JP2003017123A - Polymer film for solid electrolyte, and manufacturing method of the same, solid electrolyte film and lithium ion secondary cell - Google Patents

Polymer film for solid electrolyte, and manufacturing method of the same, solid electrolyte film and lithium ion secondary cell

Info

Publication number
JP2003017123A
JP2003017123A JP2001196438A JP2001196438A JP2003017123A JP 2003017123 A JP2003017123 A JP 2003017123A JP 2001196438 A JP2001196438 A JP 2001196438A JP 2001196438 A JP2001196438 A JP 2001196438A JP 2003017123 A JP2003017123 A JP 2003017123A
Authority
JP
Japan
Prior art keywords
solid electrolyte
polymer
film
polymer film
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001196438A
Other languages
Japanese (ja)
Other versions
JP4990447B2 (en
Inventor
Mitsuhiro Marumoto
光弘 丸本
Toshihiro Zushi
敏博 厨子
Seiji Okada
聖司 岡田
Itaru Gosho
至 御書
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2001196438A priority Critical patent/JP4990447B2/en
Publication of JP2003017123A publication Critical patent/JP2003017123A/en
Application granted granted Critical
Publication of JP4990447B2 publication Critical patent/JP4990447B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a polymer film for solid electro lyte obtained by immersing the polymer film for the solid electrolyte in electro lyte liquid, which hardly generates distortion or wrinkle on a solid electrolyte film when immersed, and to provide a cell restrained from the deposition of electrolyte component by using such a solid electrolyte film as an electrolyte of the cell. SOLUTION: At the manufacturing method of the polymer film for the solid electrolyte, not the material with large coefficient of linear expansion like PET, but the material with small coefficient of linear expansion like metal as Al or Ni, is used as a base material 1 on which, the liquid including a polymer 2 is painted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質用ポリ
マーフィルムとその製造方法、固体電解質フィルムおよ
びリチウムイオン二次電池に関する。
TECHNICAL FIELD The present invention relates to a polymer film for solid electrolyte, a method for producing the same, a solid electrolyte film and a lithium ion secondary battery.

【0002】[0002]

【従来の技術】携帯型の電話やパソコンなどの電子機器
用の電池として、いわゆる液漏れの心配のないリチウム
イオン二次電池などの固体電解質電池が用いられてい
る。固体電解質電池は正極、負極との間にセパレータと
電解質との両者の機能を併せ持った固体の電解質を介在
させるのが基本的な構造である。電子機器用の電池の場
合には小型化・軽量化の観点から、有機化合物のポリマ
ーに電解質溶液を含浸させてゲル状にしたもの(これら
を以下、固体電解質フィルムと呼ぶ)などが知られてい
る。これら固体電解質フィルムは原料のポリマーを溶剤
に溶解、分散させたポリマー含有液を耐溶剤性、耐熱性
を持ったポリエチレンテレフタレート(PET)やポリ
プロピレン(PP)などのプラスチック製の基材上に塗
工し、加熱、冷却により固化した後、プラスチック基材
から剥離して固体電解質用ポリマーフィルムが作成さ
れ、次いで該フィルムにリチウム塩が溶解した電解液を
含浸させることにより固体電解質フィルムが得られる。
2. Description of the Related Art As a battery for an electronic device such as a portable telephone or a personal computer, a solid electrolyte battery such as a so-called lithium-ion secondary battery which is free from liquid leakage is used. The solid electrolyte battery has a basic structure in which a solid electrolyte having the functions of both a separator and an electrolyte is interposed between a positive electrode and a negative electrode. In the case of batteries for electronic devices, from the viewpoint of miniaturization and weight reduction, those obtained by impregnating a polymer of an organic compound with an electrolyte solution to form a gel (these are referred to as solid electrolyte films) are known. There is. These solid electrolyte films are prepared by coating a polymer-containing liquid prepared by dissolving and dispersing a raw material polymer in a solvent onto a plastic substrate such as polyethylene terephthalate (PET) or polypropylene (PP) having solvent resistance and heat resistance. Then, after solidification by heating and cooling, the polymer film for a solid electrolyte is prepared by peeling from the plastic substrate and then impregnated with an electrolytic solution in which a lithium salt is dissolved to obtain a solid electrolyte film.

【0003】このような固体電解質用ポリマーフィルム
に電解質溶液を含浸させたものなどを電解質として用い
る電池の問題点として、電解質成分が負極表面に析出す
ることが挙げられる。例えば負極に炭素、正極にコバル
ト等の遷移金属とリチウムの複合酸化物を用いたリチウ
ムイオン二次電池では、負極表面に金属リチウムが析出
することがある。このような析出物が成長すると固体電
解質フィルムを突き破り正極と接触して内部短絡を起こ
し、電池のサイクル寿命が短くなる原因になるので、電
解質成分の析出が抑制された電池の提供が望まれてい
る。
A problem of a battery using such a polymer film for a solid electrolyte impregnated with an electrolyte solution as an electrolyte is that an electrolyte component is deposited on the surface of a negative electrode. For example, in a lithium ion secondary battery using carbon for the negative electrode and a composite oxide of lithium and a transition metal such as cobalt for the positive electrode, metallic lithium may be deposited on the surface of the negative electrode. When such a deposit grows, it breaks through the solid electrolyte film and contacts with the positive electrode to cause an internal short circuit, which causes the cycle life of the battery to be shortened.Therefore, it is desired to provide a battery in which the deposition of the electrolyte component is suppressed. There is.

【0004】このような電解質成分が析出する原因はこ
れまでは不明であり、固体電解質電池開発の大きな障害
になっていた。本発明者らは、析出物の形状、発生個所
等を詳細に調査した結果、従来見過ごされていた電極と
電解質との不均一な接触が、電解質成分の析出の原因で
あることを初めて見出した。したがって、電解質成分の
析出を防止するためには、電極と電解質との均一な接触
を実現させることが必要である。このため、固体電解質
フィルムとしては、歪みや皺のないものが強く望まれ
る。しかし、前述の方法で固体電解質フィルムを製造す
ると、基材から剥離した固体電解質用ポリマーフィルム
を電解質溶液に浸漬する際に、歪みや皺が生じ易いのが
実情であった。
The cause of deposition of such an electrolyte component has not been known so far, and has been a major obstacle to the development of solid electrolyte batteries. As a result of a detailed investigation of the shape of the precipitate, the generation site, etc., the present inventors found for the first time that the non-uniform contact between the electrode and the electrolyte, which was conventionally overlooked, is the cause of the precipitation of the electrolyte component. . Therefore, in order to prevent the precipitation of the electrolyte component, it is necessary to realize a uniform contact between the electrode and the electrolyte. Therefore, it is strongly desired that the solid electrolyte film is free from distortion and wrinkles. However, when the solid electrolyte film is manufactured by the above-described method, it is the actual situation that distortion and wrinkles are likely to occur when the polymer film for solid electrolyte separated from the substrate is immersed in the electrolyte solution.

【0005】[0005]

【発明が解決しようとする課題】本発明は、歪みや皺の
ない(または、きわめて少ない)固体電解質フィルムの
製造方法を提示し、このような固体電解質フィルムを電
池の電解質として用いることで、電解質成分の析出が抑
制されたリチウムイオン二次電池を提供することを目的
とする。
DISCLOSURE OF THE INVENTION The present invention provides a method for producing a solid electrolyte film free from (or extremely few) distortion and wrinkles, and using such a solid electrolyte film as an electrolyte for a battery, An object of the present invention is to provide a lithium ion secondary battery in which precipitation of components is suppressed.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
について固体電解質用ポリマーフィルムを製造する際の
基材の熱による膨張、収縮に由来する固体電解質用ポリ
マーフィルムの残留応力に着目して研究を行った結果、
以下の特徴を有する本発明の完成に至った。
Means for Solving the Problems With respect to the above problems, the present inventors have focused on the residual stress of the polymer film for solid electrolyte resulting from the expansion and contraction of the base material due to heat when producing the polymer film for solid electrolyte. As a result of doing research,
The present invention has been completed having the following features.

【0007】(1)線膨張率が5×10-5-1以下の材
質からなる基材上にポリマー含有液を塗工し、ポリマー
の固化後に基材から剥離する工程を含む、固体電解質用
ポリマーフィルムの製造方法。 (2)線膨張率が5×10-5-1以下の材質が金属であ
る前記(1)記載の固体電解質用ポリマーフィルムの製
造方法。 (3)金属がAl、Ni、Fe、またはこれら金属の少
なくとも一種を含む合金である前記(2)記載の固体電
解質用ポリマーフィルムの製造方法。 (4)前記(1)〜(3)のいずれかに記載の製造方法
により製造された固体電解質用ポリマーフィルム。 (5)前記(4)記載の固体電解質用ポリマーフィルム
に、リチウム塩が溶解した電解液を含浸してなる固体電
解質フィルム。 (6)前記(5)記載の固体電解質フィルムを含有する
リチウムイオン二次電池。
(1) A solid electrolyte including a step of coating a polymer-containing liquid on a base material made of a material having a linear expansion coefficient of 5 × 10 -5 K -1 or less, and peeling from the base material after solidification of the polymer. For producing polymer film for automobile. (2) The method for producing a polymer film for a solid electrolyte as described in (1) above, wherein the material having a linear expansion coefficient of 5 × 10 −5 K −1 or less is a metal. (3) The method for producing a polymer film for a solid electrolyte according to (2), wherein the metal is Al, Ni, Fe, or an alloy containing at least one of these metals. (4) A polymer film for a solid electrolyte manufactured by the manufacturing method according to any one of (1) to (3) above. (5) A solid electrolyte film obtained by impregnating the polymer film for solid electrolyte according to (4) above with an electrolytic solution in which a lithium salt is dissolved. (6) A lithium ion secondary battery containing the solid electrolyte film as described in (5) above.

