JP5768141B2 - Eco-friendly high-speed pickling process for producing low chromium ferritic stainless steel cold rolled steel sheets with excellent surface quality - Google Patents

Eco-friendly high-speed pickling process for producing low chromium ferritic stainless steel cold rolled steel sheets with excellent surface quality Download PDF

Info

Publication number
JP5768141B2
JP5768141B2 JP2013547334A JP2013547334A JP5768141B2 JP 5768141 B2 JP5768141 B2 JP 5768141B2 JP 2013547334 A JP2013547334 A JP 2013547334A JP 2013547334 A JP2013547334 A JP 2013547334A JP 5768141 B2 JP5768141 B2 JP 5768141B2
Authority
JP
Japan
Prior art keywords
steel sheet
pickling
cold
rolled steel
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013547334A
Other languages
Japanese (ja)
Other versions
JP2014501337A (en
Inventor
ジ−フン キム、
ジ−フン キム、
ドン−フン キム、
ドン−フン キム、
ジン−スク キム、
ジン−スク キム、
サン−キョ チェ、
サン−キョ チェ、
ヨン−ホン イ、
ヨン−ホン イ、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Co Ltd
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2014501337A publication Critical patent/JP2014501337A/en
Application granted granted Critical
Publication of JP5768141B2 publication Critical patent/JP5768141B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • C25F1/02Pickling; Descaling
    • C25F1/04Pickling; Descaling in solution
    • C25F1/06Iron or steel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/086Iron or steel solutions containing HF
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • C25F1/02Pickling; Descaling
    • C25F1/12Pickling; Descaling in melts
    • C25F1/14Iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F7/00Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

本発明は、高い表面品質を要するフェライト系ステンレス冷延鋼板を製造する際において、鋼板表面を高速で酸洗する方法に関し、具体的には、酸洗過程中において硝酸を用いない酸洗方法に関する。   The present invention relates to a method of pickling a steel plate surface at a high speed when producing a ferritic stainless steel cold-rolled steel sheet that requires high surface quality, and specifically to a pickling method that does not use nitric acid during the pickling process. .

ステンレス冷延鋼板は、冷間圧延後に所定の機械的特性を得るために800〜1150℃の熱処理過程を経るが、このような熱処理過程で、鋼板の表面が炉の内部で高温の酸素と反応し表面に酸化スケール(SiO、(Cr,Fe))が生成する。このような鋼板表面の酸化スケールは、製品の外観を悪くして鋼板の品質を悪化させ、また、鋼板の腐食を引き起こす出発点となり、鋼板の耐食性を低下させる。 A stainless cold-rolled steel sheet undergoes a heat treatment process at 800 to 1150 ° C. in order to obtain predetermined mechanical characteristics after cold rolling. In such a heat treatment process, the surface of the steel sheet reacts with high-temperature oxygen inside the furnace. An oxide scale (SiO 2 , (Cr, Fe) 3 O 4 ) is generated on the surface. Such an oxide scale on the surface of the steel sheet deteriorates the appearance of the product, deteriorates the quality of the steel sheet, and also serves as a starting point for causing corrosion of the steel sheet, thereby reducing the corrosion resistance of the steel sheet.

従って、通常、美麗な表面品質を得て耐食性を向上させるために、ブラシ、ショットボールブラストなどによる物理的なデスケーリング、硫酸ナトリウム、硫酸、硝酸電解質を用いた電解デスケーリング、塩浴、混酸などを使用した化学的なデスケーリングなどの多様な方法を組み合わせて鋼板表面の酸化スケールを除去することによりステンレス冷延鋼板を製造しており、このようなスケーリングを除去する過程を酸洗工程という。このようなステンレス酸洗工程では、美麗な表面品質を得て、また、不動態被膜を均一に形成して耐食性を確保するために、硝酸溶液に鋼板を通過させながら電流を加えてデスケーリングする硝酸電解方法と、硝酸(80〜180g/L)及びフッ酸(2〜40g/L)の混酸を利用した化学的デスケーリング方法で酸洗工程を行ってきた。硝酸は、酸洗槽内のpHを下げてフッ酸の活動度を上げ、鋼板表面で溶解された2価鉄イオンを3価に酸化して酸洗に適正な酸化還元電位を保持させる。   Therefore, usually, to obtain beautiful surface quality and improve corrosion resistance, physical descaling with brush, shot ball blasting, electrolytic descaling using sodium sulfate, sulfuric acid, nitric acid electrolyte, salt bath, mixed acid, etc. Stainless steel cold-rolled steel sheets are manufactured by removing the oxide scale on the surface of the steel sheet by combining various methods such as chemical descaling using the steel, and the process of removing such scaling is called a pickling process. In such a stainless steel pickling process, in order to obtain a beautiful surface quality and to form a passive film uniformly and ensure corrosion resistance, it is descaled by applying current while passing the steel plate through the nitric acid solution. The pickling process has been performed by a nitric acid electrolysis method and a chemical descaling method using a mixed acid of nitric acid (80 to 180 g / L) and hydrofluoric acid (2 to 40 g / L). Nitric acid lowers the pH in the pickling tank to increase the activity of hydrofluoric acid, oxidizes divalent iron ions dissolved on the surface of the steel sheet to trivalent, and maintains an appropriate redox potential for pickling.

しかし、酸洗液として硝酸が用いられることにより、大気排出規制物質であるNOxが発生し、また、廃酸及び洗浄水に硝酸性窒素(NO−N)が含まれているため、国内外の環境規制強化による排出放流水の総窒素制限や大気排出施設のNOx濃度制限などの環境規制条件を満たすための酸洗工程への環境汚染防止設備の追加設置及びその運用費用によって生産単価が著しく増加するという問題点が発生する。また、14重量%以下のクロムを含み、耐食性が他のステンレス鋼より脆弱な低クロムフェライト冷延鋼板を生産する際において、脆弱な耐食性によって酸溶液中への溶解量が増加し、NOxと硝酸性窒素の発生が急激に増加するという問題が発生する。 However, since nitric acid is used as the pickling solution, NOx, which is an atmospheric emission control substance, is generated, and nitrate nitrogen (NO 3 -N) is contained in the waste acid and the washing water. The unit cost of production is significantly higher due to the additional installation and operation costs of environmental pollution prevention equipment in the pickling process to meet the environmental regulatory requirements such as total nitrogen limitation of discharged effluent due to stricter environmental regulations and NOx concentration limitation of air discharge facilities The problem of an increase occurs. Moreover, when producing low-chromium ferritic cold-rolled steel sheets containing 14 wt% or less chromium and having a corrosion resistance weaker than that of other stainless steels, the amount of dissolution in an acid solution increases due to the weak corrosion resistance, and NOx and nitric acid The problem arises that the generation of reactive nitrogen increases rapidly.

このような問題点を解決するために、硝酸を用いない酸洗方法が開発されてきた。このような技術では、酸洗過程において、硝酸を塩酸または硫酸などに代え、不足する酸化力は過酸化水素、過マンガン酸カリウム、3価鉄イオン、及び空気注入により補う硝酸を用いない酸洗方法が開発された。   In order to solve such problems, pickling methods that do not use nitric acid have been developed. In such a technique, in the pickling process, nitric acid is replaced with hydrochloric acid or sulfuric acid, etc., and the deficiency in oxidizing power is hydrogen peroxide, potassium permanganate, trivalent iron ions, and pickling without using nitric acid supplemented by air injection. A method was developed.

具体的には、特許文献1には、酸洗液として硫酸、フッ酸、硫酸鉄を利用し、過酸化水素を添加して酸洗溶液の酸化還元電位を300mV以上に保持する技術が開示されており、上記技術を初めとして90年代以後、特許文献2及び特許文献3に開示されたように、主にフッ酸と鉄イオン、空気、過酸化水素または溶液の酸化還元電位(Oxidation−Reduction Potential、ORP)の適正範囲を特定する技術が登場し続けた。しかし、これらの方法は大部分、製品の品質に厳しくない線材、棒鋼、厚板などの製品に限定的に適用できるという限界がある。   Specifically, Patent Document 1 discloses a technology that uses sulfuric acid, hydrofluoric acid, and iron sulfate as the pickling solution, and adds hydrogen peroxide to maintain the oxidation-reduction potential of the pickling solution at 300 mV or higher. As disclosed in Patent Document 2 and Patent Document 3 since the 1990s, including the above-mentioned technology, mainly the oxidation-reduction potential (Oxidation-Reduction Potential) of hydrofluoric acid and iron ions, air, hydrogen peroxide, or a solution. , Techniques for identifying the appropriate range of ORP) continued to emerge. However, most of these methods are limited in that they can be limitedly applied to products such as wire rods, steel bars, and thick plates, which are not strict in product quality.

一方、特許文献4には、硫酸、フッ酸、鉄塩を含み、過酸化水素を定期的に投入し、湿潤剤、光沢剤、腐食抑制剤などの組成を調節して酸洗し、酸洗溶液の管理は、Fe(III)及びこれによるORPに基づいた自動制御方式を取る技術が開示されている。これにより、酸洗溶液であるCLEANOX352製品が商品化され世界的に最も広く用いられている。この方法は、線材及び熱延製品の場合に実用化されて使用されているが、製品の生産単価が既存より20%以上高く、複雑な溶液組成と管理方法を採択している。また、決定的に酸洗減量速度が1.5〜3g/m・min程度と比較的遅い酸洗速度を有し、10〜100秒間以内に混酸酸洗が完了しなければならない高速酸洗ラインには適さない。 On the other hand, Patent Document 4 contains sulfuric acid, hydrofluoric acid, and an iron salt, and hydrogen peroxide is periodically added to adjust the composition of a wetting agent, a brightening agent, a corrosion inhibitor, and the like. As for the management of the solution, there is disclosed a technique that adopts an automatic control system based on Fe (III) and the ORP based thereon. As a result, the CLEANOX 352 product, which is a pickling solution, has been commercialized and is most widely used worldwide. This method has been put to practical use in the case of wire rods and hot-rolled products, but the product unit price of the product is 20% or more higher than that of existing products, and a complicated solution composition and management method is adopted. In addition, the pickling reduction rate has a relatively slow pickling rate of about 1.5 to 3 g / m 2 · min, and the mixed pickling must be completed within 10 to 100 seconds. Not suitable for line.

また、上記特許の改良特許である特許文献5及び特許文献6では、銅及び塩素イオンを酸洗組成物に追加して酸洗速度を上げる方法が提案されているが、フェライト系ステンレス鋼板表面に形成される表面電位(Open circuit potential、OCP)が銅イオンの酸化還元電位である0.1Vより低い場合、酸洗過程で鋼板表面に銅粒子が析出して鋼板を変色させる恐れがある。また、酸洗溶液に塩素イオンが一定濃度以上含有される場合、孔食が発生する恐れがある。   Further, in Patent Document 5 and Patent Document 6, which are improved patents of the above patent, a method of increasing the pickling speed by adding copper and chlorine ions to the pickling composition has been proposed. When the surface potential (Open circuit potential, OCP) formed is lower than 0.1 V, which is the oxidation-reduction potential of copper ions, copper particles may be deposited on the surface of the steel sheet during the pickling process, and the steel sheet may be discolored. In addition, when the pickling solution contains chlorine ions at a certain concentration or more, pitting corrosion may occur.

このように無硝酸酸洗組成物について様々な技術が知られているが、フェライト系冷延鋼板の高速生産に適する酸洗技術は知られていない。   As described above, various techniques are known for the non-nitric acid pickling composition, but no pickling technique suitable for high-speed production of ferritic cold-rolled steel sheets is known.

