JP2003013299A - Descaling method for cold-rolled and annealed austenitic stainless-steel sheet - Google Patents

Descaling method for cold-rolled and annealed austenitic stainless-steel sheet

Info

Publication number
JP2003013299A
JP2003013299A JP2001203390A JP2001203390A JP2003013299A JP 2003013299 A JP2003013299 A JP 2003013299A JP 2001203390 A JP2001203390 A JP 2001203390A JP 2001203390 A JP2001203390 A JP 2001203390A JP 2003013299 A JP2003013299 A JP 2003013299A
Authority
JP
Japan
Prior art keywords
descaling
steel sheet
cold
austenitic stainless
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001203390A
Other languages
Japanese (ja)
Other versions
JP4804657B2 (en
Inventor
Toru Matsuhashi
透 松橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001203390A priority Critical patent/JP4804657B2/en
Publication of JP2003013299A publication Critical patent/JP2003013299A/en
Application granted granted Critical
Publication of JP4804657B2 publication Critical patent/JP4804657B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently removing scale generating on a cold-rolled austenitic stainless-steel sheet when annealing it, and for imparting a superior grinding property to the steel sheet surface after the removal. SOLUTION: This method is characterized by electrolyzing the cold-rolled and annealed austenitic stainless-steel sheet in an aqueous solution of adjusted pH of 3 or less, which contains sodium sulfate with concentration of 50-300 g/l, and nitrate ion with concentration of 20-250 g/l, to descale the sheet. An immersion in a mixed solution of nitric acid with fluoric acid for descaling may be concomitantly employed after the above electrolysis. An electrolytic descaling in a neutral salt solution also may be concomitantly employed before the electrolysis.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、オーステナイト系
ステンレス冷延鋼板の焼鈍時に発生するスケールを除去
する方法に関する。
TECHNICAL FIELD The present invention relates to a method for removing scale generated during annealing of an austenitic stainless cold rolled steel sheet.

【0002】[0002]

【従来の技術】ステンレス冷延鋼板の製造工程は、熱間
圧延されたステンレス鋼板を冷間圧延する工程、冷間圧
延の際に生じた加工ひずみを除去し、成形性や加工性を
改善する焼鈍工程、この焼鈍工程で生成する酸化スケー
ルを除去する脱スケール工程からなっている。
2. Description of the Related Art In the process of manufacturing a stainless cold-rolled steel sheet, the step of cold-rolling a hot-rolled stainless steel sheet and the processing strain generated during cold rolling are removed to improve the formability and workability. It consists of an annealing step and a descaling step of removing the oxide scale produced in this annealing step.

【0003】焼鈍工程において、SUS301鋼や同3
04鋼で代表されるオーステナイト系ステンレス鋼は、
900℃を超える温度で焼鈍されるが、その焼鈍中にF
e、Cr等を主成分とした酸化スケールが生成する。こ
れを除去するために焼鈍後に脱スケール工程が必要とな
る。この酸化スケールの脱スケール方法としては、「中
性塩電解処理」が広く用いられている。中性塩電解処理
では、硫酸ナトリウム等の中性塩の水溶液中で、焼鈍さ
れたステンレス鋼板を、陽極電解、陰極電解を交互に繰
り返す交番電解により脱スケールを行う。陽極電解の際
に、難溶性のCrを主体とした酸化スケールを更に酸化
させ、Cr 2−の可溶性のイオンとして溶解させ
る方法である。
In the annealing process, SUS301 steel and
Austenitic stainless steel represented by 04 steel is
It is annealed at a temperature over 900 ° C, but during the annealing, F
An oxide scale mainly composed of e, Cr, etc. is produced. In order to remove this, a descaling step is required after annealing. As a method for descaling this oxide scale, "neutral salt electrolysis treatment" is widely used. In the neutral salt electrolysis treatment, descaling is performed on an annealed stainless steel sheet by alternating electrolysis in which an anodic electrolysis and a cathodic electrolysis are alternately repeated in an aqueous solution of a neutral salt such as sodium sulfate. It is a method of further oxidizing the oxide scale mainly composed of refractory Cr at the time of anodic electrolysis to dissolve it as a soluble ion of Cr 2 O 7 2− .

【0004】他の方法として、「アルカリソルト浸漬処
理」がある。これは、水酸化ナトリウムや硝酸ナトリウ
ム等からなる混合塩を450〜550℃に加熱溶融さ
せ、焼鈍されたステンレス鋼板を浸漬して脱スケールす
る方法である。このアルカリソルト浸漬法でも、酸化ス
ケールは更に酸化され可溶性のNaCrとな
り、続く水洗工程で溶解除去される。
Another method is "alkaline salt immersion treatment". This is a method in which a mixed salt of sodium hydroxide, sodium nitrate or the like is heated and melted at 450 to 550 ° C., and the annealed stainless steel plate is immersed and descaled. Also in this alkali salt dipping method, the oxide scale is further oxidized to soluble Na 2 Cr 2 O 7 , which is dissolved and removed in the subsequent water washing step.

【0005】上記の中性塩電解処理またはアルカリソル
ト浸漬処理のいずれの方法においても、それぞれ単独で
は完全に脱スケールされないため、引き続き「硝ふっ酸
浸漬処理」が実施される。硝ふっ酸浸漬処理は、アルカ
リソルト浸漬処理または中性塩電解処理で除去困難な、
Cr酸化物以外の酸化スケールを除去することを目的と
して行われる。
In either of the above-mentioned neutral salt electrolytic treatment or alkali salt immersion treatment, the above alone is not completely descaled, so that the "nitric hydrofluoric acid immersion treatment" is subsequently carried out. Nitrous-fluoric acid immersion treatment is difficult to remove by alkaline salt immersion treatment or neutral salt electrolytic treatment.
It is performed for the purpose of removing oxide scales other than Cr oxide.