【0008】上記のような皺の発生を抑えた固体電解質
用ポリマーフィルムから得た固体電解質フィルムを用い
て製造したリチウムイオン二次電池は、本来の目的たる
リチウムの析出を抑制できるばかりでなく、後述するよ
うに、ハイレート充放電が可能となり、低温での特性も
向上するという効果が得られた。
The lithium ion secondary battery produced by using the solid electrolyte film obtained from the polymer film for a solid electrolyte in which the generation of wrinkles as described above is not only able to suppress the intended deposition of lithium, but also As will be described later, high-rate charging / discharging became possible, and the effect of improving the characteristics at low temperatures was obtained.

【0009】[0009]

【発明の実施の態様】本発明に係る固体電解質用ポリマ
ーフィルムの製造方法について図1(基材上に塗工され
た固体電解質用ポリマーフィルムの模式図)を参照して
説明する。本発明の最大の特徴は基材1の材質として、
従来のPET(線膨張率は6.5×10-5-1)、PP
(線膨張率は7〜10×10-5-1)などの線膨張率の
大きい材質の代わりに、線膨張率の小さい材質を使うこ
とである。
BEST MODE FOR CARRYING OUT THE INVENTION A method for producing a polymer film for a solid electrolyte according to the present invention will be described with reference to FIG. 1 (schematic diagram of a polymer film for a solid electrolyte coated on a substrate). The greatest feature of the present invention is that the material of the base material 1 is
Conventional PET (coefficient of linear expansion 6.5 × 10 -5 K -1 ), PP
A material having a small linear expansion coefficient is used instead of a material having a large linear expansion coefficient (the coefficient of linear expansion is 7 to 10 × 10 −5 K −1 ).

【0010】ここで、線膨張率とは、以下の式1におけ
るβをいい、JIS K7197に記載の方法により測
定される値である。
Here, the coefficient of linear expansion refers to β in the following formula 1, and is a value measured by the method described in JIS K7197.

【0011】β=(1/l0)・(dl/dθ) ただし、セルシウス温度0℃、θにおける長さをそれぞ
れl0、lとする。
Β = (1 / l 0 )  (dl / dθ) However, lengths at Celsius temperatures of 0 ° C. and θ are l 0 and l, respectively.

【0012】本発明において使用する基材1の線膨張率
は5×10-5-1以下、好ましくは2.5×10-5-1
以下である。このような基材1の材質としては金属(単
体か合金かを問わない)、が例示される。これらは純粋
なものを用いても、不純物を含むものでも、複数の素材
を混合したものでもよく、基材としたときに上述の線膨
張率となっていればよい。耐溶剤性などの観点から、好
ましくは金属(合金を含む)、更に好ましくは金属がA
l、Ni、Feのいずれかである、またはこれらのいず
れかを含む合金、好適には、アルミニウム(線膨張率は
2.4×10-5-1)、ステンレス(SUS304で、
線膨張率は1.2×10-5-1)、ニッケル(線膨張率
は1.3×10-5-1)が用いられる。
The linear expansion coefficient of the substrate 1 used in the present invention is 5 × 10 -5 K -1 or less, preferably 2.5 × 10 -5 K -1.
It is the following. Examples of the material of the base material 1 include a metal (whether a simple substance or an alloy). These may be pure, may contain impurities, or may be a mixture of a plurality of materials, as long as they have the above-mentioned linear expansion coefficient when used as a base material. From the viewpoint of solvent resistance and the like, preferably a metal (including an alloy), more preferably a metal is A
1, Ni, Fe, or an alloy containing any of these, preferably aluminum (having a linear expansion coefficient of 2.4 × 10 −5 K −1 ), stainless steel (SUS304,
A linear expansion coefficient of 1.2 × 10 −5 K −1 ) and nickel (a linear expansion coefficient of 1.3 × 10 −5 K −1 ) are used.

【0013】後述する固体電解質用ポリマーフィルムの
製造方法に適合すれば、基材1の形状は特に限定されな
いが、ポリマーの塗工、固化、剥離により固体電解質用
ポリマーフィルムを製造する本発明においては、基材1
は長尺の薄板状のものがよく、例えば、幅は1〜5c
m、長さは1〜100cm、厚さは10〜20μmであ
る。
The shape of the substrate 1 is not particularly limited as long as it is compatible with the method for producing a polymer film for a solid electrolyte described below, but in the present invention for producing a polymer film for a solid electrolyte by coating, solidifying and peeling a polymer. , Substrate 1
Is preferably a long thin plate, for example, the width is 1 to 5c
m, the length is 1 to 100 cm, and the thickness is 10 to 20 μm.

【0014】本発明に係る固体電解質用ポリマーフィル
ムは、上述のような線膨張質の小さい材質からなる基材
1の上に固体電解質用ポリマーフィルムの原料となるポ
リマー含有液を塗工して、加熱により溶剤を蒸発、次い
で冷却することによりポリマー2を固化した後、固化し
たポリマー2を剥離して得られる(図1)。基材1の材
質として線膨張率の小さい材質を用いることで、加熱及
び冷却時の基材1の膨張、収縮が小さくなり、ポリマー
2中の残留応力も小さくなる。このため、PETやPP
などの線膨張率の大きい材質からなる基材上で固化した
ポリマーを電解質溶液に含浸するときに発生する、応力
の開放に伴う歪みや皺は、本発明に係る方法では発生し
難くなる。
The polymer film for a solid electrolyte according to the present invention is obtained by applying a polymer-containing liquid, which is a raw material for a polymer film for a solid electrolyte, onto a substrate 1 made of a material having a small linear expansion coefficient as described above, It is obtained by evaporating the solvent by heating and then solidifying the polymer 2 by cooling, and then peeling the solidified polymer 2 (FIG. 1). By using a material having a small linear expansion coefficient as the material of the base material 1, expansion and contraction of the base material 1 during heating and cooling is reduced, and residual stress in the polymer 2 is also reduced. Therefore, PET and PP
Strains and wrinkles that accompany the release of stress, which occur when the electrolyte solution is impregnated with a polymer solidified on a base material having a large linear expansion coefficient, are less likely to occur by the method according to the present invention.

【0015】本発明で用いる固体電解質用ポリマーフィ
ルムの主成分となるポリマー2の材質は電池の電解質用
に用いられうるものであれば特に制限はない。ここで電
池の電解質用に用いられうるものとは、ポリマー自体に
イオン伝導性はないが、電解質溶液がポリマーに浸透す
ることによりイオン伝導性を獲得するものをいう。
The material of the polymer 2 which is the main component of the polymer film for solid electrolyte used in the present invention is not particularly limited as long as it can be used for the electrolyte of the battery. Here, what can be used for the electrolyte of the battery means that the polymer itself does not have ion conductivity, but the electrolyte solution permeates the polymer to acquire ion conductivity.

【0016】このようなポリマー2の材質としては、電
解質溶液に対する親和性が大きいものがよく、たとえば
ポリスチレン、ポリブタジエンおよびそれらの共重合
体、ポリビニリデンフルオライド、ポリアクリロニトリ
ル、ポリビニルピロリドン、ポリビニリデンカーボネー
トなどが挙げられる。
The material of the polymer 2 is preferably one having a high affinity for the electrolyte solution, such as polystyrene, polybutadiene and their copolymers, polyvinylidene fluoride, polyacrylonitrile, polyvinylpyrrolidone and polyvinylidene carbonate. Is mentioned.

【0017】本発明においては、ポリマー自体にイオン
伝導性はないが、電解質溶液がポリマーに浸透すること
によりイオン伝導性を獲得するもの、中でもビニリデン
フルオライドを主単位とするフッ素ポリマーが特に好ま
しく用いられる。上記ビニリデンフルオライドを主単位
とするフッ素ポリマーとは、ビニリデンフルオライドの
単独重合体、または、ビニリデンフルオライドとその他
のフッ素原子を有するビニル系モノマーとの共重合体を
意味し、これらは単独でも混合しても用いることができ
る。その他のフッ素原子を有するビニル系モノマーとし
ては、ヘキサフルオロプロピレン、クロロトリフルオロ
エチレン、テトラフルオロエチレンなどが挙げられる。
また、共重合体の形態はランダム、ブロックのいずれの
形態でもよい。共重合体である場合、ビニリデンフルオ
ライド(の単位)の割合は70モル%以上が好ましく、
特に好ましくは75モル%以上である。
In the present invention, the polymer itself does not have ionic conductivity, but one which acquires ionic conductivity by the electrolyte solution penetrating into the polymer, among which a fluoropolymer having vinylidene fluoride as a main unit is particularly preferably used. To be The fluoropolymer having vinylidene fluoride as a main unit means a homopolymer of vinylidene fluoride, or a copolymer of vinylidene fluoride and a vinyl-based monomer having another fluorine atom, which may be used alone. It can also be used by mixing. Examples of other vinyl monomers having a fluorine atom include hexafluoropropylene, chlorotrifluoroethylene, and tetrafluoroethylene.
The form of the copolymer may be random or block. In the case of a copolymer, the proportion of vinylidene fluoride (unit thereof) is preferably 70 mol% or more,
Particularly preferably, it is 75 mol% or more.

【0018】また、上記ビニリデンフルオライドを主単
位とするフッ素ポリマーは、カルボキシル基(−COO
H)、スルホン酸基(−SO2OH)、カルボン酸エス
テル基(−COOR)、カルバモイル基(−CON
2)またはリン酸基(−PO(OH)2)などからなる
官能基を有するビニル系モノマーの重合体がグラフトさ
れていてもよい(カルボン酸エステル基(−COOR)
における置換基Rは、メチル基、エチル基、ブチル基な
どの炭素数1〜4の低級アルキル基が好ましいものであ
る。)。フッ素ポリマーをかかる官能基を含有する重合
体がグラフトした態様のポリマー形態にすると、電池の
正極または負極へのポリマーフィルムの接着性が向上す
るので好ましい。
The fluoropolymer having vinylidene fluoride as a main unit is a carboxyl group (--COO).
H), a sulfonic acid group (-SO 2 OH), carboxylic acid ester group (-COOR), a carbamoyl group (-CON
H 2 ) or a polymer of a vinyl-based monomer having a functional group composed of a phosphoric acid group (—PO (OH) 2 ) or the like may be grafted (carboxylic ester group (—COOR)
The substituent R in is preferably a lower alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group and a butyl group. ). It is preferable to make the fluoropolymer into a polymer form in which a polymer containing such a functional group is grafted, because the adhesion of the polymer film to the positive electrode or the negative electrode of the battery is improved.

【0019】上記官能基を有するビニル系モノマーとし
ては、官能基を除く部分の炭素数が4以下の化合物から
なるモノマーが好適である。カルボキシル基含有モノマ
ーとしては、アクリル酸、メタクリル酸、クロトン酸、
ビニル酢酸、アリル酢酸などのカルボキシル基を1個有
するものの他、イタコン酸、マレイン酸などのカルボキ
シル基を2個以上有するものも使用可能である。スルホ
ン酸基含有モノマーとしては、スチレンスルホン酸、ビ
ニルスルホン酸などが好適である。カルボン酸エステル
基含有モノマーとしては、メチルアクリレート、ブチル
アクリレートなどが好適である。カルバモイル基含有モ
ノマーとしては、アクリルアミドなどが好適である。リ
ン酸基含有モノマーとしては、リン酸トリフェニル、リ
ン酸トリクレシルなどが好適である。グラフト化の程度
は最終重量の2モル%〜20モル%が好ましく、3モル
%〜12モル%がより好ましく、5モル%〜10モル%
がとりわけ好ましい。
As the vinyl-based monomer having the functional group, a monomer composed of a compound having a carbon number of 4 or less in the portion excluding the functional group is suitable. As the carboxyl group-containing monomer, acrylic acid, methacrylic acid, crotonic acid,
Besides those having one carboxyl group such as vinyl acetic acid and allyl acetic acid, those having two or more carboxyl groups such as itaconic acid and maleic acid can also be used. As the sulfonic acid group-containing monomer, styrene sulfonic acid, vinyl sulfonic acid and the like are suitable. As the carboxylic acid ester group-containing monomer, methyl acrylate, butyl acrylate and the like are suitable. As the carbamoyl group-containing monomer, acrylamide or the like is suitable. As the phosphate group-containing monomer, triphenyl phosphate, tricresyl phosphate and the like are preferable. The degree of grafting is preferably 2 mol% to 20 mol% of the final weight, more preferably 3 mol% to 12 mol%, and 5 mol% to 10 mol%.
Are particularly preferred.

【0020】また、本発明において用いるポリマーは、
電解質の保持性の観点から多孔質であるのが好ましく、
密度は0.60〜1.3g/cm3、好ましくは0.7
0〜0.80g/cm3とするのがよい。ポリマーの密
度が0.60g/cm3未満の場合、機械的強度の低下
により電池の組立て時に取り扱いにくくなる等の問題が
懸念され、密度が1.30g/cm3より大きいと十分
なレート特性および低温特性の向上効果が得られ難いか
らである。
The polymer used in the present invention is
From the viewpoint of electrolyte retention, it is preferably porous,
Density is 0.60 to 1.3 g / cm 3 , preferably 0.7
It is good to set it to 0 to 0.80 g / cm 3 . When the density of the polymer is less than 0.60 g / cm 3 , problems such as difficulty in handling during assembly of the battery due to deterioration in mechanical strength may occur, and when the density is higher than 1.30 g / cm 3 , sufficient rate characteristics and This is because it is difficult to obtain the effect of improving low temperature characteristics.

【0021】このような材質のポリマーからなる固体電
解質用ポリマーフィルムの作製はポリマー含有液を前述
した基材に塗工し、加熱、冷却により固化した後に基材
から剥離する工程からなる。以下、各工程について説明
する。
The production of a polymer film for a solid electrolyte comprising a polymer of such a material comprises the steps of applying the polymer-containing liquid to the above-mentioned substrate, solidifying by heating and cooling, and then peeling from the substrate. Hereinafter, each step will be described.

【0022】ポリマー含有液を作る際の溶剤については
該ポリマーを溶解、分散するものであれば特に制限はな
く、単一の物質でも2種以上の物質の混合物でもよい
が、蒸発時に発泡性のある溶剤(例えば、オクタノー
ル、1−ペンタノール、3−メチル−1−ブタノール、
2−メチル−1−ブタノール、2−ペンタノール、3−
ペンタノール、2−メチル−2−ブタノール、3−メチ
ル−2−ブタノールなど)と発泡性のない溶剤(例え
ば、テトラヒドロフラン(THF)、ジメチルアセトア
ミド、ジメチルホルムアミドなど)を組合わせるのが好
ましい。これは、溶剤の蒸発時に固化するポリマーに上
述の細孔を生じるようにするためである。これらの組合
わせのうちでも、ジメチルアセトアミドとオクタノール
の混合物が好適に用いられる。
The solvent for preparing the polymer-containing liquid is not particularly limited as long as it dissolves and disperses the polymer, and it may be a single substance or a mixture of two or more types of substances. Certain solvents (eg, octanol, 1-pentanol, 3-methyl-1-butanol,
2-methyl-1-butanol, 2-pentanol, 3-
It is preferable to combine pentanol, 2-methyl-2-butanol, 3-methyl-2-butanol, etc.) with a non-foaming solvent (eg, tetrahydrofuran (THF), dimethylacetamide, dimethylformamide, etc.). This is to cause the above-mentioned pores in the polymer that solidifies when the solvent evaporates. Among these combinations, a mixture of dimethylacetamide and octanol is preferably used.

【0023】本発明に用いるポリマー含有液は上述の溶
剤にポリマーの原料を溶解または分散して得られる。含
有液中のポリマーの濃度は塗工する工法に適した粘度に
なるように調整すればよい。ポリマー含有液作製の際の
溶解は攪拌など任意の方法をとれる。混合の際に気泡が
混入したり、溶解、分散が不十分でありポリマー原料の
濃度が不均一であると、固体電解質用ポリマーフィルム
の厚さバラツキの原因になることから、混合後に10〜
15時間ほど静置するのが望ましい。
The polymer-containing liquid used in the present invention is obtained by dissolving or dispersing the polymer raw material in the above-mentioned solvent. The concentration of the polymer in the contained liquid may be adjusted so that the viscosity is suitable for the coating method. Dissolution at the time of preparing the polymer-containing liquid may be performed by any method such as stirring. When bubbles are mixed in during mixing, or when dissolution and dispersion are insufficient and the concentration of the polymer raw material is non-uniform, it causes thickness variation of the polymer film for solid electrolyte.
It is desirable to let it stand for about 15 hours.

【0024】本発明においては、このポリマー含有液を
前述の線膨張率の小さい基材上に塗工する。塗工の方法
は特に制限はないが、たとえばブレードナイフ式塗工機
などの装置を用いるダイレクト塗工、リバースロールな
どの装置を用いるインダイレクト塗工などが、塗工時の
厚さの精度が高い点で好ましい。塗工の厚さとしては、
乾燥後の固体電解質用ポリマーフィルムの厚さが1μm
〜50μm、さらに好ましくは10μm〜30μmとな
るようにするのが望ましい。
In the present invention, this polymer-containing liquid is applied onto the above-mentioned substrate having a small linear expansion coefficient. The coating method is not particularly limited, for example, direct coating using a device such as a blade knife type coating machine, indirect coating using a device such as a reverse roll, the accuracy of the thickness at the time of coating is It is preferable in terms of high price. As the thickness of coating,
The thickness of the polymer film for solid electrolyte after drying is 1 μm
˜50 μm, more preferably 10 μm to 30 μm.