ドイツ特許第3937438号German Patent No. 3937438 米国特許第5154774号US Pat. No. 5,154,774 欧州特許第236354号European Patent No. 236354 米国特許第5908511号US Pat. No. 5,908,511 欧州特許出願公開第1040211号European Patent Application No. 1040211 米国特許出願公開第2000−560982号US Patent Application Publication No. 2000-560982

本発明は、硝酸を用いずに酸洗性を確保して、低クロムフェライト系ステンレス冷延鋼板の高速生産に適する電解酸洗方法及びシリコン酸化物の高速除去に適する混酸酸洗方法を提供する。   The present invention provides an electrolytic pickling method suitable for high-speed production of low-chromium ferritic stainless cold-rolled steel sheets and a mixed pickling method suitable for high-speed removal of silicon oxide while ensuring pickling performance without using nitric acid. .

また、本発明は、上記酸洗方法に適する硝酸を含まない混酸溶液を提供する。   Moreover, this invention provides the mixed acid solution which does not contain nitric acid suitable for the said pickling method.

さらに、本発明は、上記のような酸洗方法により得られる低クロムフェライト系ステンレス冷延鋼板を提供する。   Furthermore, the present invention provides a low chromium ferrite stainless cold-rolled steel sheet obtained by the above pickling method.

本発明の一態様において、一具現例によると、硝酸を含まない混酸溶液を用いて、14重量%以下のクロムを含む低クロムフェライト系ステンレス冷延鋼板の表面からシリコン酸化物を高速で除去するシリコン酸化物酸洗方法であって、過酸化水素を含む混酸溶液中に上記冷延鋼板を浸漬することにより酸洗工程を行い、上記混酸溶液は硫酸70〜200g/L及び遊離フッ酸1〜10g/Lを含み、最初の混酸溶液は過酸化水素を濃度7g/L以上で含むが、鉄イオンは含まず、3〜15g/m・minの酸洗速度を有する、低クロムフェライト系ステンレス冷延鋼板のシリコン酸化物酸洗方法を提供する。 In one embodiment of the present invention, according to one embodiment, silicon oxide is removed at high speed from the surface of a low chromium ferritic stainless steel cold rolled steel sheet containing 14 wt% or less of chromium using a mixed acid solution not containing nitric acid. A silicon oxide pickling method, wherein the cold-rolled steel sheet is immersed in a mixed acid solution containing hydrogen peroxide to perform a pickling step. The mixed acid solution contains 70 to 200 g / L sulfuric acid and 1 to 1 free hydrofluoric acid. Low chromium ferritic stainless steel containing 10 g / L, the first mixed acid solution containing hydrogen peroxide at a concentration of 7 g / L or more but not containing iron ions and having a pickling rate of 3 to 15 g / m 2 · min A silicon oxide pickling method for cold-rolled steel sheets is provided.

本発明の他の具現例によると、上記酸洗工程中の過酸化水素濃度と鉄イオン濃度の関係は次の式

Figure 0005768141
を満たすことが好ましい。 According to another embodiment of the present invention, the relationship between the hydrogen peroxide concentration and the iron ion concentration during the pickling step is
Figure 0005768141
It is preferable to satisfy.

本発明の他の具現例によると、上記混酸溶液中に浸漬された冷延鋼板の表面電位は−0.2〜0.2Vに保持されることが好ましく、上記冷延鋼板は10〜100秒間混酸溶液に浸漬することにより酸洗することができる。   According to another embodiment of the present invention, the surface potential of the cold rolled steel sheet immersed in the mixed acid solution is preferably maintained at -0.2 to 0.2 V, and the cold rolled steel sheet is maintained for 10 to 100 seconds. Pickling can be performed by dipping in a mixed acid solution.

また、本発明の他の態様において、脱脂及び焼鈍工程を経た14重量%以下のクロムを含むフェライト系ステンレス冷延鋼板を酸洗する、低クロムフェライト系ステンレス冷延鋼板の酸洗方法を提供し、一具現例として、低クロムフェライト系ステンレス冷延鋼板から、硫酸を電解質として使用する電解溶液を用いて(Fe、Cr)スケールを電解除去する硫酸電解段階と、硫酸、フッ酸、及び過酸化水素を含む混酸溶液に浸漬する混酸浸漬段階とを含み、3〜15g/m・minの酸洗速度を有する、低クロムフェライト系ステンレス冷延鋼板の酸洗方法を提供する。 In another aspect of the present invention, there is provided a pickling method for a low chromium ferritic stainless steel cold-rolled steel sheet, wherein the ferritic stainless steel cold-rolled steel sheet containing 14 wt% or less of chromium that has undergone a degreasing and annealing process is pickled. As one embodiment, a sulfuric acid electrolysis step of electrolytically removing (Fe, Cr) scale from a low-chromium ferritic stainless steel cold-rolled steel sheet using an electrolytic solution using sulfuric acid as an electrolyte, sulfuric acid, hydrofluoric acid, and peroxidation There is provided a pickling method for a low-chromium ferritic stainless steel cold-rolled steel sheet having a pickling speed of 3 to 15 g / m 2 · min, including a mixed acid dipping step of dipping in a mixed acid solution containing hydrogen.

本発明の他の具現例によると、硫酸ナトリウム電解質を含む電解溶液を用いて、鋼板表面からクロムリッチスケールを電解除去する中性塩電解段階をさらに含んでもよい。   According to another embodiment of the present invention, the method may further include a neutral salt electrolysis step of electrolytically removing the chromium rich scale from the steel sheet surface using an electrolytic solution including a sodium sulfate electrolyte.

本発明のさらに他の具現例によると、上記中性塩電解段階は、フェライト系ステンレス鋼板を温度50〜90℃の中性塩電解溶液中に浸漬し、鋼板表面の電位が+、−、+の順に形成されるように10〜30A/dmの電流密度を0秒超過90秒以下の間印加することにより行ってもよく、また、上記中性塩電解溶液中に硫酸ナトリウム電解質を100〜250g/L含んでもよい。 According to still another embodiment of the present invention, the neutral salt electrolysis step includes immersing the ferritic stainless steel plate in a neutral salt electrolytic solution at a temperature of 50 to 90 ° C. so that the surface potential of the steel plate is +, −, + May be applied by applying a current density of 10 to 30 A / dm 2 for more than 0 seconds and not more than 90 seconds so that the sodium sulfate electrolyte is added to the neutral salt electrolyte solution in an amount of 100 to It may contain 250 g / L.

本発明のさらに他の具現例によると、上記硫酸電解段階は、焼鈍または中性塩電解段階を経たフェライト系ステンレス鋼板を温度30〜60℃の硫酸電解溶液に浸漬し、鋼板表面の電位が+、−、+の順に形成されるように10〜30A/dmの電流密度を5〜50秒間印加することにより行ってもよく、また、上記硫酸電解溶液は硫酸を50〜150g/L含んでもよい。 According to another embodiment of the present invention, the sulfuric acid electrolysis step includes immersing a ferritic stainless steel plate that has undergone an annealing or neutral salt electrolysis step in a sulfuric acid electrolytic solution having a temperature of 30 to 60 ° C. so that the surface potential of the steel plate is + May be performed by applying a current density of 10 to 30 A / dm 2 for 5 to 50 seconds so as to be formed in the order of −, −, and the sulfuric acid electrolytic solution may contain 50 to 150 g / L of sulfuric acid. Good.

さらに、本発明の一具現例によると、上記混酸浸漬段階は、過酸化水素を含む混酸溶液に上記冷延鋼板を10〜100秒間浸漬することにより酸洗工程を行い、上記混酸溶液は硫酸70〜200g/L及び遊離フッ酸1〜10g/Lを含み、最初の混酸溶液は過酸化水素を濃度7g/L以上で含むが、鉄イオンは実質的に含まず、また、上記混酸浸漬段階で鋼板の表面電位を−0.2〜0.2Vの範囲に保持することができる。   Furthermore, according to an embodiment of the present invention, the mixed acid immersion step performs a pickling process by immersing the cold-rolled steel sheet in a mixed acid solution containing hydrogen peroxide for 10 to 100 seconds. ˜200 g / L and free hydrofluoric acid 1˜10 g / L, the first mixed acid solution contains hydrogen peroxide at a concentration of 7 g / L or more, but does not substantially contain iron ions, and in the mixed acid immersion step The surface potential of the steel sheet can be kept in the range of -0.2 to 0.2V.

本発明の他の具現例によると、上記酸洗工程中の過酸化水素は、混酸溶液中の鉄イオン濃度との関係において、次の式

Figure 0005768141
を満たすことができる。 According to another embodiment of the present invention, the hydrogen peroxide in the pickling step is expressed by the following formula in relation to the iron ion concentration in the mixed acid solution.
Figure 0005768141
Can be met.

本発明のさらに他の態様において、上記酸洗方法を行って得られる鋼板であって、上記鋼板の光沢度が130以上である低クロムフェライト系ステンレス冷延鋼板を提供する。   In still another aspect of the present invention, there is provided a low-chromium ferritic stainless steel cold-rolled steel sheet obtained by performing the pickling method, wherein the steel sheet has a glossiness of 130 or more.

本発明のさらに他の態様において、脱脂及び焼鈍工程を経た14重量%以下のクロムを含むフェライト系ステンレス冷延鋼板からシリコン酸化物を除去するための混酸溶液であって、硫酸70〜200g/L、遊離フッ酸1〜10g/L、及び過酸化水素を含み、上記過酸化水素は混酸溶液中の鉄イオン濃度との関係において、次の式

Figure 0005768141
を満たす、シリコン酸化物除去のための硝酸を含まない混酸溶液を提供する。 In still another embodiment of the present invention, a mixed acid solution for removing silicon oxide from a ferritic stainless steel cold-rolled steel sheet containing 14% by weight or less of chromium that has been subjected to a degreasing and annealing step, wherein sulfuric acid is 70 to 200 g / L. , 1 to 10 g / L of free hydrofluoric acid, and hydrogen peroxide. The hydrogen peroxide has the following formula in relation to the iron ion concentration in the mixed acid solution:
Figure 0005768141
A nitric acid-free mixed acid solution for removing silicon oxide is provided.

本発明によると、フェライト系ステンレス冷延鋼板を酸洗する際において、酸洗溶液中の混酸溶液に硝酸を含まないため、NOx及び硝酸性窒素を排出しない。従って、NOx除去設備と脱窒設備の設置に対する負担を軽減することができる。   According to the present invention, when pickling ferritic stainless cold-rolled steel sheets, NOx and nitrate nitrogen are not discharged because the mixed acid solution in the pickling solution does not contain nitric acid. Therefore, the burden on the installation of the NOx removal facility and the denitrification facility can be reduced.

さらに、過酸化水素濃度とフッ酸濃度により酸洗を調節することができるため、コントロールが容易で、高速生産に適する。また、酸洗後の品質も既存の酸洗法より向上し、優れた品質のフェライト系ステンレス冷延鋼板の生産が可能である。   Furthermore, since pickling can be controlled by the hydrogen peroxide concentration and the hydrofluoric acid concentration, it is easy to control and suitable for high-speed production. Moreover, the quality after pickling is improved as compared with existing pickling methods, and it is possible to produce ferritic stainless steel cold-rolled steel sheets of excellent quality.

また、電解酸洗過程でシリコン酸化物を除くFe、Cr酸化物を完全に除去することにより、混酸溶液によるシリコン酸化物の除去を容易に行うことができ、混酸槽の酸洗を3〜15g/m・minという高速で行うことができるため、混酸溶液によるシリコン酸化物の除去及び平坦化を10〜100秒間という短時間内に行うことができる。 Further, by completely removing Fe and Cr oxides excluding silicon oxide in the electrolytic pickling process, it is possible to easily remove silicon oxide with a mixed acid solution. Since it can be performed at a high speed of / m 2 · min, removal and planarization of silicon oxide with a mixed acid solution can be performed within a short time of 10 to 100 seconds.