【0006】アルカリソルト浸漬処理と中性塩電解処理
とを比較すると、アルカリソルト浸漬処理の方が、スケ
ール中のCrを酸化する能力、すなわち脱スケール性は
優れ、更に母材と酸化スケールとの界面に濃化するSi
酸化物等を除去する能力にも優れている。しかし、アル
カリソルト浸漬法は、溶融塩の粘性が高いため、ソルト
中で浸漬ロールと鋼板との間でスケールや槽の底部に堆
積したスラッジを噛み込み、鋼板に疵を生じさせやす
い。したがって、アルカリソルト浸漬処理は、中性塩電
解処理に比べ表面疵で問題となることが多い。
Comparing the alkaline salt immersion treatment and the neutral salt electrolytic treatment, the alkaline salt immersion treatment is superior in the ability to oxidize Cr in the scale, that is, the descaling property, and further, the base material and the oxidized scale are Si concentrated at the interface
It also has excellent ability to remove oxides. However, in the alkali salt dipping method, since the viscosity of the molten salt is high, the sludge accumulated on the scale or the bottom of the tank is caught between the dipping roll and the steel sheet in the salt, and the steel sheet is likely to be flawed. Therefore, the alkaline salt dipping treatment often causes a problem with surface defects as compared with the neutral salt electrolytic treatment.

【0007】冷延焼鈍される製品は、表面品質を重視す
る場合が多いため、その脱スケール法として中性塩電解
処理が一般的に用いられている。この時、脱スケール性
がアルカリソルト浸漬処理よりも劣るために、複数の処
理槽が必要になり、設備が大規模となるという問題があ
る。上述の通り、中性塩電解処理はアルカリソルト浸漬
処理に比べ、脱スケール性に劣るため、従来から種々の
提案がなされてきた。
[0007] In many cases, the quality of the surface of cold-rolled and annealed products is emphasized, so that neutral salt electrolytic treatment is generally used as the descaling method. At this time, since the descaling property is inferior to that of the alkali salt immersion treatment, a plurality of treatment tanks are required, and there is a problem that the equipment becomes large-scale. As described above, the neutral salt electrolytic treatment is inferior in descaling property to the alkaline salt dipping treatment, and thus various proposals have been made.

【0008】特開平5−247700公報には、中性塩
電解液のpHを3以下とし、不動態化電流密度以上の電
流密度で処理することによって、鋼板表面の鉄、珪素、
チタン、ニオブ等の酸化物残存による表面光沢の劣化を
防止する脱スケール法が提案がされている。しかしこの
提案された方法では、中性塩のみでpHを低下させた場
合、肌荒れが大きく表面品質上の問題がある。
In Japanese Patent Laid-Open No. 247700/1993, the pH of the neutral salt electrolyte is set to 3 or less, and the passivation current density or more is applied to treat the iron, silicon,
A descaling method has been proposed which prevents deterioration of surface gloss due to the remaining oxides of titanium and niobium. However, in the proposed method, when the pH is lowered only by the neutral salt, the skin becomes rough and there is a problem in surface quality.

【0009】特開平5−287600公報には、中性塩
電解後NaOHまたはKOHとNaNOまたはNa
SOの混合アルカリ性水溶液で電解することによっ
て、高速脱スケールを行う方法が記載されている。しか
しこの記載された方法では、アルカリ性水溶液中で水酸
化鉄が析出し通板ロールに付着し、押し込み疵の発生原
因になり、表面品質上大きな問題がある。
JP-A-5-287600 discloses that after neutral salt electrolysis, NaOH or KOH and NaNO 3 or Na 2 are added.
A method for performing high-speed descaling by electrolyzing with a mixed alkaline aqueous solution of SO 4 is described. However, in the method described, iron hydroxide is deposited in an alkaline aqueous solution and adheres to the sheet passing roll, which causes indentation flaws, which is a serious problem in surface quality.

【0010】特開平11−61500公報には、中性塩
電解を行った後、硫硝酸混合水溶液で電解処理を実施す
る方法が開示されている。しかしこの開示された方法で
は、母材と酸化スケールとの界面に生成されるSi酸化
物の除去能力に劣り、その後の調質圧延などでSi酸化
物が脱落し、押し込み疵の原因となる欠点がある。
Japanese Unexamined Patent Publication (Kokai) No. 11-61500 discloses a method in which neutral salt electrolysis is carried out and then electrolysis is carried out with a sulfuric acid / nitric acid mixed aqueous solution. However, in the disclosed method, the ability to remove Si oxides generated at the interface between the base metal and the oxide scale is poor, and the Si oxides fall off in subsequent temper rolling, which causes indentation flaws. There is.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、上記
の諸問題に鑑みて、オーステナイト系ステンレス冷延鋼
板の焼鈍時に発生するスケールを、アルカリソルト浸漬
処理を用いないで、高能率で除去することができ、除去
後の鋼板表面の研磨性が良好となるオーステナイト系ス
テンレス冷延焼鈍鋼板の脱スケール方法を提供すること
にある。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to remove scales generated during annealing of austenitic stainless cold-rolled steel sheet with high efficiency without using alkali salt dipping treatment. It is intended to provide a descaling method for an austenitic stainless cold-rolled annealed steel sheet which can be done and has good polishing property of the steel sheet surface after removal.

【0012】[0012]

【課題を解決するための手段】オーステナイト系ステン
レス冷延鋼板の焼鈍後の脱スケール方法について、アル
カリソルト浸漬処理を用いない電解処理による脱スケー
ル方法を検討した。
[Means for Solving the Problems] As for the descaling method of an austenitic stainless cold-rolled steel sheet after annealing, a descaling method by electrolytic treatment without alkali salt immersion treatment was examined.

【0013】先ず、オーステナイト系ステンレス冷延鋼
板の焼鈍時の酸化スケールの構造と、中性塩電解処理工
程及び硝ふっ酸浸漬処理工程における脱スケール挙動に
ついて得られた知見を以下の(a)〜(e)に示す。
First, the structure of oxide scale during annealing of austenitic stainless cold-rolled steel sheet and the findings obtained regarding the descaling behavior in the neutral salt electrolytic treatment step and the nitric-hydrofluoric acid immersion treatment step are described in the following (a). Shown in (e).

【0014】(a)焼鈍により生じるスケールは、外層が
Fe酸化物主体、内層がCr酸化物主体のスケール構造
をなし、母材と前記酸化スケールとの界面にSi酸化物
主体のスケールが生成する。Nb等を含む鋼種は、この
界面にNb酸化物を含むスケールも形成される。
(A) The scale produced by annealing has a scale structure in which the outer layer is mainly Fe oxide and the inner layer is mainly Cr oxide, and a scale mainly composed of Si oxide is generated at the interface between the base material and the oxide scale. . In the steel type containing Nb and the like, a scale containing Nb oxide is also formed at this interface.

【0015】(b)中性塩電解処理工程では、主にCr酸
化物主体のスケールが溶解されるが、Si、Nbの酸化
物を含むスケールは全く溶解されない。
(B) In the neutral salt electrolytic treatment step, the scale mainly containing Cr oxide is dissolved, but the scale containing oxides of Si and Nb is not dissolved at all.

【0016】(c)中性塩電解処理工程に続く、硝ふっ酸
混合水溶液中での浸漬酸洗では、SiおよびNbの酸化
物は完全には除去されず、特にSi酸化物やNb酸化物
の含有量が多い鋼種は、この酸化物が厚く生成され、除
去することは困難である。
(C) Oxidation of Si and Nb is not completely removed by immersion pickling in a mixed aqueous solution of nitric-hydrofluoric acid, which follows the neutral salt electrolytic treatment step. In steel types with a high content of, the oxide is thickly formed and is difficult to remove.

【0017】さらに短時間で、脱スケール後に鋼板表面
の研磨性の低下を生じさせずに、オーステナイト系ステ
ンレス鋼板の脱スケール方法を検討するにあたり、上記
(b)に記載の中性塩電解処理工程に着目して種々検討し
た。その結果、新たに下記の(d)、(e)の知見を得
た。
In considering the descaling method for austenitic stainless steel sheets in a shorter time without deteriorating the polishing property of the steel sheet surface after descaling,
Various studies were conducted focusing on the neutral salt electrolytic treatment step described in (b). As a result, the following findings (d) and (e) were newly obtained.

【0018】(d)中性塩電解処理工程において硫酸ナ
トリウムの水溶液中に硝酸イオンを含有させると、研磨
性の低下を生じさせずに、スケール溶解速度が増加す
る。
(D) In the neutral salt electrolytic treatment step, when nitrate ions are contained in the aqueous solution of sodium sulfate, the scale dissolution rate is increased without lowering the polishing property.

【0019】(e)その場合、pHの低下に伴い脱スケ
ールが進行し、研磨性が上昇する。
(E) In that case, descaling proceeds with a decrease in pH, and the polishing property increases.

【0020】図1は、SUS304鋼における硝酸イオ
ン添加の効果を示したものである。
FIG. 1 shows the effect of adding nitrate ions in SUS304 steel.

【0021】冷間圧延材を1100℃で焼鈍した後、2
00g/lの硫酸ナトリウムを含有した水溶液中で、6
A/dmの電流密度で、陽極および陰極電解を各2秒
交互に繰り返し、合計40秒の電解を行った。その後2
00g/lの硫酸ナトリウムと硝酸を混合させた水溶液
中で電解し、残留Si酸化物の深さ方向の厚さを調査し
た。この時の条件は、電流密度が2A/dmとし、電
解条件は陽極電解2秒間、陰極電解2秒間を交互に繰り
返し、合計80秒間の電解処理を行った。
After annealing the cold rolled material at 1100 ° C., 2
6 in an aqueous solution containing 00 g / l sodium sulfate
Anodic and cathodic electrolysis were alternately repeated at a current density of A / dm 2 for 2 seconds each to carry out electrolysis for a total of 40 seconds. Then 2
Electrolysis was performed in an aqueous solution in which 00 g / l of sodium sulfate and nitric acid were mixed, and the thickness of the residual Si oxide in the depth direction was investigated. The conditions at this time were that the current density was 2 A / dm 2 , and the electrolysis conditions were anodic electrolysis for 2 seconds and cathodic electrolysis for 2 seconds, which were alternately repeated to perform electrolysis treatment for a total of 80 seconds.

【0022】図1から、硫酸ナトリウム水溶液中に硝酸
イオンを含有しない従来法の場合には、表面にSi酸化
物が残留するが、硫酸ナトリウム中に硝酸イオンを含有
した場合には、硝酸イオン濃度が20g/l以上で、S
i酸化物が完全に除去されることがわかる。
From FIG. 1, in the case of the conventional method in which the aqueous solution of sodium sulfate does not contain nitrate ions, Si oxide remains on the surface, but in the case of containing nitrate ions in sodium sulfate, the concentration of nitrate ions increases. Is 20 g / l or more, S
It can be seen that the i oxide is completely removed.

【0023】この作用機構については、次の反応が両極
でおきるために、これらの相乗効果により優れた脱スケ
ール性が得られるものと推定される。
With respect to this mechanism of action, it is presumed that excellent descaling properties can be obtained by the synergistic effect of the following reactions because the following reactions occur at both polarities.

【0024】陽極電解反応 硫酸ナトリウムは前述した様にCr酸化物の酸化溶解反
応に寄与し、硝酸イオンはFe酸化物、Cr酸化物のス
ケールの酸化溶解に寄与する。
Anodic electrolytic reaction Sodium sulfate contributes to the oxidative dissolution reaction of Cr oxides as described above, and nitrate ion contributes to the oxidative dissolution of Fe oxide and Cr oxide scales.

【0025】陰極電解反応 硫酸ナトリウムと硝酸イオンは母材の均一溶解に寄与
し、Si酸化物等の脱スケールを促進する。また硝酸イ
オンはFeの還元溶解にも寄与する。
Cathodic electrolytic reaction Sodium sulfate and nitrate ions contribute to the uniform dissolution of the base material and accelerate the descaling of Si oxide and the like. Nitrate ions also contribute to reducing and dissolving Fe.

【0026】しかし、SiやNb濃度が高い鋼種や、焼
鈍温度が高い場合は、上記の硫酸ナトリウムと硝酸イオ
ンによる電解処理では脱スケールが困難な場合がある。
その場合は更に硝ふっ酸混合水溶液で浸漬酸洗処理を追
加することで、脱スケールが完了でき、母材と酸化スケ
ールとの界面のSi酸化物及びNb酸化物の生成量が増
加しても、研磨性に優れた鋼板が得られる。
However, in the case of steel grades having high Si and Nb concentrations and high annealing temperatures, descaling may be difficult by the electrolytic treatment with sodium sulfate and nitrate ions.
In that case, descaling can be completed by further adding immersion pickling treatment with a nitric-hydrofluoric acid mixed aqueous solution, and even if the production amount of Si oxide and Nb oxide at the interface between the base material and the oxide scale increases. Thus, a steel plate having excellent polishing properties can be obtained.

【0027】さらに脱スケールが困難な鋼種について
は、硫酸ナトリウムと硝酸イオンによる電解処理工程の
前に、通常の中性塩電解処理工程を追加することで、完
全な脱スケールが可能で、かつ研磨性に優れた鋼板が得
られる。
For steel grades that are more difficult to descale, a normal neutral salt electrolytic treatment process is added before the electrolytic treatment process using sodium sulfate and nitrate ions to enable complete descaling and polishing. A steel sheet having excellent properties can be obtained.

【0028】本発明は、このような知見に基づきなされ
たもので、その要旨は以下の(1)〜(3)に示すオーステ
ナイト系ステンレス冷延焼鈍鋼板の脱スケール方法にあ
る。
The present invention has been made on the basis of such findings, and the gist thereof is a method for descaling an austenitic stainless cold-rolled annealed steel sheet shown in (1) to (3) below.

【0029】(1)オーステナイト系ステンレス冷延焼鈍
鋼板を、硫酸ナトリウム濃度を50〜300g/l、硝
酸イオン濃度を20〜250g/l、pHを3以下とし
た水溶液中で電解処理することを特徴とするオーステナ
イト系ステンレス冷延焼鈍鋼板の脱スケール方法。
(1) Austenitic stainless cold-rolled annealed steel sheet is electrolytically treated in an aqueous solution having a sodium sulfate concentration of 50 to 300 g / l, a nitrate ion concentration of 20 to 250 g / l and a pH of 3 or less. Method for descaling austenitic stainless cold rolled annealed steel sheet.

【0030】(2)上記(1)に記載の電解処理に引き続
き、硝ふっ酸混合水溶液で浸漬処理を行うのが望まし
い。
(2) Following the electrolytic treatment described in (1) above, it is desirable to carry out a dipping treatment with a nitric-hydrofluoric acid mixed aqueous solution.

【0031】(3)上記(1)に記載の電解処理の前に、中
性塩電解処理を行うことが望ましい。ここで、「冷延焼
鈍鋼板」とは冷間圧延後、焼鈍された鋼板を指す。
(3) It is desirable to perform the neutral salt electrolysis treatment before the electrolysis treatment described in (1) above. Here, the "cold rolled annealed steel sheet" refers to a steel sheet that has been annealed after cold rolling.

【0032】[0032]

【発明の実施の形態】以下に、本発明の範囲を前記のよ
うに規定した理由について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The reason why the scope of the present invention is defined as described above will be described below.

【0033】オーステナイト系ステンレス鋼板の製造工
程において冷間圧延後に実施される焼鈍は、一般に約9
00℃から1250℃の温度範囲である。焼鈍条件の詳
細は、化学組成、組織および要求される成形性あるいは
加工性等により決定される。
The annealing performed after cold rolling in the manufacturing process of austenitic stainless steel sheet is generally about 9
The temperature range is 00 ° C to 1250 ° C. The details of the annealing conditions are determined by the chemical composition, structure and required formability or workability.

【0034】焼鈍後の脱スケール工程では、硝酸イオン
を含む硫酸ナトリウム水溶液中で電解処理する。硫酸ナ
トリウム濃度は50〜300g/l、硝酸イオン濃度は
20〜250g/lとする。
In the descaling step after annealing, electrolysis is performed in a sodium sulfate aqueous solution containing nitrate ions. The sodium sulfate concentration is 50 to 300 g / l, and the nitrate ion concentration is 20 to 250 g / l.

【0035】硫酸ナトリウム濃度が、50g/l未満で
は、脱スケールが完了するのに長時間を要する。300
g/lを超えるとその効果は飽和し、ランニングコスト
が増加する。したがって、硫酸ナトリウム濃度は50〜
300g/lとした。なお望ましくは80〜250g/
lである。
When the sodium sulfate concentration is less than 50 g / l, it takes a long time to complete the descaling. 300
If it exceeds g / l, the effect is saturated and the running cost increases. Therefore, the sodium sulfate concentration is 50-
It was set to 300 g / l. Desirably 80 to 250 g /
It is l.

【0036】硝酸イオン濃度が、20g/l未満では脱
スケール効果が得られない。一方、250g/lを超え
ると、研磨性が低下する。したがって、硝酸イオン濃度
は、20〜250g/lとした。なお望ましくは50〜
150g/lである。硝酸イオン源としては、硝酸、あ
るいは硝酸ナトリウム、硝酸カリウム等の硝酸塩の何れ
でもその効果は得られる。また硝酸や複数の硝酸塩を混
合して用いても、硝酸イオン濃度が本発明の範囲内であ
れば良好な脱スケール性を確保できる。
If the nitrate ion concentration is less than 20 g / l, the descaling effect cannot be obtained. On the other hand, when it exceeds 250 g / l, the polishing property is deteriorated. Therefore, the nitrate ion concentration was set to 20 to 250 g / l. Desirably 50-
It is 150 g / l. As the nitrate ion source, any effect of nitric acid or nitrates such as sodium nitrate and potassium nitrate can be obtained. Even if nitric acid or a plurality of nitrates are mixed and used, good descaling property can be secured if the nitrate ion concentration is within the range of the present invention.

【0037】pHは、3以下に保つ必要がある。3を超
えると脱スケールが十分進行しない。pHを3以下に保
つためには、硫酸、塩酸、硝酸等、酸の種類に制限はな
いが、硝酸を用いた場合、硝酸イオンの供給を兼ねるこ
とができるため、液管理が容易になる。
The pH must be kept below 3. If it exceeds 3, descaling does not proceed sufficiently. In order to keep the pH at 3 or less, there is no limitation on the kind of acid such as sulfuric acid, hydrochloric acid, nitric acid, etc. However, when nitric acid is used, the supply of nitrate ions can also be performed, which facilitates liquid management.

【0038】電解処理液の液温は、高温ほど脱スケール
効果が大きくなるが、NOの発生や酸液の蒸発が問題
となるため、40〜90℃とするのが望ましい。
The higher the temperature of the electrolytically treated solution, the greater the descaling effect, but the generation of NO X and the evaporation of the acid solution pose a problem. Therefore, it is desirable to set the temperature to 40 to 90 ° C.

【0039】電解電流密度は、高いほど溶解速度が大き
くなり脱スケール効果も増加するが、高すぎると母材が
溶解して肌荒れが生じ、研磨性が低下する場合があり、
また電極材料の溶損が発生する場合もあるため、0.5
〜10A/dmとするのが望ましい。
The higher the electrolytic current density is, the higher the dissolution rate and the descaling effect are. However, if the electrolytic current density is too high, the base material may be dissolved to cause rough skin and the polishing property may be deteriorated.
In addition, melting of the electrode material may occur, so 0.5
It is desirable to set it to 10 A / dm 2 .

【0040】前記の硝酸イオンを含む硫酸ナトリウム水
溶液中での電解処理のみでは脱スケールが困難な材料、
たとえばSi、NbまたはMo等を一種以上含有した鋼
種の鋼板については、引き続いて硝ふっ酸浸漬処理を実
施するのが望ましい。この場合、硝酸濃度は30〜20
0g/l、ふっ酸濃度は5〜30g/lとするのが望ま
しい。この時の液温は、30〜60℃とするのが望まし
い。
Materials that are difficult to descale only by electrolytic treatment in the above-mentioned sodium sulfate aqueous solution containing nitrate ions,
For example, it is desirable that a steel type steel sheet containing one or more kinds of Si, Nb, Mo, etc. be subsequently subjected to a nitric hydrofluoric acid immersion treatment. In this case, the nitric acid concentration is 30 to 20.
It is desirable that the concentration is 0 g / l and the hydrofluoric acid concentration is 5 to 30 g / l. The liquid temperature at this time is preferably 30 to 60 ° C.

【0041】また、Cr含有量が高い鋼種の場合、スケ
ール内層に生成されるCr酸化物主体のスケール層が厚
い。この場合、硝酸イオンを含む硫酸ナトリウム水溶液
中で電解処理する前に、硫酸ナトリウム等の中性塩水溶
液中で、電解処理を実施し脱スケール性を更に向上させ
る。この時の中性塩電解処理条件は、通常実施されてい
る条件で良く、濃度は硝酸ナトリウムの場合、50〜3
00g/l、液温は40〜90℃、電流密度は0.5〜
10A/dmが望ましい。
In the case of a steel type having a high Cr content, the scale layer mainly composed of Cr oxide is thickly formed in the scale inner layer. In this case, before the electrolytic treatment in the sodium sulfate aqueous solution containing nitrate ions, the electrolytic treatment is carried out in a neutral salt aqueous solution such as sodium sulfate to further improve the descaling property. The conditions for the neutral salt electrolysis treatment at this time may be those that are usually carried out, and the concentration is 50 to 3 in the case of sodium nitrate.
00g / l, liquid temperature 40-90 ° C, current density 0.5-
10 A / dm 2 is desirable.

【0042】[0042]

【実施例】表1に示す化学成分を有する、SUS304
鋼を供試材として用いた。
EXAMPLES SUS304 having the chemical composition shown in Table 1
Steel was used as the test material.

【0043】[0043]

【表1】 この供試材は冷間圧延されたままの状態で、板厚は何れ
も0.8mmである。この供試材から100×150m
mの試片を切り出して焼鈍した。焼鈍には電気炉を用
い、焼鈍雰囲気は酸化性雰囲気の炭化水素燃焼ガス雰囲
気とした。焼鈍温度は1100℃とし、均熱時間は何れ
も30秒とした。焼鈍後、硫酸ナトリウムおよび硝酸イ
オンの濃度を変化させた電解液中で脱スケールを実施し
た。電流密度はいずれも±2A/dmとし、電解条件
は、陽極電解2秒間、陰極電解1秒間を交互に繰り返
し、総電解時間は36秒とした。
[Table 1] This test material is 0.8 mm in thickness as cold-rolled. 100 × 150m from this test material
A test piece of m was cut out and annealed. An electric furnace was used for annealing, and the annealing atmosphere was a hydrocarbon combustion gas atmosphere of an oxidizing atmosphere. The annealing temperature was 1100 ° C., and the soaking time was 30 seconds in each case. After annealing, descaling was performed in an electrolytic solution in which the concentrations of sodium sulfate and nitrate ions were changed. The current densities were both ± 2 A / dm 2 , and the electrolysis conditions were alternating anodic electrolysis for 2 seconds and cathodic electrolysis for 1 second, and the total electrolysis time was 36 seconds.

【0044】また、一部の鋼板については、硝酸ナトリ
ウムに硝酸イオンを混合させた水溶液で電解処理の前後
に、中性塩電解処理、硝ふっ酸浸漬処理を追加した。
For some of the steel sheets, a neutral salt electrolytic treatment and a nitric hydrofluoric acid dipping treatment were added before and after the electrolytic treatment with an aqueous solution of sodium nitrate mixed with nitrate ions.

【0045】中性塩電解処理は、200g/lの濃度の
硫酸ナトリウムを使用し、電流密度は6A/dm
し、電解条件は、陽極電解2秒間、陰極電解2秒間を交
互繰り返し、総電解時間は80秒とした。硝ふっ酸浸漬
処理は、下記のAまたはBの濃度で行った。何れも液温
40℃、浸漬時間は40秒とした。
In the neutral salt electrolysis treatment, sodium sulfate having a concentration of 200 g / l was used, the current density was 6 A / dm 2 , and the electrolysis conditions were anodic electrolysis for 2 seconds and cathodic electrolysis for 2 seconds, which were alternately repeated. The time was 80 seconds. The nitric-hydrofluoric acid immersion treatment was performed at the following concentrations A or B. In each case, the liquid temperature was 40 ° C. and the immersion time was 40 seconds.

【0046】 A:硝酸濃度=80g/l、ふっ酸濃度=30g/l B:硝酸濃度=80g/l、ふっ酸濃度=15g/l 何れの鋼種についても、脱スケール後の評価は、以下に
示す方法で評価し、何れも、「◎」「○」を良好(合
格)とした。
A: nitric acid concentration = 80 g / l, hydrofluoric acid concentration = 30 g / l B: nitric acid concentration = 80 g / l, hydrofluoric acid concentration = 15 g / l For both steel types, the evaluation after descaling is as follows. Evaluation was made by the methods shown, and in all cases, “⊚” and “∘” were evaluated as good (pass).

【0047】まず、「脱スケール性」は、100倍の光
学顕微鏡で観察し、完全に脱スケールされた場合を◎、
面積率で97%以上脱スケースされた場合を○、90%
以上脱スケースされた場合を△、90%未満しか脱スケ
ールされなかった場合を×で表した。
First, the "descaling property" means observing with a 100 times optical microscope, and ◎ when completely descaled.
○, 90% if the area rate is 97% or more
The case of descrusting is represented by Δ, and the case of less than 90% descaling is represented by x.

【0048】次に、「Si酸化物の残留有無」は、走査
型電子顕微鏡(SEM)で観察し、これらの酸化物が完
全に除去されている場合を◎、極くわずか残留が認めら
れるが問題ないと判断される場合を○、一部粒界近傍に
残留している場合を△、全面に残留している場合を×で
表した。
Next, the "presence or absence of residual Si oxide" is observed by a scanning electron microscope (SEM). When these oxides are completely removed, ⊚, and very slight residual is recognized. The case where it was judged that there was no problem was represented by ◯, the case where some of the particles remained near the grain boundaries was represented by Δ, and the case where some of them remained on the entire surface was represented by x.

【0049】さらに、「研磨性」は、脱スケール後の鋼
板に、約1%の調質圧延を施した後に、#1200番の
砥粒を用い、回転式研磨装置を用いて、1パスのバフ研
磨を行った。研磨面を、研磨の均一性、光沢度等につい
て目視により総合判断し判定した。特に良好なものを
◎、良好なものを○、やや不良なものを△、不良なもの
を×、とした。
Further, the "polishing property" means that the descaled steel sheet is temper-rolled at about 1%, and then the # 1200 abrasive grains are used to make a one pass pass using a rotary polishing machine. Buffing was performed. The polished surface was judged by making a comprehensive visual judgment on the uniformity of polishing, the glossiness, and the like. Especially good was marked with ⊚, good was marked with ◯, somewhat poor was marked with Δ, and bad was marked with x.

【0050】得られた結果を、まとめて表2〜表4に示
す。
The obtained results are summarized in Tables 2 to 4.

【0051】[0051]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 符号1、2、8および9は従来法である硫酸ナトリウム
による中性塩電解の例であるが、pHを低下させてもま
た電解時間を長く取っても脱スケール性は劣り、Si酸
化物も残留し、研磨性も劣っている。
[Table 4] Reference numerals 1, 2, 8 and 9 are examples of the conventional method of neutral salt electrolysis with sodium sulfate, but the descaling property is inferior even if the pH is lowered or the electrolysis time is taken longer, and Si oxide is also present. It remains and the polishing property is inferior.

【0052】一方、符号4、5、6、11、12および
13は、硫酸ナトリウム中に硝酸イオンを本発明で規定
する20〜250g/lの範囲で、硝酸または硝酸ナト
リウムとして含有させた場合であり、電解処理のみで脱
スケールが完了した。Si酸化物もほぼ除去されてお
り、従来引き続いて実施されていた硝ふっ酸浸漬処理が
不要となることがわかった。これにより本鋼種では脱ス
ケールに要する時間が大幅に短縮可能となる。しかし、
符号3、10のように硝酸イオン濃度が本発明の規定量
より低い場合や、符号7、14のように高い場合は、研
磨性が劣っている。
On the other hand, reference numerals 4, 5, 6, 11, 12 and 13 indicate the cases where nitric acid ions are contained as nitric acid or sodium nitrate in the range of 20 to 250 g / l specified in the present invention in sodium sulfate. Yes, descaling was completed only by electrolytic treatment. Since the Si oxide was also almost removed, it was found that the nitric-hydrofluoric acid dipping treatment, which was carried out subsequently, was unnecessary. As a result, with this steel type, the time required for descaling can be greatly shortened. But,
When the nitrate ion concentration is lower than the specified amount of the present invention as shown by reference numerals 3 and 10 or when the nitrate ion concentration is high as shown by reference numerals 7 and 14, the polishing property is poor.

【0053】さらに、符号16、17および18のよう
に、本発明の範囲内で硫酸ナトリウムに硝酸イオンを混
合した水溶液で電解を行う前に、中性塩電解を実施した
場合は、脱スケール性、研磨性は更に良好となる。
Further, as indicated by reference numerals 16, 17 and 18, when the neutral salt electrolysis is carried out before the electrolysis with an aqueous solution of sodium sulfate mixed with nitrate ions within the scope of the present invention, the descaling property is The polishing property is further improved.

【0054】しかし、符号15のように、硝酸イオン濃
度が本発明の規定量より低い場合や、符号19のように
高い場合は、研磨性に劣っている。符号21、24およ
び27は、本発明の範囲内で硫酸ナトリウムに硝酸イオ
ンを混合した水溶液で電解処理を行った後に、硝ふっ酸
で浸漬処理を行った場合で、特にSi酸化物が完全に除
去されている。特に、硫酸ナトリウムに硝酸イオンを混
合した水溶液で電解を行う前後に、中性塩電解処理およ
び硝ふっ酸で浸漬処理を行った場合は、完全に脱スケー
ルが完了し、Si酸化物も完全に除去され、研磨性も極
めて良好となる。
However, when the nitrate ion concentration is lower than the specified amount of the present invention as indicated by reference numeral 15 or when it is high as indicated by reference numeral 19, the polishing property is poor. Reference numerals 21, 24, and 27 represent the cases in which, within the scope of the present invention, electrolytic treatment was performed with an aqueous solution in which sodium sulfate was mixed with nitrate ions, and then dipping treatment was performed with nitric hydrofluoric acid. It has been removed. In particular, before and after electrolysis with an aqueous solution of sodium sulfate mixed with nitrate ions, when the neutral salt electrolysis treatment and the dipping treatment with nitric hydrofluoric acid were performed, the descaling was completed completely and the Si oxide was also completely removed. It is removed and the polishing property becomes extremely good.

【0055】しかし、符号20、23および26のよう
に硝酸イオン濃度が本発明の規定量より低い場合や、符
号22、24および28のように高い場合は、研磨性に
劣っている。
However, when the nitrate ion concentration is lower than the specified amount of the present invention as in the reference numerals 20, 23 and 26, or when it is high as in the reference numerals 22, 24 and 28, the polishing property is inferior.

【0056】以上の結果から、本発明の硫酸ナトリウム
と硝酸イオンを混合した水溶液で電解処理した場合、脱
スケール時間が大幅に短縮され、母材とスケールとの界
面のSi酸化物の除去能力に優れ、研磨性が良好な鋼板
が得られることが判明した。
From the above results, when the electrolytic treatment with the aqueous solution of the present invention in which sodium sulfate and nitrate ions are mixed, the descaling time is greatly shortened and the ability to remove Si oxide at the interface between the base material and the scale is improved. It has been found that a steel plate having excellent polishing properties is obtained.

【0057】[0057]

【発明の効果】本発明の脱スケール方法によれば、オー
ステナイト系ステンレス冷延鋼板の焼鈍後の脱スケール
速度が大幅に向上でき、研磨性にも優れた表面を得るこ
とが可能となり、これによりアルカリソルト浸漬工程の
省略による押し込み疵防止、ならびに中性塩電解脱スケ
ール工程時間の短縮による生産性の向上も期待できる。
According to the descaling method of the present invention, the descaling rate of an austenitic stainless cold-rolled steel sheet after annealing can be significantly improved, and a surface excellent in polishability can be obtained. It can be expected to prevent indentation flaws by omitting the alkali salt dipping process and to improve productivity by shortening the neutral salt electrolytic descaling process time.

【0058】更に、母材と酸化スケールとの界面に生成
されるSi酸化物等の脱スケール効率にも優れている。
Further, it is also excellent in descaling efficiency of Si oxide and the like produced at the interface between the base material and the oxide scale.

【図面の簡単な説明】[Brief description of drawings]

【図1】電解後のSUS304鋼の表面の残留Si酸化
物厚さと硝酸イオン含有量との関係を示したグラフであ
る。
FIG. 1 is a graph showing the relationship between the thickness of residual Si oxide on the surface of SUS304 steel after electrolysis and the content of nitrate ions.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】オーステナイト系ステンレス冷延焼鈍鋼板
を、硫酸ナトリウム濃度を50〜300g/l、硝酸イ
オン濃度を20〜250g/l、pHを3以下とした水
溶液中で電解処理することを特徴とするオーステナイト
系ステンレス冷延焼鈍鋼板の脱スケール方法。
1. An austenitic stainless cold-rolled annealed steel sheet is electrolyzed in an aqueous solution having a sodium sulfate concentration of 50 to 300 g / l, a nitrate ion concentration of 20 to 250 g / l and a pH of 3 or less. Descaling method for cold-rolled austenitic stainless steel sheet.
【請求項2】上記の電解処理に引き続き、硝ふっ酸混合
水溶液で浸漬処理することを特徴とするオーステナイト
系ステンレス冷延焼鈍鋼板の脱スケール方法。
2. A method for descaling an austenitic stainless cold-rolled annealed steel sheet, which is characterized by immersing in a mixed aqueous solution of nitric-fluoric acid after the electrolytic treatment.
【請求項3】上記の電解処理の前に、中性塩電解処理を
行うことを特徴とする請求項1または2に記載のオース
テナイト系ステンレス冷延焼鈍鋼板の脱スケール方法。
3. The method of descaling an austenitic stainless cold-rolled annealed steel sheet according to claim 1, wherein a neutral salt electrolytic treatment is performed before the electrolytic treatment.
JP2001203390A 2001-07-04 2001-07-04 A descaling method for austenitic stainless steel cold-rolled annealed steel sheets Expired - Lifetime JP4804657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001203390A JP4804657B2 (en) 2001-07-04 2001-07-04 A descaling method for austenitic stainless steel cold-rolled annealed steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001203390A JP4804657B2 (en) 2001-07-04 2001-07-04 A descaling method for austenitic stainless steel cold-rolled annealed steel sheets

Publications (2)

Publication Number Publication Date
JP2003013299A true JP2003013299A (en) 2003-01-15
JP4804657B2 JP4804657B2 (en) 2011-11-02

Family

ID=19040036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001203390A Expired - Lifetime JP4804657B2 (en) 2001-07-04 2001-07-04 A descaling method for austenitic stainless steel cold-rolled annealed steel sheets

Country Status (1)

Country Link
JP (1) JP4804657B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115094506A (en) * 2022-06-13 2022-09-23 山西太钢不锈钢股份有限公司 Method for improving surface quality of cold-rolled coil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260900A (en) * 1985-09-09 1987-03-17 Shoji Shimada Method for descaling stainless steel material
JPH0665798A (en) * 1992-08-19 1994-03-08 Sumitomo Metal Ind Ltd Method for descaling stainless steel and device therefor
JPH1161500A (en) * 1997-08-22 1999-03-05 Nisshin Steel Co Ltd Descaling of stainless steel strip and heat resistant steel strip

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260900A (en) * 1985-09-09 1987-03-17 Shoji Shimada Method for descaling stainless steel material
JPH0665798A (en) * 1992-08-19 1994-03-08 Sumitomo Metal Ind Ltd Method for descaling stainless steel and device therefor
JPH1161500A (en) * 1997-08-22 1999-03-05 Nisshin Steel Co Ltd Descaling of stainless steel strip and heat resistant steel strip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115094506A (en) * 2022-06-13 2022-09-23 山西太钢不锈钢股份有限公司 Method for improving surface quality of cold-rolled coil

Also Published As

Publication number Publication date
JP4804657B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
JP5768141B2 (en) Eco-friendly high-speed pickling process for producing low chromium ferritic stainless steel cold rolled steel sheets with excellent surface quality
JPH04337094A (en) High-speed pickling method for steel type metal
EP0692555B1 (en) Annealing and descaling method for stainless steel
US6149744A (en) Method of making austenitic stainless steel sheet
JP6031606B2 (en) High speed pickling process for producing austenitic stainless cold rolled steel sheet
JP2003286592A (en) Pickling process for stainless steel strip
JP3792335B2 (en) Finishing electrolytic pickling method in descaling of stainless steel strip
JP4804657B2 (en) A descaling method for austenitic stainless steel cold-rolled annealed steel sheets
JP2002348700A (en) DESCALING METHOD FOR COLD-ROLLED AND ANNEALED Cr-BASED STAINLESS STEEL SHEET
JP7454045B2 (en) Electrically assisted pickling of steel
JP4037743B2 (en) Method for producing stainless steel with excellent surface gloss
JPH0142360B2 (en)
JP2577619B2 (en) Method and apparatus for descaling alloy steel strip
JP3878024B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP2842787B2 (en) Annealing and descaling of cold rolled stainless steel strip
JP4221984B2 (en) Martensitic stainless steel cold rolled-annealed-pickled steel strip with extremely good surface gloss
JP2577618B2 (en) Method and apparatus for descaling alloy steel strip
JP3506127B2 (en) Pickling method for hot rolled steel strip with excellent surface properties after pickling
JPH11343586A (en) Descaling method of titanium material
EP4056737A1 (en) Ionic liquid for pickling stainless steel and method for pickling stainless steel by using same
US6921443B1 (en) Process for producing stainless steel with improved surface properties
JP2966188B2 (en) Descaling method for ferritic stainless steel annealed steel strip
JP2517353B2 (en) Descaling method for stainless steel strip
JP4322726B2 (en) Manufacturing method of stainless steel sheet with excellent surface gloss
JP2000219983A (en) Method for pickling stainless steel cold rolled steel strip

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080612

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110810

R150 Certificate of patent or registration of utility model

Ref document number: 4804657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term