【0025】基材上にポリマー含有液を塗工した後は、
バッチ式あるいは連続式の熱風炉等で加熱してポリマー
含有液を乾燥する。このときの温度、加熱時間は溶剤に
応じて、ポリマーが所望の密度になるように決めればよ
い。乾燥条件の一例として、ジメチルアセトアミド85
重量部、オクタノール15重量部、ポリビニリデンフル
オライド15重量部からなるポリマー含有液については
70〜100℃、炉長10mの乾燥炉を0.1m/mi
mで通過させる加熱を挙げることができるが、本発明
は、この条件に限られるわけではない。
After coating the polymer-containing liquid on the substrate,
The polymer-containing liquid is dried by heating in a batch type or continuous type hot air oven or the like. The temperature and heating time at this time may be determined so that the polymer has a desired density depending on the solvent. As an example of drying conditions, dimethylacetamide 85
For a polymer-containing liquid consisting of 1 part by weight, 15 parts by weight of octanol, and 15 parts by weight of polyvinylidene fluoride, a drying furnace having a furnace length of 10 m and a temperature of 70 to 100 ° C. is used at 0.1 m / mi.
Examples of the heating method include heating by passing m. However, the present invention is not limited to this condition.

【0026】上述したように、この乾燥のための加熱の
ときに、ポリマー含有液を塗布した基材の熱膨張が懸念
される。しかし、本発明に係る製造方法では線膨張率の
小さい材質からなる基材を用いているので、基材の熱膨
張が極めて小さくなる。このため、ポリマーに対する応
力も非常に小さくなり、固体電解質フィルムの歪みや皺
の発生を妨ぐことができるのである。
As described above, during the heating for drying, there is a concern that the base material coated with the polymer-containing liquid may thermally expand. However, since the manufacturing method according to the present invention uses the base material made of a material having a small linear expansion coefficient, the thermal expansion of the base material becomes extremely small. For this reason, the stress on the polymer becomes very small, and it is possible to prevent the solid electrolyte film from being distorted or wrinkled.

【0027】溶剤の蒸発後、放冷等により室温付近にま
で冷却してから、固化した固体電解質用ポリマーフィル
ムを基材から剥離する。固体電解質用ポリマーフィルム
に傷、破れなどを生じない方法であれば剥離の方法は任
意である。剥離の方法として、巻き上げ機による機械的
な剥離、液に浸漬して剥離するなどの例を挙げることが
できるが、本発明ではこれらに限られない。また、固体
電解質用ポリマーフィルムは所定の大きさにカットして
用いるが、固体電解質用ポリマーフィルムを剥離後にカ
ットしても、剥離前に基材ごとカットしてもよい。
After evaporation of the solvent, the solution is allowed to cool to near room temperature and then the solidified polymer film for solid electrolyte is peeled from the substrate. Any peeling method can be used as long as it does not cause scratches or tears on the polymer film for solid electrolyte. Examples of the peeling method include mechanical peeling using a winding machine and peeling by immersing in a liquid, but the invention is not limited thereto. Further, the polymer film for solid electrolyte is used after being cut to a predetermined size, but the polymer film for solid electrolyte may be cut after peeling or may be cut together with the substrate before peeling.

【0028】次に、固体電解質用ポリマーフィルムの電
解質溶液への含浸につき、電解質溶液を構成する電解
質、溶媒、固体電解質用ポリマーフィルムの含浸方法の
順に説明する。
Next, the impregnation of the polymer film for solid electrolyte into the electrolyte solution will be described in the order of the electrolyte constituting the electrolyte solution, the solvent, and the method for impregnating the polymer film for solid electrolyte.

【0029】電解質としては、当業界で知られているも
のを任意に用いることができる。電池がリチウムイオン
二次電池である場合には、LiClO4、LiBF4、L
iPF6、LiAsF6、LiAlCl4、Li(CF3
22Nなどから選ばれる一種または二種以上が好適に
使用される。また、溶媒としては、電解質を溶解し、か
つ、固体電解質用ポリマーフィルムに浸透するものであ
って、エチレンカーボネート、プロピレンカーボネー
ト、ジメチルカーボネート、ジエチルカーボネート、エ
チルメチルカーボネート、ジメチルスルホキシド、スル
ホラン、γ−ブチロラクトン、1,2−ジメトキシエタ
ン、N,N−ジメチルホルムアミド、テトラヒドロフラ
ン、1,3−ジオキソラン、2−メチルテトラヒドロフ
ラン、ジエチルエーテルなどが例示され、これらの1種
または2種以上の混合物が使用される。電解質溶液中の
電解質濃度は、好ましくは0.1モル/l〜2モル/
l、より好ましくは0.5モル/l〜1.5モル/lで
ある。電解質の濃度が0.1モル/l未満であると、イ
オン伝導性の低下によって電池容量が充分に得られず、
またハイレート特性が著しく低下する不具合があるため
好ましくない。また該濃度が2モル/lを超えると、著
しい粘度上昇が生じ、ハイレート特性および低温特性の
低下が生じる不具合があるため好ましくない。
As the electrolyte, any of those known in the art can be used. When the battery is a lithium ion secondary battery, LiClO 4 , LiBF 4 , L
iPF 6, LiAsF 6, LiAlCl 4 , Li (CF 3 S
One or more selected from O 2 ) 2 N and the like are preferably used. Further, as the solvent, which dissolves the electrolyte and permeates the polymer film for solid electrolyte, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethyl sulfoxide, sulfolane, γ-butyrolactone , 1,2-dimethoxyethane, N, N-dimethylformamide, tetrahydrofuran, 1,3-dioxolane, 2-methyltetrahydrofuran, diethyl ether and the like are exemplified, and one kind or a mixture of two or more kinds thereof is used. The electrolyte concentration in the electrolyte solution is preferably 0.1 mol / l to 2 mol /
1, more preferably 0.5 mol / l to 1.5 mol / l. When the concentration of the electrolyte is less than 0.1 mol / l, the battery capacity cannot be sufficiently obtained due to a decrease in ionic conductivity,
Further, there is a problem that the high rate characteristic is significantly deteriorated, which is not preferable. On the other hand, if the concentration exceeds 2 mol / l, the viscosity is remarkably increased, and the high rate characteristics and the low temperature characteristics are deteriorated, which is not preferable.

【0030】なお、相溶性溶媒に混合溶媒を使用する場
合は、特に、ジエチルカーボネート(DEC)およびエ
チルメチルカーボネート(EMC)から選ばれる少なく
とも一種を含み、更にエチレンカーボネート(EC)
と、プロピレンカーボネート(PC)と、ジメチルカー
ボネート(DMC)とを含む混合物が好適である。かか
る混合物を構成する各成分の混合比は、ジエチルカーボ
ネートおよびエチルメチルカーボネートから選ばれる少
なくとも一種においては、25体積%〜50体積%であ
るのが好ましく、30体積%〜35体積%であるのがよ
り好ましい。エチレンカーボネートにおいては混合比が
4体積%〜20体積%であるのが好ましく、6体積%〜
18体積%であるのがより好ましい。プロピレンカーボ
ネートにおいては混合比が3体積%〜17体積%である
のが好ましく、5体積%〜15体積%であるのがより好
ましい。また、ジメチルカーボネートにおいては混合比
が40体積%を超えて60体積%以下であるのが好まし
く、45体積%〜55体積%であるのがより好ましい。
When a mixed solvent is used as the compatible solvent, it particularly contains at least one selected from diethyl carbonate (DEC) and ethyl methyl carbonate (EMC), and further ethylene carbonate (EC).
And a mixture containing propylene carbonate (PC) and dimethyl carbonate (DMC) is suitable. The mixing ratio of each component constituting such a mixture is preferably 25% by volume to 50% by volume, and 30% by volume to 35% by volume in at least one selected from diethyl carbonate and ethylmethyl carbonate. More preferable. In ethylene carbonate, the mixing ratio is preferably 4% by volume to 20% by volume, and 6% by volume to
More preferably, it is 18% by volume. In propylene carbonate, the mixing ratio is preferably 3% by volume to 17% by volume, and more preferably 5% by volume to 15% by volume. Further, in dimethyl carbonate, the mixing ratio is preferably more than 40% by volume and 60% by volume or less, and more preferably 45% by volume to 55% by volume.

【0031】ジエチルカーボネートおよびエチルメチル
カーボネートから選ばれる少なくとも一種においては、
上記混合比が25体積%未満であると塩(電解質)を溶
解させた溶液の凝固点が上昇して、特に−20℃以下の
低温下において、電池の内部抵抗が増大し、充放電サイ
クル特性および低温特性が低下する傾向となる。一方、
上記混合比が50体積%を超えると塩(電解質)を溶解
させた溶液の粘度が上昇して電池の内部抵抗が増大し、
充放電サイクル特性が低下する傾向となる。
In at least one selected from diethyl carbonate and ethyl methyl carbonate,
If the mixing ratio is less than 25% by volume, the freezing point of the solution in which the salt (electrolyte) is dissolved rises, and the internal resistance of the battery increases, especially at low temperatures of -20 ° C or lower, and the charge / discharge cycle characteristics and The low temperature characteristics tend to deteriorate. on the other hand,
If the mixing ratio exceeds 50% by volume, the viscosity of the solution in which the salt (electrolyte) is dissolved increases and the internal resistance of the battery increases,
The charge / discharge cycle characteristics tend to deteriorate.

【0032】エチレンカーボネートにおいては、上記混
合比が4体積%未満であると負極板表面で安定な皮膜が
形成されにくく、サイクル特性が低下する傾向となり、
上記混合比が20体積%を超えると、塩(電解質)を溶
解させた溶液の粘度が上昇して電池の内部抵抗が増大
し、充放電サイクル特性が低下する傾向となる。
In ethylene carbonate, if the mixing ratio is less than 4% by volume, it is difficult to form a stable film on the surface of the negative electrode plate, and the cycle characteristics tend to deteriorate.
If the mixing ratio exceeds 20% by volume, the viscosity of the solution in which the salt (electrolyte) is dissolved increases, the internal resistance of the battery increases, and the charge / discharge cycle characteristics tend to deteriorate.

【0033】プロピレンカーボネートにおいては、上記
混合比が3体積%未満であると充放電サイクルに伴うイ
ンピーダンスの増加の抑制効果が小さくなり、サイクル
特性が低下する傾向となり、上記混合比が17体積%を
超えると、塩(電解質)を溶解させた溶液の粘度が上昇
して電池の内部抵抗が増大し、充放電サイクル特性が低
下する傾向となる。
In the case of propylene carbonate, if the mixing ratio is less than 3% by volume, the effect of suppressing the increase in impedance due to charge / discharge cycles becomes small and the cycle characteristics tend to deteriorate, so that the mixing ratio becomes 17% by volume. When it exceeds, the viscosity of the solution in which the salt (electrolyte) is dissolved increases, the internal resistance of the battery increases, and the charge-discharge cycle characteristics tend to deteriorate.

【0034】ジメチルカーボネートにおいては、上記混
合比が40体積%以下であると塩(電解質)を溶解させ
た溶液の粘度が上昇して電池の内部抵抗が増大し、充放
電サイクル特性が低下する傾向となり、上記混合比が6
0体積%を超えると、塩(電解質)を溶解させた溶液の
凝固点が上昇して、特に−20℃以下の低温下におい
て、電池の内部抵抗が増大し、サイクル特性および低温
特性が低下する傾向となる。
When the mixing ratio of dimethyl carbonate is 40% by volume or less, the viscosity of the solution in which the salt (electrolyte) is dissolved increases, the internal resistance of the battery increases, and the charge-discharge cycle characteristics tend to deteriorate. And the above mixing ratio is 6
If it exceeds 0% by volume, the freezing point of the solution in which the salt (electrolyte) is dissolved rises, and the internal resistance of the battery increases and the cycle characteristics and low temperature characteristics tend to deteriorate, especially at low temperatures of -20 ° C or lower. Becomes

【0035】なお、上記溶媒とともに、電池の使用温度
(特に低温使用時)での溶液の結晶化防止などを目的
に、テトラエチレングリコールジメチルエーテル、N−
メチル−ピロリドン(1−メチル−2−ピロリドン)、
エチレングリコールジメチルエーテル、ジエチレングリ
コールジメチルエーテルなどの可塑剤を使用するのが好
ましい。可塑剤を添加することで、ポリマーに浸透させ
た電解質溶液からの電解質の結晶化がさらに防止され、
本発明をより実効あらしめることができる。
In addition to the above-mentioned solvent, tetraethylene glycol dimethyl ether, N-, for the purpose of preventing crystallization of the solution at the operating temperature of the battery (especially when using at low temperature).
Methyl-pyrrolidone (1-methyl-2-pyrrolidone),
It is preferable to use a plasticizer such as ethylene glycol dimethyl ether or diethylene glycol dimethyl ether. Addition of a plasticizer further prevents crystallization of the electrolyte from the electrolyte solution infiltrated into the polymer,
The present invention can be made more effective.

【0036】固体電解質用ポリマーフィルムを電解質溶
液に含浸する方法は特に限定はない。固体電解質用ポリ
マーフィルムを電解質溶液に含浸してから、後述する電
池を組立ててもよいが、含浸後にはポリマーフィルムが
ゲル化することを考慮して、加工の容易さの観点から、
含浸前の固体電解質用ポリマーフィルムを用いて電池を
組立ててから電解質溶液に含浸するほうが好ましい。
The method of impregnating the polymer film for solid electrolyte with the electrolyte solution is not particularly limited. After impregnating the electrolyte solution with the polymer film for solid electrolyte, the battery described below may be assembled, but considering that the polymer film gels after impregnation, from the viewpoint of ease of processing,
It is preferable that the battery is assembled using the polymer film for solid electrolyte before impregnation and then impregnated with the electrolyte solution.

【0037】本発明の固体電解質フィルムは、従来公知
の各種のリチウムイオン二次電池に適用できる。たとえ
ば帯状体にした正極(シート)および負極(シート)の
間にこれらと略同じ大きさの帯状態にした固体電解質フ
ィルムを介在させ、これら3者をその長さ方向に沿って
渦巻状に捲回して捲回体を作成し、該捲回体を外装材に
収容した形態(所謂、捲回型)や、矩形の正極(シー
ト)および負極(シート)の間にこれらと略同じ大きさ
の矩形体にした固体電解質フィルムが挟まれた単位(セ
ル)を1つまたは2以上繰り返した積層構造体を形成
し、該積層構造体を外装材に収容した形態(所謂、積層
型)等があげられる。また、積層型の一つのバリエーシ
ョンとして、袋状の固体電解質フィルムにて矩形の正極
(シート)を包囲してなる正極袋詰体と矩形の負極(シ
ート)とを積層して成る積層構造体を外装材に収容した
形態(所謂、袋詰型)を挙げることができる。かかる袋
詰型では、袋状の固体電解質フィルムで正極シートが完
全に包囲されているので、正極(シート)と負極(シー
ト)との物理的接触がなく、正極シートと負極シートを
完全に絶縁できるという利点がある。なお、固体電解質
フィルムを袋状に形成する方法としては、当分野におい
て従来から広く行われてきた各種方法をあげることがで
きる。たとえば熱プレス、ヒートシーラー、真空熱プレ
スなどの装置を用いて適宜の寸法で折り曲げた固体電解
質フィルムの外周部を加熱して外周部を固着する方法、
プレスロールなどの装置を用いて上記外周部を加圧する
方法、熱プレス、ホットロールプレス、真空プレスなど
を用いて上記外周部を加熱しながら加圧する方法、など
が挙げられる。
The solid electrolyte film of the present invention can be applied to various conventionally known lithium ion secondary batteries. For example, a strip-shaped positive electrode (sheet) and a negative electrode (sheet) are interposed with a strip-shaped solid electrolyte film of substantially the same size, and these three members are wound in a spiral shape along the length direction. A wound body is formed by rotating the wound body, and the wound body is housed in an exterior material (so-called wound type), or between a rectangular positive electrode (sheet) and a negative electrode (sheet) having substantially the same size. An example is a form (so-called laminated type) in which a laminated structure is formed by repeating one or two or more units (cells) in which a rectangular solid electrolyte film is sandwiched, and the laminated structure is housed in an exterior material. To be Further, as one variation of the laminated type, a laminated structure formed by laminating a positive electrode bagging body in which a rectangular positive electrode (sheet) is surrounded by a bag-shaped solid electrolyte film and a rectangular negative electrode (sheet) is laminated. The form (so-called bag type) accommodated in the exterior material can be mentioned. In such a bag type, since the positive electrode sheet is completely surrounded by the bag-shaped solid electrolyte film, there is no physical contact between the positive electrode (sheet) and the negative electrode (sheet), and the positive electrode sheet and the negative electrode sheet are completely insulated. There is an advantage that you can. As a method for forming the solid electrolyte film into a bag shape, various methods that have been widely used in the art can be cited. For example, a method of heating the outer peripheral portion of the solid electrolyte film bent to an appropriate size using a device such as a heat press, a heat sealer, or a vacuum heat press to fix the outer peripheral portion,
Examples thereof include a method of pressurizing the outer peripheral portion using a device such as a press roll, a method of applying pressure while heating the outer peripheral portion using a heat press, a hot roll press, a vacuum press, and the like.

【0038】本発明の固体電解質フィルムを用いてなる
リチウムイオン二次電池において、正極(シート)およ
び負極(シート)としては、それぞれ公知のリチウムイ
オン二次電池用の正極(シート)および負極(シート)
を使用することができる。好ましい例としては、例え
ば、正極活物質または負極活物質に導電材や結着剤など
を混合した正極活物質組成物または負極活物質組成物を
集電体上に塗布し、乾燥・圧延を施して、正極活物質層
または負極活物質層を形成してなるものがあげられる。
In the lithium ion secondary battery using the solid electrolyte film of the present invention, the positive electrode (sheet) and the negative electrode (sheet) are known positive electrode (sheet) and negative electrode (sheet) for lithium ion secondary battery, respectively. )
Can be used. As a preferred example, for example, a positive electrode active material composition or a negative electrode active material composition obtained by mixing a positive electrode active material or a negative electrode active material with a conductive material, a binder, or the like is applied onto a current collector, and dried and rolled. Then, the thing formed by forming a positive electrode active material layer or a negative electrode active material layer is mentioned.