そして、溶液組成が簡単であるため、管理方法が簡単で、鋼板表面との酸洗反応以外の反応が生じないようにして冷延鋼板の表面品質を確保することができる上、高速生産による生産性向上を図ることができる。   And since the solution composition is simple, the management method is simple, the surface quality of the cold-rolled steel sheet can be ensured by preventing reaction other than the pickling reaction with the steel sheet surface, and production by high-speed production It is possible to improve the performance.

図1は、実施例1により熱処理された低クロムフェライト系ステンレス冷延鋼板を熱処理した鋼板の表面を電子顕微鏡で撮影した写真であり、(a)は発明例2により得られた鋼板の表面で、(b)は比較例4による鋼板表面である。FIG. 1 is a photograph of the surface of a steel sheet obtained by heat-treating the low-chromium ferritic stainless steel cold-rolled steel sheet heat-treated according to Example 1, taken with an electron microscope. (A) is the surface of the steel sheet obtained according to Invention Example 2. (B) is the steel plate surface by the comparative example 4. FIG. 図2は、熱処理された低クロムフェライト系ステンレス冷延鋼板において、電解処理を行った後の鋼板の断面を撮影した電子顕微鏡写真を(a)に示し、(b)には電解処理を行っていない鋼板の断面を撮影した電子顕微鏡写真を示した。FIG. 2 shows, in (a), an electron micrograph of a cross section of a steel plate after electrolytic treatment in a heat-treated low-chromium ferritic stainless steel cold-rolled steel plate, and (b) shows the electrolytic treatment being performed. The electron micrograph which photographed the cross section of the steel plate which has not been shown. 図3は、低クロムフェライト系ステンレス鋼板を混酸に浸漬した場合、鋼板の表面電位に対する酸化還元電位と過酸化水素濃度の相関関係を示すグラフであり、(a)は表面電位と酸化還元電位との関係を、(b)は表面電位と過酸化水素濃度との関係を示す。FIG. 3 is a graph showing the correlation between the oxidation-reduction potential and the hydrogen peroxide concentration with respect to the surface potential of the steel sheet when the low-chromium ferritic stainless steel plate is immersed in a mixed acid. (B) shows the relationship between the surface potential and the hydrogen peroxide concentration. 図4は、混酸溶液内での鉄イオン濃度により求められる最小過酸化水素濃度を示したグラフである。FIG. 4 is a graph showing the minimum hydrogen peroxide concentration obtained from the iron ion concentration in the mixed acid solution. 図5は、実施例8による酸洗を行ったフェライト系ステンレス冷延鋼板の光沢度を比較したグラフである。FIG. 5 is a graph comparing the glossiness of ferritic stainless steel cold-rolled steel sheets that have been pickled according to Example 8.

本発明は、低クロムフェライト系ステンレス冷延鋼板を、硫酸ナトリウムを電解質として用いる中性塩電解槽、硫酸を電解質として用いる硫酸電解槽、及び無硝酸酸洗組成物の混酸槽を通過させることにより鋼板表面の酸化スケールを除去する方法を提供する。   The present invention allows a low-chromium ferritic stainless steel cold-rolled steel sheet to pass through a neutral salt electrolytic cell using sodium sulfate as an electrolyte, a sulfuric acid electrolytic cell using sulfuric acid as an electrolyte, and a mixed acid bath of a non-nitric acid pickling composition. A method for removing oxide scale on a steel sheet surface is provided.

以下、本発明について詳しく説明する。   The present invention will be described in detail below.

一般的に、フェライト系ステンレス冷延鋼板には、熱処理後通常100〜300nmの厚さの酸化スケールが生成し、この酸化スケールは、Fe酸化物よりCr酸化物のスケール含量が相対的に高いCrリッチスケール層、Cr酸化物よりFe酸化物のスケール含量が相対的に高いFeリッチスケール層、および酸化物スケール層と母材との界面に存在するSi酸化物層の多層構造を有する。   In general, ferritic stainless steel cold-rolled steel sheet has an oxide scale with a thickness of usually 100 to 300 nm after heat treatment, and this oxide scale has a relatively high Cr oxide scale content than Fe oxide. It has a multilayer structure of a rich scale layer, a Fe rich scale layer having a relatively higher Fe oxide scale content than Cr oxide, and a Si oxide layer present at the interface between the oxide scale layer and the base material.

上記スケールのうちCrリッチスケール層は中性塩電解槽で除去される。上記中性塩電解槽は、硫酸ナトリウム電解質を含む中性塩電解液を含み、電流を鋼板表面に通電するための電極を含む。このとき、電極槽は、鋼板表面の電位が+、−、+の順に帯電されるように構成される。   Among the scales, the Cr rich scale layer is removed by a neutral salt electrolytic cell. The said neutral salt electrolysis tank contains the neutral salt electrolyte solution containing a sodium sulfate electrolyte, and contains the electrode for supplying an electric current to the steel plate surface. At this time, the electrode tank is configured such that the electric potential on the surface of the steel sheet is charged in the order of +, −, +.

pH3〜6範囲の中性塩電解液に電流が加えられる場合、CrリッチスケールのCrがCr6+の状態に優先的に溶解され、鋼板表面のCrリッチスケールを除去することができる。このとき、電解質として、硫酸ナトリウムを用いることが好ましい。上記硫酸ナトリウム電解質は、電解液内の電気伝導度を上げて鋼板表面への通電率を上げることで、Crリッチスケールの溶解を引き起こす。 When a current is applied to the neutral salt electrolyte in the pH range of 3 to 6 , Cr of the Cr rich scale is preferentially dissolved in the Cr 6+ state, and the Cr rich scale on the steel sheet surface can be removed. At this time, it is preferable to use sodium sulfate as the electrolyte. The sodium sulfate electrolyte causes dissolution of Cr-rich scale by increasing the electrical conductivity in the electrolytic solution and increasing the electrical conductivity to the steel sheet surface.

このとき、上記電解液には、硫酸ナトリウム電解質が100〜250g/L含まれることが好ましい。上記硫酸ナトリウム電解質が100g/L以上の場合にクロムの溶解のための適正な伝導度が得られる。しかし、250g/Lを超えると、硫酸ナトリウムが電解液内に析出し、設備配管を塞いで操業を悪化させる恐れがあるため、硫酸ナトリウム電解質は250g/L以下で含むことが好ましい。   At this time, it is preferable that the electrolyte solution contains 100 to 250 g / L of sodium sulfate electrolyte. When the sodium sulfate electrolyte is 100 g / L or more, appropriate conductivity for dissolution of chromium can be obtained. However, if it exceeds 250 g / L, sodium sulfate may be precipitated in the electrolyte, and the piping may be blocked to deteriorate the operation. Therefore, the sodium sulfate electrolyte is preferably contained at 250 g / L or less.

中性塩電解槽内の電解質の電気伝導度は、電解液の温度と密接な関連性がある。50℃以上ではクロムの溶解のための適正な伝導度が得られ、温度が高くなるほど伝導度も高くなる。しかし、電解液の温度が90℃を超えると、操業上、温度管理が困難である。従って、中性塩電解槽内の電解液の温度は50〜90℃の範囲であることが好ましい。   The electrical conductivity of the electrolyte in the neutral salt electrolytic cell is closely related to the temperature of the electrolyte. Above 50 ° C., proper conductivity for dissolution of chromium can be obtained, and the higher the temperature, the higher the conductivity. However, if the temperature of the electrolytic solution exceeds 90 ° C., it is difficult to manage the temperature for operation. Therefore, the temperature of the electrolytic solution in the neutral salt electrolyzer is preferably in the range of 50 to 90 ° C.

一方、電極を通じて加えられる電流は、10A/dm以上であることが好ましく、CrリッチスケールのCrを十分に溶出させることができる。しかし、30A/dmを超えると、電流を発生するための整流器の設備が大きくなり、初期設備費が大きくなるという短所があるため、電流は10〜30A/dmの範囲であることが好ましい。 On the other hand, the current applied through the electrode is preferably 10 A / dm 2 or more, and Cr-rich scale Cr can be sufficiently eluted. However, if it exceeds 30 A / dm 2 , the rectifier equipment for generating the current becomes large, and the initial equipment cost increases. Therefore, the current is preferably in the range of 10-30 A / dm 2. .

中性塩電解処理時間は90秒間以下にする。必要に応じて、このような中性塩電解処理は行わず、硫酸電解処理だけでも鉄及びクロムの酸化スケールを除去することもできる。但し、この場合、硫酸電解処理及び混酸に負担を与え得る。したがって、中性塩処理を行うことによって酸洗処理時間をより短縮することができ、さらに好ましい。中性塩電解処理時間が90秒間を超えると、部分的に母材に浸食が発生して過酸洗をもたらす恐れがある。   The neutral salt electrolysis time is 90 seconds or less. If necessary, the iron and chromium oxide scales can be removed only by sulfuric acid electrolysis without performing such neutral salt electrolysis. However, in this case, a burden may be imposed on the sulfuric acid electrolytic treatment and the mixed acid. Therefore, the pickling treatment time can be further shortened by performing the neutral salt treatment, which is more preferable. If the neutral salt electrolysis time exceeds 90 seconds, there is a possibility that the base material is partially eroded to cause peracid washing.

一方、上記Feリッチスケール層は硫酸電解槽で除去される。上記硫酸電解槽は、硫酸を含む硫酸電解液を含み、電流を鋼板表面に通電するための電極を含む。このとき、電極槽は、鋼板表面の電位が+、−、+の順に帯電されるように構成される。   On the other hand, the Fe rich scale layer is removed by a sulfuric acid electrolytic cell. The sulfuric acid electrolytic cell includes a sulfuric acid electrolytic solution containing sulfuric acid, and includes an electrode for passing a current to the steel sheet surface. At this time, the electrode tank is configured such that the electric potential on the surface of the steel sheet is charged in the order of +, −, +.

pHが0〜1の範囲の硫酸電解液に電流が加えられる場合、FeがFe2+の状態に溶解される。このとき、硫酸のHとSO 2−は、溶液中の電気伝導度を上げて電極から鋼板表面への通電率を高める。さらに、低くなったpHによりFeリッチスケール層の鉄を化学的に溶解させる。 When a current is applied to a sulfuric acid electrolyte having a pH in the range of 0 to 1, Fe is dissolved in a Fe 2+ state. At this time, H + and SO 4 2− of sulfuric acid increase the electrical conductivity in the solution and increase the electrical conductivity from the electrode to the steel sheet surface. Furthermore, the iron in the Fe rich scale layer is chemically dissolved by the lowered pH.

このとき、上記硫酸は50〜150g/Lであることが好ましい。硫酸が50g/L以上にならないと、適正伝導度以上が保持されないため、鋼板表面への通電率を保持することができない。しかし、硫酸が150g/Lを超えると、化学的溶解が優勢に発生してステンレス冷延鋼板の表面が粗くなるという問題が生じ得る。   At this time, it is preferable that the said sulfuric acid is 50-150 g / L. If sulfuric acid does not become 50 g / L or more, since the appropriate conductivity or more cannot be maintained, the current-carrying rate to the steel sheet surface cannot be maintained. However, when the sulfuric acid exceeds 150 g / L, there may be a problem that chemical dissolution occurs predominantly and the surface of the stainless cold-rolled steel sheet becomes rough.

上記中性塩電解槽の電解液と同様に、硫酸電解液は、最小限の伝導度を得るために溶液温度が30℃以上でなければならない。しかし、60℃を超えると、化学的溶解が進行し過ぎてステンレス冷延鋼板の表面が粗くなり、さらには、鋼板表面が黒く変化する黒変現象が発生することがある。従って、硫酸電解槽の電解液は、30〜60℃範囲の温度を有することが好ましい。   Like the neutral salt electrolytic cell, the sulfuric acid electrolyte must have a solution temperature of 30 ° C. or higher in order to obtain the minimum conductivity. However, when the temperature exceeds 60 ° C., chemical dissolution proceeds excessively, the surface of the stainless cold-rolled steel sheet becomes rough, and furthermore, a blackening phenomenon may occur in which the steel sheet surface changes to black. Therefore, it is preferable that the electrolytic solution of the sulfuric acid electrolytic cell has a temperature in the range of 30 to 60 ° C.

一方、硫酸電解槽に加えられる電流は10〜30A/dmの範囲であることが好ましい。電流が10A/dm未満加えられると、フェライト系ステンレス鋼板の活性溶解が進行して表面が粗くなるという問題がある。しかし、30A/dmを超えると、電流を発生するための整流器の設備が大きくなり、初期設備費が大きくなるという短所があるため、電流は10〜30A/dmの範囲であることが好ましい。 On the other hand, it is preferable current applied to the sulfuric acid electrolytic bath is in the range of 10~30A / dm 2. When the current is applied less than 10 A / dm 2, there is a problem that the active dissolution of the ferritic stainless steel plate proceeds and the surface becomes rough. However, if it exceeds 30 A / dm 2 , the rectifier equipment for generating the current becomes large, and the initial equipment cost increases. Therefore, the current is preferably in the range of 10-30 A / dm 2. .

このような硫酸電解処理は5〜50秒間行うことが好ましい。5秒間未満の硫酸電解処理では、十分な酸洗効果が得られず、50秒間を超えると、過酸洗の問題を引き起こすため、上記範囲で行うことが好ましい。   Such sulfuric acid electrolysis treatment is preferably performed for 5 to 50 seconds. In sulfuric acid electrolysis treatment for less than 5 seconds, a sufficient pickling effect cannot be obtained, and when it exceeds 50 seconds, a problem of peracid washing is caused.

上記のように、中性塩電解−硫酸電解が行われた鋼板表面には、Si酸化物層だけ残存するようになり、このSi酸化物層は窒素を含まない無硝酸混酸溶液により除去することができる。上記混酸溶液は、硫酸、遊離フッ酸、及び過酸化水素を含み、このような混酸溶液を含む混酸槽に浸漬することにより、中性塩電解−硫酸電解を行った鋼板からSi酸化物層を除去することができる。   As described above, only the Si oxide layer remains on the surface of the steel sheet subjected to neutral salt electrolysis-sulfuric acid electrolysis, and this Si oxide layer should be removed with a non-nitric acid-free mixed acid solution that does not contain nitrogen. Can do. The mixed acid solution contains sulfuric acid, free hydrofluoric acid, and hydrogen peroxide. By immersing the mixed acid solution in a mixed acid tank containing such a mixed acid solution, the Si oxide layer is formed from the steel sheet subjected to neutral salt electrolysis-sulfuric acid electrolysis. Can be removed.

上記混酸溶液内でのフッ酸及び硫酸は、混酸溶液中で次の反応式(1)及び(2)のように解離される。即ち、混酸溶液中で、フッ酸は溶解しながら解離し、硫酸が解離して提供するH濃度、即ち、酸度により平衡状態が変わるようになる。 The hydrofluoric acid and sulfuric acid in the mixed acid solution are dissociated in the mixed acid solution as shown in the following reaction formulas (1) and (2). That is, in a mixed acid solution, hydrofluoric acid is dissociated while being dissolved, and the equilibrium state changes depending on the H + concentration provided by dissociating sulfuric acid, that is, the acidity.

HF→H+F (1)
SO→HSO +H→SO 2−+2H (2)
HF → H + + F (1)
H 2 SO 4 → HSO 4 + H + → SO 4 2− + 2H + (2)

フッ酸の場合、解離していない遊離フッ酸の状態で酸洗力を有してSi酸化物を溶解させ、さらには、Si酸化物層と母材との界面に浸透してFeを溶解させる。このように溶解されたFeイオン及びSiイオンは、FeF (3−x)、HSiFなどの形態で鋼板表面から除去される。上記フッ酸は、混酸溶液に1〜10g/L、より好ましくは1〜5g/Lの範囲の濃度で存在することが好ましい。1g/L未満では、遊離フッ酸で存在する濃度が少なくてSiに対する溶解力が不足し、これにより鋼板表面に対する未酸洗問題が生じる。また、10g/Lを超えると、母材の浸食速度が早くなって酸洗工程後の鋼板表面が粗くなる。 In the case of hydrofluoric acid, it has a pickling power in the state of free hydrofluoric acid that has not been dissociated and dissolves Si oxide, and further penetrates into the interface between the Si oxide layer and the base material to dissolve Fe. . The dissolved Fe ions and Si ions are removed from the surface of the steel sheet in the form of FeF x (3-x) , H 2 SiF 6 or the like. The hydrofluoric acid is preferably present in the mixed acid solution at a concentration in the range of 1 to 10 g / L, more preferably 1 to 5 g / L. If it is less than 1 g / L, the concentration present in the free hydrofluoric acid is so small that the dissolving power for Si is insufficient, thereby causing a problem of unpickling the steel sheet surface. Moreover, when it exceeds 10 g / L, the erosion rate of a base material will become quick and the steel plate surface after a pickling process will become rough.

上記のように、フッ酸が鋼板表面のSi酸化物層を除去する酸洗力を提供するため、上記混酸溶液中には一定の酸度以上で有効な遊離フッ酸濃度が保持されることが好ましい。従って、混酸溶液には、フッ酸が解離しないようにするために一定濃度以上の硫酸が必要である。適する硫酸濃度は、50〜150g/Lの範囲である。硫酸濃度が50g/L未満では、有効な遊離フッ酸濃度が保持されずフッ酸の解離が発生して酸洗力が弱くなるため、未酸洗の問題が生じ得る。また、150g/Lを超えると、硫酸希釈操業の際、発熱して操業が困難となるなどの問題があるため、上記範囲の濃度で硫酸を含むことが好ましい。   As described above, in order that hydrofluoric acid provides pickling power for removing the Si oxide layer on the steel sheet surface, it is preferable that an effective free hydrofluoric acid concentration is maintained at a certain acidity or higher in the mixed acid solution. . Therefore, the mixed acid solution requires sulfuric acid having a certain concentration or more so that hydrofluoric acid does not dissociate. Suitable sulfuric acid concentrations are in the range of 50 to 150 g / L. If the sulfuric acid concentration is less than 50 g / L, an effective free hydrofluoric acid concentration is not maintained, and dissociation of hydrofluoric acid occurs, so that the pickling power becomes weak. Further, if it exceeds 150 g / L, there is a problem that, during the sulfuric acid dilution operation, heat is generated and the operation becomes difficult. Therefore, it is preferable that sulfuric acid is contained at a concentration in the above range.

フェライト系ステンレス鋼の酸化物スケールのうちSi酸化物は、フェライト系結晶のグレーン表面及びグレーンとグレーンと間の結晶粒系にともに存在し、結晶粒系のSi酸化物は母材内部のさらに深い位置にまで存在する。オーステナイト系ステンレス鋼の場合には、結晶の耐食性が高くて結晶粒系から優先的に浸食されるが、フェライト系ステンレス鋼は、結晶の耐食性が低いため、結晶内部と結晶粒の間の浸食速度差が無くてグレーン表面と結晶粒系が選択性なく全面的に溶解される。従って、Si酸化物をすべて除去するためには、相当な部分の母材が溶解されなければならない。   Among oxide scales of ferritic stainless steel, Si oxide exists both on the grain surface of ferrite crystals and on the grain system between grains, and the grain-based Si oxide is deeper inside the base material. Exists up to the position. In the case of austenitic stainless steel, the corrosion resistance of the crystal is high and it preferentially erodes from the crystal grain system, but since ferritic stainless steel has low crystal corrosion resistance, the erosion rate between the crystal interior and the crystal grain There is no difference and the grain surface and the grain system are completely dissolved without selectivity. Accordingly, in order to remove all the Si oxide, a considerable part of the base material must be dissolved.

このとき、母材からFe2+が溶出され、溶出されたFe2+は過酸化水素と反応してFe3+に酸化された後、HFと結合してFeF (3−x)である錯化合物が生成され鋼板表面から除去される。上記反応は、次の反応式(3)〜(6)のように表すことができ、このような過程が円滑に進行すれば、酸洗速度を上げることができる。 At this time, Fe 2+ is eluted from the base material, and the eluted Fe 2+ reacts with hydrogen peroxide to be oxidized to Fe 3+ , and then a complex compound that combines with HF and becomes FeF x (3-x). It is produced and removed from the steel sheet surface. The above reaction can be expressed as the following reaction formulas (3) to (6). If such a process proceeds smoothly, the pickling rate can be increased.

Fe→Fe2++2e (3)
Fe2++H→Fe3++・OH+OH (4)
Fe3++3HF→FeF+3H (5)
Cu2++2e→Cu (6)
Fe 0 → Fe 2+ + 2e (3)
Fe 2+ + H 2 O 2 → Fe 3+ + · OH + OH (4)
Fe 3+ + 3HF → FeF 3 + 3H + (5)
Cu 2+ + 2e → Cu 0 (6)

本発明者らの実験によると、美麗なフェライト系ステンレス冷延鋼板を得るためには、3〜5g/m程度のスケール及び母材が混酸槽で除去されなければならない。さらに、10〜100秒間、より好ましくは20〜60秒間混酸槽に浸漬することによりSi酸化物を除去し、高速で冷延鋼板を生産するためには、3〜15g/m・min程度の酸洗速度が確保されなければならない。 According to the experiments by the present inventors, in order to obtain a beautiful ferritic stainless steel cold-rolled steel sheet, a scale and base material of about 3 to 5 g / m 2 must be removed in a mixed acid tank. Furthermore, in order to remove Si oxide by immersing in a mixed acid bath for 10 to 100 seconds, more preferably 20 to 60 seconds, and to produce a cold-rolled steel sheet at a high speed, it is about 3 to 15 g / m 2 · min. Pickling speed must be ensured.

ステンレス鋼は、鋼種ごとに電位−電流間の固有の相関関係を有する動電位曲線を有しており、このとき発生する電流量を酸洗速度として表現することができる。即ち、表面電位を調整することで最大酸洗速度を具現することができる。高速で冷延鋼板を生産するために求められる3〜15g/m・minの高速酸洗速度を得るためには、混酸槽内の冷延鋼板の表面電位を−0.2〜0.2Vの範囲に保持することが好ましい。冷延鋼板の表面電位が上記範囲から外れると、酸洗が起きないか、部分的に未酸洗表面を有する酸洗不良をもたらすことがある。また、酸洗しても冷延鋼板の良好な表面品質が得られない。 Stainless steel has a dynamic potential curve having a specific correlation between potential and current for each steel type, and the amount of current generated at this time can be expressed as a pickling rate. That is, the maximum pickling speed can be realized by adjusting the surface potential. In order to obtain a high-speed pickling speed of 3 to 15 g / m 2 · min required for producing a cold-rolled steel sheet at a high speed, the surface potential of the cold-rolled steel sheet in the mixed acid tank is set to −0.2 to 0.2 V. It is preferable to keep in this range. If the surface potential of the cold-rolled steel sheet is out of the above range, pickling may not occur or a pickling failure having a partially unpickled surface may be caused. Moreover, even if it pickles, the favorable surface quality of a cold-rolled steel plate cannot be obtained.

従来は、酸洗液中のFe2+/Fe3+の比率を調節して酸洗液の酸化還元電位(ORP)を制御することで、酸洗を行った。しかし、図3の(a)に示したように、表面電位と酸化還元電位との間に如何なる関連性も確認できないため、混酸酸洗において、上記酸化還元電位は上記表面電位に対し、如何なる相関性も有しない因子であることが分かる。これとは異なって、クロム含量の低いフェライトステンレス鋼の混酸での表面電位は、混酸槽内での酸洗過程で発生する金属イオン濃度、即ち、主成分である鉄イオンの濃度と混酸溶液中に残留する過酸化水素の濃度、特に残留過酸化水素濃度と相関関係を有することが分かる。 Conventionally, pickling was performed by adjusting the ratio of Fe 2+ / Fe 3+ in the pickling solution to control the oxidation-reduction potential (ORP) of the pickling solution. However, as shown in FIG. 3 (a), since no relationship between the surface potential and the oxidation-reduction potential can be confirmed, in the acid pickling, the oxidation-reduction potential has any correlation with the surface potential. It turns out that it is a factor which does not have sex. Unlike this, the surface potential of ferritic stainless steel with low chromium content in the mixed acid is the concentration of metal ions generated in the pickling process in the mixed acid tank, that is, the concentration of the main component iron ions and the mixed acid solution. It can be seen that there is a correlation with the concentration of residual hydrogen peroxide, particularly the residual hydrogen peroxide concentration.

上記混酸溶液内の残留過酸化水素濃度が不足すると、上記反応式(4)の反応が行われないため、鋼板表面のFe2+濃度が局所的に増加し、反応式(3)の左側方向の反応が優勢になる。この場合、Fe及びステンレス鋼に添加物または不純物として存在するCu等が、反応式(6)のように鋼板表面に再析出されて鋼板表面が黒く変化する黒変現象が発生する。従って、残留過酸化水素濃度が常に一定濃度以上存在しなければならない。 If the residual hydrogen peroxide concentration in the mixed acid solution is insufficient, the reaction of the above reaction formula (4) is not performed, so the Fe 2+ concentration on the steel sheet surface locally increases, The reaction becomes dominant. In this case, Cu or the like present as an additive or impurity in Fe and stainless steel is reprecipitated on the surface of the steel sheet as in reaction formula (6), and a blackening phenomenon occurs in which the steel sheet surface changes to black. Therefore, the residual hydrogen peroxide concentration must always exist above a certain concentration.

このような残留過酸化水素の濃度は、混酸溶液中に存在する鉄イオン濃度と相関性がある。図3の(a)は表面電位と酸化還元電位との関係を示し、図3の(b)は表面電位と過酸化水素濃度の関係を示したグラフである。   The concentration of such residual hydrogen peroxide is correlated with the iron ion concentration present in the mixed acid solution. 3A is a graph showing the relationship between the surface potential and the oxidation-reduction potential, and FIG. 3B is a graph showing the relationship between the surface potential and the hydrogen peroxide concentration.

同じ過酸化水素濃度では、鉄イオン濃度が増加するにつれて鋼板の表面電位が徐々に増加することが分かる。これはFe3+イオンが酸化剤として作用するためであり、Fe3+イオンが増加するほど、鋼板の表面電位を保持するための過酸化水素濃度が減少する傾向を示す。しかし、Fe3+イオンが一定濃度以上存在しても過酸化水素が不足すると、鋼板の表面電位は−0.2V以下に減少して表面品質が低下するという問題が発生する。このような関係から、鋼板の表面電位を−0.2V以上に保持するための、鉄イオン濃度に対する最小過酸化水素濃度は、次の式のように表される。 It can be seen that at the same hydrogen peroxide concentration, the surface potential of the steel sheet gradually increases as the iron ion concentration increases. This is because Fe 3+ ions act as an oxidizing agent, and as the Fe 3+ ions increase, the hydrogen peroxide concentration for maintaining the surface potential of the steel sheet tends to decrease. However, if hydrogen peroxide is insufficient even if Fe 3+ ions are present at a certain concentration or more, the surface potential of the steel sheet decreases to −0.2 V or less, resulting in a problem that the surface quality is deteriorated. From such a relationship, the minimum hydrogen peroxide concentration with respect to the iron ion concentration for maintaining the surface potential of the steel sheet at −0.2 V or higher is expressed by the following equation.

Figure 0005768141
Figure 0005768141

具体的には、鉄イオン濃度が0であるとき、少なくとも7g/L以上の有効過酸化水素濃度を含まなければならず、鉄イオン濃度が40以上の場合には1.0g/L以上存在しなければならない。一方、過酸化水素の濃度が高いほど、更なる過酸化水素を添加する手間を避けることができ、工程単純化に役立つ。しかし、このような過酸化水素は高価であるため、高濃度の過酸化水素の使用は費用増大をきたし、また、使用濃度に比例する酸洗効果の増大をもたらさないため、30g/Lを超えないことがより好ましい。   Specifically, when the iron ion concentration is 0, an effective hydrogen peroxide concentration of at least 7 g / L must be included, and when the iron ion concentration is 40 or more, 1.0 g / L or more exists. There must be. On the other hand, the higher the concentration of hydrogen peroxide, the more time for adding additional hydrogen peroxide can be avoided, which helps simplify the process. However, since such hydrogen peroxide is expensive, the use of a high concentration of hydrogen peroxide increases the cost, and does not increase the pickling effect in proportion to the concentration of use, so that it exceeds 30 g / L. More preferably not.

さらに、本発明の混酸溶液の温度は、特に限定する必要がなく、当業者であれば、適切に設定して行うことができる。例えば、20〜95℃、他の例としては25〜80℃、さらに他の例としては25〜65℃の範囲に設定して行うことができる。   Further, the temperature of the mixed acid solution of the present invention is not particularly limited, and can be appropriately set by those skilled in the art. For example, the temperature can be set within a range of 20 to 95 ° C., 25 to 80 ° C. as another example, and 25 to 65 ° C. as another example.

上術した内容から、混酸槽プロセスでは、酸洗溶液中の硫酸濃度及びフッ酸濃度と残留過酸化水素濃度が、酸洗効果の増大及び高速酸洗に最も重要な因子であることが分かる。従って、これら成分の濃度を制御する必要があり、各成分の濃度制御は、通常用いられる酸分析器を利用して硫酸濃度及びフッ酸濃度を調整することができ、残留過酸化水素濃度は、近赤外線分析方法または自動適正法により濃度を分析及び調節することができる。   From the above-described contents, it is understood that the sulfuric acid concentration and hydrofluoric acid concentration and the residual hydrogen peroxide concentration in the pickling solution are the most important factors for increasing the pickling effect and high-speed pickling in the mixed acid bath process. Therefore, it is necessary to control the concentration of these components, and the concentration control of each component can be adjusted with sulfuric acid concentration and hydrofluoric acid concentration using a commonly used acid analyzer. The concentration can be analyzed and adjusted by a near infrared analysis method or an automated method.

本発明によれば、高速で酸洗工程を行うことができ、総酸洗時間が15〜240秒間程度で、酸洗にかかる時間を大幅に短縮することができ、優れた品質を有する低クロムフェライト系ステンレス鋼板を得ることができる。   According to the present invention, the pickling process can be performed at high speed, the total pickling time is about 15 to 240 seconds, the time required for pickling can be greatly shortened, and the low chromium having excellent quality A ferritic stainless steel sheet can be obtained.

以下、実施例を通じて本発明について詳しく説明する。   Hereinafter, the present invention will be described in detail through examples.

実施例1
中性塩電解及び硫酸電解の実施有無によるフェライト系冷延鋼板の酸化スケールの酸洗性を確認するために、14重量%以下のクロム組成を有するフェライト系ステンレス鋼板から、中性塩電解処理及び硫酸電解処理によりそれぞれCrリッチスケール層及びFeリッチスケール層を除去した。このとき、用いられた中性塩電解溶液は、電解質として硫酸ナトリウム電解質150g/Lを含み、溶液の温度は60℃で、150A/dmの電流を40秒間印加した。さらに、硫酸電解溶液は硫酸85g/Lを含むpH1の溶液であり、溶液温度は50℃で、鋼板表面の電位が+、−、+の順に形成されるように20A/dmの電流を15秒間印加した。
Example 1
In order to confirm the pickling property of the oxide scale of the ferritic cold rolled steel sheet depending on whether or not neutral salt electrolysis and sulfuric acid electrolysis are performed, from the ferritic stainless steel sheet having a chromium composition of 14% by weight or less, neutral salt electrolysis treatment and The Cr rich scale layer and the Fe rich scale layer were removed by sulfuric acid electrolytic treatment, respectively. At this time, the used neutral salt electrolytic solution contained 150 g / L of sodium sulfate electrolyte as an electrolyte, the temperature of the solution was 60 ° C., and a current of 150 A / dm 2 was applied for 40 seconds. Further, the sulfuric acid electrolytic solution is a pH 1 solution containing 85 g / L of sulfuric acid, the solution temperature is 50 ° C., and a current of 20 A / dm 2 is applied to the steel sheet surface in order of +, −, +. Applied for 2 seconds.

中性塩電解及び硫酸電解を行った鋼板の表面と未処理の鋼板の断面を走査型電子顕微鏡(SEM)で撮影して図1に示した。比較のために、電解処理した鋼板の断面を(a)に、電解処理をしていない鋼板の断面を(b)に示した。   The surface of the steel sheet subjected to neutral salt electrolysis and sulfuric acid electrolysis and the cross section of the untreated steel sheet were photographed with a scanning electron microscope (SEM) and shown in FIG. For comparison, a cross section of a steel plate subjected to electrolytic treatment is shown in (a), and a cross section of a steel plate not subjected to electrolytic treatment is shown in (b).

図1から、中性塩電解及び硫酸電解を行っていない鋼板の断面には、(Cr、Fe)及びシリコン酸化物が同時に残留することが分かり、中性塩電解及び硫酸電解を行った鋼板の断面には、シリコン酸化物だけが残留することが分かる。 FIG. 1 shows that (Cr, Fe) 3 O 4 and silicon oxide remain simultaneously on the cross section of the steel sheet not subjected to neutral salt electrolysis and sulfuric acid electrolysis. It can be seen that only silicon oxide remains in the cross section of the steel plate.

実施例2
混酸槽内での表面電位による冷延鋼板の表面状態を観察するために、上記実施例1で上記Feリッチスケール層及びCrリッチスケール層が除去された14重量%以下のクロム含量を有するフェライト系ステンレス鋼板を900℃で熱処理した後、実験試片として使用した。
Example 2
In order to observe the surface state of the cold-rolled steel sheet due to the surface potential in the mixed acid tank, the ferrite system having a chromium content of 14 wt% or less from which the Fe-rich scale layer and Cr-rich scale layer were removed in Example 1 above. A stainless steel plate was heat treated at 900 ° C. and then used as an experimental specimen.

上記試片を、硫酸150g/L及び遊離フッ酸5g/Lの組成を有する45℃の混酸溶液に浸漬した後、表1に記載されるように電位を−0.6〜0.6Vの範囲で変化させながら150秒間電流を印加して混酸プロセスを行った。   After immersing the above specimen in a mixed acid solution at 45 ° C. having a composition of 150 g / L sulfuric acid and 5 g / L free hydrofluoric acid, the potential is in the range of −0.6 to 0.6 V as described in Table 1. The mixed acid process was carried out by applying a current for 150 seconds while changing the pressure.

酸洗後の冷延鋼板の表面状態を走査型電子顕微鏡(SEM)を用いて観察した後、酸洗の有無及び表面粗さの程度を評価した。鋼板の表面にスケールが残留する場合には未酸洗と評価し、表面粗さの程度は表面粗度3μm以上の場合を良好でないと判断して×、3μm以下の場合を良好であると判断して○と表示した。一方、未酸洗の場合には、表面粗さの程度に対する評価をしなかった。   After observing the surface state of the cold-rolled steel sheet after pickling using a scanning electron microscope (SEM), the presence or absence of pickling and the degree of surface roughness were evaluated. When the scale remains on the surface of the steel sheet, it is evaluated as unpickling, and the degree of surface roughness is judged to be not good when the surface roughness is 3 μm or more and judged to be good when the surface roughness is 3 μm or less. And displayed as ○. On the other hand, in the case of non-pickling, the degree of surface roughness was not evaluated.

評価結果を下表1に示した。さらに、0.1Vと−0.3Vの電位を印加した発明例2及び比較例4の鋼板の表面状態を電子顕微鏡(SEM)で撮影して図2に示した。   The evaluation results are shown in Table 1 below. Furthermore, the surface states of the steel plates of Invention Example 2 and Comparative Example 4 to which potentials of 0.1 V and −0.3 V were applied were photographed with an electron microscope (SEM) and shown in FIG.

Figure 0005768141
Figure 0005768141

上記表1から分かるように、表面電位が−0.3〜0.2V印加された場合には、混酸溶液での酸洗が可能であった(発明例1〜3及び比較例4)。しかし、比較例4の場合には表面粗さの程度が不良であった。即ち、図2から分かるように、発明例2により得られた鋼板表面を示す(a)の場合には鋼板表面が結晶粒に沿って均一に溶解されたが、比較例4により得られた鋼板表面を示す(b)の場合には良好な表面品質が得られず、結晶粒の結晶面に沿って結晶が脱落する現象が起きた。   As can be seen from Table 1 above, when a surface potential of -0.3 to 0.2 V was applied, pickling with a mixed acid solution was possible (Invention Examples 1 to 3 and Comparative Example 4). However, in the case of Comparative Example 4, the degree of surface roughness was poor. That is, as can be seen from FIG. 2, in the case of (a) showing the steel sheet surface obtained by Invention Example 2, the steel sheet surface was uniformly dissolved along the crystal grains, but the steel sheet obtained by Comparative Example 4 was used. In the case of (b) indicating the surface, a good surface quality was not obtained, and a phenomenon that the crystal dropped off along the crystal plane of the crystal grain occurred.

一方、比較例1、2、3、5及び6の場合には未酸洗であった。   On the other hand, in Comparative Examples 1, 2, 3, 5 and 6, it was not pickled.

このような結果から、混酸槽での表面電位は−0.2〜0.2V範囲で印加されることがSi酸化物層の溶解に適することが分かる。   From these results, it can be seen that application of the surface potential in the mixed acid bath in the range of −0.2 to 0.2 V is suitable for dissolution of the Si oxide layer.

実施例3
本実施例は、フェライト系冷延鋼板の混酸酸洗において、−0.2Vの表面電位を得るための過酸化水素濃度と鉄イオン濃度との関係を確認するためのものである。
Example 3
This example is for confirming the relationship between the hydrogen peroxide concentration and the iron ion concentration for obtaining a surface potential of -0.2 V in mixed pickling of ferritic cold rolled steel sheets.

実施例1で上記Feリッチスケール層及びCrリッチスケール層が除去された14重量%以下のクロム組成を有するフェライト系ステンレス鋼板を900℃で熱処理し、実験試片として使用した。   The ferritic stainless steel sheet having a chromium composition of 14 wt% or less from which the Fe rich scale layer and Cr rich scale layer were removed in Example 1 was heat-treated at 900 ° C. and used as an experimental specimen.

上記試片を、硫酸150g/L及び遊離フッ酸5g/Lの組成を有する45℃の混酸溶液に浸漬した後、上記混酸溶液に金属イオン(Fe3+)と過酸化水素とを添加しながら鋼板の表面電位を測定した。 After the specimen was immersed in a mixed acid solution at 45 ° C. having a composition of 150 g / L sulfuric acid and 5 g / L free hydrofluoric acid, a steel plate was added while adding metal ions (Fe 3+ ) and hydrogen peroxide to the mixed acid solution. The surface potential of was measured.

鉄イオン濃度の変化による鋼板の表面電位を測定し、鉄イオン濃度の変化に応じて鋼板の表面電位を−0.2V以上に保持するための最小過酸化水素濃度を測定し、その結果を図3に示した。   Measure the surface potential of the steel sheet due to the change in iron ion concentration, measure the minimum hydrogen peroxide concentration to keep the surface potential of the steel sheet above -0.2 V according to the change in iron ion concentration, and show the result It was shown in 3.

図4は鋼板の表面電位を−0.2V以上に保持するために、鉄イオンの濃度変化に対する最小過酸化水素濃度の変化を図式化したグラフである。図4から、鉄イオンが増加するにつれて鋼板の表面電位を保持するための最小過酸化水素濃度が徐々に減少することが分かる。しかし、鉄イオン濃度が40g/L以上に増加し続けても最小過酸化水素濃度は1g/L以下には低くならないことが分かる。このような結果から、鋼板表面電位を−0.2V以上に保持するための鉄イオン濃度による最小過酸化水素濃度の関係を式で表すと、次のようになる。   FIG. 4 is a graph schematically showing the change in the minimum hydrogen peroxide concentration with respect to the change in the iron ion concentration in order to keep the surface potential of the steel sheet at −0.2 V or more. FIG. 4 shows that the minimum hydrogen peroxide concentration for maintaining the surface potential of the steel sheet gradually decreases as the iron ions increase. However, it can be seen that even if the iron ion concentration continues to increase to 40 g / L or more, the minimum hydrogen peroxide concentration does not decrease to 1 g / L or less. From these results, the relationship between the minimum hydrogen peroxide concentration and the iron ion concentration for maintaining the steel sheet surface potential at −0.2 V or higher is expressed as follows.

Figure 0005768141
Figure 0005768141

実施例4
本実施例は、中性塩電解を実施する場合に適する操業条件を確認するためのものである。
Example 4
This example is for confirming operating conditions suitable for carrying out neutral salt electrolysis.

中性塩電解は上記実施例1と同様の方法で行った。但し、電解槽の溶液温度、印加電流、及び硫酸ナトリウム濃度は下表2に記載した通りである。   Neutral salt electrolysis was performed in the same manner as in Example 1 above. However, the solution temperature, applied current, and sodium sulfate concentration in the electrolytic cell are as described in Table 2 below.

中性塩電解を行った鋼板の表面状態を観察し、その結果を表2に示した。表面状態が良好である場合を○、クロム酸化物スケールが存在するなど、表面状態が不良である場合を×と表示する。   The surface state of the steel plate subjected to neutral salt electrolysis was observed, and the results are shown in Table 2. A case where the surface state is good is indicated as ◯, and a case where the surface state is poor such as the presence of a chromium oxide scale is indicated as x.

Figure 0005768141
Figure 0005768141

上記結果から分かるように、電解槽内の溶液温度が50〜90℃で、電解溶液中に電解質として硫酸ナトリウム100〜250g/Lを含み、10〜30A/dmの電流密度を有する条件下で中性塩電解を行った場合、鋼板の表面品質が優れていた。 As can be seen from the above results, the solution temperature in the electrolytic cell is 50 to 90 ° C., and the electrolytic solution contains sodium sulfate 100 to 250 g / L as an electrolyte and has a current density of 10 to 30 A / dm 2. When neutral salt electrolysis was performed, the surface quality of the steel sheet was excellent.

実施例5
本実施例は、硫酸電解を実施する場合に適する操業条件を確認するためのものである。
Example 5
This example is for confirming operating conditions suitable for carrying out sulfuric acid electrolysis.

硫酸電解は上記実施例1と同様の方法で行った。但し、電解槽の溶液温度、印加電流、及び硫酸ナトリウム濃度は下表3に記載した通りである。   Sulfuric acid electrolysis was performed in the same manner as in Example 1 above. However, the solution temperature, applied current, and sodium sulfate concentration in the electrolytic cell are as described in Table 3 below.

硫酸電解を行った鋼板の表面状態を観察し、その結果を表3に示した。Fe酸化物スケール及びCr酸化物スケールがすべて除去され、Si酸化物スケールだけが残留して表面状態が良好である場合を○、鉄またはクロムの酸化物スケールが残存するなど表面状態が不良である場合を×と表示する。   The surface state of the steel plate subjected to sulfuric acid electrolysis was observed, and the results are shown in Table 3. When the Fe oxide scale and Cr oxide scale are all removed and only the Si oxide scale remains and the surface state is good, the surface state is poor, such as an iron or chromium oxide scale remaining. The case is displayed as x.

Figure 0005768141
Figure 0005768141

上記結果から分かるように、電解槽内の溶液温度が30〜60℃で、電解溶液中の硫酸濃度が50〜150g/Lであって、10〜30A/dmの電流密度を有する条件下で硫酸電解を行った場合、鋼板の表面品質が優れていた。 As can be seen from the above results, the solution temperature in the electrolytic cell is 30 to 60 ° C., the sulfuric acid concentration in the electrolytic solution is 50 to 150 g / L, and the current density is 10 to 30 A / dm 2. When sulfuric acid electrolysis was performed, the surface quality of the steel sheet was excellent.

実施例6
本実施例は、中性塩電解及び硫酸電解に適する処理時間を確認するためのものである。
Example 6
This example is for confirming the processing time suitable for neutral salt electrolysis and sulfuric acid electrolysis.

中性塩電解及び硫酸電解条件は実施例1と同様に行った。但し、処理時間は下表4のようにした。   Neutral salt electrolysis and sulfuric acid electrolysis conditions were the same as in Example 1. However, the processing time was as shown in Table 4 below.

中性塩電解及び硫酸電解の処理時間による酸洗の有無を観察した。シリコン酸化物の他にクロムや鉄の酸化物スケールが残存しない場合を○と表示し、シリコン酸化物の他にクロムや鉄の酸化物スケールが残存する場合を未酸洗、母材の浸食がある場合を過酸洗と判断して、未酸洗及び過酸洗が現われる場合を×と表示し、その結果を表4に示した。   The presence or absence of pickling by the treatment time of neutral salt electrolysis and sulfuric acid electrolysis was observed. When there is no chromium or iron oxide scale remaining in addition to silicon oxide, it is indicated as ◯, and when silicon oxide or chromium or iron oxide scale remains, it is not pickled and the base material is eroded. A case where it was determined that the pickling was peracid pickling and a case where unpickling and per pickling appeared was indicated as x, and the results are shown in Table 4.

Figure 0005768141
Figure 0005768141

上記表4から、鋼板表面に中性塩電解を0〜90秒間の範囲で行い、硫酸電解を5〜50秒間の範囲で行う場合は、図2の(a)のようにステンレス冷延鋼板表面にはSi酸化物だけが存在したが、上記範囲から外れる比較例1〜4の場合は、図2の(b)のような表面状態を有し、(Cr、Fe)のスケールが存在することが分かる。これにより混酸槽での処理時間を最小化することができる。 From Table 4 above, when performing neutral salt electrolysis on the steel sheet surface in the range of 0 to 90 seconds and sulfuric acid electrolysis in the range of 5 to 50 seconds, the surface of the stainless cold-rolled steel sheet as shown in FIG. In the case of Comparative Examples 1 to 4 outside the above range, the surface state as shown in (b) of FIG. 2 is obtained, and the scale of (Cr, Fe) 3 O 4 is You can see that it exists. Thereby, the processing time in the mixed acid tank can be minimized.

実施例7
本実施例は、混酸槽での適する処理条件を確認するためのものである。
Example 7
This example is for confirming suitable processing conditions in a mixed acid tank.

実施例1のように、中性塩電解及び硫酸電解を行った鋼板に対し、下表5のような条件で混酸溶液処理をした。このとき、混酸溶液の処理温度は常温で、過酸化水素濃度は実施例3のように調節した。   As in Example 1, the steel sheet subjected to neutral salt electrolysis and sulfuric acid electrolysis was treated with a mixed acid solution under the conditions shown in Table 5 below. At this time, the treatment temperature of the mixed acid solution was normal temperature, and the hydrogen peroxide concentration was adjusted as in Example 3.

これによる酸洗の有無を観察し、その結果を○及び×で表示して表5に示した。シリコン酸化物が残存しない場合を○と表示し、シリコン酸化物が残存する場合を未酸洗、母材の浸食がある場合を過酸洗と判断して、未酸洗及び過酸洗が現われる場合を×と表示した。   The presence or absence of pickling by this was observed, and the result was shown by (circle) and x, and was shown in Table 5. The case where silicon oxide does not remain is indicated as ◯, the case where silicon oxide remains is determined as non-acid pickling, and the case where there is erosion of the base material is determined as per-acid picking, and non- pickling and per-acid picking appear The case was indicated as x.

Figure 0005768141
Figure 0005768141

上記表5から分かるように、硫酸70〜200g/L、遊離フッ酸1〜10g/L、及び鉄イオン濃度による最小過酸化水素が1.0g/L以上からなる酸洗組成物に10〜100秒間浸漬して酸洗することが好ましい。   As can be seen from Table 5 above, the pickling composition comprising 70 to 200 g / L of sulfuric acid, 1 to 10 g / L of free hydrofluoric acid, and 1.0 g / L or more of the minimum hydrogen peroxide based on iron ion concentration is 10 to 100. It is preferable to pickle for 2 seconds.

実施例8
本実施例は、フェライト系冷延鋼板に対して、従来の硝酸−フッ酸混酸液を用いて酸洗する場合と、本発明による硫酸−フッ酸−過酸化水素混酸液を用いて酸洗する場合の、鋼板の酸洗品質を比較するためのものである。
Example 8
In this example, ferritic cold rolled steel sheets are pickled using a conventional nitric acid-hydrofluoric acid mixed acid solution and pickled using a sulfuric acid-hydrofluoric acid-hydrogen peroxide mixed acid solution according to the present invention. It is for comparing the pickling quality of the steel plate in the case.

クロム含量が14重量%以下のフェライト系ステンレス冷延鋼板を混酸溶液で酸洗処理した後、光沢度を測定した(n=15)。混酸条件及び混酸溶液はそれぞれ下記の通りである。   A ferritic stainless steel cold-rolled steel sheet having a chromium content of 14% by weight or less was pickled with a mixed acid solution, and the glossiness was measured (n = 15). The mixed acid conditions and the mixed acid solution are as follows.

比較例1:フェライト系ステンレス冷延鋼板を、実施例1に従って中性塩電解及び硫酸電解を行った後、硝酸100g/L及びフッ酸3g/Lを含む混酸溶液に30秒間浸漬して酸洗し、その後光沢度を測定した。   Comparative Example 1: A ferritic stainless steel cold-rolled steel sheet was subjected to neutral salt electrolysis and sulfuric acid electrolysis according to Example 1, and then immersed in a mixed acid solution containing 100 g / L nitric acid and 3 g / L hydrofluoric acid for 30 seconds for pickling. Thereafter, the glossiness was measured.

発明例1:実施例7の発明例4により得られた鋼板の光沢度を測定した。   Invention Example 1: The glossiness of the steel sheet obtained by Invention Example 4 of Example 7 was measured.

発明例2:実施例7の発明例2により得られた鋼板の光沢度を測定した。   Invention Example 2: The glossiness of the steel sheet obtained by Invention Example 2 of Example 7 was measured.

上記それぞれの鋼板について測定した光沢度を図5に示した。   The glossiness measured for each steel sheet is shown in FIG.

図5から、従来の硝酸酸洗による比較例1の鋼板と、未酸洗状態の鋼板に本発明の混酸酸洗方法を適用した鋼板とを比較すると、本発明により得られた鋼板は130以上の光沢度を有し、比較例1の鋼板より40〜60程度の光沢度の上昇効果が得られることが分かる。   From FIG. 5, when the steel plate of Comparative Example 1 by conventional nitric acid pickling is compared with the steel plate in which the mixed pickling method of the present invention is applied to a non-pickled steel plate, 130 or more steel plates are obtained by the present invention. It can be seen that the effect of increasing the glossiness of about 40 to 60 is obtained from the steel plate of Comparative Example 1.

従って、本発明を適用する場合には、酸洗後の鋼板の表面品質を向上させることができることが分かる。   Therefore, when applying this invention, it turns out that the surface quality of the steel plate after pickling can be improved.

Claims (14)

硝酸を含まない混酸溶液を用いて、14重量%以下のクロムを含む低クロムフェライト系ステンレス冷延鋼板の表面からシリコン酸化物を高速で除去するシリコン酸化物酸洗方法であって、
過酸化水素を含む混酸溶液中に前記冷延鋼板を浸漬することにより酸洗工程を行い、
前記混酸溶液は硫酸70〜200g/L及び遊離フッ酸1〜10g/Lを含み、前記混酸溶液が鉄イオンを含まないとき、前記混酸溶液は過酸化水素を濃度7g/L以上で含、3〜15g/m・minの酸洗速度を有する、低クロムフェライト系ステンレス冷延鋼板のシリコン酸化物酸洗方法。
A silicon oxide pickling method for removing silicon oxide at a high speed from the surface of a low-chromium ferritic stainless steel cold-rolled steel sheet containing 14 wt% or less of chromium using a mixed acid solution containing no nitric acid,
A pickling step is performed by immersing the cold-rolled steel sheet in a mixed acid solution containing hydrogen peroxide,
The mixed acid solution comprises sulfuric acid 70~200g / L and the free hydrofluoric acid 1 to 10 g / L, when the mixed acid solution does not contain iron ions, the mixed acid solution seen contains hydrogen peroxide in a concentration 7 g / L or more, A silicon oxide pickling method for low chromium ferritic stainless steel cold-rolled steel sheets having a pickling rate of 3 to 15 g / m 2 · min.
前記酸洗工程中の過酸化水素濃度と鉄イオン濃度の関係は次の式
Figure 0005768141
を満たすことを特徴とする、請求項1に記載の低クロムフェライト系ステンレス冷延鋼板のシリコン酸化物酸洗方法。
The relationship between the hydrogen peroxide concentration and the iron ion concentration during the pickling step is
Figure 0005768141
The silicon oxide pickling method for a low chromium ferritic stainless steel cold-rolled steel sheet according to claim 1, wherein:
混酸溶液中に浸漬された冷延鋼板の表面電位を−0.2〜0.2Vに保持させることを特徴とする、請求項1または2に記載の低クロムフェライト系ステンレス冷延鋼板のシリコン酸化物酸洗方法。   3. The silicon oxidation of a low chromium ferrite stainless cold-rolled steel sheet according to claim 1 or 2, wherein the surface potential of the cold-rolled steel sheet immersed in the mixed acid solution is maintained at -0.2 to 0.2V. Pickling method. 前記冷延鋼板は10〜100秒間混酸溶液に浸漬することを特徴とする、請求項1または2に記載の低クロムフェライト系ステンレス冷延鋼板のシリコン酸化物酸洗方法。   The method for pickling a low chromium ferritic stainless steel cold rolled steel sheet according to claim 1 or 2, wherein the cold rolled steel sheet is immersed in a mixed acid solution for 10 to 100 seconds. 脱脂及び焼鈍工程を経た14重量%以下のクロムを含むフェライト系ステンレス冷延鋼板を酸洗する、低クロムフェライト系ステンレス冷延鋼板の酸洗方法であって、
低クロムフェライト系ステンレス冷延鋼板から、硫酸を電解質として使用する電解溶液を用いて(Fe、Cr)スケールを電解除去する硫酸電解段階と、
混酸溶液に浸漬する混酸浸漬段階であって、該混酸溶液は、硫酸70〜200g/L遊離フッ酸1〜10g/L及び該混酸溶液が鉄イオンを含まないとき、過酸化水素を濃度7g/L以上でみ、硝酸を含まない、段階
とを含み、3〜15g/m・minの酸洗速度を有する、低クロムフェライト系ステンレス冷延鋼板の酸洗方法。
A pickling method for a low chromium ferritic stainless steel cold-rolled steel sheet, wherein the ferritic stainless steel cold-rolled steel sheet containing 14% by weight or less of chromium that has been subjected to a degreasing and annealing process,
A sulfuric acid electrolysis step of electrolytically removing (Fe, Cr) 3 O 4 scale from a low chromium ferrite stainless steel cold rolled steel sheet using an electrolytic solution using sulfuric acid as an electrolyte;
In the mixed acid immersion step of immersing in a mixed acid solution, the mixed acid solution has a concentration of 7 g of hydrogen peroxide when sulfuric acid is 70 to 200 g / L , free hydrofluoric acid is 1 to 10 g / L, and the mixed acid solution does not contain iron ions. / L or more in viewing contains, does not contain nitric acid, and a step <br/>, it has a pickling rate of 3~15g / m 2 · min, pickling method of low chromium ferritic stainless cold-rolled steel sheet.
硫酸ナトリウム電解質を含む電解溶液を用いて、鋼板表面からFe酸化物の含量よりCr酸化物の含量が相対的に高いクロムリッチスケールを電解除去する中性塩電解段階をさらに含むことを特徴とする、請求項5に記載の低クロムフェライト系ステンレス冷延鋼板の酸洗方法。   The method further includes a neutral salt electrolysis step of electrolytically removing chromium-rich scale having a relatively higher Cr oxide content than the Fe oxide content from the steel sheet surface using an electrolytic solution containing a sodium sulfate electrolyte. The pickling method of the low-chromium ferritic stainless steel cold-rolled steel sheet according to claim 5. 前記中性塩電解段階は、フェライト系ステンレス鋼板を温度50〜90℃の中性塩電解溶液内に浸漬し、鋼板表面の電位が+、−、+の順に形成されるように10〜30A/dmの電流密度を0秒超過90秒以下の間印加することで行うことを特徴とする、請求項6に記載の低クロムフェライト系ステンレス冷延鋼板の酸洗方法。 In the neutral salt electrolysis step, the ferritic stainless steel plate is immersed in a neutral salt electrolytic solution at a temperature of 50 to 90 ° C., and the electric potential of the steel plate surface is formed in the order of +, −, and +10 to 30 A / The pickling method for a low-chromium ferritic stainless steel cold-rolled steel sheet according to claim 6, wherein the current density of dm 2 is applied for more than 0 seconds and not more than 90 seconds. 前記中性塩電解溶液内に硫酸ナトリウム電解質を100〜250g/L含むことを特徴とする、請求項6に記載の低クロムフェライト系ステンレス冷延鋼板の酸洗方法。   The method for pickling a low chromium ferritic stainless steel cold-rolled steel sheet according to claim 6, wherein the neutral salt electrolytic solution contains a sodium sulfate electrolyte in an amount of 100 to 250 g / L. 前記硫酸電解段階は、焼鈍または中性塩電解段階を経たフェライト系ステンレス鋼板を温度30〜60℃の硫酸電解溶液に浸漬し、鋼板表面の電位が+、−、+の順に形成されるように10〜30A/dmの電流密度を5〜50秒間印加することで行うことを特徴とする、請求項5に記載の低クロムフェライト系ステンレス冷延鋼板の酸洗方法。 In the sulfuric acid electrolysis step, the ferritic stainless steel plate that has undergone the annealing or neutral salt electrolysis step is immersed in a sulfuric acid electrolytic solution having a temperature of 30 to 60 ° C., so that the surface potential of the steel plate is formed in the order of +, −, +. The pickling method for a low-chromium ferritic stainless steel cold-rolled steel sheet according to claim 5, wherein a current density of 10 to 30 A / dm 2 is applied for 5 to 50 seconds. 前記硫酸電解溶液は硫酸を50〜150g/L含むことを特徴とする、請求項9に記載の低クロムフェライト系ステンレス冷延鋼板の酸洗方法。   The method for pickling a low chromium ferritic stainless steel cold-rolled steel sheet according to claim 9, wherein the sulfuric acid electrolytic solution contains 50 to 150 g / L of sulfuric acid. 前記混酸浸漬段階は、過酸化水素を含む混酸溶液に前記冷延鋼板を10〜100秒間浸漬することにより酸洗工程を行い、前記混酸溶液は硫酸70〜200g/L及び遊離フッ酸1〜10g/Lを含み、前記混酸溶液が鉄イオンを含まないとき、前記混酸溶液は過酸化水素を濃度7g/L以上で含むことを特徴とする、請求項5に記載の低クロムフェライト系ステンレス冷延鋼板の酸洗方法。 In the mixed acid immersion step, the cold-rolled steel sheet is immersed in a mixed acid solution containing hydrogen peroxide for 10 to 100 seconds to perform a pickling process. The mixed acid solution includes 70 to 200 g / L of sulfuric acid and 1 to 10 g of free hydrofluoric acid. / contains L, and when said mixed acid solution does not contain iron ions, the mixed acid solution is characterized by the early days containing hydrogen peroxide in a concentration 7 g / L or more, a low chromium ferritic stainless cold according to claim 5 Pickling method for rolled steel sheets. 前記混酸浸漬段階で鋼板の表面電位を−0.2〜0.2Vの範囲に保持することを特徴とする、請求項11に記載の低クロムフェライト系ステンレス冷延鋼板の酸洗方法。   The pickling method for a low-chromium ferritic stainless steel cold-rolled steel sheet according to claim 11, wherein the surface potential of the steel sheet is maintained in the range of -0.2 to 0.2V in the mixed acid immersion step. 前記酸洗工程中の過酸化水素は、混酸溶液中の鉄イオン濃度との関係において、次の式
Figure 0005768141
を満たすことを特徴とする、請求項10に記載の低クロムフェライト系ステンレス冷延鋼板の酸洗方法。
The hydrogen peroxide in the pickling step is expressed by the following formula in relation to the iron ion concentration in the mixed acid solution.
Figure 0005768141
The pickling method for a low-chromium ferritic stainless steel cold-rolled steel sheet according to claim 10, wherein:
脱脂及び焼鈍工程を経た14重量%以下のクロムを含むフェライト系ステンレス冷延鋼板からシリコン酸化物を除去するための混酸溶液であって、
硫酸70〜200g/L、遊離フッ酸1〜10g/L、及び過酸化水素を含み、
前記過酸化水素は混酸溶液中の鉄イオン濃度との関係において、次の式
Figure 0005768141
を満たすことを特徴とする、シリコン酸化物除去のための硝酸を含まない混酸溶液。
A mixed acid solution for removing silicon oxide from a ferritic stainless cold-rolled steel sheet containing 14 wt% or less of chromium that has undergone a degreasing and annealing process,
Including sulfuric acid 70-200 g / L, free hydrofluoric acid 1-10 g / L, and hydrogen peroxide,
The hydrogen peroxide has the following formula in relation to the iron ion concentration in the mixed acid solution:
Figure 0005768141
A mixed acid solution containing no nitric acid for removing silicon oxide.
JP2013547334A 2010-12-28 2011-12-27 Eco-friendly high-speed pickling process for producing low chromium ferritic stainless steel cold rolled steel sheets with excellent surface quality Expired - Fee Related JP5768141B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR20100136140 2010-12-28
KR10-2010-0136140 2010-12-28
KR1020110120187A KR101289147B1 (en) 2010-12-28 2011-11-17 Environmental-Friendly and High Speed Pickling Process for Ferritic Stainless Cold Strip with Good Surface Quality
KR10-2011-0120187 2011-11-17
PCT/KR2011/010157 WO2012091412A2 (en) 2010-12-28 2011-12-27 Eco-friendly high-speed pickling process for producing a low-chrome ferrite-based cold-rolled stainless steel sheet having superior surface quality

Publications (2)

Publication Number Publication Date
JP2014501337A JP2014501337A (en) 2014-01-20
JP5768141B2 true JP5768141B2 (en) 2015-08-26

Family

ID=46709345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013547334A Expired - Fee Related JP5768141B2 (en) 2010-12-28 2011-12-27 Eco-friendly high-speed pickling process for producing low chromium ferritic stainless steel cold rolled steel sheets with excellent surface quality

Country Status (5)

Country Link
EP (1) EP2660364B1 (en)
JP (1) JP5768141B2 (en)
KR (1) KR101289147B1 (en)
CN (1) CN103403230B (en)
WO (1) WO2012091412A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220119722A (en) 2020-02-19 2022-08-30 제이에프이 스틸 가부시키가이샤 Stainless steel descaling solution and stainless steel descaling method
JP7174747B2 (en) 2020-12-07 2022-11-17 住友理工株式会社 soundproof cover

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101359098B1 (en) * 2012-07-31 2014-02-12 주식회사 포스코 High speed pickling process for austenitic stainless cold strip
WO2014021639A1 (en) * 2012-07-31 2014-02-06 주식회사 포스코 High-speed pickling process for manufacturing austenitic stainless cold-rolled steel plate
KR101353856B1 (en) * 2012-07-31 2014-01-21 주식회사 포스코 High speed pickling process at low temperature for austenitic stainless cold strip
KR101382934B1 (en) * 2012-07-31 2014-04-17 주식회사 포스코 High Speed Pickling Process for Improving Corrosion Resistance of Austenitic Stainless Cold Strip
CN103243339B (en) * 2013-04-16 2016-03-09 山西太钢不锈钢股份有限公司 Chrome super-purity ferrite stainless steel continuous annealing acid washing method in one
KR101461815B1 (en) * 2013-07-31 2014-11-13 주식회사 포스코 High Speed Pickling Method for Surface Improvement of High Chromium Ferritic Stainless Cold Steel Strip
KR101568477B1 (en) * 2013-11-08 2015-11-11 주식회사 포스코 Method for annealing-pickling ferritic stainless steel having high silicon content
CN104593857A (en) * 2014-12-16 2015-05-06 张家港浦项不锈钢有限公司 Ferrite stainless steel processing method
KR101676193B1 (en) 2015-10-22 2016-11-15 주식회사 포스코 Pickling method for low-chromium ferritic stainless cold steel strip
CN107587042B (en) * 2016-07-08 2020-05-19 Posco公司 Medium-low chromium ferrite stainless steel cold-rolled steel plate and pickling method thereof
CN107964662B (en) * 2017-11-02 2019-10-18 马鞍山市宝奕金属制品工贸有限公司 A method of promoting stainless steel surface glossiness
CN110195250A (en) * 2018-08-18 2019-09-03 贵州钢绳股份有限公司 A kind of plating alkali slot plait mode of connection
CN109267142A (en) * 2018-09-26 2019-01-25 中国民航大学 A kind of PH stainless steel room temperature electrolytic pickling method
JP7458902B2 (en) * 2020-05-21 2024-04-01 日鉄ステンレス株式会社 Ferritic Stainless Steel
CN112779548B (en) * 2020-12-27 2022-11-01 山东盛阳金属科技股份有限公司 300 is stainless steel pickling system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1255655B (en) * 1992-08-06 1995-11-09 STAINLESS STEEL PICKLING AND PASSIVATION PROCESS WITHOUT THE USE OF NITRIC ACID
JP3868069B2 (en) * 1997-07-31 2007-01-17 株式会社パーカーコーポレーション Stainless steel descaling apparatus and descaling method
JPH11172476A (en) * 1997-12-09 1999-06-29 Daido Steel Co Ltd Pickling treatment of iron base metal and pickling treating device
IT1302202B1 (en) * 1998-09-11 2000-07-31 Henkel Kgaa ELECTROLYTIC PICKLING PROCESS WITH SOLUTIONS FREE FROM ACIDONITRICO.
JP4175463B2 (en) * 2001-04-09 2008-11-05 エイケイ・スティール・プロパティーズ・インコーポレイテッド Hydrogen peroxide pickling scheme for stainless steel grade
JP4694048B2 (en) * 2001-06-15 2011-06-01 株式会社パーカーコーポレーション High-speed descaling method for stainless steel
DE10160318A1 (en) * 2001-12-07 2003-06-18 Henkel Kgaa Process for pickling martensitic or ferritic stainless steel
EP1552035B1 (en) * 2002-10-15 2010-08-25 Henkel AG & Co. KGaA Pickling solution and process for stainless steel
KR20050032201A (en) * 2003-10-01 2005-04-07 창원특수강주식회사 Process for acid pickling of stainless steel products
KR100666527B1 (en) * 2005-02-17 2007-01-09 주식회사 한솔케미칼 Pickling stainless steel in the absence of nitric acid
JP4561579B2 (en) * 2005-10-13 2010-10-13 Jfeスチール株式会社 Pickling method and manufacturing method of stainless hot rolled steel
KR100696850B1 (en) * 2005-10-27 2007-03-19 주식회사 포스코 A descaling method for low Cr ferritic stainless steel
KR101073186B1 (en) * 2008-12-23 2011-10-12 주식회사 포스코 Method for pickling low chrome ferritic stainless steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220119722A (en) 2020-02-19 2022-08-30 제이에프이 스틸 가부시키가이샤 Stainless steel descaling solution and stainless steel descaling method
JP7174747B2 (en) 2020-12-07 2022-11-17 住友理工株式会社 soundproof cover

Also Published As

Publication number Publication date
WO2012091412A2 (en) 2012-07-05
KR101289147B1 (en) 2013-07-23
JP2014501337A (en) 2014-01-20
EP2660364A4 (en) 2014-08-13
EP2660364A2 (en) 2013-11-06
CN103403230A (en) 2013-11-20
EP2660364B1 (en) 2016-03-09
KR20120075344A (en) 2012-07-06
CN103403230B (en) 2016-02-24
WO2012091412A3 (en) 2012-10-04
WO2012091412A4 (en) 2012-11-22

Similar Documents

Publication Publication Date Title
JP5768141B2 (en) Eco-friendly high-speed pickling process for producing low chromium ferritic stainless steel cold rolled steel sheets with excellent surface quality
JP6105167B2 (en) Pickling method of high chromium ferritic stainless cold rolled steel sheet
JP5897717B2 (en) Pickling of stainless steel in an oxidative electrolytic acid bath
KR101228730B1 (en) High Speed Pickling Method for Surface Improvement of High Chromium Ferritic Stainless Cold Steel Strip
JP2012508820A (en) Process of pickling silicon steel with acid pickling solution containing ferric ion
KR101243021B1 (en) Pickling method and pickling solution for preventing and removing defects of low-chrome ferritic stainless steel in the pickling process
JP6031606B2 (en) High speed pickling process for producing austenitic stainless cold rolled steel sheet
KR101359098B1 (en) High speed pickling process for austenitic stainless cold strip
US6274027B1 (en) Method of descaling titanium material and descaled titanium material
JP3792335B2 (en) Finishing electrolytic pickling method in descaling of stainless steel strip
JP4352190B2 (en) Descaling method of titanium material
KR101382934B1 (en) High Speed Pickling Process for Improving Corrosion Resistance of Austenitic Stainless Cold Strip
EP4056737A1 (en) Ionic liquid for pickling stainless steel and method for pickling stainless steel by using same
Azzerri et al. Potentiostatic pickling: a new technique for improving stainless steel processing
KR101528052B1 (en) The Method for Pickling High Cromium Ferrite Stainless Cold Steel Strip using Mixed Acid
KR101353856B1 (en) High speed pickling process at low temperature for austenitic stainless cold strip
JP2002348700A (en) DESCALING METHOD FOR COLD-ROLLED AND ANNEALED Cr-BASED STAINLESS STEEL SHEET
JP2577619B2 (en) Method and apparatus for descaling alloy steel strip
US6921443B1 (en) Process for producing stainless steel with improved surface properties
JP4322726B2 (en) Manufacturing method of stainless steel sheet with excellent surface gloss
JPH0810823A (en) Annealing and descaling method for cold rolled stainless steel strip
KR100368207B1 (en) Electrolytic pickling solution for cold annealed austenitic stainless steel sheet
JP4819468B2 (en) Pickling method for stainless steel sheet and method for suppressing nitrogen oxide
JP4804657B2 (en) A descaling method for austenitic stainless steel cold-rolled annealed steel sheets
KR20070045502A (en) A descaling method for austenite stainless steel

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130821

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150622

R150 Certificate of patent or registration of utility model

Ref document number: 5768141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees