JP2002198099A - Sheet-like lithium secondary cell - Google Patents

Sheet-like lithium secondary cell

Info

Publication number
JP2002198099A
JP2002198099A JP2000393125A JP2000393125A JP2002198099A JP 2002198099 A JP2002198099 A JP 2002198099A JP 2000393125 A JP2000393125 A JP 2000393125A JP 2000393125 A JP2000393125 A JP 2000393125A JP 2002198099 A JP2002198099 A JP 2002198099A
Authority
JP
Japan
Prior art keywords
sheet
laminated structure
electrode
secondary battery
tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000393125A
Other languages
Japanese (ja)
Other versions
JP4951168B2 (en
Inventor
Toshihiro Zushi
敏博 厨子
Seiji Okada
聖司 岡田
Itaru Gosho
至 御書
Shogo Tanno
昌吾 丹野
Mitsuhiro Marumoto
光弘 丸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2000393125A priority Critical patent/JP4951168B2/en
Publication of JP2002198099A publication Critical patent/JP2002198099A/en
Application granted granted Critical
Publication of JP4951168B2 publication Critical patent/JP4951168B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary sheet cell which permits conducting an impregnating operation of an electrolyte into a laminate structure in production of the cell in a short period of time, does not have an unnecessary space between individual sheet electrodes in the laminate structure, said sheet electrodes being brought into uniformly close contact with respective separators or solid-state electrolyte layers, and exhibits excellent cell performance. SOLUTION: A tape 5 is wound around an outer periphery of a laminate structure (power generation element) 3 containing a plurality of units with a positive sheet electrode 1 and a negative sheet electrode 2 laminated on each other through a separator or solid-state electrolyte layer 4 to band and fix a plurality of sheet electrodes forming the laminate structure 3, and a plurality of through-holes 51 are distributedly provided in portions of the tape, which cover side faces 3B-1, 3B-2 of the laminate structure 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はシート状リチウム二
次電池に関する。
The present invention relates to a sheet-shaped lithium secondary battery.

【0002】[0002]

【従来の技術】携帯用の電話やパソコンなどの電子機器
用の電池として放電容量の大きいリチウム二次電池が脚
光を浴びている。このリチウム二次電池として、従来は
主として円柱状や箱型などの立体型電池が主流をなして
きた。しかし、近時、スペースファクター並びに軽量の
点からシート状リチウム二次電池に関心が高まってい
る。
2. Description of the Related Art A lithium secondary battery having a large discharge capacity has been spotlighted as a battery for electronic equipment such as a portable telephone and a personal computer. Conventionally, as the lithium secondary battery, a three-dimensional battery such as a columnar or box-shaped battery has been mainly used. However, recently, attention has been paid to a sheet-shaped lithium secondary battery in view of a space factor and a light weight.

【0003】シート状リチウム二次電池の長所は、立体
型電池と異なって薄型であるので、放熱性が良好なため
に電池内に熱が籠もる程度が低く、このためにたとえ何
らかの理由で過電流が流れ、あるいは釘などによる貫通
傷が生じても、電池内部のリチウムの燃焼による爆発事
故が起こり難く頗る安全なることである。
[0003] The advantage of a sheet-shaped lithium secondary battery is that it is thinner than a three-dimensional battery, so that the heat dissipation is good and the degree of heat trapped in the battery is low. Even if an overcurrent flows or a penetrating scratch occurs due to a nail or the like, an explosion accident due to burning of lithium inside the battery is unlikely to occur, which is extremely safe.

【0004】通常、シート状リチウム二次電池では、電
池容量を大きくするために、正極シート電極と負極シー
ト電極をセパレータまたは固体電解質層を介して重ねた
単位を複数含む積層構造体を形成し、これを発電要素に
使用して、電池の有効反応面積を大きくしている。
In general, in order to increase the battery capacity of a sheet-shaped lithium secondary battery, a laminated structure including a plurality of units in which a positive electrode sheet electrode and a negative electrode sheet electrode are stacked via a separator or a solid electrolyte layer is formed. This is used for the power generation element to increase the effective reaction area of the battery.

【0005】しかし、発電要素をこのような積層構造体
にした場合、積層構造体内のシート電極間に浮き(シー
ト電極間に隙間が空いた状態)が発生して、電池の内部
抵抗が上昇し、電池性能(特にレート特性、低温特性、
サイクル特性等)が低下することがある。よって、これ
を防止するために、通常、かかる積層構造体の外周に粘
着テープを巻き付けて、積層構造体を構成する複数のシ
ート電極を結束固定している。
However, when the power generating element is formed in such a laminated structure, floating occurs between the sheet electrodes in the laminated structure (a state in which a gap is formed between the sheet electrodes), and the internal resistance of the battery increases. , Battery performance (especially rate characteristics, low temperature characteristics,
Cycle characteristics). Therefore, in order to prevent this, usually, an adhesive tape is wound around the outer periphery of such a laminated structure to bind and fix a plurality of sheet electrodes constituting the laminated structure.

【0006】この粘着テープによる結束では、各シート
電極の全体がセパレータまたは固体電解質層に一様に密
着した状態となるように、積層構造体の概ね全体(積層
構造体の集電端子が突出する面とこれに相対する面を除
く面の略全域)に対して粘着テープを巻き付けている。
よって、積層構造体内に電解液を含浸処理する(セパレ
ータまたは固体電解質層に電解液を含浸させる)する際
に電解液が積層構造体内へ浸透(流入)しにくく、その
結果、当該工程に要する時間が長くなって、電池の生産
性が低下したり、また、電解液が積層構造体の隅々まで
十分に浸透(含浸)せず、電池性能がかえって低下して
しまうことがある。
[0006] In the binding with the adhesive tape, substantially the whole of the laminated structure (the current collecting terminals of the laminated structure protrude) so that the whole of each sheet electrode is in uniform contact with the separator or the solid electrolyte layer. The adhesive tape is wound around the entire surface (excluding the surface and the surface opposite thereto).
Therefore, when the electrolytic solution is impregnated into the laminated structure (the separator or the solid electrolyte layer is impregnated with the electrolytic solution), the electrolytic solution hardly permeates (flows) into the laminated structure, and as a result, the time required for the process , The productivity of the battery may decrease, or the electrolyte solution may not sufficiently penetrate (impregnate) every corner of the laminated structure, resulting in a decrease in battery performance.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記事情に
鑑み、電池製造時の積層構造体への電解液の含浸作業時
に短時間で積層構造体の隅々まで電解液を含浸させるこ
とができ、かつ、積層構造体内の各シート電極間に不要
な隙間がなく、各シート電極がセパレータまたは固体電
解質層に一様に密着し、優れた電池性能を示すシート状
リチウム二次電池を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above circumstances, it is an object of the present invention to impregnate an electrolytic solution into every corner of a laminated structure in a short time at the time of impregnation of the electrolytic solution into a laminated structure at the time of manufacturing a battery. Provided is a sheet-shaped lithium secondary battery that can be formed, has no unnecessary gaps between each sheet electrode in the laminated structure, and each sheet electrode uniformly adheres to a separator or a solid electrolyte layer, and exhibits excellent battery performance. The purpose is to:

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明は以下の特徴を有している。 (1)正極シート電極と負極シート電極をセパレータま
たは固体電解質層を介して重ねた単位を複数含む積層構
造体を発電要素とし、該積層構造体の外周にテープを巻
き付けて、該積層構造体を構成する複数のシート電極を
テープで結束固定したシート状リチウム二次電池であっ
て、該積層構造体の最外に位置する2枚のシート電極の
表面を積層構造体の主面と呼び、複数のシート電極の端
面が集合した面を積層構造体の側面と呼ぶとして、積層
構造体の側面を覆う部分のテープに複数の貫通孔を分散
して設けたことを特徴とするシート状リチウム二次電
池。 (2)正極シート電極および負極シート電極が略矩形の
シートであり、積層構造体が略直方体の外形を有し、テ
ープが当該積層構造体の両主面と一組の相対する側面に
対して巻き付けられ、テープの巻き付け領域の面積が、
当該積層構造体の両主面と一組の相対する側面の総面積
の30%以上である上記(1)記載のリチウムイオン二
次電池。 (3)複数の貫通孔の各孔の孔径が0.1〜8mmの範
囲に設定され、各隣接する2つの孔の間隔が0.05〜
8mmの範囲に設定されている上記(1)または(2)
記載のシート状リチウム二次電池。 (4)正極シート電極と負極シート電極間に、塩と相溶
性溶媒とビニリデンフルオライドを主単位とするフッ素
ポリマーとを主体成分とする固体電解質層を介在させて
いる上記(1)〜(3)のいずれかに記載のシート状リ
チウム二次電池。 (5)固体電解質層のフッ素ポリマーが密度0.60〜
1.30g/cm3の多孔質体である上記(4)記載の
シート状リチウム二次電池。
The present invention has the following features to achieve the above object. (1) A laminated structure including a plurality of units in which a positive electrode sheet electrode and a negative electrode sheet electrode are stacked with a separator or a solid electrolyte layer interposed therebetween is used as a power generation element, and a tape is wound around the outer periphery of the laminated structure to form the laminated structure. A sheet-like lithium secondary battery in which a plurality of sheet electrodes to be configured are bound and fixed with a tape, and the surfaces of two sheet electrodes positioned at the outermost sides of the stacked structure are referred to as main surfaces of the stacked structure. A sheet-like lithium secondary battery, wherein a plurality of through-holes are dispersedly provided in a portion of the tape covering the side surface of the laminated structure, wherein a surface on which the end surfaces of the sheet electrodes are gathered is referred to as a side surface of the laminated structure. battery. (2) The positive electrode sheet electrode and the negative electrode sheet electrode are substantially rectangular sheets, the laminated structure has a substantially rectangular parallelepiped outer shape, and the tape is formed on both main surfaces and a pair of opposed side surfaces of the laminated structure. Wound, the area of the winding area of the tape,
The lithium ion secondary battery according to the above (1), wherein the total area of both main surfaces and a pair of opposed side surfaces of the laminated structure is 30% or more. (3) The diameter of each of the plurality of through holes is set in the range of 0.1 to 8 mm, and the distance between each two adjacent holes is 0.05 to
(1) or (2) above, which is set in the range of 8 mm
The sheet-shaped lithium secondary battery according to the above. (4) The above-mentioned (1) to (3) in which a solid electrolyte layer mainly composed of a salt, a compatible solvent, and a fluoropolymer having vinylidene fluoride as a main unit is interposed between the positive electrode sheet electrode and the negative electrode electrode. The sheet-shaped lithium secondary battery according to any one of the above. (5) The fluoropolymer of the solid electrolyte layer has a density of 0.60
The sheet-shaped lithium secondary battery according to the above (4), which is a porous body of 1.30 g / cm 3 .

【0009】[0009]

【発明の実施の形態】以下、本発明をより具体的に説明
する。本発明のシート状リチウム二次電池は、発電要素
として、正極シート電極と負極シート電極をセパレータ
または固体電解質層を介して重ねた単位を複数含む積層
構造体を有するものにおいて、積層構造体の外周にテー
プを巻き付けて積層構造体を構成する複数のシート電極
を結束固定し、積層構造体の少なくとも側面(すなわ
ち、複数のシート電極の端面が集合する面)を覆う部分
のテープに複数の貫通孔を分散して設けたことが特徴で
ある。上記結束用のテープは一般に粘着テープが好まし
いが、粘着層をもたないテープであってもよい。粘着層
をもたないテープの場合、テープの巻き付け後に所要の
接着剤や止め具にてテープ止めを行う。なお、以下に説
明する具体例は粘着テープを用いた好適例である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described more specifically. The sheet-shaped lithium secondary battery according to the present invention includes, as a power generation element, a stacked structure including a plurality of units in which a positive electrode sheet electrode and a negative electrode sheet electrode are stacked with a separator or a solid electrolyte layer interposed therebetween. A plurality of sheet electrodes constituting a laminated structure are bound and fixed by winding a tape around the tape, and a plurality of through holes are formed in a portion of the tape covering at least a side surface of the laminated structure (ie, a surface on which end surfaces of the plurality of sheet electrodes are gathered). Are provided in a distributed manner. In general, the binding tape is preferably an adhesive tape, but may be a tape having no adhesive layer. In the case of a tape having no adhesive layer, after the tape is wound, the tape is fixed with a required adhesive or a stopper. The specific example described below is a preferred example using an adhesive tape.

【0010】図1〜図3は本発明の一例によるシート状
リチウム二次電池を示し、図1は積層構造体(発電要
素)の概略斜視図、図2は該積層構造体内の正極シート
電極と負極シート電極の積層状態を示した要部拡大断面
図、図3は該積層構造体に粘着テープを巻き付けた状態
の概略斜視図である。
FIGS. 1 to 3 show a sheet-like lithium secondary battery according to an embodiment of the present invention. FIG. 1 is a schematic perspective view of a laminated structure (power generation element). FIG. FIG. 3 is an enlarged cross-sectional view of a main part showing a state of lamination of the negative electrode sheet electrodes, and FIG. 3 is a schematic perspective view of a state in which an adhesive tape is wound around the laminated structure.

【0011】図1、2に示すように、発電要素である積
層構造体3は、矩形の正極シート電極1と負極シート電
極2をセパレータまたは固体電解質層4を介して重ねた
単位を複数含む構造体であり、外形は略直方体を呈して
いる。
As shown in FIGS. 1 and 2, a laminated structure 3 as a power generation element has a structure including a plurality of units in which a rectangular positive electrode sheet electrode 1 and a negative electrode sheet electrode 2 are stacked with a separator or a solid electrolyte layer 4 interposed therebetween. It is a body, and its outer shape is a substantially rectangular parallelepiped.

【0012】積層構造体3を構成する正極シート電極1
と負極シート電極2は、図2に示すように、それぞれ、
少なくとも活物質とバインダーを混合し、必要に応じて
導電材をさらに混合した活物質組成物層(正極活物質組
成物層6、負極活物質組成物層7)をシート状の集電体
8、9上に層状に形成したものであり、セパレータまた
は固体電解質層4にその活物質組成物層(正極活物質組
成物層6、負極活物質組成物層7)を対向させている。
各シート電極(正極シート電極1、負極シート電極2)
の集電体8、9には、活物質組成物層の未形成部(図示
せず)を設け、そこにリード(図示せず)が例えば溶接
等によって取り付けられており、複数の正極シート電極
1の各リードの端部が正極用集電端子10に接続され、
複数の負極シート電極2の各リードの端部が負極用集電
端子11に接続されている。
Positive electrode sheet 1 constituting laminated structure 3
And the negative electrode sheet electrode 2, as shown in FIG.
An active material composition layer (a positive electrode active material composition layer 6, a negative electrode active material composition layer 7) obtained by mixing at least an active material and a binder, and further mixing a conductive material as necessary, is used as a sheet-like current collector 8, The active material composition layers (the positive electrode active material composition layer 6 and the negative electrode active material composition layer 7) face the separator or the solid electrolyte layer 4, respectively.
Each sheet electrode (positive sheet electrode 1, negative sheet electrode 2)
The current collectors 8 and 9 are provided with an unformed portion (not shown) of the active material composition layer, and a lead (not shown) is attached thereto by, for example, welding or the like. 1, the end of each lead is connected to the positive collector terminal 10;
The ends of the leads of the plurality of negative electrode sheet electrodes 2 are connected to the negative electrode current collecting terminals 11.

【0013】積層構造体3の最外に位置する2枚のシー
ト電極(負極シート電極2a、2b)の表面2a’、2
b’を積層構造体の主面と呼び、複数のシート電極(正
極シート電極1および負極シート電極2)の端面の集合
面を積層構造体の側面と呼ぶとして、図3に示すよう
に、積層構造体3の両主面3A−1、3A−2と、積層
構造体の一組の相対する側面3B−1、3B−2の略全
域に対して粘着テープ5を巻き付けて、複数枚のシート
電極(正極シート電極1、負極シート電極2)を結束固
定し、さらに、該粘着テープ5の積層構造体3の一組の
相対する側面3B−1、3B−2を覆う部分に複数の貫
通孔51を分散して設けている。
The surfaces 2a 'and 2a of the two outermost sheet electrodes (negative electrode electrodes 2a and 2b) of the laminated structure 3
As shown in FIG. 3, b ′ is referred to as a main surface of the laminated structure, and an aggregated surface of the end faces of the plurality of sheet electrodes (the positive electrode electrode 1 and the negative electrode electrode 2) is referred to as a side surface of the laminated structure. The adhesive tape 5 is wound around substantially the entire area of both the main surfaces 3A-1 and 3A-2 of the structure 3 and a pair of opposed side surfaces 3B-1 and 3B-2 of the laminated structure to form a plurality of sheets. The electrodes (the positive electrode sheet electrode 1 and the negative electrode sheet electrode 2) are bound and fixed, and a plurality of through holes are formed in a portion of the adhesive tape 5 covering a pair of opposed side surfaces 3B-1 and 3B-2. 51 are provided separately.

【0014】当該シート状リチウム二次電池は、粘着テ
ープ5の巻き付けを行った積層構造体3に対して電解液
の含浸処理(各セパレータまたは固体電解質層(そのポ
リマー基質)4に電解液を含浸させる処理)を行い、電
解液含浸後の積層構造体3を図示しないシート状の外装
材に収容し、正極用集電端子10と負極用集電端子11
のそれぞれの端部を外装材の外に引き出した状態で、外
装材を封止することで製造される。なお、電解液の含浸
処理を施していない積層構造体を電解液ととも外装材に
収容させ、外装材内で積層構造体に電解液を浸透させる
ようにしてもよい。
In the sheet-shaped lithium secondary battery, the laminated structure 3 on which the adhesive tape 5 is wound is impregnated with an electrolytic solution (each separator or solid electrolyte layer (its polymer substrate) 4 is impregnated with the electrolytic solution). The laminated structure 3 impregnated with the electrolytic solution is accommodated in a sheet-like exterior material (not shown), and the positive current collecting terminal 10 and the negative current collecting terminal 11
It is manufactured by sealing the exterior material in a state where the respective ends are pulled out of the exterior material. Note that the laminated structure that has not been subjected to the electrolytic solution impregnation treatment may be accommodated in an exterior material together with the electrolytic solution, and the electrolytic solution may permeate the laminated structure in the exterior material.

【0015】図4は従来のシート状リチウム二次電池に
おける粘着テープの巻き付けによって複数のシート電極
を結束固定した積層構造体を示し、図1〜3と同一符号
は同一または相当する部分を示している。従来のシート
状リチウム二次電池では、この図に示すように、積層構
造体3の両主面3A−1、3A−2と一組の相対する側
面3B−1、3B−2の略全域に粘着テープ5が巻きつ
けられ、積層構造体3の電解液の流入領域となる側面の
うち、集電端子10、11の突出する側面3C−1とこ
れに相対する側面3C−2が開放状態となり、これら一
組の相対する側面とは別の側の一組の相対する側面3B
−1、3B−2がその略全体が粘着テープで塞がれてし
まっている。すなわち、実質的に積層構造体3の側面3
B−1、3B−2が電解液の流入領域として使用できな
くなっている。
FIG. 4 shows a laminated structure in which a plurality of sheet electrodes are bound and fixed by winding an adhesive tape in a conventional sheet-shaped lithium secondary battery, and the same reference numerals as those in FIGS. I have. In the conventional sheet-shaped lithium secondary battery, as shown in this figure, both main surfaces 3A-1 and 3A-2 of the laminated structure 3 and a pair of opposing side surfaces 3B-1 and 3B-2 are provided over substantially the entire area. Of the side surfaces around which the adhesive tape 5 is wound and which serves as the electrolyte inflow region of the laminated structure 3, the side surfaces 3C-1 protruding from the current collecting terminals 10 and 11 and the side surface 3C-2 opposed thereto become open. , A set of opposing sides 3B different from the set of opposing sides
-1, 3B-2 are almost entirely covered with the adhesive tape. That is, the side surface 3 of the laminated structure 3 is substantially
B-1 and 3B-2 cannot be used as the inflow region of the electrolytic solution.

【0016】これに対し、本発明のシート状リチウム二
次電池では、図3に示すように、積層構造体3に巻き付
けた粘着テープ5のうち、積層構造体3の側面3B−
1、3B−2を覆う部分の粘着テープに複数の貫通孔5
1を分散して設けているので、実質的に積層構造体の全
ての側面(すなわち、一方の側の一組の相対する側面3
C−1、3C−2および他方の側の一組の相対する側面
3B−1、3B−2)が電解液の流入領域となり、積層
構造体3内の隅々まで(各セパレータまたは固体電解質
層4の隅々まで)電解液を短時間で浸透(含浸)させる
ことができる。
On the other hand, in the sheet-shaped lithium secondary battery of the present invention, as shown in FIG. 3, of the adhesive tape 5 wound around the laminated structure 3, the side surface 3B-
1, 3B-2, a plurality of through holes 5
1 are distributed, so that substantially all of the sides (ie, a set of opposing sides 3 on one side) of the laminated structure are provided.
C-1, 3C-2 and a pair of opposite side surfaces 3B-1 and 3B-2) on the other side serve as an inflow region of the electrolytic solution and extend to every corner in the laminated structure 3 (each separator or solid electrolyte layer). (Every corner of No. 4) The electrolyte can be permeated (impregnated) in a short time.

【0017】本発明において、粘着テープは積層構造体
を構成する複数のシート電極に対して粘着テープの巻き
締め力が十分作用するように、積層構造体の巻き付け対
象面に対して粘着テープの巻き付け領域をできるだけ大
きくするのが好ましい。例えば、前記図3の正極シート
電極1と負極シート電極2が略矩形のシートからなり、
その外形が略直方体の積層構造体3の場合では、粘着テ
ープの巻き付け対象面である積層構造体3の両主面3A
−1、3A−2および一組の相対する側面3B−1、3
B−2に対して、粘着テープの巻き付け領域5Aの面積
は、これらの面の総面積に対して30%以上が好まし
く、50%以上が特に好ましい。
In the present invention, the pressure-sensitive adhesive tape is wound around the surface to be wound of the laminated structure so that the tightening force of the pressure-sensitive adhesive tape sufficiently acts on a plurality of sheet electrodes constituting the laminated structure. Preferably, the area is as large as possible. For example, the positive electrode sheet electrode 1 and the negative electrode sheet electrode 2 of FIG.
In the case of the laminated structure 3 having a substantially rectangular parallelepiped outer shape, both main surfaces 3A of the laminated structure 3 to which the adhesive tape is to be wound are provided.
-1, 3A-2 and a set of opposing sides 3B-1, 3
With respect to B-2, the area of the wrapping area 5A of the adhesive tape is preferably 30% or more, more preferably 50% or more, based on the total area of these surfaces.

【0018】また、前記図3では太幅の粘着テープによ
る一個の大きな面積の巻き付け領域5Aを示している
が、例えば、細幅の粘着テープによって小さい面積の巻
き付け領域を複数形成し、複数の巻き付け領域のトータ
ルの面積が巻き付け対象面の総面積に対して上記の30
%以上(好ましくは50%以上)となるようにしてもよ
い。
Although FIG. 3 shows one large-area wrapping area 5A made of a wide adhesive tape, for example, a plurality of small-area wrapping areas are formed with a narrow-width adhesive tape, and a plurality of wrapping areas are formed. The total area of the region is the above 30 with respect to the total area of the surface to be wound.
% (Preferably 50% or more).

【0019】本発明において、粘着テープの積層構造体
の側面を覆う部分に分散して設ける複数の貫通孔におけ
る各貫通孔の孔径と隣接する2つの孔間の間隔(ピッ
チ)は、個々の孔における電解液の通過のしやすさ、積
層構造体側面への電解液の浸透性およびテープ強度等を
考慮して設定され、各貫通孔の孔径は0.1〜8mmの
範囲が好ましく、0.5〜5mmの範囲が特に好まし
い。また、隣接する2つの孔の間の間隔(ピッチ)は
0.05〜8mmの範囲が好ましく、0.1〜5mmの
範囲が特に好ましい。すなわち、各貫通孔の孔径と隣接
する2つの孔の間の間隔(ピッチ)を上記の好ましい範
囲に設定することにより、電解液が各貫通孔を速やかに
通過して、積層構造体の側面から内部に一様に浸透して
いくとともに、粘着テープの巻き付け作業時および/ま
たは粘着テープ巻き付け後におけるテープ破断の発生を
十分に抑制することができる。なお、「隣接する2つの
孔の間の間隔(ピッチ)」とは隣接する2つの孔の周縁
の最も近接する部分間の間隔である。
In the present invention, the diameter (pitch) of each through-hole and the interval (pitch) between two adjacent holes among a plurality of through-holes provided in a dispersed manner at a portion covering the side surface of the laminated structure of the adhesive tape are individual holes. Is set in consideration of the ease of passage of the electrolyte solution, the permeability of the electrolyte solution to the side of the laminated structure, the strength of the tape, and the like. The diameter of each through hole is preferably in the range of 0.1 to 8 mm, A range of 5 to 5 mm is particularly preferred. The interval (pitch) between two adjacent holes is preferably in the range of 0.05 to 8 mm, and particularly preferably in the range of 0.1 to 5 mm. That is, by setting the hole diameter of each through-hole and the interval (pitch) between two adjacent holes in the above-described preferable range, the electrolyte solution can quickly pass through each through-hole and be viewed from the side of the laminated structure. It can uniformly penetrate into the inside and can sufficiently suppress the occurrence of tape breakage during the winding operation of the adhesive tape and / or after the winding of the adhesive tape. In addition, "the interval (pitch) between two adjacent holes" is the interval between the nearest parts of the periphery of two adjacent holes.

【0020】また、粘着テープの積層構造体の側面を覆
う部分における貫通孔の占める割合(粘着テープの積層
構造体の側面を覆う部分の面積に対する複数の貫通孔の
総開口面積の比率)は30〜70%が好ましく、特に好
ましくは40〜60%である。この範囲を超えて貫通孔
の占める割合が大きくなるとテープ破断の問題が懸念さ
れ、また、貫通孔の占める割合が小さくなると電解液の
積層構造体への浸透速度が十分に向上し得ない虞があ
る。
The proportion of the through hole in the portion of the adhesive tape covering the side surface of the laminated structure (the ratio of the total opening area of the plurality of through holes to the area of the portion of the adhesive tape covering the side surface of the laminated structure) is 30. It is preferably from 70% to 70%, particularly preferably from 40% to 60%. If the proportion of the through-holes exceeds this range and the proportion of the through-holes increases, there is a concern about the problem of tape breakage.If the proportion of the through-holes decreases, the penetration rate of the electrolyte into the laminated structure may not be sufficiently improved. is there.

【0021】本発明において、粘着テープに設ける貫通
孔の形状は特に限定されない。例えば、図3に示すよう
な円形の他、楕円形、四角形等の多角形等が挙げられ
る。なお、前述の貫通孔の「孔径」は、貫通孔が円形の
場合はその直径であり、貫通孔が円形以外の他の形状で
ある場合は、その開口面積に等しい面積の円形の孔を想
定した時の該円形の孔の直径である。
In the present invention, the shape of the through hole provided in the adhesive tape is not particularly limited. For example, in addition to a circle as shown in FIG. 3, a polygon such as an ellipse and a quadrangle may be used. The above-mentioned `` hole diameter '' of the through hole is a diameter when the through hole is circular, and assumes a circular hole having an area equal to the opening area when the through hole has a shape other than the circle. It is the diameter of the circular hole at the time of performing.

【0022】貫通孔は粘着テープを積層構造体に巻き付
ける前に形成してもよいし、粘着テープを積層構造体に
巻き付けた後に形成してもよい。粘着テープを積層構造
体に巻き付ける前に粘着テープに貫通孔を形成する場
合、積層構造体の大きさ、テープの巻き付け時の伸度等
を考慮して貫通孔が積層構造体の側面に位置するように
貫通孔を形成する、または、巻き付ける粘着テープ全体
に貫通孔を形成する。巻き付ける粘着テープ全体に貫通
孔を形成する場合、貫通孔の形成位置を調整する煩雑さ
はないが、巻き付ける粘着テープ全体に貫通孔が形成さ
れているので、巻き付け作業時または巻き付け後の粘着
テープの破断、巻き付け後の粘着テープの経時的な粘着
力の低下等が懸念される。よって、巻き付ける粘着テー
プ全体に貫通孔を形成する場合、かかる点を十分に考慮
して、粘着テープの種類、粘着するテープ全体における
貫通孔の占める割合等を決定する。
The through holes may be formed before the adhesive tape is wound around the laminated structure, or may be formed after the adhesive tape is wound around the laminated structure. When forming a through hole in the adhesive tape before winding the adhesive tape on the laminated structure, the through hole is located on the side surface of the laminated structure in consideration of the size of the laminated structure, elongation at the time of winding the tape, and the like. The through hole is formed as described above, or the through hole is formed in the entire adhesive tape to be wound. When forming a through-hole in the entire adhesive tape to be wound, there is no need to adjust the formation position of the through-hole.However, since the through-hole is formed in the entire adhesive tape to be wound, the adhesive tape can be used during or after the winding operation. There is a concern that the adhesive tape may break or decrease in adhesive strength over time after winding. Therefore, when the through-hole is formed in the entire adhesive tape to be wound, the type of the adhesive tape, the ratio of the through-hole in the entire adhesive tape, and the like are determined in consideration of such points.

【0023】本発明のシート状リチウム二次電池では、
1枚のシート電極の大きさは電池設計に応じて適宜選択
され、通常、10〜100cm2の範囲から選択され
る。また、積層構造体における正極シート電極と負極シ
ート電極とがセパレータまたは固体電解質層を介して積
層された単位の数も電池設計に応じて適宜選択され、通
常、2〜20の範囲から選択される。また、積層構造体
の最外に位置する2枚のシート電極は、前記図3の例で
は、共に負極シート電極であるが、2枚のシート電極の
一方が正極シート電極で、他方が負極シート電極の場合
や両方が正極シート電極の場合等、電池設計に応じて異
なることは言うまでもない。
In the sheet lithium secondary battery of the present invention,
The size of one sheet electrode is appropriately selected according to the battery design, and is usually selected from the range of 10 to 100 cm 2 . Also, the number of units in which the positive electrode sheet electrode and the negative electrode sheet electrode in the laminated structure are laminated via the separator or the solid electrolyte layer is appropriately selected according to the battery design, and is usually selected from the range of 2 to 20. . In the example of FIG. 3, the two outermost sheet electrodes are both negative electrode sheets, but one of the two sheet electrodes is a positive electrode electrode and the other is a negative electrode sheet. Needless to say, it differs depending on the battery design, such as the case of the electrodes or the case where both are the positive electrode sheets.

【0024】本発明において、粘着テープ5は電気絶縁
性に優れ、発電要素の発熱や電解液に対して耐性を有す
るものが好ましく、塩化ビニル樹脂、ポリエステル樹
脂、ポリオレフィン系樹脂、綿、フッ素系樹脂、ポリイ
ミド樹脂等からなるテープ基材に、ゴム系粘着剤、アク
リル系粘着剤、シリコン系粘着剤等による粘着剤層を形
成したものが好ましく、特に好ましくはポリプロピレン
からなるテープ基材に、アクリル系粘着剤による粘着剤
層を形成したものである。基材の厚みは5〜100μm
が好ましく、粘着剤の厚みは10〜50μmが好まし
い。
In the present invention, the pressure-sensitive adhesive tape 5 preferably has excellent electrical insulation properties and has resistance to heat generation of the power generating element and an electrolytic solution, and is preferably a vinyl chloride resin, a polyester resin, a polyolefin resin, cotton, or a fluorine resin. It is preferable that a tape base made of a polyimide resin or the like, a rubber-based adhesive, an acrylic-based adhesive, a pressure-sensitive adhesive layer formed of a silicone-based adhesive or the like is formed, particularly preferably a tape base made of polypropylene, an acrylic-based An adhesive layer is formed by an adhesive. The thickness of the substrate is 5 to 100 μm
The thickness of the pressure-sensitive adhesive is preferably 10 to 50 μm.

【0025】本発明において、正極シート電極に用いる
正極活物質は、リチウム二次電池における公知の正極活
物質を使用できるが、Li−遷移金属複合酸化物が好ま
しく、特に好ましくはLi−Co複合酸化物、Li−M
n複合酸化物およびLi−Ni複合酸化物から選ばれる
少なくとも一種の化合物であり、とりわけ好ましくはL
i−Co複合酸化物である。
In the present invention, as the positive electrode active material used for the positive electrode sheet electrode, a known positive electrode active material for a lithium secondary battery can be used, but a Li-transition metal composite oxide is preferable, and a Li-Co composite oxide is particularly preferable. Object, Li-M
at least one compound selected from n-composite oxides and Li-Ni complex oxides;
i-Co composite oxide.

【0026】また、正極活物質とともに使用する導電材
としては、当分野において従来から広く用いられてい
る、たとえば繊維状黒鉛、鱗片状黒鉛、球状黒鉛などの
天然や人造の黒鉛類や導電性カーボンブラックなどを用
いることができる。導電材の使用量は、正極活物質、バ
インダー、導電材の合計使用量100重量部あたり、好
ましくは1重量%〜10重量%、より好ましくは3重量
%〜7重量%である。
Examples of the conductive material used together with the positive electrode active material include natural and artificial graphites such as fibrous graphite, flaky graphite, and spherical graphite, and conductive carbon materials that have been widely used in the art. Black or the like can be used. The amount of the conductive material to be used is preferably 1% by weight to 10% by weight, more preferably 3% by weight to 7% by weight, per 100 parts by weight of the total amount of the positive electrode active material, the binder and the conductive material.

【0027】また、正極活物質とともに使用するバイン
ダーとしては、例えば、ポリテトラフルオロエチレン、
ポリビニリデンフルオライド、ポリエチレン、エチレン
−プロピレン−ジエン系ポリマーなどが好適なものとし
て挙げられる。該バインダーの使用量は、正極活物質、
バインダー、導電材の合計使用量100重量部あたり、
好ましくは1重量%〜7重量%、より好ましくは2重量
%〜5重量%である。
As the binder used together with the positive electrode active material, for example, polytetrafluoroethylene,
Suitable examples include polyvinylidene fluoride, polyethylene, and ethylene-propylene-diene-based polymers. The amount of the binder used is a positive electrode active material,
Per 100 parts by weight of the total amount of binder and conductive material,
Preferably it is 1% to 7% by weight, more preferably 2% to 5% by weight.

【0028】正極用集電体としては、アルミニウム、ア
ルミニウム合金、チタンといった導電性金属で形成され
た箔やエキスパンドメタルなどが挙げられ、これらは孔
が形成されていてもよい。
Examples of the current collector for the positive electrode include a foil and an expanded metal formed of a conductive metal such as aluminum, an aluminum alloy, and titanium, and these may have holes.

【0029】負極シート電極に用いる負極活物質として
は黒鉛化炭素が好適に用いられる。このような黒鉛化炭
素としては、各種の天然黒鉛や人造黒鉛、たとえば繊維
状黒鉛、鱗片状黒鉛、球状黒鉛などの黒鉛類が挙げられ
る。また、負極活物質と共に用いるバインダーとして
は、従来と同様に、ポリビニリデンフルオライド、ポリ
テトラフルオロエチレン、ポリエチレン、エチレン−プ
ロピレン−ジエン系ポリマーなどが好適なものとして挙
げられ、中でも特にポリビニリデンフルオライドが好ま
しい。負極活物質の使用量としては、負極活物質とバイ
ンダーとの合計量100重量部あたり2重量部〜20重
量部程度が好ましい。
Graphitized carbon is preferably used as the negative electrode active material used for the negative electrode sheet electrode. Examples of such graphitized carbon include various natural graphites and artificial graphites, for example, graphites such as fibrous graphite, flaky graphite, and spherical graphite. Further, as the binder used together with the negative electrode active material, as in the conventional case, polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, ethylene-propylene-diene-based polymer and the like are preferably mentioned, and among them, polyvinylidene fluoride is particularly preferred. Is preferred. The amount of the negative electrode active material used is preferably about 2 to 20 parts by weight per 100 parts by weight of the total amount of the negative electrode active material and the binder.

【0030】負極用集電体としては、銅、ニッケル、
銀、ステンレスなどで形成された箔やエキスパンドメタ
ルなどが挙げられ、これらは孔が形成されていてもよ
い。
As the current collector for the negative electrode, copper, nickel,
Examples include foils and expanded metals made of silver, stainless steel, and the like, and these may have holes formed therein.

【0031】正極シート電極と負極シート電極間にセパ
レータを介在させたタイプの電池とする場合、セパレー
タには、公知のリチウム二次電池用のセパレータを制限
なく使用できるが、なかでも、ポリオレフィンセパレー
タが好ましく、ポリオレフィン多孔質セパレータが特に
好ましい。ポリオレフィン(多孔質)セパレータは、ポ
リエチレン層またはポリプロピレン層の単体からなるも
のでも、ポリエチレン層とポリプロピレン層を積層した
複合セパレータでもよい。複合セパレータの積層構成は
特に限定されず、ポリエチレン層/ポリプロピレン層、
ポリエチレン層/ポリプロピレン層/ポリエチレン層、
ポリプロピレン層/ポリエチレン層/ポリプロピレン層
等の種々の積層構成のものを使用できる。
In the case of a battery of a type in which a separator is interposed between a positive electrode sheet electrode and a negative electrode sheet electrode, a known separator for a lithium secondary battery can be used without any limitation. Preferably, a polyolefin porous separator is particularly preferred. The polyolefin (porous) separator may be a single layer of a polyethylene layer or a polypropylene layer, or may be a composite separator in which a polyethylene layer and a polypropylene layer are laminated. The laminated structure of the composite separator is not particularly limited, and a polyethylene layer / polypropylene layer,
Polyethylene layer / polypropylene layer / polyethylene layer,
Various laminated structures such as a polypropylene layer / polyethylene layer / polypropylene layer can be used.

【0032】セパレータの厚みは、一般に平均厚みが5
〜100μmが好ましく、特に好ましくは10〜30μ
mである。なお、ここでいうセパレータの厚みは正極お
よび負極の間に介在させた状態(実際に電池を組み立て
た状態)での厚みであり、正極と負極の離間距離に等し
い。
The thickness of the separator is generally 5
To 100 μm, particularly preferably 10 to 30 μm
m. Here, the thickness of the separator is a thickness in a state where the separator is interposed between the positive electrode and the negative electrode (in a state where the battery is actually assembled), and is equal to a separation distance between the positive electrode and the negative electrode.

【0033】また、正極シート電極と負極シート電極間
に固体電解質層を介在させたタイプの電池(ポリマー電
池)とする場合、固体電解質層には、公知のリチウム二
次電池用の固体電解質層を制限なく使用できるが、ポリ
マー基質に電解液(リチウム塩(電解質)+相溶性溶
媒)が含浸してゲル化し、それ自体がイオン伝導性を示
すように調製された固体電解質層が好ましい。なかで
も、ポリマー基質に、ポリエチレンオキシド、ポリアク
リロニトリル、ポリビニルピロリドン、ポリビニルピリ
ジン、ポリ塩化ビニル、ポリビニリデンカーボネート、
ビニリデンフルオライドを主単位とするフッ素ポリマー
(ポリビニリデンフルオライドを含む)等を使用したも
のが特に好ましく、電池のレート特性、低温特性等の点
からビニリデンフルオライドを主単位とするフッ素ポリ
マーを使用したものがとりわけ好ましい。なお、固体電
解質層を使用すればそのゲル化によって、セパレータに
比べてシート電極に対してより良好な密着性が得られ
る。
When a battery (polymer battery) of a type in which a solid electrolyte layer is interposed between a positive electrode sheet electrode and a negative electrode sheet electrode, a known solid electrolyte layer for a lithium secondary battery is used as the solid electrolyte layer. Although it can be used without limitation, a solid electrolyte layer prepared so that a polymer substrate is impregnated with an electrolyte solution (lithium salt (electrolyte) + compatible solvent) to be gelled and itself exhibit ion conductivity. Among them, polymer substrates include polyethylene oxide, polyacrylonitrile, polyvinylpyrrolidone, polyvinylpyridine, polyvinyl chloride, polyvinylidene carbonate,
It is particularly preferable to use a fluoropolymer having vinylidene fluoride as a main unit (including polyvinylidene fluoride), and use a fluoropolymer having vinylidene fluoride as a main unit from the viewpoint of battery rate characteristics, low-temperature characteristics, and the like. Particularly preferred are the following. In addition, if a solid electrolyte layer is used, better adhesion to a sheet electrode can be obtained due to gelation as compared with a separator.

【0034】上記ビニリデンフルオライドを主単位とす
るフッ素ポリマーとは、ビニリデンフルオライドの単独
重合体(ポリビニリデンフルオライド(PVdF))、
または、ビニリデンフルオライドとその他のフッ素原子
を有するビニル系モノマーとの共重合体を意味し、これ
らはそれぞれ単独でも混合して用いてもよい。上記ビニ
リデンフルオライド以外のフッ素原子を有するビニル系
モノマーとしては、ヘキサフルオロプロピレン(HF
P)、クロロトリフルオロエチレン(CTFE)、テト
ラフルオロエチレン(TFE)等が挙げられる。また、
共重合体の形態はランダム、ブロックのいずれの形態で
もよい。共重合体である場合、ビニリデンフルオライド
(の単位)の割合が70モル%以上が好ましく、特に好
ましくは75モル%以上である。
The fluoropolymer having vinylidene fluoride as a main unit includes a homopolymer of vinylidene fluoride (polyvinylidene fluoride (PVdF)),
Alternatively, it means a copolymer of vinylidene fluoride and another vinyl monomer having a fluorine atom, and these may be used alone or in combination. Vinyl monomers having a fluorine atom other than the above vinylidene fluoride include hexafluoropropylene (HF
P), chlorotrifluoroethylene (CTFE), tetrafluoroethylene (TFE) and the like. Also,
The form of the copolymer may be any of a random form and a block form. In the case of a copolymer, the proportion of (units) of vinylidene fluoride is preferably at least 70 mol%, particularly preferably at least 75 mol%.

【0035】また、ビニリデンフルオライドを主単位と
するフッ素ポリマーは、カルボキシル基(−COO
H)、スルホン酸基(−SO2OH)、カルボン酸エス
テル基(−COOR)、アミド基(−CONH2)また
はリン酸基(−PO(OH)2)等からなる官能基を有
するビニル系モノマーの重合体がグラフトされていても
よい(カルボン酸エステル基(−COOR)における置
換基Rは、メチル基、エチル基、ブチル基等の炭素数が
1〜4の低級アルキル基である。)。フッ素ポリマーを
かかる官能基を含有する重合体がグラフトしたポリマー
形態にすると、固体電解質層のシート電極への接着性が
より向上し、電極間の抵抗がより低下するため、電池性
能(特に、レート特性および低温特性)が更に向上す
る。上記官能基を有するビニル系モノマーとしては、官
能基を除く部分の炭素数が4以下の化合物からなるモノ
マーが好適である。カルボキシル基含有モノマーとして
は、アクリル酸、メタアクリル酸、クロトン酸、ビニル
酢酸、アリル酢酸等のカルボキシル基を1個有するもの
の他、イタコン酸、マレイン酸等のカルボキシル基を2
個以上有するものも使用可能である。スルホン酸基含有
モノマーとしては、スチレンスルホン酸、ビニルスルホ
ン酸等が好適である。カルボン酸エステル基含有モノマ
ーとしては、メチルアクリレート、ブチルアクリレート
等が好適である。アミド基含有モノマーとしては、アク
リルアミド等が好適である。リン酸基含有モノマーとし
ては、リン酸トリフェニル、リン酸トリクレシルなどが
好適である。これらのうち最も好ましいものは、アクリ
ル酸またはメタアクリル酸である。
Fluoropolymers having vinylidene fluoride as a main unit include carboxyl groups (—COO).
H) a vinyl group having a functional group consisting of a sulfonic acid group (—SO 2 OH), a carboxylic acid ester group (—COOR), an amide group (—CONH 2 ), or a phosphoric acid group (—PO (OH) 2 ). A polymer of a monomer may be grafted (the substituent R in the carboxylic acid ester group (—COOR) is a lower alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, and a butyl group). . When the fluoropolymer is formed into a polymer form in which a polymer containing such a functional group is grafted, the adhesion of the solid electrolyte layer to the sheet electrode is further improved, and the resistance between the electrodes is further reduced. Characteristics and low-temperature characteristics) are further improved. As the vinyl monomer having a functional group, a monomer composed of a compound having a carbon number of 4 or less excluding the functional group is preferable. Examples of the carboxyl group-containing monomer include those having one carboxyl group such as acrylic acid, methacrylic acid, crotonic acid, vinyl acetic acid, and allyl acetic acid, and two carboxyl groups such as itaconic acid and maleic acid.
Those having more than one can also be used. As the sulfonic acid group-containing monomer, styrene sulfonic acid, vinyl sulfonic acid and the like are preferable. As the carboxylic acid ester group-containing monomer, methyl acrylate, butyl acrylate, and the like are preferable. Acrylamide and the like are preferable as the amide group-containing monomer. As the phosphate group-containing monomer, triphenyl phosphate, tricresyl phosphate, and the like are preferable. Most preferred of these are acrylic acid or methacrylic acid.

【0036】グラフト化する方法としては、特に限定は
されないが、放射線法が好適である。例えば、ポリマー
鎖基質(グラフトされる側のポリマー)とグラフトモノ
マー材料とを共存させて、放射線を連続的または間欠的
に照射する、または、より好ましくは両者を共存させる
前にポリマー基質に放射線を予備照射しておく。放射線
は、電子ビーム、X線またはγ線が使用される。放射線
の照射により、ポリマー基質は遊離基を発生して活性化
する。
The grafting method is not particularly limited, but a radiation method is preferred. For example, the polymer chain substrate (the polymer to be grafted) and the graft monomer material coexist, and the radiation is continuously or intermittently irradiated, or more preferably, the radiation is applied to the polymer substrate before the coexistence of both. Preliminary irradiation. As the radiation, an electron beam, X-ray or γ-ray is used. Upon irradiation, the polymer substrate generates and activates free radicals.

【0037】グラフト化の程度は、いくつかの因子によ
り決定することができるが、最も重要なのは、活性化し
た基質がグラフトモノマーと接触している時間の長さ、
放射線による基質の予備活性の程度、グラフトモノマー
材料が基質を透過できるまでの程度、および、基質およ
びモノマーが接触しているときの温度である。例えば、
グラフトモノマーが酸であるとき、モノマーを含有する
溶液をサンプリングして、塩基に対して滴定し、残留す
るモノマー濃度を測定することにより、グラフト化の程
度を観測することができる。グラフト化の程度は最終重
量の2〜20%が好ましく、特に好ましくは3〜12
%、とりわけ好ましくは5〜10%である。なお、グラ
フト化は、ポリマー基質の活性化(遊離基の発生)を光
照射または熱によって行う方法で行ってもよい。
The degree of grafting can be determined by several factors, but most importantly, the length of time the activated substrate is in contact with the graft monomer,
The extent of preactivation of the substrate by radiation, the extent to which the grafted monomeric material can penetrate the substrate, and the temperature at which the substrate and monomer are in contact. For example,
When the graft monomer is an acid, the degree of grafting can be observed by sampling the solution containing the monomer, titrating against the base, and measuring the residual monomer concentration. The degree of grafting is preferably from 2 to 20% of the final weight, particularly preferably from 3 to 12%.
%, Particularly preferably 5 to 10%. The grafting may be performed by a method of activating (generating free radicals) the polymer substrate by light irradiation or heat.

【0038】ビニリデンフルオライドを主単位とするフ
ッ素ポリマーは、230℃、10kgにおけるメルトフ
ローインデックスが1.0g/10min以下であるの
が好ましく、0.2〜0.7g/10minであるのが
より好ましい。なお、該メルトフローインデックスは、
標準ASTM D 1238に説明されている方法で測
定した値である。メルトフローインデックスがかかる
1.0g/10min以下であることにより、固体電解
質層の機械的強度が良好となり、また、室温でのイオン
伝導性もより向上する。
The fluoropolymer having vinylidene fluoride as a main unit preferably has a melt flow index at 1.0 ° C. or less of 1.0 g / 10 min at 230 ° C. and 10 kg, more preferably 0.2 to 0.7 g / 10 min. preferable. The melt flow index is
It is a value measured by the method described in standard ASTM D1238. When the melt flow index is 1.0 g / 10 min or less, the mechanical strength of the solid electrolyte layer is improved, and the ionic conductivity at room temperature is further improved.

【0039】また、ビニリデンフルオライドを主単位と
するフッ素ポリマーの多孔質体を使用することで、レー
ト特性、低温特性等が一層向上する。多孔質体の密度は
0.60g/cm3〜1.30g/cm3が好ましく、特
に好ましくは0.70〜1.00g/cm3である。多
孔質体の密度が0.60g/cm3未満であると、機械
的強度の低下により積層構造体の作成時に取り扱いにく
くなる等の問題が懸念され、密度が1.30g/cm3
より大きいと、目的のレート特性、低温特性の向上効果
が得られにくくなる。
Further, by using a porous body of a fluoropolymer having vinylidene fluoride as a main unit, the rate characteristics, low-temperature characteristics, and the like are further improved. The density of the porous body is preferably 0.60g / cm 3 ~1.30g / cm 3 , particularly preferably 0.70~1.00g / cm 3. If the density of the porous body is less than 0.60 g / cm 3 , there is a concern that the mechanical strength is reduced, and that the porous structure becomes difficult to handle at the time of producing the laminated structure, and the density is 1.30 g / cm 3.
If it is larger, it is difficult to obtain the desired effect of improving the rate characteristics and low-temperature characteristics.

【0040】当該多孔質体における空孔の平均孔径は
0.01〜10μmが好ましく、特に好ましくは0.1
〜5.0μmである。この「平均孔径」は、SEM観察
により任意の10個の空孔を取り出し、この10個の空
孔の孔径の平均値を算出して、平均孔径とした。
The average pore diameter of the pores in the porous body is preferably 0.01 to 10 μm, particularly preferably 0.1 to 10 μm.
55.0 μm. The “average pore diameter” was determined by taking out arbitrary 10 pores by SEM observation, calculating the average value of the pore diameters of these 10 pores, and determining the average pore diameter.

【0041】固体電解質層に使用する電解液(リチウム
塩(電解質)+相溶性溶媒)を構成するリチウム塩(電
解質)としては、LiClO4、LiBF4、LiP
6、LiAsF6、LiAlCl4 およびLi(CF3
SO22Nからなる群から選ばれる一種または二種以上
が使用される。また、相溶性溶媒としては、エチレンカ
ーボネート、プロピレンカーボネート、ジメチルカーボ
ネート、ジエチルカーボネート、エチルメチルカーボネ
ート、ジメチルスルホキシド、スルホラン、γ−ブチロ
ラクトン、1,2−ジメトキシエタン、N,N−ジメチ
ルホルムアミド、テトラヒドロフラン、1,3−ジオキ
ソラン、2−メチルテトラヒドロフラン、ジエチルエー
テルなどが例示され、これらから選ばれるいずれか1種
または2種以上の混合物が使用される。混合溶媒を使用
する場合は、特に、ジエチルカーボネートおよびエチル
メチルカーボネートから選ばれる少なくとも一種を含
み、更にエチレンカーボネートと、プロピレンカーボネ
ートと、ジメチルカーボネートとを含む混合物が好適で
ある。かかる混合物を構成する各成分の混合比は、ジエ
チルカーボネートおよびエチルメチルカーボネートから
選ばれる少なくとも一種においては、25体積%〜50
体積%であるのが好ましく、30体積%〜35体積%で
あるのがより好ましい。エチレンカーボネートにおいて
は混合比が4体積%〜20体積%であるのが好ましく、
6体積%〜18体積%であるのがより好ましい。プロピ
レンカーボネートにおいては混合比が3体積%〜17体
積%であるのが好ましく、5体積%〜15体積%である
のがより好ましい。また、ジメチルカーボネートにおい
ては混合比が40体積%を超えて60体積%以下である
のが好ましく、45体積%〜55体積%であるのがより
好ましい。
The lithium salt (electrolyte) constituting the electrolytic solution (lithium salt (electrolyte) + compatible solvent) used for the solid electrolyte layer is LiClO 4 , LiBF 4 , LiP
F 6 , LiAsF 6 , LiAlCl 4 and Li (CF 3
One or more selected from the group consisting of SO 2 ) 2 N is used. Examples of the compatible solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethyl sulfoxide, sulfolane, γ-butyrolactone, 1,2-dimethoxyethane, N, N-dimethylformamide, tetrahydrofuran, , 3-dioxolan, 2-methyltetrahydrofuran, diethyl ether and the like, and any one or a mixture of two or more selected from these are used. When a mixed solvent is used, a mixture containing at least one selected from diethyl carbonate and ethyl methyl carbonate, and further containing ethylene carbonate, propylene carbonate, and dimethyl carbonate is particularly preferable. The mixing ratio of each component constituting such a mixture is at least one type selected from diethyl carbonate and ethyl methyl carbonate, from 25% by volume to 50% by volume.
% By volume, more preferably 30% by volume to 35% by volume. In ethylene carbonate, the mixing ratio is preferably 4% by volume to 20% by volume,
More preferably, it is 6% by volume to 18% by volume. In propylene carbonate, the mixing ratio is preferably from 3% by volume to 17% by volume, and more preferably from 5% by volume to 15% by volume. In dimethyl carbonate, the mixing ratio is preferably more than 40% by volume and 60% by volume or less, and more preferably 45% by volume to 55% by volume.

【0042】電解液中のリチウム塩(電解質)濃度は、
0.1モル/L〜2モル/Lが好ましく、特に好ましく
は0.5モル/L〜1.5モル/Lである。塩(電解
質)の濃度がかかる好ましい濃度であれば、レート特
性、低温特性の点でより好ましい結果が得られる。
The lithium salt (electrolyte) concentration in the electrolyte is
It is preferably from 0.1 mol / L to 2 mol / L, particularly preferably from 0.5 mol / L to 1.5 mol / L. If the concentration of the salt (electrolyte) is such a preferable concentration, more preferable results can be obtained in terms of rate characteristics and low-temperature characteristics.

【0043】なお、電池の使用温度(特に低温使用時)
での電解液の結晶化防止等を目的に、上記相溶性溶媒と
ともに、テトラエチレングリコールジメチルエーテル、
N−メチル−ピロリドン(1−メチル−2−ピロリド
ン)、エチレングリコールジメチルエーテル、ジエチレ
ングリコールジメチルエーテル等の可塑剤を使用するの
が好ましい。該可塑剤の使用量は相溶性溶媒に対して1
重量%〜50重量%程度が好ましい。当該可塑剤を添加
することで、フッ素ポリマーに浸透(含浸)させた電解
液の結晶化が起こりにくく、固体電解質層の十分なイオ
ン伝導性を確保することができる。
The operating temperature of the battery (especially at low temperatures)
For the purpose of preventing crystallization of the electrolytic solution at the same time, together with the above compatible solvent, tetraethylene glycol dimethyl ether,
It is preferable to use a plasticizer such as N-methyl-pyrrolidone (1-methyl-2-pyrrolidone), ethylene glycol dimethyl ether, diethylene glycol dimethyl ether. The amount of the plasticizer used is 1 to the compatible solvent.
% By weight is preferred. By adding the plasticizer, crystallization of the electrolyte solution that has been impregnated (impregnated) into the fluoropolymer hardly occurs, and sufficient ion conductivity of the solid electrolyte layer can be secured.

【0044】固体電解質層の厚みは、シート電極(正極
シート電極および負極シート電極)の形状、サイズ等に
よっても相違するが、一般に平均厚みが5〜100μm
が好ましく、特に好ましくは8〜50μm、とりわけ好
ましくは10〜30μmである。なお、ここでいう固体
電解質層の厚みは正極シート電極および負極シート電極
の間に介在させた状態(実際に電池を組み立てた状態)
での厚みであり、正極シート電極と負極シート電極の離
間距離に等しい。
The thickness of the solid electrolyte layer varies depending on the shape, size and the like of the sheet electrodes (positive sheet electrode and negative electrode sheet electrode), but generally the average thickness is 5 to 100 μm.
It is particularly preferably 8 to 50 μm, particularly preferably 10 to 30 μm. The thickness of the solid electrolyte layer referred to here is a state interposed between the positive electrode sheet electrode and the negative electrode sheet electrode (state in which the battery is actually assembled).
And is equal to the separation distance between the positive electrode electrode and the negative electrode electrode.

【0045】本発明において、固体電解質層の形成方法
は特に限定されない。例えば、(a)ポリマー基質用材
料を、押出成形等の公知の成形方法でフィルム状に成形
してフィルムとする、若しくは、ポリマー基質用材料と
適当な溶媒を混合した塗液(ペースト)を調製して、該
塗液(ペースト)を適当なコーターで剥離用基材の表面
に塗工して塗膜を形成し、該塗膜を加熱、乾燥後、剥離
用基材から剥離することでフィルムとし、得られたフィ
ルムを電解液(リチウム塩を相溶性溶媒に溶解させた溶
液)に浸漬してゲル化する方法(電池の作製工程におい
て正極および負極とともに溶液に浸漬する場合も含
む。)、(b)電解液用のリチウム塩と相溶性溶媒を適
当な溶剤に溶解し、さらにポリマー基質用材料を添加
し、必要に応じて加温しながら、ポリマー基質用材料を
溶解して塗液(ペースト)を調製し、これを剥離用基材
の表面に適当なコーターで塗工して塗膜を形成し、該塗
膜を段階的に温度を上げて加熱、乾燥して前記溶剤を蒸
発させ、剥離用基材から固体電解質層を剥離する方法、
(c)正極シート電極および/または負極の少なくとも
一方の面に直接、上記のリチウム塩、相溶性溶媒、ポリ
マー基質用材料が溶解した塗液(ペースト)による塗膜
を形成し、溶剤の蒸発を行って、固体電解質層を形成す
る方法等が挙げられる。
In the present invention, the method for forming the solid electrolyte layer is not particularly limited. For example, (a) a polymer substrate material is formed into a film by molding into a film by a known molding method such as extrusion molding, or a coating liquid (paste) is prepared by mixing the polymer substrate material and an appropriate solvent. Then, the coating liquid (paste) is applied to the surface of the release substrate using a suitable coater to form a coating film, and the coating film is heated, dried, and then peeled from the release substrate. A method in which the obtained film is immersed in an electrolytic solution (a solution in which a lithium salt is dissolved in a compatible solvent) to be gelled (including a case where the film is immersed in a solution together with a positive electrode and a negative electrode in a battery manufacturing process). (B) A lithium salt for an electrolyte and a compatible solvent are dissolved in an appropriate solvent, a material for a polymer substrate is further added, and the material for a polymer substrate is dissolved while heating, if necessary, to form a coating solution ( Paste) and peel it off A coating film is formed by applying an appropriate coater on the surface of the base material for coating, and the coating film is heated stepwise, heated and dried to evaporate the solvent, and the solid electrolyte layer is separated from the base material for peeling. How to peel off the
(C) forming a coating film directly on at least one surface of the positive electrode sheet electrode and / or the negative electrode by a coating liquid (paste) in which the above-mentioned lithium salt, the compatible solvent and the polymer substrate material are dissolved, and evaporating the solvent; To form a solid electrolyte layer.

【0046】上記(a)〜(c)の方法において、塗液
(ペースト)にさらに発泡剤を添加混合し、溶剤の蒸発
とともに気泡を発生させるようにすれば、ポリマー基質
が多孔質体で存在する固体電解質層を得ることができ
る。
In the above methods (a) to (c), if a foaming agent is further added to and mixed with the coating liquid (paste) to generate bubbles as the solvent evaporates, the polymer substrate is present in a porous body. A solid electrolyte layer can be obtained.

【0047】上記(b)および(c)の方法における溶
剤としては、例えば、テトラヒドロフラン(THF)、
ジメチルアセトアミド、ジメチルホルムアミド等が好ま
しい。
As the solvent in the methods (b) and (c), for example, tetrahydrofuran (THF),
Dimethylacetamide, dimethylformamide and the like are preferred.

【0048】また、上記ポリマー基質を多孔質体にする
場合に用いる発泡剤としては、分解性発泡剤、気体発泡
剤、および揮発性発泡剤のいずれも使用できるが、上記
(a)の方法では気体発泡剤または揮発性発泡剤が好ま
しく、気体の発泡剤としては、窒素、炭酸ガス、プロパ
ン、ネオペンタン、メチルエーテル、二塩化二フッ化メ
タン、n−ブタン、イソブタン等が好適であり、揮発性
の発泡剤としては、n−オクタノール、1−ペンタノー
ル、3−メチル−1−ブタノール、2−メチル−1−ブ
タノール、2−ペンタノール、3−ペンタノール、2−
メチル−2−ブタノール、3−メチル−2−ブタノール
等が好適である。また、上記(b)および(c)の方法
では、揮発性発泡剤が好ましく、なかでもn−オクタノ
ール、1−ペンタノール、3−メチル−1−ブタノール
等が特に好ましく、n−オクタノールがとりわけ好まし
い。
As the foaming agent used when the polymer substrate is made into a porous body, any of a decomposable foaming agent, a gas foaming agent and a volatile foaming agent can be used. A gas foaming agent or a volatile foaming agent is preferable. As the gas foaming agent, nitrogen, carbon dioxide, propane, neopentane, methyl ether, methane difluoride methane, n-butane, isobutane and the like are preferable. Examples of the foaming agent include n-octanol, 1-pentanol, 3-methyl-1-butanol, 2-methyl-1-butanol, 2-pentanol, 3-pentanol, and 2-pentanol.
Methyl-2-butanol, 3-methyl-2-butanol and the like are preferred. In the above methods (b) and (c), a volatile foaming agent is preferred, among which n-octanol, 1-pentanol, 3-methyl-1-butanol and the like are particularly preferred, and n-octanol is particularly preferred. .

【0049】ポリマー基質を多孔質体にする場合の多孔
質体の密度は、発泡剤の量や製造時の各種条件を変える
ことによって調整される。例えば、(a)の方法の場
合、発泡剤の量以外で密度(発泡度)に大きく影響する
製造条件としては、成形温度、成形速度、成形圧力等で
ある。また、(b)および(c)の方法の場合、発泡剤
の量以外で密度(発泡度)に大きく影響する製造条件と
しては、塗工速度、乾燥温度プロファイル、排気の程
度、成形速度等である。
The density of the porous body when the polymer substrate is made into a porous body is adjusted by changing the amount of the foaming agent and various conditions at the time of production. For example, in the case of the method (a), the manufacturing conditions that greatly affect the density (expansion degree) other than the amount of the foaming agent include a molding temperature, a molding speed, and a molding pressure. In the case of the methods (b) and (c), the production conditions that greatly affect the density (expansion degree) other than the amount of the foaming agent include a coating speed, a drying temperature profile, a degree of exhaustion, and a molding speed. is there.

【0050】シート電極間にセパレータを介在させるタ
イプの電池において使用される電解液は、前記した固体
電解質層のポリマー基質に含浸させる電解液(リチウム
塩(電解質)+相溶性溶媒)が使用される。
As an electrolyte used in a battery of a type in which a separator is interposed between sheet electrodes, an electrolyte (lithium salt (electrolyte) + compatible solvent) for impregnating the polymer substrate of the solid electrolyte layer is used. .

【0051】本発明のシート状リチウム二次電池におけ
る外装材としては、熱可塑性樹脂ラミネートを片面また
は両面に有する熱可塑性樹脂ラミネート金属薄板または
熱可塑性樹脂ラミネート箔などが好ましい。このような
熱可塑性樹脂ラミネートを有する外装材は、水やガスの
透過に対する優れた透過防止性ならびに電気絶縁性など
の点から、さらには該熱可塑性樹脂ラミネートを利用し
て内容物を熱融着封止できる点から好ましい。
As the packaging material in the sheet-shaped lithium secondary battery of the present invention, a thermoplastic resin laminated metal sheet or a thermoplastic resin laminated foil having a thermoplastic resin laminate on one or both sides is preferable. The exterior material having such a thermoplastic resin laminate has a superior heat-sealing property by utilizing the thermoplastic resin laminate in terms of excellent anti-permeation properties against water and gas permeation and electric insulation. It is preferable because it can be sealed.

【0052】[0052]

【実施例】以下に実施例を示し、本発明を具体的に説明
するが、本発明は以下の実施例に制限されるものではな
い。 実施例1 〔負極シート電極の作製〕負極活物質となる繊維状黒鉛
とバインダーとなるポリビニリデンフルオライドとをN
−メチルピロリドン中で混合してスラリー化した負極活
物質組成物を得た。該負極活物質組成物中、バインダー
は10重量%とした。このスラリーを負極用集電体とな
る厚み15μmの銅箔の両面上に塗布した後、乾燥して
圧延を施し、負極活物質層を形成した。負極用集電体に
ニッケル板を溶接してリードを形成して、下記寸法の矩
形の負極シート電極を得た。 シート電極の大きさ:5cm×3cm シート電極の厚み:160μm また、同様にして、銅箔の片面のみに負極活物質層を有
する、同一サイズの負極シート電極を作製した。
The present invention will be described in detail with reference to the following examples, but the present invention is not limited to the following examples. Example 1 [Preparation of negative electrode sheet electrode] Fibrous graphite serving as a negative electrode active material and polyvinylidene fluoride serving as a binder were mixed with N
-Mixed in methylpyrrolidone to obtain a slurry of a negative electrode active material composition. In the negative electrode active material composition, the binder was 10% by weight. The slurry was applied on both sides of a 15 μm thick copper foil serving as a current collector for the negative electrode, dried and rolled to form a negative electrode active material layer. A nickel plate was welded to the negative electrode current collector to form a lead, and a rectangular negative electrode sheet electrode having the following dimensions was obtained. Size of sheet electrode: 5 cm × 3 cm Thickness of sheet electrode: 160 μm Similarly, a negative electrode sheet electrode of the same size having a negative electrode active material layer on only one side of a copper foil was produced.

【0053】〔正極シート電極の作製〕正極活物質とな
るLiCoO2、導電材ならびにバインダーとなるポリ
ビニリデンフルオライドをN−メチルピロリドン中で混
合し均一に分散して、スラリー化した正極活物質組成物
を得た。該正極活物質組成物中、導電材は5重量%、バ
インダーは4重量%とした。このスラリーを正極用集電
体となるアルミニウム板両面上に塗布した後、乾燥して
圧延を施し、正極活物質層を形成した。正極用集電体に
アルミニウム板を溶接してリードを形成して、下記寸法
の矩形の正極シート電極を得た。 シート電極の大きさ:4.0cm×2.8cm シート電極の厚み:150μm
[Preparation of Positive Electrode Sheet Electrode] LiCoO 2 serving as a positive electrode active material, polyvinylidene fluoride serving as a conductive material and a binder were mixed in N-methylpyrrolidone and uniformly dispersed to form a slurry. I got something. In the positive electrode active material composition, the conductive material was 5% by weight and the binder was 4% by weight. The slurry was applied on both sides of an aluminum plate as a current collector for the positive electrode, dried, and rolled to form a positive electrode active material layer. An aluminum plate was welded to the current collector for the positive electrode to form a lead, and a rectangular positive electrode sheet electrode having the following dimensions was obtained. Sheet electrode size: 4.0 cm × 2.8 cm Sheet electrode thickness: 150 μm

【0054】〔多孔質ポリビニリデンフルオライドフィ
ルムの作製〕ポリビニリデンフルオライドとジメチルホ
ルムアミド(DMF)とn−オクタノールを混合した塗
液を調製して、該塗液を基材(アルミ箔)の上に塗工
し、塗膜を加熱、乾燥後、基材から剥離することで密度
0.75g/cm3、平均厚み25μmの多孔質フィル
ムとした。そして、このフィルムを所定寸法に切断し、
熱プレス金具が破線状の熱プレス機を用いて、上記1枚
の正極シート電極を収容し得る大きさの袋を作製した。
[Preparation of Porous Polyvinylidene Fluoride Film] A coating liquid was prepared by mixing polyvinylidene fluoride, dimethylformamide (DMF) and n-octanol, and the coating liquid was coated on a substrate (aluminum foil). After heating and drying the coating film, it was peeled off from the substrate to obtain a porous film having a density of 0.75 g / cm 3 and an average thickness of 25 μm. Then, this film is cut to a predetermined size,
A bag having a size capable of accommodating the single positive electrode sheet electrode was produced by using a hot press having a hot press fitting having a broken line shape.

【0055】〔積層構造体の組立て〕正極シート電極を
多孔質ポリビニリデンフルオライドフィルムの袋に収容
したもの(8個)と、負極シート電極(両面に活物質層
を有するもの7個、片面に活物質層を有するもの2個)
を交互に積み重ねて、各正極シート電極のリードをNi
板からなる正極集電端子に溶接し、各負極シート電極の
リードをNi板からなる負極集電端子に溶接して積層構
造体を組み立てた。次に、幅47mmの粘着テープ(テ
ープ基材:厚み50μmのポリプロピレンフィルム、粘
着剤層:厚み20μmのシリコン系粘着剤)を用意し、
これの上記積層構造体に巻き付けたときに積層構造体の
側面(集電端子が突出した側面とこれに相対する側面と
は別の側の一組の相対する側面)を覆う部分に円形の複
数の貫通孔を(各孔の径を約2.0mmにし、各隣接す
る2つの孔間の間隔を1mmに設定)形成した。そし
て、この複数の貫通孔を形成した粘着テープを、実際に
上記積層構造体に巻き付けて、積層構造体を構成する複
数のシート電極を結束固定して、図3に示す状態とし
た。この粘着テープを巻き付けた積層構造体における粘
着テープの積層構造体の側面を覆う部分における貫通孔
の占める割合(粘着テープの積層構造体の側面を覆う部
分の面積に対する複数の貫通孔の総開口面積の比率)は
60%であった。次に、この粘着テープを巻きつけた積
層構造体に、エチレンカーボネートとエチルメチルカー
ボネートを50体積%:50体積%の割合で混合した混
合溶媒に、LiPF6を濃度が1.0モル/L(調製後
の濃度)となるように溶解させた溶液に浸漬して、多孔
質ポリビニリデンフルオライドフィルムをゲル化して固
体電解質層を形成した。この際、LiPF6の溶液が積
層構造体内の全ての多孔質ポリビニリデンフルオライド
フィルムの隅々まで浸透し、なおかつ、全ての正極−負
極シート電極間にまで行きわたるまでに要した時間(す
なわち、適正な浸透状態となるまでの時間)は5分であ
った。また、各シート電極間に形成された固体電解質層
の厚みは22〜28μmの範囲内の略同一厚みであっ
た。なお、上記電解液の浸透(注液)時間は、電解液を
実際に浸透させる時間(作業時間)を種々変更して作製
した複数の電池について初回充電を行い、正常な容量
(最大容量)が得られるもののうちの浸透時間が最小で
あったものの時間である。また、上記固体電解質層の厚
みはマイクロメータで測定した。
[Assembly of laminated structure] A positive electrode sheet electrode (8 pieces) accommodated in a bag of a porous polyvinylidene fluoride film, a negative electrode sheet electrode (7 pieces having an active material layer on both surfaces, 2 with active material layer)
Are alternately stacked, and the lead of each positive electrode sheet electrode is Ni
The laminated structure was assembled by welding to a positive electrode current collecting terminal made of a plate and welding the lead of each negative electrode sheet electrode to a negative electrode current collecting terminal made of a Ni plate. Next, an adhesive tape having a width of 47 mm (tape substrate: a polypropylene film having a thickness of 50 μm, an adhesive layer: a silicone-based adhesive having a thickness of 20 μm) was prepared.
When wound around the above-mentioned laminated structure, a portion covering a side surface of the laminated structure (a set of opposed side surfaces different from the side surface from which the current collecting terminal protrudes and the opposite side surface) is formed by a plurality of circular portions. (A diameter of each hole was set to about 2.0 mm, and an interval between two adjacent holes was set to 1 mm). Then, the pressure-sensitive adhesive tape having the plurality of through-holes was actually wound around the laminated structure, and the plurality of sheet electrodes constituting the laminated structure were bound and fixed, as shown in FIG. The ratio of the through hole to the portion of the laminated structure where the adhesive tape is wound around the side surface of the laminated structure of the adhesive tape (the total opening area of the plurality of through holes with respect to the area of the portion covering the side surface of the laminated structure of the adhesive tape) Was 60%. Next, in a mixed solvent obtained by mixing ethylene carbonate and ethyl methyl carbonate at a ratio of 50% by volume: 50% by volume, a concentration of LiPF 6 of 1.0 mol / L ( (Concentration after preparation) to form a solid electrolyte layer by gelling the porous polyvinylidene fluoride film. At this time, the time required for the solution of LiPF 6 to penetrate all the corners of the porous polyvinylidene fluoride film in the laminated structure and to reach between all the positive electrode-negative sheet electrodes (ie, The time required to achieve a proper penetration state) was 5 minutes. Further, the thickness of the solid electrolyte layer formed between each sheet electrode was substantially the same within the range of 22 to 28 μm. The permeation (injection) time of the electrolyte solution was initially charged for a plurality of batteries manufactured by variously changing the permeation time (working time) of the electrolyte solution, and a normal capacity (maximum capacity) was obtained. This is the time for which the permeation time was the minimum of those obtained. The thickness of the solid electrolyte layer was measured with a micrometer.

【0056】〔シート状リチウム二次電池の組立て〕上
記粘着テープを巻き付けた積層構造体を、内側から順
に、ヒートシール層、耐電解液性を有する絶縁層、アル
ミニウム層、絶縁層の積層構造からなるラミネートフィ
ルムからなる外装材(袋状)内に収容し、正極集電端子
および負極集電端子が開口部からはみ出すようにして、
外装材の開口部を熱融着封止して、シート状リチウム二
次電池を完成させた。
[Assembly of a sheet-shaped lithium secondary battery] The laminated structure wound with the above-mentioned pressure-sensitive adhesive tape is sequentially laminated from the inner side with a laminated structure of a heat seal layer, an insulating layer having electrolytic solution resistance, an aluminum layer and an insulating layer. It is housed in an exterior material (bag shape) made of a laminated film, and the positive current collecting terminal and the negative current collecting terminal protrude from the opening,
The opening of the exterior material was heat-sealed and sealed to complete a sheet-shaped lithium secondary battery.

【0057】比較例 粘着テープに貫通孔を形成しなかった以外は、実施例1
と同様にして、シート状リチウム二次電池を作製した。
なお、LiPF6の溶液が積層構造体内の全ての多孔質
ポリビニリデンフルオライドフィルムの隅々まで浸透
し、なおかつ、全ての正極−負極シート電極間にまで行
きわたるまでに要した時間は約60分であった。
Comparative Example Example 1 was repeated except that no through-hole was formed in the adhesive tape.
In the same manner as in the above, a sheet-shaped lithium secondary battery was produced.
The time required for the solution of LiPF 6 to penetrate all the corners of the porous polyvinylidene fluoride film in the laminated structure and to reach all the space between the positive electrode and the negative electrode was about 60 minutes. Met.

【0058】上記実施例および比較例で作製した電池に
ついて、以下の低温特性試験およびレート特性試験を行
った。その結果、実施例の電池と比較例の電池とは同等
の電池性能を示した。 実施例(低温特性(放電容量変化率)85%、レート特
性97%) 比較例(低温特性(放電容量変化率)86%、レート特
性97%) よって、本発明では電解液の浸透させる時間を従来より
も大幅に短縮して、積層構造体内のシート電極間に不要
な隙間のない、高性能のシート状リチウム二次電池を得
ることができることを確認できた。
The following low-temperature characteristic test and rate characteristic test were performed on the batteries produced in the above Examples and Comparative Examples. As a result, the battery of the example and the battery of the comparative example exhibited the same battery performance. Example (low-temperature characteristic (discharge capacity change rate) 85%, rate characteristic 97%) Comparative example (low-temperature characteristic (discharge capacity change rate) 86%, rate characteristic 97%) It was confirmed that it was possible to obtain a high-performance sheet-shaped lithium secondary battery which was significantly shorter than in the past and had no unnecessary gaps between the sheet electrodes in the laminated structure, and was capable of being obtained.

【0059】〔低温特性試験〕作製したリチウムイオン
二次電池について室温で充電を行った後、これを−20
℃の大気雰囲気中に24時間放置する。なお、充電は1
C(600mA)定電流で電圧が4.2Vとなるまで電
流を流した後、続いて全充電時間が2.5時間となるま
で4.2V定電圧で電流を流して行った。次に、この−
20℃の大気雰囲気中で0.5C(300mAh)/
2.5Vカットオフ電圧で放電を行い、その時の放電容
量[mA・H]を求める。また、室温(20℃)でも同
様の条件で充電と放電を行い、放電容量[mA・H]を
求める。さらに、−20℃下での放電容量を室温下での
放電容量で割って放電容量変化率を求めた。
[Low temperature characteristic test] After charging the produced lithium ion secondary battery at room temperature, this was charged to -20.
It is left for 24 hours in an air atmosphere at ℃. The charge is 1
After a current was supplied at a constant current of C (600 mA) until the voltage reached 4.2 V, a current was supplied at a constant voltage of 4.2 V until the entire charging time reached 2.5 hours. Next, this-
0.5C (300mAh) /
Discharge is performed at a 2.5 V cutoff voltage, and a discharge capacity [mA · H] at that time is obtained. At room temperature (20 ° C.), charging and discharging are performed under the same conditions, and the discharge capacity [mA · H] is obtained. Furthermore, the discharge capacity at −20 ° C. was divided by the discharge capacity at room temperature to obtain a discharge capacity change rate.

【0060】〔レート特性試験〕室温(20℃)下で、
2C放電を行い、その放電容量の全容量に対する割合を
算出した。なお、2Cとは、リチウムイオン二次電池の
放電容量(600mA)に対する1200mAの定電流
をいう。
[Rate Characteristic Test] At room temperature (20 ° C.)
2C discharge was performed, and the ratio of the discharge capacity to the total capacity was calculated. Note that 2C refers to a constant current of 1200 mA with respect to the discharge capacity (600 mA) of the lithium ion secondary battery.

【0061】[0061]

【発明の効果】以上の説明により明らかなように、本発
明によれば、発電要素である積層構造体(正極シート電
極と負極シート電極をセパレータまたは固体電解質層を
介して重ねた単位を複数含む積層構造体)にテープを巻
き付けて、積層構造体を構成する複数のシート電極を結
束固定しているにもかかわらず、短時間で積層構造体の
隅々まで電解液を浸透させることができ、積層構造体内
のシート電極間に不要な隙間がなく(各シート電極がセ
パレータまたは固体電解質層に一様に密着し)、優れた
電池特性、特に、良好な低温特性およびレート特性を示
すシート状リチウム二次電池を効率良く製造することが
できる。
As is clear from the above description, according to the present invention, a laminated structure (a plurality of units in which a positive electrode sheet electrode and a negative electrode sheet electrode are stacked with a separator or a solid electrolyte layer interposed therebetween) as a power generating element is included. Although the tape is wrapped around the laminated structure and the plurality of sheet electrodes constituting the laminated structure are bound and fixed, it is possible to infiltrate the electrolytic solution to every corner of the laminated structure in a short time, There is no unnecessary gap between the sheet electrodes in the laminated structure (each sheet electrode uniformly adheres to the separator or the solid electrolyte layer), and sheet-like lithium exhibiting excellent battery characteristics, particularly, good low-temperature characteristics and rate characteristics. A secondary battery can be manufactured efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一例によるシート状リチウム二次電池
に用いる積層構造体(発電要素)の概略斜視図である。
FIG. 1 is a schematic perspective view of a laminated structure (power generation element) used for a sheet-shaped lithium secondary battery according to an example of the present invention.

【図2】図1の積層構造体内の正極シート電極と負極シ
ート電極の積層状態を示した要部拡大断面図である。
FIG. 2 is an enlarged sectional view of a main part showing a state of lamination of a positive electrode sheet electrode and a negative electrode sheet electrode in the laminated structure of FIG.

【図3】図1の積層構造体に複数の貫通孔を有する粘着
テープが巻き付けられた状態の概略斜視図である。
FIG. 3 is a schematic perspective view showing a state in which an adhesive tape having a plurality of through holes is wound around the laminated structure of FIG. 1;

【図4】従来のシート状リチウム二次電池における粘着
テープが巻き付けられた積層構造体の概略斜視図であ
る。
FIG. 4 is a schematic perspective view of a laminated structure in which a pressure-sensitive adhesive tape in a conventional sheet-shaped lithium secondary battery is wound.

【符号の説明】[Explanation of symbols]

1 正極シート電極 2 負極シート電極 3 積層構造体(発電要素) 3A−1、3A−2 積層構造体の主面 3B−1、3B−2、3C−1、3C−2 積層構造体
の側面 4 セパレータまたは固体電解質層 5 粘着テープ 51 貫通孔
REFERENCE SIGNS LIST 1 positive electrode sheet electrode 2 negative electrode sheet electrode 3 multilayer structure (power generation element) 3A-1, 3A-2 main surface of multilayer structure 3B-1, 3B-2, 3C-1, 3C-2 side surface of multilayer structure 4 Separator or solid electrolyte layer 5 Adhesive tape 51 Through hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 御書 至 兵庫県伊丹市池尻4丁目3番地 三菱電線 工業株式会社伊丹製作所内 (72)発明者 丹野 昌吾 兵庫県伊丹市池尻4丁目3番地 三菱電線 工業株式会社伊丹製作所内 (72)発明者 丸本 光弘 兵庫県伊丹市池尻4丁目3番地 三菱電線 工業株式会社伊丹製作所内 Fターム(参考) 5H029 AJ02 AJ06 AK03 AL07 AM02 AM03 AM04 AM05 AM07 AM16 BJ04 BJ06 BJ12 CJ07 DJ14 DJ15 EJ12 HJ03 HJ06 HJ07 HJ08 HJ12  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Tosho 4-3 Ikejiri, Itami-shi, Hyogo Mitsubishi Cable Industries, Ltd. Itami Works (72) Inventor Shogo Tanno 4-3-3 Ikejiri, Itami-shi, Hyogo Mitsubishi Electric Wire (72) Inventor Mitsuhiro Marumoto 4-3 Ikejiri, Itami-shi, Hyogo Mitsubishi Electric Cable Co., Ltd.Itami Works F-term (reference) 5H029 AJ02 AJ06 AK03 AL07 AM02 AM03 AM04 AM05 AM07 AM16 BJ04 BJ06 BJ12 CJ07 DJ14 DJ15 EJ12 HJ03 HJ06 HJ07 HJ08 HJ12

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極シート電極と負極シート電極をセパ
レータまたは固体電解質層を介して重ねた単位を複数含
む積層構造体を発電要素とし、該積層構造体の外周にテ
ープを巻き付けて、該積層構造体を構成する複数のシー
ト電極をテープで結束固定したシート状リチウム二次電
池であって、該積層構造体の最外に位置する2枚のシー
ト電極の表面を積層構造体の主面と呼び、複数のシート
電極の端面が集合した面を積層構造体の側面と呼ぶとし
て、積層構造体の側面を覆う部分のテープに複数の貫通
孔を分散して設けたことを特徴とするシート状リチウム
二次電池。
1. A power generation element comprising a laminated structure including a plurality of units in which a positive electrode sheet electrode and a negative electrode sheet electrode are laminated with a separator or a solid electrolyte layer interposed therebetween, and a tape wound around an outer periphery of the laminated structure. A sheet-like lithium secondary battery in which a plurality of sheet electrodes constituting a body are bound and fixed with a tape, and the surfaces of two sheet electrodes located at the outermost sides of the stacked structure are referred to as main surfaces of the stacked structure. The sheet-like lithium, wherein a plurality of through-holes are dispersed and provided in a tape covering a side surface of the laminated structure, wherein a surface on which the end surfaces of the plurality of sheet electrodes are gathered is referred to as a side surface of the laminated structure. Rechargeable battery.
【請求項2】 正極シート電極および負極シート電極が
略矩形のシートであり、積層構造体が略直方体の外形を
有し、テープが当該積層構造体の両主面と一組の相対す
る側面に対して巻き付けられ、テープの巻き付け領域の
面積が、当該積層構造体の両主面と一組の相対する側面
の総面積の30%以上である請求項1記載のリチウムイ
オン二次電池。
2. The method according to claim 1, wherein the positive electrode sheet electrode and the negative electrode sheet electrode are substantially rectangular sheets, the laminated structure has a substantially rectangular parallelepiped outer shape, and tapes are provided on both main surfaces of the laminated structure and a pair of opposed side surfaces. 2. The lithium ion secondary battery according to claim 1, wherein the area of the winding region of the tape is 30% or more of the total area of the pair of opposite side surfaces with the two main surfaces of the laminated structure.
【請求項3】 複数の貫通孔の各孔の孔径が0.1〜8
mmの範囲に設定され、各隣接する2つの孔の間隔が
0.05〜8mmの範囲に設定されている請求項1また
は2記載のシート状リチウム二次電池。
3. The hole diameter of each of the plurality of through holes is 0.1-8.
3. The sheet-shaped lithium secondary battery according to claim 1, wherein the distance between the adjacent two holes is set in a range of 0.05 to 8 mm. 4.
【請求項4】 正極シート電極と負極シート電極間に、
塩と相溶性溶媒とビニリデンフルオライドを主単位とす
るフッ素ポリマーとを主体成分とする固体電解質層を介
在させている請求項1〜3のいずれかに記載のシート状
リチウム二次電池。
4. Between the positive electrode sheet electrode and the negative electrode sheet electrode,
The sheet-shaped lithium secondary battery according to any one of claims 1 to 3, further comprising a solid electrolyte layer mainly composed of a salt, a compatible solvent, and a fluoropolymer having vinylidene fluoride as a main unit.
【請求項5】 固体電解質層のフッ素ポリマーが密度
0.60〜1.30g/cm3の多孔質体である請求項
4記載のシート状リチウム二次電池。
5. The sheet-shaped lithium secondary battery according to claim 4, wherein the fluoropolymer of the solid electrolyte layer is a porous body having a density of 0.60 to 1.30 g / cm 3 .
JP2000393125A 2000-12-25 2000-12-25 Sheet-like lithium secondary battery Expired - Lifetime JP4951168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000393125A JP4951168B2 (en) 2000-12-25 2000-12-25 Sheet-like lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000393125A JP4951168B2 (en) 2000-12-25 2000-12-25 Sheet-like lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2002198099A true JP2002198099A (en) 2002-07-12
JP4951168B2 JP4951168B2 (en) 2012-06-13

Family

ID=18858996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000393125A Expired - Lifetime JP4951168B2 (en) 2000-12-25 2000-12-25 Sheet-like lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4951168B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198098A (en) * 2000-12-25 2002-07-12 Mitsubishi Cable Ind Ltd Sheet-like lithium secondary cell
JP2003017123A (en) * 2001-06-28 2003-01-17 Mitsubishi Cable Ind Ltd Polymer film for solid electrolyte, and manufacturing method of the same, solid electrolyte film and lithium ion secondary cell
JP2007027027A (en) * 2005-07-21 2007-02-01 Sony Corp Battery
JP2007141714A (en) * 2005-11-21 2007-06-07 Nec Tokin Corp Laminate type lithium-ion polymer battery
EP1804327A1 (en) * 2005-12-29 2007-07-04 Samsung SDI Co., Ltd. Lithium ion secondary battery
JP2007305464A (en) * 2006-05-12 2007-11-22 Toshiba Corp Secondary battery
JP2007317638A (en) * 2006-05-29 2007-12-06 Lg Chem Ltd Electrode assembly excellent in structural stability and wettability of electrolyte solution and secondary battery containing above
JP2011018631A (en) * 2009-07-08 2011-01-27 Samsung Sdi Co Ltd Secondary battery, and manufacturing method of secondary battery
US20110086265A1 (en) * 2008-06-13 2011-04-14 Satoshi Suzuki Battery
JP2011146668A (en) * 2010-01-12 2011-07-28 Samsung Electro-Mechanics Co Ltd Electric double layer capacitor
US8053101B2 (en) 2005-12-29 2011-11-08 Samsung Sdi Co., Ltd. Lithium ion rechargeable battery
JP2012109124A (en) * 2010-11-17 2012-06-07 Sony Corp Nonaqueous electrolyte battery
JP2012520551A (en) * 2009-03-16 2012-09-06 リ−テック・バッテリー・ゲーエムベーハー Electrode stack for galvanic cells
JP2013254628A (en) * 2012-06-06 2013-12-19 Toyota Industries Corp Power storage device
JP2014007103A (en) * 2012-06-26 2014-01-16 Toyota Industries Corp Power storage device
JP2014093128A (en) * 2012-10-31 2014-05-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2015503832A (en) * 2011-12-27 2015-02-02 エルジー・ケム・リミテッド Electrode assembly and secondary battery using the same
JP2015159086A (en) * 2014-02-25 2015-09-03 株式会社豊田自動織機 power storage device
JP2016184593A (en) * 2012-03-20 2016-10-20 エルジー・ケム・リミテッド Electrode assembly and composite electrode assembly of stair structure
US9606577B2 (en) 2002-10-22 2017-03-28 Atd Ventures Llc Systems and methods for providing a dynamically modular processing unit
JP2017117798A (en) * 2013-02-15 2017-06-29 エルジー・ケム・リミテッド Electrode assembly and polymer secondary battery cell including the same
WO2021060401A1 (en) * 2019-09-27 2021-04-01 積水化学工業株式会社 Stacked battery and method for producing stacked battery
CN114094105A (en) * 2021-11-23 2022-02-25 珠海冠宇电池股份有限公司 Battery with improved battery capacity
WO2022086096A1 (en) * 2020-10-19 2022-04-28 주식회사 엘지에너지솔루션 Electrode assembly
US11545711B2 (en) 2018-06-29 2023-01-03 Lg Energy Solution, Ltd. Battery module including unit body
WO2023277643A1 (en) * 2021-07-02 2023-01-05 주식회사 엘지에너지솔루션 Electrode assembly and electrode assembly manufacturing method
JP7448357B2 (en) 2017-09-29 2024-03-12 株式会社Aescジャパン secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241744A (en) * 1997-02-25 1998-09-11 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JPH11297299A (en) * 1998-04-07 1999-10-29 Matsushita Electric Ind Co Ltd Thin secondary battery
JP2000311717A (en) * 1999-02-25 2000-11-07 Mitsubishi Chemicals Corp Battery element and battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241744A (en) * 1997-02-25 1998-09-11 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JPH11297299A (en) * 1998-04-07 1999-10-29 Matsushita Electric Ind Co Ltd Thin secondary battery
JP2000311717A (en) * 1999-02-25 2000-11-07 Mitsubishi Chemicals Corp Battery element and battery

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198098A (en) * 2000-12-25 2002-07-12 Mitsubishi Cable Ind Ltd Sheet-like lithium secondary cell
JP2003017123A (en) * 2001-06-28 2003-01-17 Mitsubishi Cable Ind Ltd Polymer film for solid electrolyte, and manufacturing method of the same, solid electrolyte film and lithium ion secondary cell
US9606577B2 (en) 2002-10-22 2017-03-28 Atd Ventures Llc Systems and methods for providing a dynamically modular processing unit
JP2007027027A (en) * 2005-07-21 2007-02-01 Sony Corp Battery
JP2007141714A (en) * 2005-11-21 2007-06-07 Nec Tokin Corp Laminate type lithium-ion polymer battery
US7722983B2 (en) 2005-12-29 2010-05-25 Samsung Sdi Co., Ltd. Lithium ion secondary battery
US7709141B2 (en) * 2005-12-29 2010-05-04 Samsung Sdi Co., Ltd. Lithium ion secondary battery
US8053101B2 (en) 2005-12-29 2011-11-08 Samsung Sdi Co., Ltd. Lithium ion rechargeable battery
EP1804327A1 (en) * 2005-12-29 2007-07-04 Samsung SDI Co., Ltd. Lithium ion secondary battery
JP2007305464A (en) * 2006-05-12 2007-11-22 Toshiba Corp Secondary battery
JP2007317638A (en) * 2006-05-29 2007-12-06 Lg Chem Ltd Electrode assembly excellent in structural stability and wettability of electrolyte solution and secondary battery containing above
US8945775B2 (en) * 2008-06-13 2015-02-03 Toyota Jidosha Kabushiki Kaisha Battery having a porous insulating member
US20110086265A1 (en) * 2008-06-13 2011-04-14 Satoshi Suzuki Battery
JP2012520551A (en) * 2009-03-16 2012-09-06 リ−テック・バッテリー・ゲーエムベーハー Electrode stack for galvanic cells
JP2011018631A (en) * 2009-07-08 2011-01-27 Samsung Sdi Co Ltd Secondary battery, and manufacturing method of secondary battery
JP2011146668A (en) * 2010-01-12 2011-07-28 Samsung Electro-Mechanics Co Ltd Electric double layer capacitor
US9947959B2 (en) 2010-11-17 2018-04-17 Murata Manufacturing Co., Ltd. Non-aqueous electrolyte battery having porous polymer layer between laminate film and battery device
JP2012109124A (en) * 2010-11-17 2012-06-07 Sony Corp Nonaqueous electrolyte battery
JP2015503832A (en) * 2011-12-27 2015-02-02 エルジー・ケム・リミテッド Electrode assembly and secondary battery using the same
JP2016184593A (en) * 2012-03-20 2016-10-20 エルジー・ケム・リミテッド Electrode assembly and composite electrode assembly of stair structure
JP2013254628A (en) * 2012-06-06 2013-12-19 Toyota Industries Corp Power storage device
JP2014007103A (en) * 2012-06-26 2014-01-16 Toyota Industries Corp Power storage device
JP2014093128A (en) * 2012-10-31 2014-05-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US9947909B2 (en) 2013-02-15 2018-04-17 Lg Chem. Ltd. Electrode assembly and polymer secondary battery cell including the same
JP2017117798A (en) * 2013-02-15 2017-06-29 エルジー・ケム・リミテッド Electrode assembly and polymer secondary battery cell including the same
US10615392B2 (en) 2013-02-15 2020-04-07 Lg Chem, Ltd. Electrode assembly and polymer secondary battery cell including the same
JP2015159086A (en) * 2014-02-25 2015-09-03 株式会社豊田自動織機 power storage device
JP7448357B2 (en) 2017-09-29 2024-03-12 株式会社Aescジャパン secondary battery
US11545711B2 (en) 2018-06-29 2023-01-03 Lg Energy Solution, Ltd. Battery module including unit body
WO2021060401A1 (en) * 2019-09-27 2021-04-01 積水化学工業株式会社 Stacked battery and method for producing stacked battery
JP2021057140A (en) * 2019-09-27 2021-04-08 積水化学工業株式会社 Lamination type battery and method for manufacturing lamination type battery
WO2022086096A1 (en) * 2020-10-19 2022-04-28 주식회사 엘지에너지솔루션 Electrode assembly
WO2023277643A1 (en) * 2021-07-02 2023-01-05 주식회사 엘지에너지솔루션 Electrode assembly and electrode assembly manufacturing method
CN114094105A (en) * 2021-11-23 2022-02-25 珠海冠宇电池股份有限公司 Battery with improved battery capacity

Also Published As

Publication number Publication date
JP4951168B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP4951168B2 (en) Sheet-like lithium secondary battery
JP3225867B2 (en) Lithium ion secondary battery and method of manufacturing the same
JP3225871B2 (en) Manufacturing method of lithium ion secondary battery
JP4228541B2 (en) Method for producing non-aqueous gel electrolyte battery
JP4927064B2 (en) Secondary battery
JP5174376B2 (en) Non-aqueous lithium ion secondary battery
JP4431304B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery provided with the same
JP4629290B2 (en) Lithium ion polymer secondary battery
WO2017014245A1 (en) Lithium ion secondary battery
US6291102B1 (en) Lithium ion secondary battery
JP4008508B2 (en) Method for producing lithium ion secondary battery
JP2011054503A (en) Separator for electrochemical element, electrochemical element and manufacturing method thereof
JPH10275633A (en) Lithium ion secondary battery
JP2017073328A (en) Nonaqueous electrolyte secondary battery
JP4959048B2 (en) Sheet-like lithium secondary battery
JP4942249B2 (en) Method for producing lithium ion secondary battery
JP2019091571A (en) Lithium secondary battery
EP0967678A1 (en) Lithium ion secondary battery and its manufacture
KR100329294B1 (en) Method for manufacturing lithium ion battery
JP2002216849A (en) Manufacturing method of lithium ion secondary cell
JP2003297337A (en) Electrode structure, its manufacturing method, and secondary battery
JP2011228049A (en) Separator, electrochemical device, and manufacturing method of separator
JP4990441B2 (en) Sheet-like lithium secondary battery
JP4005789B2 (en) Secondary battery
US20010037557A1 (en) Method for manufacturing lithium ion battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071026

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4951168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term