【0039】正極活物質としては、Li−Co系複合酸化
物、Li−Mn系複合酸化物、Li−Ni系複合酸化物などを用
いることができ、中でも化学的に安定で取り扱いが容易
であり、しかも高容量の二次電池を製造しうる点から、
コバルト酸リチウム(LiCoO2)を用いるのが好ましい。
導電材としては、人造あるいは天然の黒鉛類、またはケ
ッチェンブラック、アセチレンブラック、オイルファー
ネスブラック、イクストラコンダクティブファーネスブ
ラックなどのカーボンブラックなどの粒状の炭素材(粒
状とは、鱗片状、球状、擬似球状、塊状、ウィスカー状
などが含まれ、特に限定されない)を用いることができ
る。また、正極(シート)における結着剤としては、ポ
リビニリデンフルオライド、ポリテトラフルオロエチレ
ン、ポリエチレン、エチレン−プロピレン−ジエン系ポ
リマー等を用いることができる。正極活物質組成物にお
いて、正極活物質と導電材と結着剤との着合計量100
重量部に対して、導電材が3〜15重量部、結着剤が1
〜10重量部程度配合されるのが好ましい。
As the positive electrode active material, Li-Co type composite oxide, Li-Mn type composite oxide, Li-Ni type composite oxide and the like can be used, and among them, they are chemically stable and easy to handle. In addition, since it is possible to manufacture a high capacity secondary battery,
It is preferable to use lithium cobalt oxide (LiCoO 2 ).
As the conductive material, artificial or natural graphite, or granular carbon material such as carbon black such as Ketjen black, acetylene black, oil furnace black, and Extra conductive furnace black (granular, scaly, spherical, pseudo Spheres, lumps, whiskers, etc. are included and are not particularly limited) can be used. Further, as the binder in the positive electrode (sheet), polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, ethylene-propylene-diene polymer, etc. can be used. In the positive electrode active material composition, the total amount of the positive electrode active material, the conductive material and the binder deposited is 100.
3 to 15 parts by weight of the conductive material and 1 part of the binder with respect to parts by weight
It is preferable that the composition is blended in an amount of about 10 to 10 parts by weight.

【0040】集電体としては、導電性金属で形成された
箔または穴あき箔などを用いることができ、その厚みを
5〜100μm程度とすればよい。正極集電体の材料と
しては、銅、ニッケル、銀、ステンレスなどが用いられ
る。
As the current collector, a foil or a perforated foil made of a conductive metal can be used, and its thickness may be about 5 to 100 μm. As a material for the positive electrode current collector, copper, nickel, silver, stainless steel or the like is used.

【0041】正極(シート)および負極(シート)は、
公知の方法に従って製造することができる。例えば、正
極(シート)は、正極活物質、導電材および結着剤を混
合加工し、N−メチルピロリドンなどの有機溶媒に分散
させてペーストとし、正極集電体上に塗布、乾燥させた
あと、加圧して適当な形状に切断して得ることができ
る。
The positive electrode (sheet) and the negative electrode (sheet) are
It can be manufactured according to a known method. For example, a positive electrode (sheet) is prepared by mixing and processing a positive electrode active material, a conductive material, and a binder, dispersing it in an organic solvent such as N-methylpyrrolidone to form a paste, applying it on the positive electrode current collector, and drying it. It can be obtained by applying pressure and cutting into an appropriate shape.

【0042】本発明において、電池の外装材としては、
円筒缶、角筒缶、ボタン状缶等の金属缶の他、ラミネー
トフィルム等のシート状の外装材が使用される。ラミネ
ートフィルムとしては、銅、アルミニウム等の金属箔の
少なくとも片面にポリエステル、ポリプロピレン等の熱
可塑性樹脂ラミネート層が形成されたものが好ましい。
金属箔としては、アルミニウム、銅、鉄等が挙げられ
る。樹脂としてはポリエステル、ポリプロピレン等の熱
可塑性樹脂があげられる。かかる熱可塑性樹脂層を有す
るものであれば、上記捲回体または積層構造体にこれを
外装してその周縁を熱溶着するだけで封止でき、電池の
作製作業が簡単である。金属箔の厚みは、好ましくは1
0〜100μm、より好ましくは20〜70μmであ
り、樹脂層の厚みは、好ましくは5〜100μm、より
好ましくは10〜50μmであり、そして全体の厚み
は、好ましくは20〜200μm、より好ましくは40
〜150μmである。
In the present invention, as the battery exterior material,
In addition to metal cans such as cylindrical cans, rectangular cans, and button-shaped cans, sheet-shaped exterior materials such as laminated films are used. As the laminate film, one having a thermoplastic resin laminate layer such as polyester or polypropylene formed on at least one surface of a metal foil such as copper or aluminum is preferable.
Examples of the metal foil include aluminum, copper, iron and the like. Examples of the resin include thermoplastic resins such as polyester and polypropylene. As long as it has such a thermoplastic resin layer, it can be sealed only by covering the wound body or the laminated structure with the outer periphery and heat-sealing the peripheral edge thereof, and the battery manufacturing operation is simple. The thickness of the metal foil is preferably 1
0 to 100 μm, more preferably 20 to 70 μm, the thickness of the resin layer is preferably 5 to 100 μm, more preferably 10 to 50 μm, and the total thickness is preferably 20 to 200 μm, more preferably 40.
˜150 μm.

【0043】本発明に係る電池において、電池缶の蓋、
安全構造、電極端子(シート電池におけるリード端子)
等の上述していない各種の構成部材としては、既存のも
のや、今後開発されるものを使用することができる。
In the battery according to the present invention, a lid of a battery can,
Safety structure, electrode terminals (lead terminals in sheet batteries)
As various constituent members not mentioned above such as the above, existing members and members to be developed in the future can be used.

【0044】[0044]

【実施例】[実施例1]固体電解質用ポリマーフィルムの
原料としてポリビニリデンフルオライド30gをジメチ
ルアセトアミド170g中に溶解した。この溶液にオク
タノール30gを1時間以上かけて徐々に混合し、12
時間以上静置した。塗工の基材としてアルミニウム箔
(圧延アルミニウム箔、厚さ20μm)を用意した。こ
の基材に前記溶液をドクターブレードによるダイレクト
塗工により塗工し、乾燥炉(120℃、炉長10m)を
0.1m/mimで通して溶媒を揮発させた。この操作
により密度0.8g/cm3以下の固体電解質用ポリマ
ーフィルムが得られた。ブレードの間隔を溶液の粘度に
応じて調整することで、20μmの固体電解質用ポリマ
ーフィルムと30μmの固体電解質用ポリマーフィルム
を得た。
Example 1 As a raw material for a polymer film for a solid electrolyte, 30 g of polyvinylidene fluoride was dissolved in 170 g of dimethylacetamide. To this solution, 30 g of octanol was gradually mixed over 1 hour, and 12
Let stand for more than an hour. An aluminum foil (rolled aluminum foil, thickness 20 μm) was prepared as a base material for coating. The solution was applied to this substrate by direct coating with a doctor blade, and the solvent was volatilized by passing through a drying oven (120 ° C., oven length 10 m) at 0.1 m / mim. By this operation, a polymer film for solid electrolyte having a density of 0.8 g / cm 3 or less was obtained. By adjusting the interval between the blades according to the viscosity of the solution, a polymer film for solid electrolyte of 20 μm and a polymer film for solid electrolyte of 30 μm were obtained.

【0045】この固体電解質用ポリマーフィルムを基材
ごと10cm×10cmに切断し、切断後に基材からジ
メトキシエタンを含浸させて剥離した。電解液(LiP
6をエチレンカーボネートとエチルメチルカーボネー
トの1:1(体積比)混合溶媒に1.0モル/lの濃度
で溶かした溶液)を100cc入れたトレー(15cm
W×15cmD×5cmH)を用意し、基材から剥離し
た固体電解質用ポリマーフィルムを浸漬した。このとき
皺が発生するか否かを調査した。調査は、皺が生じたこ
とによる固体電解質用ポリマーフィルムの縮みの有無を
目視により判断した。
This polymer film for solid electrolyte was cut into 10 cm × 10 cm together with the substrate, and after cutting, dimethoxyethane was impregnated and peeled from the substrate. Electrolyte (LiP
A tray (15 cm) containing 100 cc of a solution prepared by dissolving F 6 in a 1: 1 (volume ratio) mixed solvent of ethylene carbonate and ethylmethyl carbonate at a concentration of 1.0 mol / l).
W × 15 cmD × 5 cmH) was prepared, and the polymer film for solid electrolyte separated from the substrate was immersed. It was investigated whether wrinkles would occur at this time. In the investigation, the presence or absence of shrinkage of the polymer film for solid electrolyte due to the occurrence of wrinkles was visually determined.

【0046】[実施例2]固体電解質用ポリマーフィルム
の原料となるポリマー含有液の塗工の基材として厚さ1
4μmのアルミニウム箔を用いたこと以外は実施例1と
同様の操作により、皺の発生に由来する固体電解質用ポ
リマーフィルムの縮みの有無を調査した。
Example 2 Thickness of 1 as a base material for coating a polymer-containing liquid as a raw material for a polymer film for solid electrolyte
By the same operation as in Example 1 except that a 4 μm aluminum foil was used, the presence or absence of shrinkage of the polymer film for solid electrolyte due to the generation of wrinkles was investigated.

【0047】[比較例1]固体電解質用ポリマーフィルム
の原料となるポリマー含有液の塗工の基材として厚さ5
0μmのポリエチレンテレフタレートフィルムを用いた
こと以外は実施例1と同様の操作により、皺の発生に由
来する固体電解質用ポリマーフィルムの縮みの有無を調
査した。実施例1、実施例2、比較例の結果を表1にま
とめた。
[Comparative Example 1] Thickness of 5 as a base material for coating a polymer-containing liquid as a raw material of a polymer film for solid electrolyte.
By the same operation as in Example 1 except that a polyethylene terephthalate film having a thickness of 0 μm was used, the presence or absence of shrinkage of the polymer film for solid electrolyte due to the generation of wrinkles was investigated. The results of Example 1, Example 2 and Comparative Example are summarized in Table 1.

【0048】[0048]

【表1】 [Table 1]

【0049】表1により、基材を線膨張率の大きいPE
Tから線膨張率の小さい金属(アルミニウム)に代える
ことで、固体電解質フィルム作製の際の電解液への浸漬
時に固体電解質用ポリマーフィルムに皺が発生するのを
防止できることが明らかになった。さらに、この効果は
固体電解質用ポリマーフィルムを薄くしても維持される
ことも確認できた。
According to Table 1, the base material is PE having a large coefficient of linear expansion.
It was revealed that by replacing T with a metal (aluminum) having a small linear expansion coefficient, it is possible to prevent wrinkles from being generated in the polymer film for solid electrolyte at the time of dipping in the electrolytic solution during the production of the solid electrolyte film. Further, it was confirmed that this effect was maintained even if the polymer film for solid electrolyte was thinned.

【0050】次に、本発明に係る固体電解質用ポリマー
フィルムを用いた電池の特性評価を行った。
Next, the characteristics of the battery using the polymer film for solid electrolyte according to the present invention were evaluated.

【0051】(固体電解質用ポリマーフィルムの作製) [実施例3、4、比較例2]実施例3、実施例4、比較例
2ではそれぞれ実施例1、実施例2、比較例1で得た固
体電解質用ポリマーフィルムを用意し、下記のリチウム
イオン二次電池を組み立てて、それぞれについて下記の
試験を行った。
(Production of Polymer Film for Solid Electrolyte) [Examples 3 and 4 and Comparative Example 2] In Example 3, Example 4 and Comparative Example 2, Examples 1 and 2 and Comparative Example 1 were obtained, respectively. A polymer film for solid electrolyte was prepared, the following lithium ion secondary batteries were assembled, and the following tests were performed for each.

【0052】(正極シートの作製)正極活物質として
の、コバルト酸リチウム粒状物90重量部、結着剤とし
てのポリビニリデンフルオライド5重量部、導電剤とし
ての人造黒鉛5重量部およびN−メチルピロリドン70
重量部を混合してスラリーとした。このスラリーを正極
集電体としての帯状アルミニウム箔(厚み20μm)の
両面上に塗布、乾燥し、次いで圧延処理(圧延温度25
℃、圧延率30%)して、アルミニウム箔の片面あたり
の活物質の付着量が20mg/cm2の正極活物質組成
物層(厚み70μm)を有する正極シート(幅30m
m、長さ50mm)を作製した。
(Production of Positive Electrode Sheet) 90 parts by weight of lithium cobalt oxide granular material as a positive electrode active material, 5 parts by weight of polyvinylidene fluoride as a binder, 5 parts by weight of artificial graphite as a conductive agent and N-methyl. Pyrrolidone 70
Parts by weight were mixed to form a slurry. This slurry was applied on both sides of a strip-shaped aluminum foil (thickness 20 μm) as a positive electrode current collector, dried, and then rolled (rolling temperature 25
C., rolling rate 30%), and a positive electrode sheet (width: 30 m) having a positive electrode active material composition layer (thickness: 70 μm) in which the amount of the active material deposited on one surface of the aluminum foil is 20 mg / cm 2.
m, length 50 mm) was produced.

【0053】(負極シートの作製)黒鉛化カーボンファ
イバー95重量部、ポリビニリデンフルオライド5重量
部、およびN−メチルピロリドン60重量部を混合して
スラリーとした。このスラリーを負極集電体としての帯
状銅箔(厚み14μm)の両面に塗布、乾燥し、次いで
圧延処理(圧延温度100℃、圧延率20%)して、銅
箔の片面あたりの活物質の付着量が10mg/cm2
負極活物質組成物層(厚み75μm)を有する帯状負極
(幅32mm、長さ52mm)を作製した。
(Preparation of Negative Electrode Sheet) 95 parts by weight of graphitized carbon fiber, 5 parts by weight of polyvinylidene fluoride, and 60 parts by weight of N-methylpyrrolidone were mixed to prepare a slurry. This slurry was applied to both sides of a strip-shaped copper foil (thickness 14 μm) as a negative electrode current collector, dried, and then subjected to rolling treatment (rolling temperature 100 ° C., rolling rate 20%) to obtain active material per side of the copper foil. A strip-shaped negative electrode (width 32 mm, length 52 mm) having a negative electrode active material composition layer (thickness 75 μm) having an adhesion amount of 10 mg / cm 2 was prepared.

【0054】(電池の組み立て)前記の正極と負極の間
にポリビニリデンフルオライド多孔質フィルムを介在さ
せて、最外層に負極がくるように積層して、これをアル
ミラミネートフィルム内に電解液と共に密閉し、タブを
取り出し、セルとした。なお、ここでのポリビニリデン
フルオライド多孔質フィルムは、実施例3、4および比
較例2で作製したポリビニリデンフルオライド多孔質フ
ィルムであり、電解液とは、実施例1、2および比較例
1で使用した電解液である。
(Assembly of Battery) A polyvinylidene fluoride porous film was interposed between the positive electrode and the negative electrode, and the negative electrode was laminated on the outermost layer, and this was laminated with an electrolytic solution in an aluminum laminate film. It was sealed and the tab was taken out to make a cell. In addition, the polyvinylidene fluoride porous film here is a polyvinylidene fluoride porous film produced in Examples 3 and 4 and Comparative Example 2, and the electrolytic solution is Examples 1 and 2 and Comparative Example 1. It is the electrolytic solution used in.

【0055】(低温特性試験)作製したリチウムイオン
二次電池について室温で充電を行なった後、これを−2
0℃の大気雰囲気中に6時間放置する。なお、充電は、
1C(600mA)定電流で電圧が4.2Vとなるまで
電流を流した後、続いて全充電時間が2.5時間となる
まで4.2V定電圧で電流を流して行なった。次に、こ
の−20℃の大気雰囲気中で1C(600mAh)/
2.5Vカットオフ電圧で放電を行い、その時の放電容
量(mAh)を求める。また、室温(20℃)でも同様
の条件で充電と放電を行い、放電容量(mAh)を求め
る。さらに、−20℃下での放電容量を室温下での放電
容量で割って放電容量変化率を求めた。
(Low-temperature characteristic test) After charging the manufactured lithium-ion secondary battery at room temperature, this was -2.
Leave for 6 hours in 0 ° C. air atmosphere. In addition, charging is
The current was applied at a constant current of 1 C (600 mA) until the voltage reached 4.2 V, and then the current was applied at a constant voltage of 4.2 V until the total charging time reached 2.5 hours. Next, in this atmosphere of −20 ° C., 1 C (600 mAh) /
Discharge is performed at a cutoff voltage of 2.5 V, and the discharge capacity (mAh) at that time is obtained. Further, charge and discharge are performed under the same conditions even at room temperature (20 ° C.) to obtain the discharge capacity (mAh). Furthermore, the discharge capacity change rate was obtained by dividing the discharge capacity at −20 ° C. by the discharge capacity at room temperature.

【0056】(サイクル特性試験)1C(すなわち60
0mAhの定電流)充放電を繰り返し、放電容量に対す
る放電容量維持率(%)が80%以下になるサイクル数
を測定した。
(Cycle characteristic test) 1C (that is, 60)
Charge and discharge were repeated at a constant current of 0 mAh), and the number of cycles at which the discharge capacity retention ratio (%) to the discharge capacity was 80% or less was measured.

【0057】(レート特性試験)作製したリチウムイオ
ン二次電池について、2C充放電を室温(20℃)下で
行い、放電容量の全容量に対する割合を算出した。な
お、2Cとは、リチウムイオン二次電池の放電容量(6
00mAh)に対する1200mAの定電流をいう。
(Rate Characteristic Test) With respect to the manufactured lithium ion secondary battery, 2C charge / discharge was performed at room temperature (20 ° C.), and the ratio of the discharge capacity to the total capacity was calculated. The 2C is the discharge capacity of the lithium ion secondary battery (6
It refers to a constant current of 1200 mA for 00 mAh).

【0058】以上の試験の結果を表2にまとめた。The results of the above tests are summarized in Table 2.

【0059】[0059]

【表2】 [Table 2]

【0060】[0060]

【発明の効果】本発明に係る方法により、皺や歪みのな
い(あるいは非常に少ない)固体電解質フィルムを提供
することができる。これにより、負極と固体電解質フィ
ルムとの接触不均一に起因する電極表面での電解質の析
出を防ぐことができ、サイクル寿命が長い電池を作製で
きる。また、本発明に係る固体電解質フィルムを用いて
得られた電池は、レート特性、低温特性においても優れ
た効果を奏する。この効果は固体電解質フィルムが薄く
ても維持されるので、固体電解質フィルムの薄層化ひい
ては電池の小型化をも可能にする。
By the method according to the present invention, it is possible to provide a solid electrolyte film free from wrinkles and distortions (or very few). This makes it possible to prevent the electrolyte from being deposited on the electrode surface due to the non-uniform contact between the negative electrode and the solid electrolyte film, and to manufacture a battery having a long cycle life. In addition, the battery obtained by using the solid electrolyte film according to the present invention also exhibits excellent effects in rate characteristics and low temperature characteristics. Since this effect is maintained even when the solid electrolyte film is thin, the solid electrolyte film can be made thinner and the battery can be made smaller.

【図面の簡単な説明】[Brief description of drawings]

【図1】固体電解質用ポリマーフィルムが塗工された基
材の断面図である。
FIG. 1 is a cross-sectional view of a substrate coated with a polymer film for solid electrolyte.

【符号の説明】[Explanation of symbols]

1 基材 2 ポリマー 1 base material 2 polymer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29L 7:00 B29L 7:00 (72)発明者 岡田 聖司 兵庫県伊丹市池尻4丁目3番地 三菱電線 工業株式会社伊丹製作所内 (72)発明者 御書 至 兵庫県伊丹市池尻4丁目3番地 三菱電線 工業株式会社伊丹製作所内 Fターム(参考) 4F202 AA16 AB16 AE03 AG01 AH33 AJ02 AJ11 CA07 CB02 CK11 CM26 4F205 AA16 AB16 AE03 AG01 AH33 AJ02 AJ11 GA07 GB02 GC07 GE24 GN28 5G301 CA16 CA30 CD01 5H029 AJ12 AJ14 AK03 AL07 AM03 AM07 AM16 BJ12 CJ02 HJ14─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B29L 7:00 B29L 7:00 (72) Inventor Seiji Okada 4-3 Ikejiri, Itami City, Hyogo Prefecture Mitsubishi Cable Industries Itami Works Co., Ltd. (72) Inventor's book to 4-3 Ikejiri, Itami City, Hyogo Prefecture Mitsubishi Cable Industries, Ltd. Itami Works F-term (reference) 4F202 AA16 AB16 AE03 AG01 AH33 AJ02 AJ11 CA07 CB02 CK11 CM26 4F205 AA16 AB16 AE03 AG01 AH33 AJ02 AJ11 GA07 GB02 GC07 GE24 GN28 5G301 CA16 CA30 CD01 5H029 AJ12 AJ14 AK03 AL07 AM03 AM07 AM16 BJ12 CJ02 HJ14

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 線膨張率が5×10-5-1以下の材質か
らなる基材上にポリマー含有液を塗工し、ポリマーの固
化後に基材から剥離する工程を含む、固体電解質用ポリ
マーフィルムの製造方法。
1. A solid electrolyte comprising a step of applying a polymer-containing liquid onto a base material made of a material having a linear expansion coefficient of 5 × 10 −5 K −1 or less, and peeling from the base material after solidification of the polymer. Method for producing polymer film.
【請求項2】 線膨張率が5×10-5-1以下の材質が
金属である請求項1記載の固体電解質用ポリマーフィル
ムの製造方法。
2. The method for producing a polymer film for a solid electrolyte according to claim 1, wherein the material having a linear expansion coefficient of 5 × 10 −5 K −1 or less is a metal.
【請求項3】 金属がAl、Ni、Fe、またはこれら
金属の少なくとも一種を含む合金である請求項2記載の
固体電解質用ポリマーフィルムの製造方法。
3. The method for producing a polymer film for a solid electrolyte according to claim 2, wherein the metal is Al, Ni, Fe, or an alloy containing at least one of these metals.
【請求項4】 請求項1〜3のいずれかに記載の製造方
法により製造された固体電解質用ポリマーフィルム。
4. A polymer film for a solid electrolyte manufactured by the manufacturing method according to claim 1.
【請求項5】 請求項4記載の固体電解質用ポリマーフ
ィルムに、リチウム塩が溶解した電解液を含浸してなる
固体電解質フィルム。
5. A solid electrolyte film obtained by impregnating the polymer film for solid electrolyte according to claim 4 with an electrolytic solution in which a lithium salt is dissolved.
【請求項6】 請求項5記載の固体電解質フィルムを含
有するリチウムイオン二次電池。
6. A lithium ion secondary battery containing the solid electrolyte film according to claim 5.
JP2001196438A 2001-06-28 2001-06-28 POLYMER FILM FOR SOLID ELECTROLYTE AND METHOD FOR PRODUCING THE SAME, SOLID ELECTROLYTE FILM, AND LITHIUM ION SECONDARY BATTERY Expired - Fee Related JP4990447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001196438A JP4990447B2 (en) 2001-06-28 2001-06-28 POLYMER FILM FOR SOLID ELECTROLYTE AND METHOD FOR PRODUCING THE SAME, SOLID ELECTROLYTE FILM, AND LITHIUM ION SECONDARY BATTERY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001196438A JP4990447B2 (en) 2001-06-28 2001-06-28 POLYMER FILM FOR SOLID ELECTROLYTE AND METHOD FOR PRODUCING THE SAME, SOLID ELECTROLYTE FILM, AND LITHIUM ION SECONDARY BATTERY

Publications (2)

Publication Number Publication Date
JP2003017123A true JP2003017123A (en) 2003-01-17
JP4990447B2 JP4990447B2 (en) 2012-08-01

Family

ID=19034251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001196438A Expired - Fee Related JP4990447B2 (en) 2001-06-28 2001-06-28 POLYMER FILM FOR SOLID ELECTROLYTE AND METHOD FOR PRODUCING THE SAME, SOLID ELECTROLYTE FILM, AND LITHIUM ION SECONDARY BATTERY

Country Status (1)

Country Link
JP (1) JP4990447B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315248A (en) * 2005-05-11 2006-11-24 Toyo Kohan Co Ltd Decorative film and decorative panel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312162A (en) * 1996-03-21 1997-12-02 Showa Denko Kk Method for laminating high molecular solid electrolyte film
JP2000080138A (en) * 1998-09-03 2000-03-21 Nippon Kayaku Co Ltd Resin composition for polymer solid electrolyte, polymer solid electrolyte, and polymer battery
JP2002198099A (en) * 2000-12-25 2002-07-12 Mitsubishi Cable Ind Ltd Sheet-like lithium secondary cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312162A (en) * 1996-03-21 1997-12-02 Showa Denko Kk Method for laminating high molecular solid electrolyte film
JP2000080138A (en) * 1998-09-03 2000-03-21 Nippon Kayaku Co Ltd Resin composition for polymer solid electrolyte, polymer solid electrolyte, and polymer battery
JP2002198099A (en) * 2000-12-25 2002-07-12 Mitsubishi Cable Ind Ltd Sheet-like lithium secondary cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315248A (en) * 2005-05-11 2006-11-24 Toyo Kohan Co Ltd Decorative film and decorative panel

Also Published As

Publication number Publication date
JP4990447B2 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
JP5768359B2 (en) Heat-resistant microporous membrane, battery separator, and lithium ion secondary battery
JP6469879B2 (en) Gel polymer electrolyte, method for producing the same, and electrochemical device including gel polymer electrolyte
JP4431304B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery provided with the same
JP2009043737A (en) High-performance lithium, or lithium ion cell
JP2000090728A (en) Homogenous solid polymer-alloy electrolyte and manufacture thereof, composite electrode using electrolyte, lithium high polymer battery and lithium ion high polymer battery, and manufacture thereof
JP6805374B2 (en) Electrodes for lithium-ion secondary batteries, their manufacturing methods, and lithium-ion secondary batteries
JP2003086162A (en) Separator for nonaqueous secondary battery and nonaqueous secondary battery
JPH10334948A (en) Electrode, lithium secondary battery, and electric double layer capacitor using the electrode
WO2002087004A1 (en) Lithium polymer secondary cell
JP5993726B2 (en) Lithium ion secondary battery
JP2002008723A (en) Gel-like electrolyte and nonaqueous electrolyte battery
JP6965932B2 (en) Electrodes for power storage devices and their manufacturing methods
JP2015181110A (en) Heat resistance microporous film, separator for lithium ion secondary batteries, and lithium ion secondary battery
KR20020064864A (en) Method of fabricating electode foils
JP6849863B2 (en) Lithium-ion secondary battery, its manufacturing method, and positive electrode for lithium-ion secondary battery
JP3109460B2 (en) Ion conductive polymer composition, method for producing the same, and polymer battery
JP3724960B2 (en) Solid electrolyte and electrochemical device using the same
JP2000048639A (en) Composite structure gel electrolyte sheet laminated body
JP4942249B2 (en) Method for producing lithium ion secondary battery
JP2002216744A (en) Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery
JPH1145720A (en) Lithium secondary battery
JP4192635B2 (en) Lithium ion secondary battery electrolyte and lithium ion secondary battery using the same
JP6229078B2 (en) Method for producing electrode for lithium secondary battery
JP7218104B2 (en) Porous layer and laminated separator for non-aqueous electrolyte secondary battery
JP4990447B2 (en) POLYMER FILM FOR SOLID ELECTROLYTE AND METHOD FOR PRODUCING THE SAME, SOLID ELECTROLYTE FILM, AND LITHIUM ION SECONDARY BATTERY

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071024

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120502

R150 Certificate of patent or registration of utility model

Ref document number: 4990447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees