and power loss of the built-in diode is suppressed. Is to provide.

【0007】また本発明の目的は、ドレイン電極にサー
ジ電圧が印加されてもゲート絶縁膜の信頼性を維持する
ことができる電界効果トランジスタを提供することであ
る。
It is another object of the present invention to provide a field effect transistor which can maintain the reliability of the gate insulating film even when a surge voltage is applied to the drain electrode.

【0008】[0008]

【課題を解決するための手段】請求項1記載の発明は、
上記目的を達成するために、第1導電型の半導体基板の
表層にそれぞれ形成された第2導電型のドレイン領域及
び第2導電型のソース領域と、ゲート電圧によって伝導
度が変調されるチャンネル領域と、を具備した電界効果
トランジスタにおいて、ドレイン電極、ソース電極、お
よびゲート電極が前記半導体基板の同一表面上に形成さ
れており、前記ドレイン電極が前記半導体基板の一部と
ショットキー接続されていることを要旨とする。
The invention according to claim 1 is
To achieve the above object, a second conductivity type drain region and a second conductivity type source region respectively formed on a surface layer of a first conductivity type semiconductor substrate, and a channel region whose conductivity is modulated by a gate voltage. A drain electrode, a source electrode, and a gate electrode are formed on the same surface of the semiconductor substrate, and the drain electrode is Schottky-connected with a part of the semiconductor substrate. That is the summary.

【0009】請求項2記載の発明は、上記目的を達成す
るために、請求項1に記載の電界効果トランジスタにお
いて、前記半導体基板の前記表面に前記ドレイン領域と
接する溝が形成され、該溝内に形成されたドレイン電極
が前記半導体基板の一部とショットキー接続されている
ことを要旨とする。
According to a second aspect of the present invention, in order to achieve the above object, in the field effect transistor according to the first aspect, a groove which is in contact with the drain region is formed on the surface of the semiconductor substrate, and the groove is formed in the groove. The gist of the present invention is that the drain electrode formed on the substrate is Schottky-connected to a part of the semiconductor substrate.

【0010】請求項3記載の発明は、上記目的を達成す
るために、請求項2に記載の電界効果トランジスタにお
いて、前記ショットキー接続の逆方向耐電圧が、前記第
1導電型の半導体基板と前記第2導電型のドレイン領域
との接合の逆方向耐電圧より低いことを要旨とする。
According to a third aspect of the present invention, in order to achieve the above object, in the field effect transistor according to the second aspect, the reverse withstand voltage of the Schottky connection is the same as that of the semiconductor substrate of the first conductivity type. The gist is that it is lower than the reverse withstand voltage of the junction with the drain region of the second conductivity type.

【0011】請求項4記載の発明は、上記目的を達成す
るために、請求項1乃至請求項3の何れか1項に記載の
電界効果トランジスタにおいて、前記第1導電型の半導
体基板と前記ショットキー電極との接続面に第2の第1
導電型の領域が形成されていることを要旨とする。
According to a fourth aspect of the invention, in order to achieve the above object, in the field effect transistor according to any one of the first to third aspects, the semiconductor substrate of the first conductivity type and the shot are used. The second first on the connection surface with the key electrode
The gist is that a conductive type region is formed.

【0012】請求項5記載の発明は、上記目的を達成す
るために、請求項1乃至請求項4の何れか1項に記載の
電界効果トランジスタにおいて、前記半導体基板が炭化
珪素であることを要旨とする。
In order to achieve the above object, a fifth aspect of the present invention is the field effect transistor according to any one of the first to fourth aspects, wherein the semiconductor substrate is silicon carbide. And

【0013】[0013]

【発明の効果】請求項1記載の発明によれば、第1導電
型の半導体基板の表層にそれぞれ形成された第2導電型
のドレイン領域及び第2導電型のソース領域と、ゲート
電圧によって伝導度が変調されるチャンネル領域と、を
具備した電界効果トランジスタにおいて、ドレイン電
極、ソース電極、およびゲート電極が前記半導体基板の
同一表面上に形成されており、前記ドレイン電極が前記
半導体基板の一部とショットキー接続されているので、
ドレイン・ソース間逆方向電圧をショットキー接続ダイ
オードの順方向電流としてバイパスすることができ、バ
イパス時の電圧降下量及び電力損失を小さくすることが
できるという効果がある。
According to the first aspect of the present invention, the second conductivity type drain region and the second conductivity type source region respectively formed on the surface layer of the first conductivity type semiconductor substrate and the conduction by the gate voltage. In a field effect transistor having a channel region whose degree is modulated, a drain electrode, a source electrode, and a gate electrode are formed on the same surface of the semiconductor substrate, and the drain electrode is a part of the semiconductor substrate. Since it is connected with Schottky,
The reverse voltage between the drain and the source can be bypassed as the forward current of the Schottky-connected diode, and the voltage drop amount and power loss at the time of bypass can be reduced.

【0014】また、請求項2記載の発明によれば、請求
項1記載の発明の効果に加えて、前記半導体基板の前記
表面に前記ドレイン領域と接する溝が形成され、該溝内
に形成されたドレイン電極が前記半導体基板の一部とシ
ョットキー接続されているので、素子の集積度が向上し
チップサイズを縮小することができるという効果があ
る。
According to the invention of claim 2, in addition to the effect of the invention of claim 1, a groove which is in contact with the drain region is formed on the surface of the semiconductor substrate and is formed in the groove. Further, since the drain electrode is Schottky connected to a part of the semiconductor substrate, there is an effect that the integration degree of the device is improved and the chip size can be reduced.

【0015】また、請求項3記載の発明によれば、請求
項2記載の発明の効果に加えて、前記ショットキー接続
の逆方向耐電圧が、前記第1導電型の半導体基板と前記
第2導電型のドレイン領域との接合の逆方向耐電圧より
低くしたので、サージ電圧は溝底部のショットキー接続
に印加され、ゲート絶縁膜が高電圧に曝されることがな
くなってゲート絶縁膜の信頼性を向上させることができ
るという効果がある。
Further, according to the invention of claim 3, in addition to the effect of the invention of claim 2, the reverse withstand voltage of the Schottky connection has the first conductivity type semiconductor substrate and the second conductivity type. Since it is lower than the reverse withstand voltage of the junction with the conductivity type drain region, the surge voltage is applied to the Schottky connection at the bottom of the trench, and the gate insulating film is not exposed to high voltage, and the reliability of the gate insulating film is improved. There is an effect that the property can be improved.

【0016】また、請求項4記載の発明によれば、請求
項1乃至請求項3記載の発明の効果に加えて、前記第1
導電型の半導体基板と前記ショットキー電極との接続面
に第2の第1導電型の領域が形成されるようにしたの
で、第2の第1導電型の領域が担うショットキー接続の
耐電圧をチャンネル濃度とは独立に設計できるようにな
り、電界効果トランジスタの設計が容易となるという効
果がある。
According to the invention of claim 4, in addition to the effects of the invention of claims 1 to 3, the first invention
Since the second first conductivity type region is formed on the connection surface between the conductivity type semiconductor substrate and the Schottky electrode, the withstand voltage of the Schottky connection carried by the second first conductivity type region. Can be designed independently of the channel concentration, and the field effect transistor can be easily designed.

【0017】また、請求項5記載の発明によれば、請求
項1乃至請求項4記載の発明の効果に加えて、前記半導
体基板を炭化珪素としたので、シリコンに比べてバンド
ギャップが大きく、高温度下の使用に耐える電力用制御
素子を提供できるという効果がある。
Further, according to the invention of claim 5, in addition to the effects of the inventions of claims 1 to 4, since the semiconductor substrate is made of silicon carbide, the band gap is larger than that of silicon, The effect is to provide a power control element that can withstand use at high temperatures.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照して詳細に説明する。 〔第1の実施形態〕図1は、本発明に係る電界効果トラ
ンジスタの第1の実施形態の構成を説明する断面図であ
る。図1において、P型SiC基板10の一主面側の表
層にP+型SiC領域20が形成され、P+型SiC領
域20に接してN+型SiCソース領域30が形成され
ている。また、同じ表層に、P+型SiC領域20及び
N+型SiCソース領域30から離隔してN型SiCド
レイン領域40が形成され、N型SiCドレイン領域4
0と前記主面に接してN+型SiCドレイン領域50が
形成されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in detail with reference to the drawings. [First Embodiment] FIG. 1 is a sectional view for explaining the configuration of a first embodiment of a field effect transistor according to the present invention. In FIG. 1, a P + type SiC region 20 is formed in the surface layer on the one main surface side of the P type SiC substrate 10, and an N + type SiC source region 30 is formed in contact with the P + type SiC region 20. Further, an N-type SiC drain region 40 is formed on the same surface layer apart from the P + -type SiC region 20 and the N + -type SiC source region 30, and the N-type SiC drain region 4 is formed.
An N + type SiC drain region 50 is formed in contact with 0 and the main surface.

【0019】また、P型SiC基板10の前記主面側
に、N+型SiCソース領域30とN型SiCドレイン
領域40との間のP型領域、及びこのP型領域の両端に
それぞれ接するN+型SiCソース領域30の一部とN
型SiCドレイン領域40の一部との表面を覆うように
ゲート絶縁膜70が形成されている。ゲート絶縁膜70
のN型SiCドレイン領域40側の端部は、絶縁膜60
に接続され、絶縁膜60は、N型SiCドレイン領域4
0の残部及びこれに接するN+型SiCドレイン領域5
0の一部の表面を覆うように形成されている。
Further, on the main surface side of the P-type SiC substrate 10, a P-type region between the N + -type SiC source region 30 and the N-type SiC drain region 40, and N + -type regions contacting both ends of the P-type region, respectively. Part of the SiC source region 30 and N
Gate insulating film 70 is formed so as to cover the surface of part of type SiC drain region 40. Gate insulating film 70
The end of the N type SiC drain region 40 side of the insulating film 60 is
And the insulating film 60 is connected to the N-type SiC drain region 4
The rest of 0 and N + type SiC drain region 5 in contact therewith
It is formed so as to cover a part of the surface of 0.

【0020】また、絶縁膜60およびゲート絶縁膜70
を介してゲート電極80が形成され、絶縁膜90によっ
てゲート電極80と絶縁されて、且つP+型SiC領域
20及びN+型SiCソース領域30のそれぞれの表面
に接してソース電極100が形成されている。
Further, the insulating film 60 and the gate insulating film 70.
The gate electrode 80 is formed via the insulating film 90, and the source electrode 100 is formed so as to be insulated from the gate electrode 80 by the insulating film 90 and in contact with the respective surfaces of the P + type SiC region 20 and the N + type SiC source region 30. .

【0021】さらに、絶縁膜90によってゲート電極8
0と絶縁されて、且つN+型SiCドレイン領域50及
びP型SiC基板10のそれぞれの表面に接してドレイ
ン電極110が形成されている。この時、ドレイン電極
110の一部とP型SiC基板10との間にショットキ
ー接続120が形成されている。
Further, the gate electrode 8 is formed by the insulating film 90.
A drain electrode 110 is formed so as to be insulated from 0 and in contact with the respective surfaces of the N + type SiC drain region 50 and the P type SiC substrate 10. At this time, the Schottky connection 120 is formed between a part of the drain electrode 110 and the P-type SiC substrate 10.

【0022】次に、本実施形態の電界効果トランジスタ
の動作を説明する。ドレイン電極110とソース電極1
00との間に電圧が印加された状態で、ゲート電極80
に電圧が印加されると、ゲート電極80に対向したP型
SiC基板の表面にN型反転層のチャンネル領域が形成
され、ゲート電圧に応じてドレイン電極110からソー
ス電極100に電流が流れる。このとき、チャンネル領
域としてあらかじめN型の蓄積層型チャンネル領域を形
成してもよく、この場合反転層型のチャンネルに比べて
電子の移動度が向上し、チャンネル抵抗を低減できると
いった効果が得られる。また、半導体基板として、特に
SiC半導体では良好なショットキー接続面が形成しや
すく、耐圧の高いショットキー接続が形成し易い。
Next, the operation of the field effect transistor of this embodiment will be described. Drain electrode 110 and source electrode 1
00 and the voltage is applied between the gate electrode 80 and
When a voltage is applied to the gate electrode 80, a channel region of the N-type inversion layer is formed on the surface of the P-type SiC substrate facing the gate electrode 80, and a current flows from the drain electrode 110 to the source electrode 100 according to the gate voltage. At this time, an N-type storage layer type channel region may be formed in advance as the channel region. In this case, the electron mobility is improved and the channel resistance can be reduced as compared with the inversion layer type channel. . Further, as a semiconductor substrate, particularly a SiC semiconductor, a good Schottky connection surface is easily formed, and a Schottky connection having a high breakdown voltage is easily formed.

【0023】次に、本実施形態の作用を説明する。ドレ
イン電極110の少なくともショットキー接続120に
面した部分に所望の仕事関数を有する電極材を用いれ
ば、該電極の仕事関数と半導体基板の電子親和力との差
のショットキー障壁高さを制御することが可能で、内蔵
ダイオードの順方向電圧ドロップの低減が可能である。
Next, the operation of this embodiment will be described. If an electrode material having a desired work function is used in at least the portion of the drain electrode 110 facing the Schottky connection 120, the Schottky barrier height of the difference between the work function of the electrode and the electron affinity of the semiconductor substrate can be controlled. It is possible to reduce the forward voltage drop of the built-in diode.

【0024】次に、第1の実施形態の電界効果トランジ
スタの製造方法を説明する。図2から図6は、第1の実
施形態の電界効果トランジスタの製造工程を示す工程順
断面図である。
Next, a method of manufacturing the field effect transistor of the first embodiment will be described. 2 to 6 are cross-sectional views in order of the processes, showing the manufacturing process of the field-effect transistor of the first embodiment.

【0025】まず、図2の工程においては、例えば不純
物濃度が1E14〜1E18cm-3のP型SiC単結晶
基板(以下、P型SiC基板)10が準備され、その表
面に例えば酸化膜よりなる絶縁膜15が一面に形成され
ている。P型SiC基板10は、例えばSiC多結晶粉
末から昇華法やPVD法によって、種結晶上に堆積させ
たものである。絶縁膜15として酸化膜を用いる場合に
は、例えばP型SiC基板10を高温の酸化性雰囲気に
曝す熱酸化法により形成される。絶縁膜15には、周知
のフォトリソグラフ法等によって、P+型SiC領域2
0が形成されるべき位置に孔が設けられる。
First, in the step shown in FIG. 2, a P-type SiC single crystal substrate (hereinafter referred to as P-type SiC substrate) 10 having an impurity concentration of 1E14 to 1E18 cm -3 , for example, is prepared, and an insulating film made of, for example, an oxide film is formed on the surface thereof. The film 15 is formed on the entire surface. The P-type SiC substrate 10 is, for example, a SiC polycrystal powder deposited on a seed crystal by a sublimation method or a PVD method. When an oxide film is used as the insulating film 15, it is formed by, for example, a thermal oxidation method in which the P-type SiC substrate 10 is exposed to a high temperature oxidizing atmosphere. The P + type SiC region 2 is formed on the insulating film 15 by a well-known photolithography method or the like.
Holes are provided at the locations where 0s are to be formed.

【0026】そして、絶縁膜15をマスクとして、例え
ばイオン注入技術により不純物濃度が1E17〜1E2
1cm-3、深さが0.1μm〜数μmのP+型SiC領
域20を形成する。P+型SiC領域を形成するための
アクセプター不純物としては、アルミニウム(Al)、
ホウ素(B)、ガリウム(Ga)等が考えられる。
Then, using the insulating film 15 as a mask, the impurity concentration is set to 1E17 to 1E2 by, for example, an ion implantation technique.
A P + type SiC region 20 having a depth of 1 cm −3 and a depth of 0.1 μm to several μm is formed. Aluminum (Al) is used as an acceptor impurity for forming the P + type SiC region.
Boron (B), gallium (Ga), etc. are considered.

【0027】次に、図3の工程においては、同様に、図
示しないパターン化された絶縁膜をマスクとして、例え
ばイオン注入技術により不純物濃度が1E17〜1E2
1cm-3で深さが0.1μm〜数μmのN+型SiCソ
ース領域30、不純物濃度が1E14〜1E19cm-3
で深さが0.1μm〜数μmのN型SiCドレイン領域
40、不純物濃度が1E17〜1E21cm-3で深さが
0.1μm〜数μmのN+型SiCドレイン領域50を
形成する。N+型SiC領域およびN型SiC領域を形
成するドナー不純物としては、窒素(N)、リン
(P)、ヒ素(As)等が考えられる。
Next, in the process of FIG. 3, similarly, using a patterned insulating film (not shown) as a mask, the impurity concentration is 1E17 to 1E2 by, for example, an ion implantation technique.
1 cm -3 at a depth of 0.1μm~ number [mu] m N + -type SiC source region 30, the impurity concentration 1E14~1E19cm -3
To form an N-type SiC drain region 40 having a depth of 0.1 μm to several μm, and an N + type SiC drain region 50 having an impurity concentration of 1E17 to 1E21 cm −3 and a depth of 0.1 μm to several μm. Nitrogen (N), phosphorus (P), arsenic (As), etc. can be considered as donor impurities forming the N + type SiC region and the N type SiC region.

【0028】この後、例えばアルゴン(Ar)等の不活
性雰囲気中で900℃〜1800℃の熱処理を行うこと
により、各不純物領域を活性化する。このとき、P型不
純物領域とN型不純物領域の活性化温度を分けて別々に
行ってもよい。
After that, each impurity region is activated by performing heat treatment at 900 ° C. to 1800 ° C. in an inert atmosphere such as argon (Ar). At this time, the activation temperatures of the P-type impurity region and the N-type impurity region may be separately set.

【0029】次に、図4の工程においては、例えば酸化
膜よりなる絶縁膜60を所望の領域に形成する。酸化膜
の形成方法は、絶縁膜15と同様である。
Next, in the process of FIG. 4, an insulating film 60 made of, for example, an oxide film is formed in a desired region. The method of forming the oxide film is the same as that of the insulating film 15.

【0030】次に、図5の工程においては、例えば厚さ
が10nm(100Å)〜500nm(5000Å)の
酸化膜よりなるゲート絶縁膜70と、例えば多結晶シリ
コンよりなるゲート電極80と、例えば酸化膜よりなる
絶縁膜90とを所望の領域に形成する。
Next, in the step of FIG. 5, a gate insulating film 70 made of an oxide film having a thickness of, for example, 10 nm (100 Å) to 500 nm (5000 Å), a gate electrode 80 made of, for example, polycrystalline silicon, and an oxide, for example, are formed. An insulating film 90 made of a film is formed in a desired region.

【0031】次に、図6の工程においては、ソース電極
100およびドレイン電極110を形成して、図1に示
す本発明の電界効果トランジスタが得られる。このと
き、ドレイン電極110の一部と前記P型SiC基板1
0との間にはショットキー接続120が形成されてい
る。ドレイン電極110のショットキー接続部分または
ドレイン電極110の全てに所望の仕事関数の電極材を
用いて、ショットキー障壁高さの低いショットキー接続
を形成すれば良い。
Next, in the step shown in FIG. 6, the source electrode 100 and the drain electrode 110 are formed to obtain the field effect transistor of the present invention shown in FIG. At this time, part of the drain electrode 110 and the P-type SiC substrate 1
A Schottky connection 120 is formed between the two and 0. A Schottky connection with a low Schottky barrier height may be formed by using an electrode material having a desired work function for the Schottky connection portion of the drain electrode 110 or the entire drain electrode 110.

【0032】以上説明してきたように、ドレイン電極と
ソース電極との間にショットキー接続を内蔵することに
より、内蔵ダイオードの順方向電圧ドロップが下げら
れ、内蔵ダイオードの損失を低減することが可能であ
る。
As described above, by incorporating the Schottky connection between the drain electrode and the source electrode, the forward voltage drop of the built-in diode can be reduced and the loss of the built-in diode can be reduced. is there.

【0033】なお、図1の構成において、ソース電極1
00とドレイン電極110とのいずれか一方または両方
を二層配線構造にしてもよい。
In the structure of FIG. 1, the source electrode 1
00 or the drain electrode 110, or both, may have a double-layer wiring structure.

【0034】〔第2の実施形態〕次に、図7は本発明に
係る電界効果トランジスタの第2の実施形態を示す断面
図である。
Second Embodiment Next, FIG. 7 is a sectional view showing a second embodiment of the field effect transistor according to the present invention.

【0035】図7においては、P+型SiC基板130
上に、P型SiCエピタキシャル領域140が形成され
ており、P型SiCエピタキシャル領域140の表面
に、N型SiCドレイン領域に一部が接する40溝15
0が形成されている。そして溝150は、ドレイン電極
110で埋められ、溝150の所定の領域にショットキ
ー接続120が形成されている。また、P+型SiC基
板130の裏面に裏面電極160が形成されている。裏
面電極160は、ソース電位もしくはグランド電位に接
続されている。その他の構成は、図1に示した第1の実
施形態と同様である。
In FIG. 7, a P + type SiC substrate 130 is shown.
A P-type SiC epitaxial region 140 is formed on the upper surface of the P-type SiC epitaxial region 140, and a groove 15 is formed on the surface of the P-type SiC epitaxial region 140.
0 is formed. Then, the groove 150 is filled with the drain electrode 110, and the Schottky connection 120 is formed in a predetermined region of the groove 150. A back electrode 160 is formed on the back surface of the P + type SiC substrate 130. The back electrode 160 is connected to the source potential or the ground potential. Other configurations are similar to those of the first embodiment shown in FIG.

【0036】ここで、ショットキー接続120の逆方向
耐電圧をN型SiCドレイン領域40とP型SiCエピ
タキシャル領域140との接合部の逆方向耐電圧より低
く設定すれば、ドレイン電極110にサージ電圧が印加
された場合、サージ電流がドレイン電極110から裏面
電極160に縦方向に流れ、ゲート絶縁膜70にサージ
電圧が印加されるのを防止でき、ゲート絶縁膜70の信
頼性を向上することができる。
If the reverse withstand voltage of the Schottky connection 120 is set lower than the reverse withstand voltage of the junction between the N-type SiC drain region 40 and the P-type SiC epitaxial region 140, the surge voltage is applied to the drain electrode 110. Is applied, it is possible to prevent a surge current from flowing vertically from the drain electrode 110 to the back surface electrode 160 and to apply a surge voltage to the gate insulating film 70, thereby improving the reliability of the gate insulating film 70. it can.

【0037】〔第3の実施形態〕次に、図8は本発明に
係る電界効果トランジスタの第3の実施形態を示す断面
図である。図7に示した第2の実施形態と図8の第3の
実施形態との相違は、図8においては、溝150とP型
SiCエピタキシャル領域140との間には、P型Si
C領域170が形成されていることである。これによ
り、溝150を埋めるドレイン電極110とP型SiC
領域170とがショットキー接続することになる。
[Third Embodiment] FIG. 8 is a sectional view showing a third embodiment of the field effect transistor according to the present invention. The difference between the second embodiment shown in FIG. 7 and the third embodiment shown in FIG. 8 is that in FIG. 8, the P-type Si is provided between the groove 150 and the P-type SiC epitaxial region 140.
That is, the C region 170 is formed. As a result, the drain electrode 110 filling the groove 150 and the P-type SiC
A Schottky connection is made with the area 170.

【0038】本実施形態によれば、ショットキー接続の
逆方向耐電圧は、ショットキー接続するP型SiC領域
170の不純物濃度に依存し、チャンネルとなるP型S
iCエピタキシャル領域140の不純物濃度には依存し
ない。このため、ショットキー接続の逆方向耐電圧をチ
ャンネル濃度とは独立に設計できるので、電界効果トラ
ンジスタのしきい値とショットキー接続耐圧の設計が容
易となるという効果がある。
According to this embodiment, the reverse withstand voltage of the Schottky connection depends on the impurity concentration of the P-type SiC region 170 to be Schottky connected, and the P-type S serving as the channel.
It does not depend on the impurity concentration of the iC epitaxial region 140. Therefore, since the reverse withstand voltage of the Schottky connection can be designed independently of the channel concentration, the threshold voltage of the field effect transistor and the Schottky connection breakdown voltage can be easily designed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電界効果トランジスタの第1の実
施形態を示す断面図である。
FIG. 1 is a sectional view showing a first embodiment of a field effect transistor according to the present invention.

【図2】第1の実施形態の電界効果トランジスタの製造
方法を説明する工程順断面図(1)である。
2A to 2C are sectional views (1) in order of steps, illustrating a method for manufacturing the field effect transistor of the first embodiment.

【図3】第1の実施形態の電界効果トランジスタの製造
方法を説明する工程順断面図(2)である。
3A to 3C are sectional views (2) in order of steps, illustrating a method for manufacturing the field effect transistor of the first embodiment.

【図4】第1の実施形態の電界効果トランジスタの製造
方法を説明する工程順断面図(3)である。
4A to 4C are sectional views (3) in order of steps, illustrating a method for manufacturing the field effect transistor of the first embodiment.

【図5】第1の実施形態の電界効果トランジスタの製造
方法を説明する工程順断面図(4)である。
5A to 5C are cross-sectional views in order of the processes, illustrating the method for manufacturing the field-effect transistor of the first embodiment (4).

【図6】第1の実施形態の電界効果トランジスタの製造
方法を説明する工程順断面図(5)である。
FIG. 6 is a sectional view (5) in order of steps, illustrating a method for manufacturing the field effect transistor according to the first embodiment.

【図7】本発明に係る電界効果トランジスタの第2の実
施形態を示す断面図である。
FIG. 7 is a sectional view showing a second embodiment of a field effect transistor according to the present invention.

【図8】本発明に係る電界効果トランジスタの第3の実
施形態を示す断面図である。
FIG. 8 is a sectional view showing a third embodiment of a field effect transistor according to the present invention.

【図9】従来例のSiC電界効果トランジスタの構造を
説明する断面図である。
FIG. 9 is a cross-sectional view illustrating the structure of a conventional SiC field effect transistor.

【符号の説明】[Explanation of symbols]

10…P型SiC基板 15…絶縁膜 20…P+型SiC領域 30…N+型SiCソース領域 40…N型SiCドレイン領域 50…N+型SiCドレイン領域 60…絶縁膜 70…ゲート絶縁膜 80…ゲート電極 90…絶縁膜 100…ソース電極 110…ドレイン電極 120…ショットキー接続 130…P+型SiC基板 135…N+型SiC基板 140…P型SiCエピタキシャル領域 145…N型SiCエピタキシャル領域 150…溝 155…溝 160…裏面電極 170…P型SiC領域 180…N型SiCチャンネル領域 10 ... P-type SiC substrate 15 ... Insulating film 20 ... P + type SiC region 30 ... N + type SiC source region 40 ... N-type SiC drain region 50 ... N + type SiC drain region 60 ... Insulating film 70 ... Gate insulating film 80 ... Gate electrode 90 ... Insulating film 100 ... Source electrode 110 ... Drain electrode 120 ... Schottky connection 130 ... P + type SiC substrate 135 ... N + type SiC substrate 140 ... P-type SiC epitaxial region 145 ... N-type SiC epitaxial region 150 ... Groove 155 ... Groove 160 ... Back electrode 170 ... P-type SiC region 180 ... N-type SiC channel region

フロントページの続き Fターム(参考) 4M104 AA03 CC03 FF01 FF02 FF27 GG09 5F048 AA05 AA07 AC06 AC10 BA01 BA14 BC03 BC07 BC12 BE09 BF16 BF18 CC06 5F140 AA02 AA31 AB06 BA02 BC12 BD18 BF01 BF04 BF44 BH05 BH08 BH15 BH17 BH21 BH25 BH27 BH30 BH43 BJ01 BJ03 BJ30 BK02 BK13 BK21 DA08Continued front page    F term (reference) 4M104 AA03 CC03 FF01 FF02 FF27                       GG09                 5F048 AA05 AA07 AC06 AC10 BA01                       BA14 BC03 BC07 BC12 BE09                       BF16 BF18 CC06                 5F140 AA02 AA31 AB06 BA02 BC12                       BD18 BF01 BF04 BF44 BH05                       BH08 BH15 BH17 BH21 BH25                       BH27 BH30 BH43 BJ01 BJ03                       BJ30 BK02 BK13 BK21 DA08

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の半導体基板の表層にそれぞ
れ形成された第2導電型のドレイン領域及び第2導電型
のソース領域と、ゲート電圧によって伝導度が変調され
るチャンネル領域と、を具備した電界効果トランジスタ
において、 ドレイン電極、ソース電極、およびゲート電極が前記半
導体基板の同一表面上に形成されており、前記ドレイン
電極が前記半導体基板の一部とショットキー接続されて
いることを特徴とする電界効果トランジスタ。
1. A drain region of a second conductivity type and a source region of a second conductivity type respectively formed on a surface layer of a semiconductor substrate of the first conductivity type, and a channel region whose conductivity is modulated by a gate voltage. In the field effect transistor provided, the drain electrode, the source electrode, and the gate electrode are formed on the same surface of the semiconductor substrate, and the drain electrode is Schottky-connected to a part of the semiconductor substrate. And a field effect transistor.
【請求項2】 前記半導体基板の前記表面に前記ドレイ
ン領域と接する溝が形成され、該溝内に形成されたドレ
イン電極が前記半導体基板の一部とショットキー接続さ
れていることを特徴とする請求項1に記載の電界効果ト
ランジスタ。
2. A groove which is in contact with the drain region is formed on the surface of the semiconductor substrate, and a drain electrode formed in the groove is Schottky-connected with a part of the semiconductor substrate. The field effect transistor according to claim 1.
【請求項3】 前記ショットキー接続の逆方向耐電圧
が、前記第1導電型の半導体基板と前記第2導電型のド
レイン領域との接合の逆方向耐電圧より低いことを特徴
とする請求項2に記載の電界効果トランジスタ。
3. The reverse withstand voltage of the Schottky connection is lower than the reverse withstand voltage of the junction between the semiconductor substrate of the first conductivity type and the drain region of the second conductivity type. 2. The field effect transistor according to 2.
【請求項4】 前記第1導電型の半導体基板と前記ショ
ットキー電極との接続面に第2の第1導電型の領域が形
成されていることを特徴とする請求項1乃至請求項3の
何れか1項に記載の電界効果トランジスタ。
4. The second first-conductivity-type region is formed on the connection surface between the first-conductivity-type semiconductor substrate and the Schottky electrode. The field effect transistor according to any one of items.
【請求項5】 前記半導体基板が炭化珪素であることを
特徴とする請求項1乃至請求項4の何れか1項に記載の
電界効果トランジスタ。
5. The field effect transistor according to claim 1, wherein the semiconductor substrate is silicon carbide.
JP2001209355A 2001-07-10 2001-07-10 Field effect transistor Pending JP2003023099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001209355A JP2003023099A (en) 2001-07-10 2001-07-10 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001209355A JP2003023099A (en) 2001-07-10 2001-07-10 Field effect transistor

Publications (1)

Publication Number Publication Date
JP2003023099A true JP2003023099A (en) 2003-01-24

Family

ID=19045020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001209355A Pending JP2003023099A (en) 2001-07-10 2001-07-10 Field effect transistor

Country Status (1)

Country Link
JP (1) JP2003023099A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006229049A (en) * 2005-02-18 2006-08-31 Fdk Corp (GROUP Mn-V) CO-ADDED GROUP IV MAGNETIC SEMICONDUCTOR
EP1759416A2 (en) * 2004-06-23 2007-03-07 Freescale Semiconductor, Inc. Ldmos transistor
US7432579B2 (en) 2003-10-09 2008-10-07 Kabushiki Kaisha Toshiba Semiconductor device with horizontal MOSFET and Schottky barrier diode provided on single substrate
WO2009090974A1 (en) * 2008-01-16 2009-07-23 Nec Corporation Semiconductor device and method for manufacturing the same
JP2009164364A (en) * 2008-01-08 2009-07-23 Renesas Technology Corp Semiconductor device and its manufacturing method
JP2010263116A (en) * 2009-05-08 2010-11-18 Mitsubishi Electric Corp Semiconductor device
JP2013004594A (en) * 2011-06-14 2013-01-07 Renesas Electronics Corp Semiconductor device and semiconductor device manufacturing method
CN103700659A (en) * 2012-09-27 2014-04-02 瑞萨电子株式会社 Semiconductor device
JP2014183248A (en) * 2013-03-21 2014-09-29 Toshiba Corp Semiconductor device and strain monitoring device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7432579B2 (en) 2003-10-09 2008-10-07 Kabushiki Kaisha Toshiba Semiconductor device with horizontal MOSFET and Schottky barrier diode provided on single substrate
EP1759416A2 (en) * 2004-06-23 2007-03-07 Freescale Semiconductor, Inc. Ldmos transistor
JP2008504680A (en) * 2004-06-23 2008-02-14 フリースケール セミコンダクター インコーポレイテッド LDMOS transistor
EP1759416A4 (en) * 2004-06-23 2009-07-08 Freescale Semiconductor Inc Ldmos transistor
JP2006229049A (en) * 2005-02-18 2006-08-31 Fdk Corp (GROUP Mn-V) CO-ADDED GROUP IV MAGNETIC SEMICONDUCTOR
JP2009164364A (en) * 2008-01-08 2009-07-23 Renesas Technology Corp Semiconductor device and its manufacturing method
WO2009090974A1 (en) * 2008-01-16 2009-07-23 Nec Corporation Semiconductor device and method for manufacturing the same
JP2010263116A (en) * 2009-05-08 2010-11-18 Mitsubishi Electric Corp Semiconductor device
JP2013004594A (en) * 2011-06-14 2013-01-07 Renesas Electronics Corp Semiconductor device and semiconductor device manufacturing method
CN103700659A (en) * 2012-09-27 2014-04-02 瑞萨电子株式会社 Semiconductor device
JP2014082440A (en) * 2012-09-27 2014-05-08 Renesas Electronics Corp Semiconductor device
JP2014183248A (en) * 2013-03-21 2014-09-29 Toshiba Corp Semiconductor device and strain monitoring device

Similar Documents

Publication Publication Date Title
US8658503B2 (en) Semiconductor device and method of fabricating the same
US7485895B2 (en) Silicon carbide semiconductor device
TWI545640B (en) Methods of fabricating silicon carbide devices having smooth channels
JP3620513B2 (en) Silicon carbide semiconductor device
US5963807A (en) Silicon carbide field effect transistor with increased avalanche withstand capability
JP5202308B2 (en) High voltage silicon carbide MOS bipolar device having bidirectional blocking capability and method of manufacturing the same
US7687825B2 (en) Insulated gate bipolar conduction transistors (IBCTS) and related methods of fabrication
US20160336441A1 (en) Semiconductor device
WO2017047286A1 (en) Semiconductor device
JP6109444B1 (en) Semiconductor device
JP2009194127A (en) Semiconductor device and manufacturing method thereof
JP6560444B2 (en) Semiconductor device
US6727128B2 (en) Method of preparing polysilicon FET built on silicon carbide diode substrate
CN101512739A (en) Lateral junction field-effect transistor
JP4948784B2 (en) Semiconductor device and manufacturing method thereof
JP5636752B2 (en) Semiconductor device and manufacturing method thereof
JP2003023099A (en) Field effect transistor
JP5098293B2 (en) Insulated gate type semiconductor device using wide band gap semiconductor and manufacturing method thereof
JP3496509B2 (en) Method for manufacturing silicon carbide semiconductor device
JP3543803B2 (en) Silicon carbide semiconductor device and method of manufacturing the same
JP2002252233A (en) Semiconductor device and method of manufacturing the same
JP2008103392A (en) Semiconductor device and manufacturing method of the semiconductor device
KR20080033351A (en) Method for producing semiconductor device
JP2005033030A (en) Semiconductor device and manufacturing method thereof
JP7411465B2 (en) semiconductor equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060411