JP6031606B2 - High speed pickling process for producing austenitic stainless cold rolled steel sheet - Google Patents

High speed pickling process for producing austenitic stainless cold rolled steel sheet Download PDF

Info

Publication number
JP6031606B2
JP6031606B2 JP2015525357A JP2015525357A JP6031606B2 JP 6031606 B2 JP6031606 B2 JP 6031606B2 JP 2015525357 A JP2015525357 A JP 2015525357A JP 2015525357 A JP2015525357 A JP 2015525357A JP 6031606 B2 JP6031606 B2 JP 6031606B2
Authority
JP
Japan
Prior art keywords
steel sheet
rolled steel
pickling
cold
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015525357A
Other languages
Japanese (ja)
Other versions
JP2015523469A (en
Inventor
ヨン−ホン イ、
ヨン−ホン イ、
ジン−スク キム、
ジン−スク キム、
ジ−フン キム、
ジ−フン キム、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120084151A external-priority patent/KR101382934B1/en
Priority claimed from KR1020120084149A external-priority patent/KR101359098B1/en
Priority claimed from KR1020120084150A external-priority patent/KR101353856B1/en
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2015523469A publication Critical patent/JP2015523469A/en
Application granted granted Critical
Publication of JP6031606B2 publication Critical patent/JP6031606B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/086Iron or steel solutions containing HF

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

本発明は、表面品質を要するオーステナイト系ステンレス冷延鋼板を製造するにあたり鋼板の表面を高速で酸洗する方法に関し、より具体的には、酸洗過程中に硝酸を用いない酸洗方法に関する。   The present invention relates to a method of pickling the surface of a steel plate at a high speed in producing an austenitic stainless cold-rolled steel plate that requires surface quality, and more specifically to a pickling method that does not use nitric acid during the pickling process.

オーステナイト系ステンレス冷延鋼板は冷間圧延後に所定の機械的特性を得るために1000〜1150℃の熱処理過程を経るが、この熱処理過程中に炉の内部で鋼板の表面が高温の酸素と反応して鋼板の表面に酸化スケール(SiO、(Cr,Mn))が生成される。鋼板の表面に生成された上記酸化スケールは、製品の外観を悪くして鋼板の品質を悪化させ、また、鋼板の腐食をもたらす原因となって鋼板の耐食性を低下させる。 The austenitic stainless steel cold-rolled steel sheet undergoes a heat treatment process at 1000 to 1150 ° C. in order to obtain predetermined mechanical properties after cold rolling. During this heat treatment process, the surface of the steel sheet reacts with high-temperature oxygen. Thus, oxide scale (SiO 2 , (Cr, Mn) 3 O 4 ) is generated on the surface of the steel plate. The oxide scale generated on the surface of the steel sheet deteriorates the appearance of the product, deteriorates the quality of the steel sheet, and causes corrosion of the steel sheet, thereby reducing the corrosion resistance of the steel sheet.

よって、通常、美麗な表面品質を得、且つ耐食性を向上させるために、ブラシ、ショットボールブラスト等による物理的デスケーリング、硫酸ナトリウム、硫酸、硝酸電解質を用いた電解デスケーリング、塩浴、混酸等を用いた化学的デスケーリング等の多様な方法を組み合わせて鋼板の表面の酸化スケールを除去することによりステンレス冷延鋼板を製造している。   Therefore, in order to obtain a beautiful surface quality and improve corrosion resistance, physical descaling by brush, shot ball blasting, etc., electrolytic descaling using sodium sulfate, sulfuric acid, nitric acid electrolyte, salt bath, mixed acid, etc. Stainless steel cold-rolled steel sheets are manufactured by removing the oxide scale on the surface of the steel sheets by combining various methods such as chemical descaling using.

このような鋼板の表面のスケールを除去する過程を酸洗工程という。上記ステンレス酸洗工程では、美麗な表面品質を得、且つ不動態皮膜を均一に形成して耐食性を確保するために、硝酸溶液に鋼板を通過させながら電流を加えてデスケーリングする硝酸電解方法と、硝酸(80〜180g/l)とフッ酸(2〜40g/l)との混酸を用いた化学的デスケーリング方法により酸洗を行う。この際、電解浴中の上記硝酸は、酸洗槽内のpHを低くしてフッ酸の活動度を高くし、鋼板の表面で溶解された2価鉄イオンを3価に酸化させて酸洗浴に適正な酸化還元電位を維持させる。   The process of removing the scale on the surface of such a steel sheet is called a pickling process. In the above-mentioned stainless steel pickling process, in order to obtain a beautiful surface quality and to form a passive film uniformly and ensure corrosion resistance, a nitric acid electrolysis method in which a current is applied to the nitric acid solution while passing through the steel plate and descaling is performed. Pickling is performed by a chemical descaling method using a mixed acid of nitric acid (80 to 180 g / l) and hydrofluoric acid (2 to 40 g / l). At this time, the nitric acid in the electrolytic bath lowers the pH in the pickling tank to increase the activity of hydrofluoric acid, and oxidizes divalent iron ions dissolved on the surface of the steel plate to trivalent to pickle the bath. Maintain an appropriate redox potential.

しかしながら、酸洗液として硝酸が用いられることにより、大気排出規制物質であるNOxが発生し、また、廃酸及び洗浄水に硝酸性窒素(NO‐N)が含まれてしまう。よって、国内外の環境規制強化による排出放流水の総窒素制限、大気排出施設のNOx濃度制限等の環境規制条件を満たすために酸洗工程に環境汚染防止設備をさらに設置する必要があり、その運用費が発生することから生産単価が顕著に増加するという問題が生じる。 However, when nitric acid is used as the pickling solution, NOx, which is an atmospheric emission control substance, is generated, and nitrate nitrogen (NO 3 -N) is contained in the waste acid and the washing water. Therefore, it is necessary to further install environmental pollution prevention equipment in the pickling process in order to satisfy the environmental regulation conditions such as total nitrogen restriction of discharged effluent due to strengthening environmental regulations in Japan and overseas, NOx concentration restriction of air discharge facility, etc. The problem of a significant increase in the unit production cost arises from the operational costs.

このような問題を解決するために硝酸を用いない酸洗方法が開発されており、その技術として、酸洗過程で硝酸を塩酸又は硫酸等に取り替え、不十分な酸化力は過酸化水素、過マンガン酸カリウム、3価鉄イオン及び空気注入によって補完する、硝酸を用いない酸洗方法がある。   In order to solve these problems, a pickling method that does not use nitric acid has been developed. As a technique, nitric acid is replaced with hydrochloric acid or sulfuric acid in the pickling process, and insufficient oxidizing power is reduced to hydrogen peroxide, excess acid. There is a pickling method that does not use nitric acid, supplemented by potassium manganate, trivalent iron ions and air injection.

具体的には、ドイツ特許3937438号に、酸洗液として硫酸、フッ酸、硫酸鉄を用い、過酸化水素を添加して酸洗溶液の酸化還元電位を300mV以上に維持する技術が開示されており、上記技術をはじめとして90年代以降には、米国特許5154774号及びヨーロッパ特許236354号に開示されているように主にフッ酸と鉄イオン、空気、過酸化水素又は溶液の酸化還元電位(Oxidation‐Reduction Potential、ORP)の適正範囲を特定する技術が開発されてきた。しかしながら、これらの方法はほとんどが製品の品質要件が厳しくない線材、棒鋼、厚板等の製品に制限的に適用されるという限界を有している。   Specifically, German Patent No. 3937438 discloses a technique in which sulfuric acid, hydrofluoric acid, and iron sulfate are used as the pickling solution, and hydrogen peroxide is added to maintain the oxidation-reduction potential of the pickling solution at 300 mV or higher. Since the 1990s, including the above-mentioned technology, as disclosed in US Pat. No. 5,154,774 and European Patent 236354, mainly the oxidation-reduction potential (Oxidation) of hydrofluoric acid and iron ions, air, hydrogen peroxide, or solution. -Technology has been developed to identify the appropriate range of Reduction Potential (ORP). However, most of these methods have a limit that they are limitedly applied to products such as wire rods, steel bars, and thick plates whose product quality requirements are not strict.

一方、米国特許5908511号には、酸洗溶液に硫酸、フッ酸、鉄塩を含有させ、過酸化水素を定期的に投入し、湿潤剤、光沢剤、腐食抑制剤等の組成を調節して酸洗し、酸洗溶液の管理において Fe(III)及びそれに伴う酸化還元電位(ORP)を自動で制御する方式を用いる技術が開示されている。そして、上記技術を通じて酸洗溶液であるCLEANOX352製品が商用化され、世界中で最も広く使用されている。しかしながら、この方法は線材及び熱延製品には実用化されて使用されてはいるが、製品の生産単価が従来と比べて20%以上高く、複雑な溶液組成及び管理方法を用いるという問題がある。   On the other hand, in US Pat. No. 5,908,511, sulfuric acid, hydrofluoric acid and iron salt are added to the pickling solution, hydrogen peroxide is periodically added, and the composition of the wetting agent, brightening agent, corrosion inhibitor and the like is adjusted. A technique of automatically controlling Fe (III) and the accompanying oxidation-reduction potential (ORP) in the management of pickling and pickling solutions is disclosed. The CLEANOX 352 product, which is a pickling solution, has been commercialized through the above technique and is most widely used around the world. However, although this method has been put to practical use for wire rods and hot rolled products, the product unit price of the product is 20% or more higher than conventional products, and there is a problem that a complicated solution composition and management method are used. .

また、上記米国特許5908511号を改良したヨーロッパ特開1040211号及び米国特開2000‐560982号には、銅及び塩素イオンを酸洗組成物に加えて酸洗速度を高める方法が開示されているが、フェライト系ステンレス鋼板の表面に形成される表面電位(Open Circuit Potential、OCP)が銅イオンの酸化還元電位である0.1Vより低い場合は酸洗過程で鋼板の表面に銅粒子が析出されて鋼板を変色させる恐れがある。また、酸洗溶液に塩素イオンが一定の濃度以上含有される場合は孔食(pitting corrosion)が発生する恐れがある。   Further, European Patent Publication No. 1040211 and United States Patent Publication No. 2000-560982 improved from US Pat. No. 5,908,511 disclose a method of increasing the pickling rate by adding copper and chlorine ions to the pickling composition. When the surface potential (Open Circuit Potential, OCP) formed on the surface of the ferritic stainless steel sheet is lower than the redox potential of copper ions of 0.1 V, copper particles are deposited on the surface of the steel sheet during the pickling process. There is a risk of discoloring the steel sheet. In addition, when the pickling solution contains chlorine ions at a certain concentration or more, there is a risk of pitting corrosion.

また、過酸化水素を用いるにあたり特定温度以上で酸洗する場合は、過酸化水素の自己分解によって残留過酸化水素の量が急激に減り、これにより、酸洗のために追加投入される過酸化水素の量が格段に増えてしまうため、過量の過酸化水素の使用による経済的損失が大きい。   When pickling at a specific temperature or higher when using hydrogen peroxide, the amount of residual hydrogen peroxide is drastically reduced due to the self-decomposition of hydrogen peroxide. Since the amount of hydrogen increases remarkably, the economic loss due to the use of an excessive amount of hydrogen peroxide is large.

このように酸洗組成物に関する多様な技術が知られているが、高クロムオーステナイト系冷延鋼板を高速で生産するのに適した酸洗技術は知られていない。   As described above, various techniques relating to the pickling composition are known, but no pickling technique suitable for producing a high chromium austenitic cold-rolled steel sheet at a high speed is known.

本発明の目的は、硝酸を用いないながらも酸洗性を確保してオーステナイト系ステンレス冷延鋼板の高速生産に適した電解酸洗方法及びシリコン酸化物を高速で除去するのに適した混酸酸洗方法を提供することである。   An object of the present invention is to provide an electrolytic pickling method suitable for high-speed production of austenitic stainless cold-rolled steel sheets while ensuring pickling performance without using nitric acid, and mixed acid acid suitable for removing silicon oxide at high speed It is to provide a washing method.

また、本発明の他の目的は、低温で優れた酸洗性を確保することができるオーステナイト系ステンレス冷延鋼板の高速生産に適した混酸溶液を提供することである。   Another object of the present invention is to provide a mixed acid solution suitable for high-speed production of austenitic stainless cold-rolled steel sheets that can ensure excellent pickling properties at low temperatures.

また、本発明のさらに他の目的は、上記酸洗方法に適した、硝酸が含まれていない混酸溶液を提供することである。   Still another object of the present invention is to provide a mixed acid solution which does not contain nitric acid and is suitable for the above pickling method.

また、本発明のさらに他の目的は、上記のような酸洗方法により得られた、圧延方向に対して60°の反射角で測定された光沢度が150以上のオーステナイト系ステンレス冷延鋼板を提供することである。   Still another object of the present invention is to provide an austenitic stainless cold-rolled steel sheet obtained by the pickling method as described above and having a glossiness of 150 or more measured at a reflection angle of 60 ° with respect to the rolling direction. Is to provide.

本発明によれば、16重量%以上のクロムを含有する高クロムオーステナイト系ステンレス冷延鋼板からシリコン酸化物を除去する高クロムオーステナイト系ステンレス冷延鋼板の酸洗方法であって、硝酸を含まず、初期組成が硫酸110〜150g/l、遊離フッ酸15〜30g/l及び過酸化水素濃度4.5g/l以上を含み、鉄イオンは実質的に含まない混酸溶液中に冷延鋼板を浸漬することにより上記冷延鋼板からシリコン酸化物を除去する、高クロムオーステナイト系ステンレス冷延鋼板の酸洗方法が提供される。   According to the present invention, there is provided a pickling method for high chromium austenitic stainless cold-rolled steel sheet which removes silicon oxide from a high chromium austenitic stainless cold-rolled steel sheet containing 16% by weight or more of chromium, which does not contain nitric acid. The cold rolled steel sheet is immersed in a mixed acid solution having an initial composition of 110 to 150 g / l of sulfuric acid, 15 to 30 g / l of free hydrofluoric acid and a hydrogen peroxide concentration of 4.5 g / l or more, and substantially free of iron ions. By doing this, the pickling method of the high chromium austenitic stainless steel cold-rolled steel plate which removes a silicon oxide from the said cold-rolled steel plate is provided.

上記混酸溶液の過酸化水素濃度は混酸溶液中の鉄イオンとの関係で下記式(1)を満たし、酸化還元電位(ORP)は混酸溶液中の鉄イオン濃度との関係で下記式(2)又は(3)を満たすことが好ましい。   The hydrogen peroxide concentration of the mixed acid solution satisfies the following formula (1) in relation to iron ions in the mixed acid solution, and the oxidation-reduction potential (ORP) is expressed by the following formula (2) in relation to the iron ion concentration in the mixed acid solution. Or it is preferable to satisfy (3).

過酸化水素濃度0.00736+10×e−[metal]/13.2 …(1)
Hydrogen peroxide concentration 0.00736 + 10 × e − [metal] /13.2 (1)

ORP600mV、但し、鉄イオン濃度≦10g/l …(2)
ORP 600 mV, however, iron ion concentration ≦ 10 g / l (2)

ORP310+431×e−[metal]/25.24、但し、鉄イオン濃度>10g/l …(3)
(上記式(1)及び(3)において[metal]は混酸溶液中の鉄イオン濃度を示す。)
ORP 310 + 431 × e − [metal] /25.24 provided that iron ion concentration> 10 g / l (3)
(In the above formulas (1) and (3), [metal] represents the iron ion concentration in the mixed acid solution.)

また、酸洗後の結晶粒界の幅(W)を1μm以上に形成するように浸漬することが好ましい。この際、上記浸漬は上記混酸溶液の温度(T)、フッ酸濃度(C)及び処理時間(t)が下記式(4)を満たすように制御されることが好ましい。   Moreover, it is preferable to immerse so that the width (W) of the grain boundary after pickling may be formed to 1 μm or more. At this time, the immersion is preferably controlled so that the temperature (T), hydrofluoric acid concentration (C), and treatment time (t) of the mixed acid solution satisfy the following formula (4).

酸洗後の結晶粒界の幅(W)=−0.184+0.0131・t+0.016・C+0.01・T …(4)   Width of crystal grain boundary after pickling (W) = − 0.184 + 0.0131 · t + 0.016 · C + 0.01 · T (4)

また、本発明の他の実施態様によれば、16重量%以上のクロムを含有する高クロムオーステナイト系ステンレス冷延鋼板からシリコン酸化物を除去する高クロムオーステナイト系ステンレス冷延鋼板の酸洗方法であって、20〜32℃の温度に維持され、硝酸を含まず、初期組成が硫酸110〜150g/l、遊離フッ酸25〜40g/l及び過酸化水素濃度5.5g/l以上を含み、鉄イオンは実質的に含まない混酸溶液中に冷延鋼板を浸漬することにより上記冷延鋼板からシリコン酸化物を除去する、高クロムオーステナイト系ステンレス冷延鋼板の酸洗方法が提供される。   Moreover, according to another embodiment of the present invention, the pickling method for high chromium austenitic stainless cold-rolled steel sheet which removes silicon oxide from high chromium austenitic stainless cold-rolled steel sheet containing 16% by weight or more of chromium. Being maintained at a temperature of 20 to 32 ° C., containing no nitric acid, and having an initial composition of 110 to 150 g / l of sulfuric acid, 25 to 40 g / l of free hydrofluoric acid, and a hydrogen peroxide concentration of 5.5 g / l or more, There is provided a pickling method for a high chromium austenitic stainless cold-rolled steel sheet, in which silicon oxide is removed from the cold-rolled steel sheet by immersing the cold-rolled steel sheet in a mixed acid solution substantially free of iron ions.

この際、上記過酸化水素は鉄イオンの濃度との関係で下記式(5)を満たすことが好ましい。   At this time, the hydrogen peroxide preferably satisfies the following formula (5) in relation to the iron ion concentration.

過酸化水素濃度0.805+9.2×e−[metal/15.56] …(5)
(上記式(5)において[metal]は混酸溶液中の鉄イオン濃度を示す。)
Hydrogen peroxide concentration 0.805 + 9.2 × e − [metal / 15.56] (5)
(In the above formula (5), [metal] represents the iron ion concentration in the mixed acid solution.)

本発明において、上記混酸溶液中に浸漬された上記冷延鋼板の表面電位は−0.2〜0.1Vに維持されることが好ましい。   In the present invention, the surface potential of the cold rolled steel sheet immersed in the mixed acid solution is preferably maintained at -0.2 to 0.1V.

また、上記混酸溶液に上記冷延鋼板を10〜100秒間浸漬することが好ましい。   Moreover, it is preferable to immerse the cold-rolled steel sheet in the mixed acid solution for 10 to 100 seconds.

上記冷延鋼板からのシリコン酸化物の除去は、中性塩電解処理段階及び硫酸電解処理段階、又は硫酸電解処理段階の後に行われ、上記中性塩電解処理段階は硫酸ナトリウム電解質を含む電解溶液を用いて鋼板の表面からCr‐リッチスケールを電解除去し、上記硫酸電解処理段階は硫酸を電解質として含む電解溶液を用いてCr及びFeの残留スケールを電解除去することができる。   The removal of silicon oxide from the cold-rolled steel sheet is performed after the neutral salt electrolysis treatment step and the sulfuric acid electrolysis treatment step, or the sulfuric acid electrolysis treatment step, and the neutral salt electrolysis treatment step is an electrolytic solution containing a sodium sulfate electrolyte. Cr-rich scale is electrolytically removed from the surface of the steel plate using the sulfuric acid, and the sulfuric acid electrolysis treatment step can electrolytically remove the residual scale of Cr and Fe using an electrolytic solution containing sulfuric acid as an electrolyte.

上記中性塩電解段階は、オーステナイト系ステンレス鋼板を50〜90℃の温度の中性塩電解溶液内に浸漬し、鋼板の表面電位が+、−、+の順に形成されるように10〜30A/dmの電流密度を30秒〜120秒間印加することにより行うことができる。また、上記中性塩電解溶液内に硫酸ナトリウム電解質を100〜250g/l含むことができる。 In the neutral salt electrolysis step, the austenitic stainless steel plate is immersed in a neutral salt electrolytic solution at a temperature of 50 to 90 ° C., and the surface potential of the steel plate is formed in the order of +, −, + to 10-30 A. / Dm 2 can be applied by applying a current density of 30 seconds to 120 seconds. Further, the neutral salt electrolyte solution may contain 100 to 250 g / l of sodium sulfate electrolyte.

上記硫酸電解段階は、中性塩電解段階を経たオーステナイト系ステンレス鋼板を30〜60℃の温度の硫酸電解溶液に浸漬し、鋼板の表面電位が+、−、+の順に形成されるように10〜30A/dmの電流密度を5〜50秒間印加することにより行うことができる。また、上記硫酸電解溶液は、硫酸を50〜150g/l含むことができる。 The sulfuric acid electrolysis step is performed so that the austenitic stainless steel plate that has undergone the neutral salt electrolysis step is immersed in a sulfuric acid electrolytic solution at a temperature of 30 to 60 ° C., and the surface potential of the steel plate is formed in the order of +, −, +. It can be performed by applying a current density of ˜30 A / dm 2 for 5 to 50 seconds. The sulfuric acid electrolytic solution may contain 50 to 150 g / l of sulfuric acid.

また、本発明によれば、上記方法により得られた16重量%以上のクロムを含有する高クロムオーステナイト系ステンレス冷延鋼板であって、上記鋼板の圧延方向に対して60°の角度で測定された光沢度が150以上である高クロムオーステナイト系ステンレス冷延鋼板が提供される。   Further, according to the present invention, it is a high chromium austenitic stainless cold-rolled steel sheet containing 16% by weight or more of chromium obtained by the above method, which is measured at an angle of 60 ° with respect to the rolling direction of the steel sheet. A high chromium austenitic stainless cold-rolled steel sheet having a glossiness of 150 or more is provided.

上記高クロムオーステナイト系ステンレス冷延鋼板は表面の結晶粒界の幅が1μm以上であることが好ましい。   The high chromium austenitic stainless cold-rolled steel sheet preferably has a surface grain boundary width of 1 μm or more.

さらに、本発明によれば、16重量%以上のクロムを含有する高クロムオーステナイト系ステンレス冷延鋼板からシリコン酸化物を除去するための混酸溶液であって、硝酸を含まず、硫酸110〜150g/l、遊離フッ酸15〜25g/l及び過酸化水素を含み、上記過酸化水素濃度は上記混酸溶液中の鉄イオンとの関係で下記式(1)を満たし、酸化還元電位(ORP)は混酸溶液中の鉄イオン濃度との関係で下記式(2)又は(3)を満たす混酸溶液が提供される。   Furthermore, according to the present invention, there is provided a mixed acid solution for removing silicon oxide from a high chromium austenitic stainless cold-rolled steel sheet containing 16% by weight or more of chromium, which does not contain nitric acid and has 110 to 150 g / sulfuric acid. 1 and free hydrofluoric acid 15 to 25 g / l and hydrogen peroxide, the hydrogen peroxide concentration satisfies the following formula (1) in relation to the iron ions in the mixed acid solution, and the oxidation-reduction potential (ORP) is A mixed acid solution that satisfies the following formula (2) or (3) in relation to the iron ion concentration in the solution is provided.

過酸化水素濃度0.00736+10×e−[metal]/13.2 …(1)
Hydrogen peroxide concentration 0.00736 + 10 × e − [metal] /13.2 (1)

ORP600mV、但し、鉄イオン濃度≦10g/l …(2)
ORP 600 mV, however, iron ion concentration ≦ 10 g / l (2)

ORP310+431×e−[metal]/25.24、但し、鉄イオン濃度>10g/l …(3)
(上記式(1)及び(3)において[metal]は混酸溶液中の鉄イオン濃度を示す。)
ORP 310 + 431 × e − [metal] /25.24 provided that iron ion concentration> 10 g / l (3)
(In the above formulas (1) and (3), [metal] represents the iron ion concentration in the mixed acid solution.)

さらに、本発明の他の実施態様によれば、硝酸を含まず、硫酸110〜150g/l、遊離フッ酸25〜40g/l及び過酸化水素を含み、上記過酸化水素は混酸溶液中の鉄イオン濃度との関係で下記式(5)を満たす混酸溶液が提供される。   Furthermore, according to another embodiment of the present invention, the composition contains no nitric acid, 110-150 g / l sulfuric acid, 25-40 g / l free hydrofluoric acid, and hydrogen peroxide, the hydrogen peroxide being iron in a mixed acid solution. A mixed acid solution that satisfies the following formula (5) in relation to the ion concentration is provided.

過酸化水素濃度0.805+9.2×e−[metal/15.56] …(5)
(上記式(5)において[metal]は混酸溶液中の鉄イオン濃度を示す。)
Hydrogen peroxide concentration 0.805 + 9.2 × e − [metal / 15.56] (5)
(In the above formula (5), [metal] represents the iron ion concentration in the mixed acid solution.)

この際、上記混酸溶液は温度が20〜32℃であることが好ましい。   At this time, the mixed acid solution preferably has a temperature of 20 to 32 ° C.

本発明によれば、オーステナイト系ステンレス冷延鋼板を酸洗するにあたり酸洗溶液中の混酸溶液に硝酸を含まないため、NOx及び硝酸性窒素を排出しない。したがって、NOx除去設備と脱窒設備の設置の負担を減らすことができる。   According to the present invention, when pickling an austenitic stainless cold-rolled steel sheet, the mixed acid solution in the pickling solution does not contain nitric acid, so NOx and nitrate nitrogen are not discharged. Therefore, it is possible to reduce the burden of installing the NOx removal facility and the denitrification facility.

また、過酸化水素濃度、溶液の酸化還元電位(ORP)及びフッ酸濃度によって酸洗を調節することができるため、コントロールが容易であり、高速生産に適する。   Moreover, since pickling can be adjusted by the hydrogen peroxide concentration, the oxidation-reduction potential (ORP) of the solution, and the hydrofluoric acid concentration, it is easy to control and suitable for high-speed production.

さらに、酸洗後の品質も既存の酸洗法に比べて向上するため、優れた品質のオーステナイト系ステンレス冷延鋼板の生産が可能である。   Furthermore, since the quality after pickling is improved as compared with the existing pickling method, it is possible to produce an austenitic stainless cold-rolled steel sheet having excellent quality.

また、電解酸洗過程でシリコン酸化物以外のFe、Cr酸化物を完全に除去することにより、混酸溶液によるシリコン酸化物の除去を容易に行い、混酸溶液によるシリコン酸化物の除去及び平坦化を10〜100秒の短時間で行うことができる。   In addition, by removing Fe and Cr oxides other than silicon oxide completely during the electrolytic pickling process, the silicon oxide can be easily removed by the mixed acid solution, and the silicon oxide can be removed and planarized by the mixed acid solution. It can be performed in a short time of 10 to 100 seconds.

また、溶液組成及び管理方法が簡単であり、鋼板の表面との酸洗反応以外の他の反応が発生しないようにして冷延鋼板の表面品質を確保することができる上、高速生産による生産性の向上を図ることができる。   In addition, the solution composition and the management method are simple, the surface quality of the cold-rolled steel sheet can be ensured by preventing other reactions other than the pickling reaction with the surface of the steel sheet, and productivity by high-speed production. Can be improved.

また、本発明の一実施態様によれば、低温で酸洗工程を行うことにより過酸化水素の自己分解を最小化することができるため、高速生産による生産性及び経済性の向上を図ることができる。   In addition, according to one embodiment of the present invention, since the hydrogen peroxide self-decomposition can be minimized by performing the pickling process at a low temperature, it is possible to improve productivity and economy by high-speed production. it can.

熱処理された高クロムオーステナイト系ステンレス冷延鋼板の表面を撮影した電子顕微鏡写真であって、A)は電解処理を行った後の鋼板の断面を撮影した電子顕微鏡写真であり、B)は電解処理を行わなかった鋼板の断面を撮影した電子顕微鏡写真である。It is the electron micrograph which image | photographed the surface of the heat-treated high chromium austenitic stainless steel cold-rolled steel sheet, A) is the electron micrograph which image | photographed the cross section of the steel plate after performing an electrolytic treatment, B) is an electrolytic treatment. It is the electron micrograph which image | photographed the cross section of the steel plate which was not performed. 実施例2により酸洗された高クロムオーステナイト系ステンレス冷延鋼板の表面を電子顕微鏡で撮影した写真であって、A)は発明例4により得られた鋼板の表面であり、B)は比較例4により得られた鋼板の表面である。It is the photograph which image | photographed the surface of the high chromium austenitic stainless cold-rolled steel plate pickled by Example 2 with the electron microscope, A) is the surface of the steel plate obtained by invention example 4, B) is a comparative example. 4 is the surface of the steel sheet obtained by 4. 高クロムオーステナイト系ステンレス冷延鋼板を混酸に浸漬した場合に表面電位−0.2〜0.1Vを維持するための、メタル含量に対する最小の過酸化水素濃度及びこの際の溶液の酸化還元電位の相関関係を示すグラフである。In order to maintain a surface potential of -0.2 to 0.1 V when a high chromium austenitic stainless steel cold-rolled steel sheet is immersed in a mixed acid, the minimum hydrogen peroxide concentration relative to the metal content and the redox potential of the solution at this time It is a graph which shows correlation. 実施例8の酸洗後の塩水噴霧実験による耐食性評価のためのものであって、A)は粒界の幅が1マイクロ以上の発明例1により得られた鋼板の耐食性評価後の写真であり、B)は比較例1による酸洗方法で酸洗された鋼板の耐食性評価後の表面写真である。It is for corrosion resistance evaluation by the salt spray experiment after pickling in Example 8, and A) is a photograph after the corrosion resistance evaluation of the steel sheet obtained by Invention Example 1 having a grain boundary width of 1 micron or more. , B) is a surface photograph after the corrosion resistance evaluation of the steel sheet pickled by the pickling method according to Comparative Example 1. 実施例9において混酸溶液の温度による過酸化水素の自己分解による残留過酸化水素の含量を時間によって示したグラフである。In Example 9, it is the graph which showed the content of the residual hydrogen peroxide by the time of the self-decomposition of hydrogen peroxide by the temperature of the mixed acid solution with time. 実施例10により高クロムオーステナイト系ステンレス冷延鋼板を混酸に浸漬した場合に表面電位−0.2〜0.1Vを維持するための、メタル含量に対する最小の過酸化水素濃度の相関関係を示すグラフである。The graph which shows the correlation of the minimum hydrogen peroxide concentration with respect to a metal content in order to maintain surface potential -0.2-0.1V when a high chromium austenitic stainless steel cold-rolled steel plate is immersed in mixed acid by Example 10. It is.

本発明の一実施態様によれば、オーステナイト系ステンレス冷延鋼板を、硫酸ナトリウムを電解質として用いる中性塩電解槽、硫酸及びメタル硫酸塩を電解質として用いる硫酸電解槽、並びに硫酸、過酸化水素及びフッ酸を含む酸洗組成物の混酸槽に通過させることにより鋼板の表面の酸化スケールを除去する方法が提供される。また、本発明の他の実施態様によれば、上記本発明の方法により得られた高クロムオーステナイト系ステンレス冷延鋼板が提供される。さらに、本発明のさらに他の実施態様によれば、上記酸化スケールの除去に用いられる混酸溶液が提供される。   According to one embodiment of the present invention, an austenitic stainless cold-rolled steel sheet is prepared by using a neutral salt electrolytic cell using sodium sulfate as an electrolyte, a sulfuric acid electrolytic cell using sulfuric acid and metal sulfate as an electrolyte, and sulfuric acid, hydrogen peroxide and There is provided a method for removing oxide scale on the surface of a steel sheet by passing it through a mixed acid bath of a pickling composition containing hydrofluoric acid. According to another embodiment of the present invention, there is provided a high chromium austenitic stainless cold rolled steel sheet obtained by the method of the present invention. Furthermore, according to still another embodiment of the present invention, there is provided a mixed acid solution used for removing the oxide scale.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

通常、オーステナイト系ステンレス冷延鋼板には熱処理後に200〜500nmの厚さの酸化スケールが生成され、上記酸化スケールはFeよりCrの酸化物含量が相対的に高いCr‐リッチスケール層、酸化スケールと母材の界面に存在するSi‐酸化物層の多層構造を有している。   In general, an austenitic stainless cold-rolled steel sheet is formed with an oxide scale having a thickness of 200 to 500 nm after heat treatment. The oxide scale includes a Cr-rich scale layer having a relatively higher Cr oxide content than Fe, an oxide scale, It has a multilayer structure of Si-oxide layers present at the interface of the base material.

上記スケールのうちCr‐リッチスケール層は中性塩電解槽で除去されることができる。上記中性塩電解槽は、硫酸ナトリウム電解質を含む中性塩電解液を含み、電流を鋼板の表面に通電するための電極を含む。この際、上記電極は、鋼板の表面電位が+、−、+の順に少なくとも1回以上帯電されるように構成される。   Among the scales, the Cr-rich scale layer can be removed in a neutral salt electrolytic cell. The said neutral salt electrolysis tank contains the neutral salt electrolyte solution containing a sodium sulfate electrolyte, and contains the electrode for supplying an electric current to the surface of a steel plate. In this case, the electrode is configured such that the surface potential of the steel plate is charged at least once in the order of +, −, +.

上記中性塩電解液はpH3〜6の範囲であることが好ましく、上記pH範囲を有する中性塩電解液に電流が加わる場合はCr‐リッチスケール層のCrがCr6+の状態に優先的に溶解されることにより鋼板の表面のCr‐リッチスケールのCrを除去することができる。この際、上記中性塩電解液中の電解質としては硫酸ナトリウムを用いることが好ましい。上記硫酸ナトリウム電解質は、電解液内の電気伝導度を高めて鋼板の表面への通電率を高めることによりCr‐リッチスケールのCrを溶解させる。 The neutral salt electrolyte is preferably in the range of pH 3 to 6 , and when a current is applied to the neutral salt electrolyte having the above pH range, the Cr-rich scale layer Cr is preferentially in a state of Cr 6+. By melting, Cr-rich scale Cr on the surface of the steel sheet can be removed. At this time, sodium sulfate is preferably used as the electrolyte in the neutral salt electrolyte. The sodium sulfate electrolyte dissolves Cr-rich scale Cr by increasing the electrical conductivity in the electrolytic solution and increasing the electrical conductivity to the surface of the steel sheet.

この際、上記中性塩電解液には硫酸ナトリウム電解質が100〜250g/lの含量で含まれることが好ましい。上記硫酸ナトリウム電解質が100g/l以上の場合は、クロムの溶解のための適正伝導度が得られる。これに対し、250g/lを超える場合は、硫酸ナトリウムが電解液内に析出されて設備配管を塞ぎ、操業を悪化させる恐れがある。したがって、硫酸ナトリウム電解質は250g/l以下で含まれることが好ましい。   At this time, the neutral salt electrolyte preferably includes a sodium sulfate electrolyte in a content of 100 to 250 g / l. When the sodium sulfate electrolyte is 100 g / l or more, proper conductivity for dissolution of chromium can be obtained. On the other hand, when it exceeds 250 g / l, sodium sulfate may be deposited in the electrolyte solution, block the equipment piping, and deteriorate the operation. Accordingly, the sodium sulfate electrolyte is preferably contained at 250 g / l or less.

上記中性塩電解槽内の電解質の電気伝導度は、電解液の温度と密接な関連がある。電解液の温度が50℃以上の場合にCr‐リッチスケール層のクロムの溶解のための適正伝導度が得られ、電解液の温度が高くなるほど伝導度も高くなる。しかしながら、電解液の温度が90℃を超える場合は、操業における温度管理が困難である。したがって、中性塩電解槽内の電解液の温度は50〜90℃の範囲であることが好ましい。   The electrical conductivity of the electrolyte in the neutral salt electrolytic cell is closely related to the temperature of the electrolytic solution. When the temperature of the electrolytic solution is 50 ° C. or higher, appropriate conductivity for dissolution of chromium in the Cr-rich scale layer is obtained, and the higher the temperature of the electrolytic solution, the higher the conductivity. However, when the temperature of the electrolytic solution exceeds 90 ° C, temperature management in operation is difficult. Therefore, it is preferable that the temperature of the electrolytic solution in the neutral salt electrolytic cell is in the range of 50 to 90 ° C.

一方、電極を介して加わる電流は10A/dm以上であることが好ましい。電極を介して加わる電流が10A/dm以上の場合は、Cr‐リッチスケールのCrを十分に溶出させることができる。しかしながら、30A/dmを超える場合は、電流を発生するための整流器(rectifier)設備が大きくなりすぎるため、初期設備費が大きくなってしまう。したがって、電流は10〜30A/dmの範囲であることが好ましい。 On the other hand, the current applied through the electrode is preferably 10 A / dm 2 or more. When the current applied through the electrode is 10 A / dm 2 or more, Cr-rich scale Cr can be sufficiently eluted. However, if it exceeds 30 A / dm 2 , the rectifier equipment for generating current becomes too large, and the initial equipment cost becomes large. Therefore, it is preferable that the current is in the range of 10~30A / dm 2.

上記中性塩電解処理の処理時間は30秒以上120秒以下であることが好ましい。上記範囲の時間の間に中性塩電解槽で処理することによりクロムのスケール除去効果が十分に得られる。しかしながら、中性塩電解処理時間が120秒を超える場合は、それ以上のスケール除去効果はなく、電解酸洗時に溶出されたメタルイオンが再度電着される可能性があるため好ましくない。   The neutral salt electrolysis treatment time is preferably 30 seconds or longer and 120 seconds or shorter. By performing the treatment in a neutral salt electrolytic cell during the time in the above range, the effect of removing the chromium scale can be sufficiently obtained. However, when the neutral salt electrolysis time exceeds 120 seconds, there is no further scale removal effect, and metal ions eluted during the electrolytic pickling may be electrodeposited again, which is not preferable.

一方、中性塩電解槽で完全に除去されなかったCr及びFe等の残留スケールは、硫酸電解槽によって除去される。上記硫酸電解槽は、硫酸及び鉄、クロム、ニッケル、銅、マンガン、チタニウムのうち少なくとも一つ以上を含むメタル硫酸塩から構成される硫酸電解液、並びに電流を鋼板の表面に通電するための電極を含み、上記電極は、鋼板の表面電位が+、−、+の順に少なくとも1回以上帯電されるように構成される。   On the other hand, residual scales such as Cr and Fe that have not been completely removed in the neutral salt electrolytic cell are removed by the sulfuric acid electrolytic cell. The sulfuric acid electrolytic cell comprises a sulfuric acid electrolyte composed of a metal sulfate containing at least one of sulfuric acid and iron, chromium, nickel, copper, manganese, and titanium, and an electrode for energizing the surface of the steel sheet with current. The electrode is configured such that the surface potential of the steel sheet is charged at least once in the order of +, −, +.

上記硫酸電解液はpH0〜1の範囲であることが好ましく、上記硫酸電解液に電流が加わる場合はFeがFe2+のイオン状態に溶解される。この際、硫酸のHとSO 2−は、溶液内の電気伝導度を高めて電極から鋼板の表面への通電率を高め、より低くなったpHによって残留スケールの鉄を化学的に溶解させる。 The sulfuric acid electrolyte is preferably in the range of pH 0 to 1. When a current is applied to the sulfuric acid electrolyte, Fe is dissolved in an ionic state of Fe 2+ . At this time, sulfuric acid H + and SO 4 2− increase the electrical conductivity in the solution to increase the electrical conductivity from the electrode to the surface of the steel sheet, and chemically dissolve the residual scale iron by the lower pH. Let

この際、上記硫酸電解液は硫酸を50〜150g/lの範囲で含むことが好ましい。硫酸が50g/l以上の場合に適正伝導度以上に維持されることができるため、鋼板の表面への通電率を維持することができる。しかしながら、硫酸が150g/lを超える場合は、化学的溶解が大きく発生するため、ステンレス冷延鋼板の表面が荒れる問題が発生する。   At this time, the sulfuric acid electrolyte preferably contains sulfuric acid in the range of 50 to 150 g / l. When sulfuric acid is 50 g / l or more, it can be maintained at an appropriate conductivity or higher, so that the current ratio to the surface of the steel sheet can be maintained. However, when sulfuric acid exceeds 150 g / l, chemical dissolution is greatly generated, so that the surface of the stainless cold-rolled steel sheet becomes rough.

また、上記硫酸電解液は、鉄、クロム、ニッケル、銅、マンガン、チタニウムのうち少なくとも一つ以上を含むメタル硫酸塩を含むことができる。上記メタル硫酸塩は、平衡反応によりメタル濃度が低く電気伝導度が低い場合は、硫酸塩からメタルが溶出されて電気伝導度を高くし、メタル濃度が高く電気伝導度が高い場合は、再度硫酸塩として析出されて電気伝導度を低くし、硫酸電解液の電気伝導度を一定に維持できるようにする。   The sulfuric acid electrolyte may include a metal sulfate containing at least one of iron, chromium, nickel, copper, manganese, and titanium. When the metal concentration is low due to the equilibrium reaction and the electric conductivity is low, the metal sulfate is eluted from the sulfate to increase the electric conductivity. When the metal concentration is high and the electric conductivity is high, the sulfuric acid is again added. It is deposited as a salt to lower the electrical conductivity so that the electrical conductivity of the sulfuric acid electrolyte can be maintained constant.

上記中性塩電解槽の電解液と同様に、硫酸電解液は最小限の伝導度を得るために溶液温度が30℃以上であることが好ましい。しかしながら、硫酸電解液の溶液温度が60℃を超える場合は、化学的溶解が過度に行われてステンレス冷延鋼板の表面が荒れ、また、鋼板の表面が黒く変わる黒変(black smut)現象が発生する可能性がある。したがって、硫酸電解槽の電解液は30〜60℃の範囲の温度を有することが好ましい。   Like the neutral salt electrolytic cell, the sulfuric acid electrolyte preferably has a solution temperature of 30 ° C. or higher in order to obtain a minimum conductivity. However, when the solution temperature of the sulfuric acid electrolyte exceeds 60 ° C., the chemical dissolution is excessively performed, the surface of the stainless cold-rolled steel sheet becomes rough, and the black smut phenomenon in which the surface of the steel sheet turns black occurs. May occur. Therefore, it is preferable that the electrolytic solution of the sulfuric acid electrolytic cell has a temperature in the range of 30 to 60 ° C.

一方、硫酸電解槽に加わる電流は10〜30A/dmの範囲であることが好ましい。電流が10A/dm以上加わる場合は、電気化学反応によるスケール溶出量が十分になるため、十分な電解酸洗効果が得られる。しかしながら、30A/dmを超える電流が加わる場合は、電流を発生するための整流器(rectifier)設備が大きくなるため、初期設備費が大きくなってしまう。したがって、電流は10〜30A/dmの範囲であることが好ましい。 On the other hand, it is preferable that the current applied to the sulfuric acid electrolytic bath in the range of 10~30A / dm 2. When the current is applied at 10 A / dm 2 or more, the amount of scale elution due to the electrochemical reaction becomes sufficient, so that a sufficient electrolytic pickling effect can be obtained. However, when a current exceeding 30 A / dm 2 is applied, the rectifier equipment for generating the current becomes large, and the initial equipment cost increases. Therefore, it is preferable that the current is in the range of 10~30A / dm 2.

上記硫酸電解処理は5秒〜50秒間行われることが好ましい。硫酸電解処理を5秒以上行う場合にスケールを十分に除去することができる。しかしながら、硫酸電解処理時間が50秒を超える場合は、過酸洗の問題をもたらす。したがって、上記範囲で硫酸電解処理を行うことが好ましい。   The sulfuric acid electrolysis treatment is preferably performed for 5 seconds to 50 seconds. The scale can be sufficiently removed when the sulfuric acid electrolytic treatment is performed for 5 seconds or more. However, if the sulfuric acid electrolytic treatment time exceeds 50 seconds, it causes a problem of peracid washing. Therefore, it is preferable to perform sulfuric acid electrolysis treatment within the above range.

上記のように中性塩電解‐硫酸電解を経た鋼板の表面にはSi酸化物層と母材中のクロム枯渇層が残り、上記Si酸化物層とクロム枯渇層は窒素を含まない混酸溶液によって除去されることができる。上記混酸溶液は硫酸、遊離フッ酸及び過酸化水素を含み、上記混酸溶液を含む混酸槽にSi酸化物層とクロム枯渇層を含む鋼板を浸漬することにより中性塩電解‐硫酸電解を経た鋼板からSi酸化物層とクロム枯渇層を除去することができる。   As described above, the Si oxide layer and the chromium-depleted layer in the base metal remain on the surface of the steel plate that has undergone neutral salt electrolysis and sulfuric acid electrolysis, and the Si oxide layer and the chromium-depleted layer are formed by a mixed acid solution containing no nitrogen. Can be removed. The mixed acid solution contains sulfuric acid, free hydrofluoric acid, and hydrogen peroxide, and a steel sheet that has undergone neutral salt electrolysis-sulfuric acid electrolysis by immersing a steel sheet that includes a Si oxide layer and a chromium depleted layer in a mixed acid bath containing the mixed acid solution. From this, the Si oxide layer and the chromium depleted layer can be removed.

上記混酸溶液内での遊離フッ酸及び硫酸は、混酸溶液内で下記反応式(1)及び(2)のように解離される。   Free hydrofluoric acid and sulfuric acid in the mixed acid solution are dissociated in the mixed acid solution as shown in the following reaction formulas (1) and (2).

HF⇔H+F …(1) HF⇔H + + F (1)

SO⇔HSO +H⇔SO 2−+2H …(2) H 2 SO 4 ⇔HSO 4 + H + ⇔SO 4 2 − + 2H + (2)

即ち、混酸溶液内で遊離フッ酸は式(1)のように溶解されながら解離され、硫酸は式(2)のように解離される。この際、上記遊離フッ酸及び硫酸の解離によって提供されるH濃度、即ち、酸度(acidity)によって混酸溶液の平衡状態が変化する。 That is, in the mixed acid solution, the free hydrofluoric acid is dissociated while being dissolved as in the formula (1), and the sulfuric acid is dissociated as in the formula (2). At this time, the equilibrium state of the mixed acid solution varies depending on the H + concentration provided by the dissociation of the free hydrofluoric acid and sulfuric acid, that is, the acidity.

遊離フッ酸の場合、解離されていない遊離フッ酸(Free HF)状態で酸洗力を有し、鋼板の表面のSi酸化物を溶解させ、また、Si酸化物層と母材の界面に浸透してFeを溶解させる。このように溶解されたFe及びSiイオンはFeF (3−x)、HSiF等の形で鋼板の表面から除去される。 In the case of free hydrofluoric acid, it has a pickling power in the state of free hydrofluoric acid (Free HF), dissolves Si oxide on the surface of the steel sheet, and permeates the interface between the Si oxide layer and the base material. Then, Fe is dissolved. The dissolved Fe and Si ions are removed from the surface of the steel sheet in the form of FeF x (3-x) , H 2 SiF 6 or the like.

上記遊離フッ酸は混酸溶液内に10〜30g/lの範囲の濃度で存在することが好ましい。遊離フッ酸濃度が10g/l未満の場合は、遊離フッ酸として存在する濃度が少なく、Si及びクロム枯渇層に対する溶解力が不足するため、鋼板の表面に対する未酸洗問題が発生し、30g/lを超える場合は、母材の浸食速度が速くなるため、混酸酸洗工程後の鋼板の表面が荒れる可能性がある。より好ましくは、15〜30g/lの濃度の遊離フッ酸を含むのがよい。   The free hydrofluoric acid is preferably present in the mixed acid solution at a concentration in the range of 10 to 30 g / l. When the free hydrofluoric acid concentration is less than 10 g / l, the concentration present as free hydrofluoric acid is small, and the dissolving power for the Si and chromium depleted layers is insufficient. If it exceeds 1, the erosion rate of the base material is increased, so that the surface of the steel sheet after the mixed pickling process may be roughened. More preferably, it contains free hydrofluoric acid at a concentration of 15 to 30 g / l.

上記混酸工程を行うにあたり、混酸槽の溶液温度を適切に設定して行うことができるが、特に限定されない。例えば、20〜95℃、20〜80℃、20〜65℃、32〜80℃又は32〜65℃の範囲に設定して混酸酸洗工程を行うことができる。   In performing the said mixed acid process, although the solution temperature of a mixed acid tank can be set appropriately, it is not specifically limited. For example, the mixed pickling process can be performed by setting the temperature within a range of 20 to 95 ° C., 20 to 80 ° C., 20 to 65 ° C., 32 to 80 ° C.

上述したように、遊離フッ酸が鋼板の表面のSi酸化物層を除去する酸洗力を提供するため、上記混酸溶液内では一定の酸度以上で有効遊離フッ酸濃度が維持されることが好ましい。したがって、混酸溶液には、遊離フッ酸が解離されないようにするために、また、母材のクロム枯渇層を溶解させて粒界に生成されたSi酸化物を除去するために、一定濃度以上の硫酸が必要である。これに適した硫酸濃度は110〜150g/lの範囲である。硫酸濃度が110g/l未満の場合は、オーステナイト鋼の母材のクロム枯渇層及び粒界を十分に溶解するのが困難であるため、酸洗後に耐食性低下の問題が発生する可能性があり、150g/lを超える場合は、硫酸希釈操業中に発熱が起こって操業が困難となる等の問題がある。したがって、上記範囲の濃度で硫酸を含むことが好ましい。   As described above, since free hydrofluoric acid provides pickling power for removing the Si oxide layer on the surface of the steel sheet, it is preferable that the effective free hydrofluoric acid concentration is maintained at a certain acidity or higher in the mixed acid solution. . Therefore, in the mixed acid solution, in order to prevent the free hydrofluoric acid from being dissociated, and to dissolve the chromium-depleted layer of the base material and remove the Si oxide generated at the grain boundary, a certain concentration or more is required. Sulfuric acid is required. Suitable sulfuric acid concentrations for this range from 110 to 150 g / l. When the sulfuric acid concentration is less than 110 g / l, it is difficult to sufficiently dissolve the chromium-depleted layer and the grain boundary of the austenitic steel base material, which may cause a problem of deterioration in corrosion resistance after pickling. When it exceeds 150 g / l, there is a problem that heat is generated during the sulfuric acid dilution operation and the operation becomes difficult. Therefore, it is preferable to contain sulfuric acid at a concentration in the above range.

オーステナイト系ステンレス鋼の酸化スケールのうち、Si酸化物はオーステナイト系結晶の表面及び結晶粒界に全て存在し、結晶粒界のSi酸化物は母材の内部の奥にまで存在する。フェライト系ステンレス鋼の場合は、結晶の耐食性が低く、結晶の内部と結晶粒との浸食速度の差がないため、グレインの表面と結晶粒界が選択性なく完全に溶解されるのに対し、オーステナイト系ステンレス鋼の場合は、結晶の耐食性が高いため、結晶粒界から優先的に浸食される。したがって、Si酸化物を全て除去するためには、相当量の結晶粒界が溶解される必要がある。   Of the oxide scale of austenitic stainless steel, Si oxides are all present on the surface and grain boundaries of austenitic crystals, and the Si oxides at the grain boundaries exist deep inside the base material. In the case of ferritic stainless steel, the corrosion resistance of the crystal is low, and there is no difference in the erosion rate between the inside of the crystal and the crystal grain, so the surface of the grain and the grain boundary are completely dissolved without selectivity, In the case of austenitic stainless steel, the corrosion resistance of the crystals is high, so that they are preferentially eroded from the grain boundaries. Therefore, in order to remove all the Si oxide, a considerable amount of crystal grain boundaries need to be dissolved.

この際、母材からFe2+が溶出され、溶出されたFe2+は過酸化水素と反応してFe3+に酸化された後、HFと結合してFeF (3−x)に錯化合物を生成することにより鋼板の表面から除去される。このような反応を下記反応式(3)〜(6)で表す。なお、上記過程が円滑に進行される場合に酸洗速度を高めることができる。 At this time, Fe 2+ is eluted from the base material, and the eluted Fe 2+ reacts with hydrogen peroxide to be oxidized to Fe 3+ and then combined with HF to form a complex compound in FeF x (3-x). Is removed from the surface of the steel sheet. Such a reaction is represented by the following reaction formulas (3) to (6). The pickling rate can be increased when the above process proceeds smoothly.

Fe⇔Fe2++2e …(3) Fe 0 ⇔Fe 2+ + 2e (3)

Fe2++H→Fe3++・H+OH …(4) Fe 2+ + H 2 O 2 → Fe 3+ + · H + OH (4)

Fe3++3HF⇔FeF+3H …(5) Fe 3+ + 3HF⇔FeF 3 + 3H + (5)

Cu2++2e→Cu …(6) Cu 2+ + 2e → Cu 0 (6)

ステンレス鋼は鋼種ごとに固有の動電位曲線の電位‐電流間の相関関係を有しており、この際に発生する電流量を酸洗速度で表すことができる。よって、表面電位を制御することにより最大酸洗速度を具現することができる。このために、混酸槽内の冷延鋼板の表面電位を−0.2〜0.1Vの範囲に維持することが好ましい。冷延鋼板の表面電位が上記範囲を外れる場合は、酸洗されないか又は部分的に未酸洗の表面を有する酸洗不良をもたらす可能性があり、仮に酸洗されても冷延鋼板に対して良好な表面品質が得られない。   Stainless steel has a correlation between the potential and current of a specific electrokinetic curve for each steel type, and the amount of current generated at this time can be expressed by the pickling rate. Therefore, the maximum pickling speed can be realized by controlling the surface potential. For this reason, it is preferable to maintain the surface potential of the cold-rolled steel sheet in the mixed acid tank in the range of -0.2 to 0.1V. If the surface potential of the cold-rolled steel sheet is out of the above range, it may not be pickled or may have poor pickling that has a partially unpickled surface. And good surface quality cannot be obtained.

一方、従来は、酸洗液中のFe2+/Fe3+の比率を調節して酸洗液の酸化還元電位(ORP)を制御することにより酸洗を行った。しかしながら、本発明者らは、メタル濃度が適正水準に到達する前には溶液の酸化還元電位(ORP)と表面電位との関連性が確認できず、酸化還元電位(ORP)のみでは混酸酸洗を調節することができないことを見い出した。 On the other hand, pickling is conventionally performed by adjusting the ratio of Fe 2+ / Fe 3+ in the pickling solution to control the oxidation-reduction potential (ORP) of the pickling solution. However, the present inventors have not been able to confirm the relationship between the redox potential (ORP) of the solution and the surface potential before the metal concentration reaches an appropriate level, and the mixed pickling with only the redox potential (ORP). I found that I can not adjust.

上記混酸溶液内のメタル濃度が適正水準に到達する前に残留過酸化水素濃度が不足する場合は、混酸槽内での冷延鋼板の表面電位が−2.0V以上に維持されず、上記反応式(4)の反応がなされないため、鋼板の表面のFe2+濃度が局部的に増加し、反応式(3)の左方向の反応が大きくなる。この場合、Fe及びステンレス鋼に添加物又は不純物として存在するCu等が反応式(6)のように鋼板の表面に再析出されて鋼板の表面が黒く変わる黒変現象が発生する。したがって、残留過酸化水素濃度が常に一定濃度以上存在する必要がある。 When the residual hydrogen peroxide concentration is insufficient before the metal concentration in the mixed acid solution reaches an appropriate level, the surface potential of the cold-rolled steel sheet in the mixed acid tank is not maintained at -2.0 V or more, and the reaction Since the reaction of the formula (4) is not performed, the Fe 2+ concentration on the surface of the steel sheet is locally increased, and the reaction in the left direction of the reaction formula (3) is increased. In this case, Cu or the like present as an additive or impurity in Fe and stainless steel is re-precipitated on the surface of the steel plate as in the reaction formula (6), and a blackening phenomenon occurs in which the surface of the steel plate turns black. Therefore, it is necessary that the residual hydrogen peroxide concentration always exists above a certain concentration.

しかしながら、混酸溶液内のメタル濃度が適正水準に到達した後には、−0.2V以上の表面電位を維持するための残留過酸化水素濃度は溶液内のメタル濃度と相関関係がある。即ち、溶液内のメタル濃度は酸洗が進行するにつれて増加し、過酸化水素によって溶出されたFe2+イオンはFe3+イオンに酸化される。これによるFe3+イオン含量の増加は同一の過酸化水素濃度で表面電位の増加を誘導し、これはFe3+イオンが酸化剤として作用するためである。Fe3+イオンが増加するほど、鋼板の表面電位を維持するための過酸化水素濃度は減少する傾向を示す。 However, after the metal concentration in the mixed acid solution reaches an appropriate level, the residual hydrogen peroxide concentration for maintaining the surface potential of −0.2 V or more has a correlation with the metal concentration in the solution. That is, the metal concentration in the solution increases as the pickling progresses, and Fe 2+ ions eluted by hydrogen peroxide are oxidized to Fe 3+ ions. This increase in Fe 3+ ion content induces an increase in surface potential at the same hydrogen peroxide concentration because Fe 3+ ions act as oxidizing agents. As the Fe 3+ ion increases, the hydrogen peroxide concentration for maintaining the surface potential of the steel sheet tends to decrease.

したがって、メタル濃度が十分な状態ではFe3+/Fe2+及び酸化還元電位によって−0.2V以上の表面電位を十分に確保することができ、このときからは溶液の酸化還元電位から鋼板の表面電位を制御することができる。 Accordingly, when the metal concentration is sufficient, a surface potential of −0.2 V or more can be sufficiently secured by Fe 3+ / Fe 2+ and the oxidation-reduction potential, and from this time, the surface potential of the steel sheet is determined from the oxidation-reduction potential of the solution. Can be controlled.

このような関係は本発明者らの不断の実験により得られたものであり、下記実施例から確認できる。本発明者らは、上記のような実験により、鋼板の表面電位を−0.2V以上に維持するための溶液内の鉄イオン濃度による最小の過酸化水素濃度及び溶液の酸化還元電位について下記のような関係があることを確認し、これを図3にグラフで示した。
0g/L≦[metal]<10g/L、[Hmin=4.5g/L、ORP 600mV
10g/L≦[metal]<20g/L、[Hmin=2.5g/L、ORP 500mV
20g/L≦[metal]<40g/L、[Hmin=0.5g/L、ORP 400mV
40g/L≦[metal]<60g/L、[Hmin=0〜0.2g/L、ORP 350mV
Such a relationship was obtained by the inventors' constant experiment and can be confirmed from the following examples. Based on the above experiments, the present inventors have found that the minimum hydrogen peroxide concentration and the oxidation-reduction potential of the solution due to the iron ion concentration in the solution for maintaining the surface potential of the steel sheet at −0.2 V or more are as follows. It was confirmed that there was such a relationship, and this was shown graphically in FIG.
0 g / L ≦ [metal] <10 g / L, [H 2 O 2 ] min = 4.5 g / L, ORP 600 mV
10 g / L ≦ [metal] <20 g / L, [H 2 O 2 ] min = 2.5 g / L, ORP 500 mV
20 g / L ≦ [metal] <40 g / L, [H 2 O 2 ] min = 0.5 g / L, ORP 400 mV
40 g / L ≦ [metal] <60 g / L, [H 2 O 2 ] min = 0 to 0.2 g / L, ORP 350 mV

図3から分かるように、鉄イオン濃度が0の場合は、少なくとも4.5g/l以上の有効過酸化水素濃度を含まなければならないが、鉄イオン濃度が40g/l以上の場合は、過酸化水素濃度0〜0.2g/lでも溶液内の鉄イオンによって溶液の酸化還元電位(ORP)が酸洗可能な表面電位である−0.2V以上を維持するため、更なる過酸化水素の添加を最小化することができる。即ち、メタル含量の増加につれて、鋼板の表面電位は過酸化水素の含量よりは溶液の酸化還元電位に依存するため、溶液内のメタル含量が相対的に高くなっても低コストで操業が可能となる。したがって、この領域では、溶液の酸化還元電位(ORP)を350mV以上に維持するための最小の過酸化水素のみを必要とする。   As can be seen from FIG. 3, when the iron ion concentration is 0, it must contain an effective hydrogen peroxide concentration of at least 4.5 g / l or more, but when the iron ion concentration is 40 g / l or more, it is peroxidized. Addition of hydrogen peroxide in order to maintain the oxidation-reduction potential (ORP) of the solution at a hydrogen potential of 0 to 0.2 g / l or more, which is a surface potential that can be pickled by the iron ions in the solution. Can be minimized. In other words, as the metal content increases, the surface potential of the steel sheet depends on the oxidation-reduction potential of the solution rather than the content of hydrogen peroxide, so that operation is possible at low cost even if the metal content in the solution is relatively high. Become. Therefore, in this region, only the minimum hydrogen peroxide for maintaining the redox potential (ORP) of the solution at 350 mV or higher is required.

即ち、上記過酸化水素濃度は混酸溶液中の鉄イオンとの関係で下記式(1)を満たし、上記酸化還元電位(ORP)は混酸溶液中の鉄イオン濃度との関係で下記式(2)又は(3)を満たすことが好ましい。   That is, the hydrogen peroxide concentration satisfies the following formula (1) in relation to iron ions in the mixed acid solution, and the oxidation-reduction potential (ORP) has the following formula (2) in relation to the iron ion concentration in the mixed acid solution. Or it is preferable to satisfy (3).

過酸化水素濃度0.00736+10×e−[metal]/13.2 …(1)
Hydrogen peroxide concentration 0.00736 + 10 × e − [metal] /13.2 (1)

ORP600mV、但し、鉄イオン濃度≦10g/l …(2)
ORP 600 mV, however, iron ion concentration ≦ 10 g / l (2)

ORP310+431×e−[metal]/25.24、但し、鉄イオン濃度>10g/l …(3)
(上記式(1)及び(3)において[metal]は混酸溶液中の鉄イオン濃度を示す。)
ORP 310 + 431 × e − [metal] /25.24 provided that iron ion concentration> 10 g / l (3)
(In the above formulas (1) and (3), [metal] represents the iron ion concentration in the mixed acid solution.)

混酸酸洗工程において、混酸槽内の混酸溶液の過酸化水素濃度と酸化還元電位が溶液内の鉄イオン濃度との関係で上記のような関係を満たす場合は、優れた酸洗効果が得られる。   In the mixed pickling process, if the hydrogen peroxide concentration of the mixed acid solution in the mixed acid tank and the oxidation-reduction potential satisfy the above relationship in relation to the iron ion concentration in the solution, an excellent pickling effect can be obtained. .

上述した内容から、混酸槽での混酸酸洗工程では、酸洗溶液中の硫酸及びフッ酸濃度と残留過酸化水素濃度が酸洗効果増大及び高速酸洗の最も重要な因子であることが確認できる。したがって、これらの成分の濃度を制御する必要があり、このような各成分の濃度制御においては、通常用いられる酸分析器を用いて硫酸及びフッ酸濃度を調整することができ、近赤外線分析方法又は自動滴定法により残留過酸化水素濃度を分析及び調節することができる。   From the above, in the mixed pickling process in the mixed acid tank, it is confirmed that the sulfuric acid and hydrofluoric acid concentrations in the pickling solution and the residual hydrogen peroxide concentration are the most important factors for the pickling effect increase and high-speed pickling. it can. Therefore, it is necessary to control the concentration of these components. In the concentration control of each component, the concentration of sulfuric acid and hydrofluoric acid can be adjusted using a commonly used acid analyzer, and the near infrared analysis method can be used. Alternatively, the residual hydrogen peroxide concentration can be analyzed and adjusted by automatic titration.

一方、本発明により混酸酸洗処理された鋼板は結晶粒界の幅が1μm以上であることが好ましい。混酸酸洗処理後の鋼板の表面の結晶粒界の幅が1μm以上の場合に結晶粒界からCr枯渇層が完全に除去されて優れた耐食性を有する鋼板が得られる。即ち、結晶粒界にCr枯渇層が存在する場合はCr枯渇層によって鋼板の表面に発錆を誘発するのに対し、Cr枯渇層が存在しない場合は優れた耐食性を示す傾向がある。酸洗後の結晶粒界の幅が狭いほど、結晶粒界にCr枯渇層が存在して耐食性が十分でないのに対し、結晶粒界の幅が広いほど、結晶粒界にCr枯渇層が少なく存在する。したがって、結晶粒界の幅の程度によって結晶粒界のCr枯渇層の存在が確認でき、これにより鋼板の耐食性の程度が予測できる。   On the other hand, it is preferable that the width of the grain boundary is 1 μm or more in the steel sheet that has been subjected to the pickling treatment according to the present invention. When the width of the crystal grain boundary on the surface of the steel sheet after the mixed pickling treatment is 1 μm or more, the Cr depleted layer is completely removed from the crystal grain boundary, and a steel sheet having excellent corrosion resistance is obtained. That is, when a Cr-depleted layer is present at the grain boundary, rusting is induced on the surface of the steel sheet by the Cr-depleted layer, whereas when there is no Cr-depleted layer, excellent corrosion resistance tends to be exhibited. The narrower the grain boundary after pickling, the smaller the Cr depletion layer at the grain boundary and the less corrosion resistance, whereas the wider the grain boundary, the fewer the Cr depletion layer at the grain boundary. Exists. Therefore, the presence of a Cr-depleted layer at the grain boundary can be confirmed by the degree of the grain boundary width, and thereby the degree of corrosion resistance of the steel sheet can be predicted.

鋼板の結晶粒界の幅が1μm以上の場合に上記Cr枯渇層が酸洗工程によって完全に除去されて優れた耐食性を有する鋼板が得られる。しかしながら、結晶粒界の幅が1μm未満の場合は、結晶粒界にCr枯渇層が存在し、発錆の核として作用するため、鋼板の耐食性が悪くなる傾向を示す。好ましくは、上記結晶粒界の幅が1.5μm以下であるのがよい。上記範囲を外れても酸洗により得られた冷延鋼板の耐食性を確保することができるが、鋼板の表面光沢度が低下する可能性があるため、結晶粒界の幅が1.5μm以下であることが好ましい。また、得られた冷延鋼板において圧延方向に対して60°の角度で測定された光沢度を150以上にする結晶粒界の幅を有することが高品質の鋼板を得るのにより好ましい。   When the width of the grain boundary of the steel sheet is 1 μm or more, the Cr-depleted layer is completely removed by the pickling process to obtain a steel sheet having excellent corrosion resistance. However, when the grain boundary width is less than 1 μm, a Cr-depleted layer is present at the grain boundary and acts as a rusting nucleus, so that the corrosion resistance of the steel sheet tends to deteriorate. Preferably, the width of the crystal grain boundary is 1.5 μm or less. Although the corrosion resistance of the cold-rolled steel sheet obtained by pickling can be ensured even if it is outside the above range, the surface glossiness of the steel sheet may decrease, so the width of the grain boundary is 1.5 μm or less. Preferably there is. In addition, it is more preferable to obtain a high quality steel sheet having a grain boundary width that makes the glossiness measured at an angle of 60 ° with respect to the rolling direction 150 or more in the obtained cold rolled steel sheet.

このような鋼板の結晶粒界の幅は、混酸酸洗工程の工程条件と関連がある。即ち、混酸酸洗後の結晶粒界の幅は本発明の混酸溶液を用いる場合に混酸溶液の温度、遊離フッ酸濃度及び酸洗時間との関係から下記式(4)のような関係を有し、酸洗後の結晶粒界の幅(W)は1μm以上を満たすことが好ましい。   The width of the grain boundary of such a steel sheet is related to the process conditions of the mixed pickling process. In other words, the width of the crystal grain boundary after the pickling with the mixed acid has a relationship represented by the following formula (4) from the relationship with the temperature of the mixed acid solution, the concentration of free hydrofluoric acid and the pickling time when the mixed acid solution of the present invention is used. The grain boundary width (W) after pickling preferably satisfies 1 μm or more.

W=−0.184+0.0131×t+0.016×C+0.01×T≧1 …(4)
(上記式(4)においてtは酸洗時間(秒)、CはHF濃度(g/l)、Tは酸洗温度(℃)を示す。)
W = −0.184 + 0.0131 × t + 0.016 × C + 0.01 × T ≧ 1 (4)
(In the above formula (4), t represents the pickling time (seconds), C represents the HF concentration (g / l), and T represents the pickling temperature (° C.).)

上記関係式を用いることにより、鋼板の表面状態を観察しなくても工程条件から酸洗後の結晶粒界の幅が予測でき、優れた耐食性を有する鋼板を得るための工程条件を制御することができる。   By using the above relational expression, the width of the grain boundary after pickling can be predicted from the process conditions without observing the surface state of the steel sheet, and the process conditions for obtaining a steel sheet having excellent corrosion resistance can be controlled. Can do.

上述した内容から、混酸槽プロセスでは酸洗溶液中の硫酸及びフッ酸濃度と残留過酸化水素濃度が酸洗効果増大及び高速酸洗の最も重要な因子であることが確認できる。したがって、これらの成分の濃度を制御する必要があり、このような各成分の濃度制御においては、通常用いられる酸分析器を用いて硫酸及びフッ酸濃度を調整することができ、近赤外線分析方法又は自動滴定法により残留過酸化水素濃度を分析及び調節することができる。   From the above-mentioned contents, it can be confirmed that the sulfuric acid and hydrofluoric acid concentrations and the residual hydrogen peroxide concentration in the pickling solution are the most important factors for increasing the pickling effect and high-speed pickling in the mixed acid bath process. Therefore, it is necessary to control the concentration of these components. In the concentration control of each component, the concentration of sulfuric acid and hydrofluoric acid can be adjusted using a commonly used acid analyzer, and the near infrared analysis method can be used. Alternatively, the residual hydrogen peroxide concentration can be analyzed and adjusted by automatic titration.

混酸酸洗工程において、混酸槽内の混酸溶液の過酸化水素濃度と酸化還元電位が溶液内の鉄イオン濃度との関係で上記のような関係を満たす場合は優れた酸洗効果が得られることは前述した通りである。但し、相対的に低温の混酸溶液で酸洗工程を行う場合は必要とされる遊離フッ酸の濃度を変化させることがより好ましい。   In the mixed pickling process, an excellent pickling effect can be obtained when the hydrogen peroxide concentration of the mixed acid solution in the mixed acid tank and the oxidation-reduction potential satisfy the above relationship in relation to the iron ion concentration in the solution. Is as described above. However, when the pickling process is performed with a relatively low-temperature mixed acid solution, it is more preferable to change the concentration of free hydrofluoric acid required.

本発明の混酸溶液の温度は、最小の有効過酸化水素含量を維持するための過酸化水素投入量と直接的な相関性のあるもので、特に限定する必要がある。即ち、温度によって自己分解される過酸化水素の特性上、安定剤を投入しても、温度増加による過酸化水素の分解の程度は格段に増加する。例えば、図5に示したように、混酸溶液の温度が30℃から50℃に20℃増加するとき、残留過酸化水素の半減期は6倍以上減少する。したがって、混酸溶液内の残留過酸化水素の分解を抑制するためには混酸溶液の温度を低く設定する必要があり、好ましくは32℃以下、より好ましくは20℃〜32℃の範囲に設定する必要がある。   The temperature of the mixed acid solution of the present invention has a direct correlation with the amount of hydrogen peroxide input to maintain the minimum effective hydrogen peroxide content and needs to be particularly limited. That is, due to the characteristics of hydrogen peroxide that is self-decomposed by temperature, even if a stabilizer is added, the degree of decomposition of hydrogen peroxide due to an increase in temperature increases markedly. For example, as shown in FIG. 5, when the temperature of the mixed acid solution is increased by 20 ° C. from 30 ° C. to 50 ° C., the half-life of residual hydrogen peroxide is reduced by 6 times or more. Therefore, in order to suppress decomposition of residual hydrogen peroxide in the mixed acid solution, it is necessary to set the temperature of the mixed acid solution low, preferably 32 ° C. or less, more preferably 20 ° C. to 32 ° C. There is.

上記のように低温で混酸酸洗工程を行う場合は上記遊離フッ酸を混酸溶液中で25〜40g/lの範囲の濃度に維持するのがよい。25g/l未満の場合は、低温での酸洗能力が低下し、Si及びクロム枯渇層に対する溶解力が不足するため、鋼板の表面に対する未酸洗問題が発生し、40g/lを超える場合は、母材の浸食速度が速くなるため、酸洗工程後の鋼板の表面が荒れる可能性がある。好ましくは、30〜35g/lに維持するのがよい。   When the mixed pickling process is performed at a low temperature as described above, the free hydrofluoric acid is preferably maintained at a concentration in the range of 25 to 40 g / l in the mixed acid solution. If it is less than 25 g / l, the pickling ability at low temperature is reduced and the dissolving power for the Si and chromium depleted layers is insufficient, so the problem of unpickling on the surface of the steel sheet occurs, and if it exceeds 40 g / l Since the erosion speed of the base material is increased, the surface of the steel sheet after the pickling process may be roughened. Preferably, it is good to maintain at 30-35 g / l.

図6から分かるように、鋼板の表面電位を−0.2V以上に維持するための低温混酸溶液内の鉄イオン濃度による最小の過酸化水素濃度は下記の通りである。
0g/L[metal]<10g/L、[Hmin=10〜5.5g/L
10g/L[metal]<20g/L、[Hmin=3.5g/L
20g/L[metal]<40g/L、[Hmin=1.5g/L
40g/L[metal]<60g/L、[Hmin=1g/L
As can be seen from FIG. 6, the minimum hydrogen peroxide concentration by the iron ion concentration in the low-temperature mixed acid solution for maintaining the surface potential of the steel sheet at −0.2 V or higher is as follows.
0 g / L [metal] <10 g / L, [H 2 O 2 ] min = 10 to 5.5 g / L
10 g / L [metal] <20 g / L, [H 2 O 2 ] min = 3.5 g / L
20 g / L [metal] <40 g / L, [H 2 O 2 ] min = 1.5 g / L
40 g / L [metal] <60 g / L, [H 2 O 2 ] min = 1 g / L

具体的には、鉄イオン濃度が0g/lの場合は、少なくとも5.5g/l以上の有効過酸化水素濃度を含まなければならないが、鉄イオン濃度が40g/l以上の場合は、1g/lの有効過酸化水素濃度だけでもメタルイオンによって溶液の酸化還元電位(ORP)が表面電位を−0.2V以上に維持させるため、更なる過酸化水素の添加を最小化することができる。即ち、メタル含量の増加につれて、ストリップの表面電位は過酸化水素含量よりは溶液の酸化還元電位に依存するため、溶液内のメタル含量が相対的に高くなっても低コストで操業が可能となる。   Specifically, when the iron ion concentration is 0 g / l, the effective hydrogen peroxide concentration must be at least 5.5 g / l or more, but when the iron ion concentration is 40 g / l or more, 1 g / l. Even with an effective hydrogen peroxide concentration of 1 only, the addition of hydrogen peroxide can be minimized because the oxidation-reduction potential (ORP) of the solution maintains the surface potential at -0.2 V or more by metal ions. That is, as the metal content increases, the surface potential of the strip depends on the oxidation-reduction potential of the solution rather than the hydrogen peroxide content, so that operation is possible at low cost even if the metal content in the solution is relatively high. .

このような関係を式で表すと、下記式(5)の通りである。   Such a relationship is expressed by the following formula (5).

過酸化水素濃度0.805+9.2×e−[metal/15.56] …(5)
(上記式(5)において[metal]は混酸溶液中の鉄イオン濃度を示す。)
Hydrogen peroxide concentration 0.805 + 9.2 × e − [metal / 15.56] (5)
(In the above formula (5), [metal] represents the iron ion concentration in the mixed acid solution.)

上述した内容から、混酸槽での混酸酸洗工程では酸洗溶液中の硫酸及びフッ酸濃度と残留過酸化水素濃度が酸洗効果増大及び高速酸洗の最も重要な因子であることが確認できる。したがって、これらの成分の濃度を制御する必要があり、このような各成分の濃度制御においては、上述したように通常用いられる酸分析器を用いて硫酸及びフッ酸濃度を調整することができ、近赤外線分析方法又は自動滴定法により残留過酸化水素濃度を分析及び調節することができる。   From the above description, it can be confirmed that the sulfuric acid and hydrofluoric acid concentrations in the pickling solution and the residual hydrogen peroxide concentration are the most important factors for the pickling effect increase and the high-speed pickling in the mixed pickling step in the mixed acid bath. . Therefore, it is necessary to control the concentration of these components. In the concentration control of each component, the concentration of sulfuric acid and hydrofluoric acid can be adjusted using an acid analyzer that is normally used as described above. The residual hydrogen peroxide concentration can be analyzed and adjusted by a near infrared analysis method or an automatic titration method.

上記のような本発明の方法によれば、高速で酸洗工程を行うことができるため、総酸洗時間が15〜240秒程度で、酸洗にかかる時間を大幅に短縮することができ、優れた品質を有するオーステナイト系ステンレス鋼板が得られる。   According to the method of the present invention as described above, since the pickling process can be performed at a high speed, the total pickling time is about 15 to 240 seconds, and the time required for pickling can be greatly reduced. An austenitic stainless steel sheet having excellent quality is obtained.

以下、実施例を挙げて本発明について詳細に説明する。しかしながら、下記実施例は本発明を説明するためのものであって、本発明を限定するものではない。   Hereinafter, an example is given and the present invention is explained in detail. However, the following examples are for explaining the present invention and are not intended to limit the present invention.

[実施例1]
中性塩電解及び硫酸電解の実施の有無によるオーステナイト系冷延鋼板の酸化スケールの酸洗性を確認するために、16%以上のクロム組成を有するオーステナイト系ステンレス鋼板を中性塩電解処理及び硫酸電解処理してそれぞれCr、Mn、Feからなるスケール層を除去した。
[Example 1]
In order to confirm the pickling property of the oxide scale of the austenitic cold rolled steel sheet with or without neutral salt electrolysis and sulfuric acid electrolysis, the austenitic stainless steel sheet having a chromium composition of 16% or more was subjected to neutral salt electrolysis treatment and sulfuric acid The scale layers made of Cr, Mn, and Fe were removed by electrolytic treatment.

この際、用いられた中性塩電解溶液は電解質として硫酸ナトリウム電解質150g/lを含み、溶液の温度は60℃であり、鋼板の表面電位が+、−、+の順に形成されるようにして20A/dmの電流密度を40秒間印加した。 At this time, the used neutral salt electrolytic solution contains 150 g / l of sodium sulfate electrolyte as an electrolyte, the temperature of the solution is 60 ° C., and the surface potential of the steel sheet is formed in the order of +, −, +. A current density of 20 A / dm 2 was applied for 40 seconds.

また、硫酸電解溶液は硫酸85g/lを含むpH 1の溶液であり、溶液温度は50℃であり、鋼板の表面電位が+、−、+の順に形成されるように20A/dmの電流を15秒間印加した。 The sulfuric acid electrolytic solution is a pH 1 solution containing 85 g / l of sulfuric acid, the solution temperature is 50 ° C., and a current of 20 A / dm 2 so that the surface potential of the steel sheet is formed in the order of +, −, +. Was applied for 15 seconds.

中性塩電解及び硫酸電解を行った鋼板の表面と未処理の鋼板の断面を電子顕微鏡(SEM)で撮影して図1に示した。比較のために、電解処理した鋼板の断面をA)に示し、電解処理していない鋼板の断面をB)に示した。   The surface of the steel sheet subjected to neutral salt electrolysis and sulfuric acid electrolysis and the cross section of the untreated steel sheet were photographed with an electron microscope (SEM) and shown in FIG. For comparison, the cross section of the electrolytically treated steel sheet is shown in A), and the cross section of the non-electrolyzed steel sheet is shown in B).

図1から分かるように、中性塩電解及び硫酸電解を行わなかった鋼板の断面には(Cr,Mn)及びシリコン酸化物が共に残留しているのに対し、本発明の電解液を用いて中性塩電解及び硫酸電解を行った鋼板の断面にはシリコン酸化物のみが残留している。 As can be seen from FIG. 1, both (Cr, Mn) 3 O 4 and silicon oxide remain in the cross section of the steel sheet that was not subjected to neutral salt electrolysis and sulfuric acid electrolysis, whereas the electrolytic solution of the present invention. Only the silicon oxide remains on the cross section of the steel sheet subjected to neutral salt electrolysis and sulfuric acid electrolysis using the above.

[実施例2]
混酸槽内での表面電位による冷延鋼板の表面状態を観察するために、上記実施例1により得られた、中性塩電解処理及び硫酸電解処理によって1次スケールが除去された鋼板を用いて、表面電位によるシリコン酸化膜の酸洗の有無を評価した。
[Example 2]
In order to observe the surface state of the cold-rolled steel sheet according to the surface potential in the mixed acid tank, the steel sheet from which the primary scale was removed by neutral salt electrolysis treatment and sulfuric acid electrolysis treatment obtained in Example 1 above was used. The presence or absence of pickling of the silicon oxide film due to the surface potential was evaluated.

上記試験片を、硫酸120g/l及び遊離フッ酸20g/lを含む45℃の混酸溶液に浸漬した後、表1に記載されたように電位を−0.4〜0.6Vの範囲で変化させながら30秒間印加して混酸プロセスを行った。   After the test piece was immersed in a mixed acid solution at 45 ° C. containing 120 g / l of sulfuric acid and 20 g / l of free hydrofluoric acid, the potential was changed in the range of −0.4 to 0.6 V as shown in Table 1. The mixed acid process was performed by applying for 30 seconds.

酸洗後の冷延鋼板の表面状態を走査電子顕微鏡(SEM)を用いて観察した後、酸洗の有無及び粒界の溶解程度を評価した。   After observing the surface state of the cold-rolled steel sheet after pickling using a scanning electron microscope (SEM), the presence or absence of pickling and the degree of dissolution of grain boundaries were evaluated.

鋼板の表面にスケールが残留する場合は未酸洗と評価し、粒界の溶解程度において粒界が連続的に溶解された場合を良好と判断して○で表示し、不連続的な場合を不良と判断して×で表示した。一方、未酸洗の場合は粒界の溶解程度について評価しなかった。   When the scale remains on the surface of the steel plate, it is evaluated as non-pickling. Judged to be defective and indicated by x. On the other hand, in the case of unpickling, the degree of dissolution of grain boundaries was not evaluated.

評価の結果を下記表1に示す。また、印加電位が0.0V及び−0.25Vである発明例4及び比較例4の鋼板の表面状態を電子顕微鏡(SEM)で撮影して図2に示した。   The evaluation results are shown in Table 1 below. Moreover, the surface states of the steel plates of Invention Example 4 and Comparative Example 4 in which the applied potential was 0.0 V and −0.25 V were photographed with an electron microscope (SEM) and shown in FIG.

Figure 0006031606
Figure 0006031606

上記表1から分かるように、表面電位が−0.25〜0.1V印加された場合は、混酸溶液での酸洗が可能であった(発明例1〜5及び比較例4)。しかしながら、図2から分かるように、比較例4は、粒界の酸洗程度が不良であった。即ち、発明例4により得られた鋼板の表面を示すA)の場合は、鋼板の表面の粒界が正常的に溶解されて粒界が明確に示されるのに対し、比較例4により得られた鋼板の表面を示すB)の場合は、残留スケールはないが、粒界が不連続的に溶解されて均一に溶解されず、また、粒界の幅も小さいことが確認できる。   As can be seen from Table 1 above, when a surface potential of −0.25 to 0.1 V was applied, pickling with a mixed acid solution was possible (Invention Examples 1 to 5 and Comparative Example 4). However, as can be seen from FIG. 2, in Comparative Example 4, the degree of pickling at the grain boundaries was poor. That is, in the case of A) showing the surface of the steel sheet obtained by Invention Example 4, the grain boundary on the surface of the steel sheet is normally dissolved and the grain boundary is clearly shown, whereas it is obtained by Comparative Example 4. In the case of B) indicating the surface of the steel plate, although there is no residual scale, it can be confirmed that the grain boundaries are discontinuously dissolved and not uniformly dissolved, and the width of the grain boundaries is small.

これに対し、比較例1、2、3、5及び6は、未酸洗の結果を示した。   On the other hand, Comparative Examples 1, 2, 3, 5 and 6 showed the results of unpickling.

このような結果から、混酸槽での表面電位が−0.2〜0.1Vの範囲で印加された方がSi酸化物層の溶解及び粒界の溶解のために適することが分かる。   From these results, it can be seen that application of the surface potential in the mixed acid tank in the range of −0.2 to 0.1 V is more suitable for dissolution of the Si oxide layer and dissolution of the grain boundaries.

[実施例3]
本実施例は、オーステナイト系冷延鋼板の混酸酸洗において−0.2Vの表面電位を得るための過酸化水素濃度と鉄イオン濃度との関係を確認するためのものであり、上記実施例1により得られた、中性塩電解処理及び硫酸電解処理によって1次スケールが除去された鋼板を用いて、表面電位によるシリコン酸化膜の酸洗の有無を評価した。
[Example 3]
This example is for confirming the relationship between the hydrogen peroxide concentration and the iron ion concentration for obtaining a surface potential of -0.2 V in mixed pickling of an austenitic cold-rolled steel sheet. Using the steel sheet from which the primary scale was removed by neutral salt electrolysis treatment and sulfuric acid electrolysis treatment obtained by the above, the presence or absence of pickling of the silicon oxide film by the surface potential was evaluated.

上記試験片を、硫酸120g/l及び遊離フッ酸20g/lを含む45℃の混酸溶液に浸漬した後、上記混酸溶液にメタルイオン(Fe3+)と過酸化水素を添加しながら鋼板の表面電位を測定し、鉄イオン濃度の変化によって、鋼板の表面電位を−0.2V以上に維持するための最小の過酸化水素濃度及び溶液の酸化還元電位(ORP)を測定し、その結果を図3に示した。 The test piece was immersed in a mixed acid solution at 45 ° C. containing 120 g / l of sulfuric acid and 20 g / l of free hydrofluoric acid, and then the surface potential of the steel sheet was added while adding metal ions (Fe 3+ ) and hydrogen peroxide to the mixed acid solution. And the minimum hydrogen peroxide concentration and the oxidation-reduction potential (ORP) of the solution to maintain the surface potential of the steel sheet at −0.2 V or more are measured by changing the iron ion concentration. The results are shown in FIG. It was shown to.

図3は、鋼板の表面電位を−0.2V以上に維持するための、鉄イオン濃度の変化による最小の過酸化水素濃度の変化及び溶液の酸化還元電位(ORP)を図式化したグラフである。   FIG. 3 is a graph schematically showing a change in the minimum hydrogen peroxide concentration due to a change in iron ion concentration and a redox potential (ORP) of the solution in order to maintain the surface potential of the steel sheet at −0.2 V or more. .

図3から分かるように、鉄イオン濃度の増加につれて、鋼板の表面電位を維持するための最小の過酸化水素濃度は次第に減少する。このようなメタル濃度の増加につれて溶液の酸化還元電位(ORP)は減少し、メタル濃度が40g/l以上の場合は溶液の酸化還元電位(ORP)を400mVに維持するだけでもストリップの表面電位が−0.2Vに形成されるため更なる過酸化水素水の投入を必要としないことが分かる。   As can be seen from FIG. 3, the minimum hydrogen peroxide concentration for maintaining the surface potential of the steel sheet gradually decreases as the iron ion concentration increases. As the metal concentration increases, the redox potential (ORP) of the solution decreases. When the metal concentration is 40 g / l or more, the surface potential of the strip can be increased even if the redox potential (ORP) of the solution is maintained at 400 mV. It can be seen that no additional hydrogen peroxide solution is required because it is formed at −0.2V.

しかしながら、溶液の酸化還元電位(ORP)が400mV未満の領域では表面電位が変動するため、溶液の酸化還元電位(ORP)を400mVに維持するための最小の過酸化水素を投入する必要がある。   However, since the surface potential fluctuates in a region where the redox potential (ORP) of the solution is less than 400 mV, it is necessary to input a minimum amount of hydrogen peroxide for maintaining the redox potential (ORP) of the solution at 400 mV.

[実施例4]
本実施例は中性塩電解を行う場合の適正操業条件を確認するためのものであり、中性塩電解槽の溶液温度、印加電流及び硫酸ナトリウム濃度を下記表2に記載されたように調節して行ったことを除いて上記実施例1と同じ方法で中性塩電解を行った。
[Example 4]
This example is for confirming proper operation conditions when performing neutral salt electrolysis, and adjusting the solution temperature, applied current and sodium sulfate concentration of the neutral salt electrolysis tank as described in Table 2 below. The neutral salt electrolysis was performed in the same manner as in Example 1 except that the above was performed.

中性塩電解を行った後の鋼板の表面状態を観察し、その結果を下記表2に示した。   The surface state of the steel sheet after the neutral salt electrolysis was observed, and the results are shown in Table 2 below.

中性塩電解を行った後の鋼板の表面にマンガン・クロム酸化物スケールが存在する等、表面状態が不良な場合を×で表示し、鋼板の表面状態が良好な場合を○で表示した。   When the surface condition of the steel sheet after neutral salt electrolysis is manganese / chromium oxide scale, the case where the surface condition is poor is indicated by x, and the case where the surface condition of the steel sheet is good is indicated by ◯.

Figure 0006031606
Figure 0006031606

上記表2から分かるように、電解槽内の溶液温度が50〜90℃であり、電解溶液内に電解質として硫酸ナトリウム100〜250g/lを含み、10〜30A/dmの電流密度を有する条件下で中性塩電解を行った場合に鋼板の表面品質に優れる。 As can be seen from Table 2 above, the solution temperature in the electrolytic cell is 50 to 90 ° C., the electrolyte solution contains sodium sulfate 100 to 250 g / l as an electrolyte, and has a current density of 10 to 30 A / dm 2. The surface quality of the steel sheet is excellent when neutral salt electrolysis is performed below.

[実施例5]
本実施例は硫酸電解を行う場合の適正操業条件を確認するためのものであり、硫酸電解槽の溶液温度、印加電流及び硫酸濃度を下記表3に記載されたように調節して行ったことを除いて上記実施例1と同じ方法で中性塩電解を行った。
[Example 5]
This example is for confirming proper operating conditions when performing sulfuric acid electrolysis, and was performed by adjusting the solution temperature, applied current, and sulfuric acid concentration of the sulfuric acid electrolysis tank as described in Table 3 below. The neutral salt electrolysis was performed in the same manner as in Example 1 except for the above.

硫酸電解を行った後の鋼板の表面状態を観察し、その結果を下記表3に示した。   The surface state of the steel sheet after sulfuric acid electrolysis was observed, and the results are shown in Table 3 below.

鉄又はマンガン・クロムの酸化スケールが残存する等、表面状態が不良な場合を×で表示し、鉄又はマンガン・クロムの酸化スケールが全て除去されてSi酸化スケールのみが残留する等、表面状態が良好な場合を○で表示した。   If the surface condition is poor, such as iron or manganese / chromium oxide scale remaining, it is indicated by x, and all the oxide scale of iron or manganese / chromium is removed and only the silicon oxide scale remains. Good cases are indicated by ○.

Figure 0006031606
Figure 0006031606

上記表3から分かるように、硫酸電解槽内の溶液温度が30〜60℃、電解溶液内の硫酸濃度が50〜150g/lであり、10〜30A/dmの電流密度を有する条件下で硫酸電解を行った場合に鋼板の表面品質に優れる。 As can be seen from Table 3 above, the solution temperature in the sulfuric acid electrolytic tank is 30 to 60 ° C., the sulfuric acid concentration in the electrolytic solution is 50 to 150 g / l, and the current density is 10 to 30 A / dm 2. Excellent surface quality of steel sheet when sulfuric acid electrolysis is performed.

[実施例6]
本実施例は中性塩電解及び硫酸電解の適正処理時間を確認するためのものであり、中性塩電解処理時間及び硫酸電解処理時間を表4に示したように調節したことを除いて実施例1と同様に中性塩電解処理及び硫酸電解処理を行った。
[Example 6]
This example is for confirming the proper processing time of neutral salt electrolysis and sulfuric acid electrolysis, and was carried out except that the neutral salt electrolysis time and sulfuric acid electrolysis time were adjusted as shown in Table 4. In the same manner as in Example 1, neutral salt electrolytic treatment and sulfuric acid electrolytic treatment were performed.

中性塩電解及び硫酸電解を行った後の鋼板の表面状態を観察し、その結果を下記表4に示した。   The surface state of the steel sheet after carrying out neutral salt electrolysis and sulfuric acid electrolysis was observed, and the results are shown in Table 4 below.

シリコン酸化物以外にマンガン・クロムや鉄のスケールが残存しない場合を○で表示し、シリコン酸化物以外にマンガン・クロムや鉄のスケールが残存する場合を未酸洗、母材の浸食のある場合を過酸洗と判断し、未酸洗及び過酸洗が示される場合を×で表示した。   When the scale of manganese / chromium / iron other than silicon oxide does not remain is indicated by ○, and when the scale of manganese / chromium / iron other than silicon oxide remains, it is not pickled and the base material is eroded Was determined to be per-acid pickling, and the case where unpickling and per-pickling were indicated was indicated by x.

Figure 0006031606
Figure 0006031606

上記表4から分かるように、中性塩電解を30〜120秒の範囲で行い、硫酸電解を5〜50秒の範囲で行う場合は、図1のA)に示したようにステンレス冷延鋼板の表面にはSi酸化物のみが存在するが、上記範囲を外れる比較例1〜4の場合は、図1のB)のような表面状態を有するため、(Cr・Mn)のスケールが存在したり表面が損傷したりする。 As can be seen from Table 4 above, when the neutral salt electrolysis is performed in the range of 30 to 120 seconds and the sulfuric acid electrolysis is performed in the range of 5 to 50 seconds, as shown in FIG. In the case of Comparative Examples 1 to 4 that are out of the above range, the surface state of FIG. 1 has a surface state as shown in FIG. 1B), so the scale of (Cr · Mn) 3 O 4 May be present or the surface may be damaged.

[実施例7]
本実施例は混酸槽での適正処理条件を確認するためのものであり、上記実施例1により得られた、中性塩電解処理及び硫酸電解処理によって1次スケールが除去された鋼板に対し、表5のような組成の混酸溶液及び処理条件で混酸酸洗を行った。この際、混酸溶液の処理温度は40〜45℃であり、過酸化水素濃度については、実施例3及び図3に基づいて、溶液中の鉄濃度によって鋼板の表面電位を−0.1Vに維持するための濃度で過酸化水素を調節した。
[Example 7]
This example is for confirming the proper treatment conditions in the mixed acid tank, and for the steel plate obtained by Example 1 above, from which the primary scale has been removed by the neutral salt electrolysis treatment and the sulfuric acid electrolysis treatment, Mixed acid pickling was performed with a mixed acid solution having the composition shown in Table 5 and processing conditions. At this time, the treatment temperature of the mixed acid solution was 40 to 45 ° C., and the hydrogen peroxide concentration was maintained at −0.1 V based on the iron concentration in the solution based on Example 3 and FIG. Hydrogen peroxide was adjusted at a concentration to achieve.

上記混酸処理により得られた鋼板の表面のシリコン酸化膜の酸洗の有無を観察し、その結果を下記表5に示した。   The presence or absence of pickling of the silicon oxide film on the surface of the steel sheet obtained by the mixed acid treatment was observed, and the results are shown in Table 5 below.

シリコン酸化物が残存しない場合を○で表示し、シリコン酸化物が残存する場合を未酸洗として×で表示し、酸洗されても圧延方向に対して60°の反射角で測定された光沢度が150未満の場合は過酸洗と判断して×で表示した。   The case where silicon oxide does not remain is indicated by ○, the case where silicon oxide remains is indicated by × as non-pickling, and the gloss measured at a reflection angle of 60 ° with respect to the rolling direction even when pickled. When the degree was less than 150, it was judged as peracid washing and indicated by x.

Figure 0006031606
Figure 0006031606

上記表5から分かるように、硫酸110〜150g/l、遊離フッ酸15〜30g/l、及び鉄イオン濃度による最小の過酸化水素が実施例3のように組成されている酸洗組成物に10〜100秒間沈積して混酸酸洗することが好ましい。   As can be seen from Table 5 above, in the pickling composition in which sulfuric acid is 110 to 150 g / l, free hydrofluoric acid is 15 to 30 g / l, and the minimum hydrogen peroxide based on iron ion concentration is as in Example 3. It is preferable to deposit for 10 to 100 seconds and to perform pickling with mixed acid.

[実施例8]
本実施例は耐食性向上のための混酸槽での適正処理条件を確認するためのものであり、実施例1により得られた、中性塩電解処理及び硫酸電解処理によって1次スケールが除去された鋼板に対し、下記表5のような条件で混酸溶液で処理した。この際、過酸化水素濃度については、実施例3及び図3に基づいて、溶液中の鉄濃度によって鋼板の表面電位を−0.1Vに維持するための濃度で過酸化水素を調節した。一方、硫酸濃度は120g/lに調節した。
[Example 8]
This example is for confirming proper processing conditions in a mixed acid tank for improving corrosion resistance. The primary scale obtained by Example 1 was removed by neutral salt electrolysis and sulfuric acid electrolysis. The steel sheet was treated with a mixed acid solution under the conditions shown in Table 5 below. At this time, as for the hydrogen peroxide concentration, the hydrogen peroxide was adjusted at a concentration for maintaining the surface potential of the steel sheet at -0.1 V based on the iron concentration in the solution, based on Example 3 and FIG. On the other hand, the sulfuric acid concentration was adjusted to 120 g / l.

表面耐食性評価においては、複合噴霧実験により5%の塩水を噴霧‐湿潤‐乾燥を繰り返して発錆の有無を観察して評価し、その結果を表6に示した。   In the evaluation of the surface corrosion resistance, 5% salt water was repeatedly sprayed-wet-dried in a combined spraying experiment and observed for the presence or absence of rusting. The results are shown in Table 6.

表面耐食性評価の結果、発錆のない場合を○で表示し、発錆のある場合を×で表示し、また、発錆がなくても光沢度150未満の場合は光沢不良と判断して×で表示した。   As a result of the evaluation of surface corrosion resistance, the case where there is no rust is indicated by ○, the case where rust is present is indicated by ×, and even if there is no rust, if the gloss is less than 150, it is determined that the gloss is poor. Displayed.

酸洗後の塩水噴霧実験による耐食性評価の結果として発明例1及び比較例1により得られた鋼板の表面写真を図4に示した。図4のA)は粒界の幅が1マイクロ以上の発明例1により得られた鋼板の耐食性評価後の写真であり、B)は比較例1による酸洗方法で酸洗された鋼板の耐食性評価後の表面写真である。   The surface photograph of the steel plate obtained by Invention Example 1 and Comparative Example 1 as a result of the corrosion resistance evaluation by the salt spray experiment after pickling is shown in FIG. 4A is a photograph after the corrosion resistance evaluation of the steel sheet obtained by Invention Example 1 having a grain boundary width of 1 micron or more, and B) is the corrosion resistance of the steel sheet pickled by the pickling method according to Comparative Example 1. FIG. It is the surface photograph after evaluation.

Figure 0006031606
Figure 0006031606

上記表6から分かるように、耐食性向上のための酸洗後の結晶粒界の幅(W)を、酸洗時間(t)、HF濃度(C)及び混酸溶液温度(T)を用いて式で表すと、下記式(4)の通りである。   As can be seen from Table 6 above, the width (W) of the grain boundary after pickling for improving the corrosion resistance is expressed using the pickling time (t), the HF concentration (C), and the mixed acid solution temperature (T). Is represented by the following formula (4).

W=−0.184+0.0131×t+0.016×C+0.01×T …(4)   W = −0.184 + 0.0131 × t + 0.016 × C + 0.01 × T (4)

上記式(4)から酸洗後の結晶粒界の幅を計算した結果、その値が1以上である発明例1〜4は耐食性に優れるが、その値が1未満である比較例1〜9は耐食性に劣っていた。   As a result of calculating the width of the grain boundary after pickling from the above formula (4), Invention Examples 1 to 4 having a value of 1 or more are excellent in corrosion resistance, but Comparative Examples 1 to 9 having a value of less than 1 are shown. Was inferior in corrosion resistance.

以上のことから、酸洗後の粒界の幅は1以上であることが好ましく、上記関係式から計算した結果の値も1以上の場合に耐食性に優れることが確認できる。   From the above, it is preferable that the width of the grain boundary after pickling is 1 or more, and when the value calculated from the above relational expression is 1 or more, it can be confirmed that the corrosion resistance is excellent.

[実施例9]
混酸溶液の温度による過酸化水素の自己分解の程度を観察するために、フッ酸35g/l、硫酸120g/l及び過酸化水素10g/lを含み、上記過酸化水素の安定剤としてp‐トルエンスルホン酸(PTSA)を過酸化水素含量の1.5重量%で含む混酸溶液において、溶液の温度変化による残留過酸化水素含量を測定し、その結果を図5に示した。
[Example 9]
In order to observe the degree of self-decomposition of hydrogen peroxide according to the temperature of the mixed acid solution, 35 g / l hydrofluoric acid, 120 g / l sulfuric acid and 10 g / l hydrogen peroxide were used, and p-toluene was used as a stabilizer for the hydrogen peroxide. In a mixed acid solution containing sulfonic acid (PTSA) at 1.5% by weight of the hydrogen peroxide content, the residual hydrogen peroxide content due to the temperature change of the solution was measured, and the results are shown in FIG.

図5から分かるように、過酸化水素の半減期は下記式により格段に減少する。   As can be seen from FIG. 5, the half-life of hydrogen peroxide is significantly reduced by the following formula.

t=10.289×10・e−0.14・T
(上記式においてtは残留過酸化水素濃度の半減期(min)、Tは温度(℃)を示す。)
t = 10.289 × 10 3 · e −0.14 · T
(In the above formula, t represents the half-life (min) of the residual hydrogen peroxide concentration, and T represents the temperature (° C.).)

本実施例のように混酸溶液の温度が32℃から50℃に上昇する場合は過酸化水素の半減期が13倍減少するため、混酸溶液の温度を32℃以下に設定することが好ましい。   When the temperature of the mixed acid solution rises from 32 ° C. to 50 ° C. as in this example, the half-life of hydrogen peroxide is reduced by 13 times. Therefore, the temperature of the mixed acid solution is preferably set to 32 ° C. or lower.

[実施例10]
本実施例はオーステナイト系冷延鋼板の低温混酸酸洗において−0.2Vの表面電位を得るための過酸化水素濃度と鉄イオン濃度との関係を確認するためのものであり、上記実施例1により得られた、中性塩電解処理及び硫酸電解処理によって1次スケールが除去された鋼板を用いて、表面電位によるシリコン酸化膜の酸洗の有無を評価した。
[Example 10]
This example is for confirming the relationship between the hydrogen peroxide concentration and the iron ion concentration for obtaining a surface potential of -0.2 V in low temperature mixed pickling of an austenitic cold rolled steel sheet. Using the steel sheet from which the primary scale was removed by neutral salt electrolysis treatment and sulfuric acid electrolysis treatment obtained by the above, the presence or absence of pickling of the silicon oxide film by the surface potential was evaluated.

上記試験片を、硫酸120g/l及び遊離フッ酸35g/lを含む32℃の混酸溶液に浸漬した後、上記混酸溶液にメタルイオン(Fe3+)と過酸化水素を添加しながら鋼板の表面電位を測定し、鉄イオン濃度の変化によって、鋼板の表面電位を−0.2V以上に維持するための最小の過酸化水素濃度を測定し、その結果を図6に示した。 The test piece is immersed in a mixed acid solution at 32 ° C. containing 120 g / l sulfuric acid and 35 g / l free hydrofluoric acid, and then the surface potential of the steel sheet is added while adding metal ions (Fe 3+ ) and hydrogen peroxide to the mixed acid solution. Was measured, and the minimum hydrogen peroxide concentration for maintaining the surface potential of the steel sheet at −0.2 V or higher was measured according to the change of the iron ion concentration. The result is shown in FIG.

図6は、鋼板の表面電位を−0.2V以上に維持するための、鉄イオン濃度の変化による最小の過酸化水素濃度の変化を図式化したグラフである。   FIG. 6 is a graph schematically showing the change in the minimum hydrogen peroxide concentration due to the change in the iron ion concentration in order to maintain the surface potential of the steel sheet at −0.2 V or more.

図6から分かるように、鉄イオン濃度の増加につれて、鋼板の表面電位を維持するための最小の過酸化水素濃度は次第に減少するため、メタル濃度が40g/l以上の場合に鋼板の表面電位を−0.2Vに形成するためには1g/lの過酸化水素水のみが必要である。   As can be seen from FIG. 6, as the iron ion concentration increases, the minimum hydrogen peroxide concentration for maintaining the surface potential of the steel sheet gradually decreases. Therefore, when the metal concentration is 40 g / l or more, the surface potential of the steel sheet is reduced. Only 1 g / l of hydrogen peroxide is required to form -0.2V.

[実施例11]
本実施例は混酸槽での適正処理条件を確認するためのものであり、上記実施例1により得られた、中性塩電解処理及び硫酸電解処理によって1次スケールが除去された鋼板に対し、表7のような組成の混酸溶液及び処理条件で混酸酸洗を行った。この際、混酸溶液の処理温度は15〜32℃であり、過酸化水素濃度については、実施例10及び図6に基づいて、溶液中の鉄濃度によって鋼板の表面電位を−0.1Vに維持するための濃度で過酸化水素を調節した。
[Example 11]
This example is for confirming the proper treatment conditions in the mixed acid tank, and for the steel plate obtained by Example 1 above, from which the primary scale has been removed by the neutral salt electrolysis treatment and the sulfuric acid electrolysis treatment, Mixed acid pickling was performed with a mixed acid solution having the composition shown in Table 7 and processing conditions. At this time, the treatment temperature of the mixed acid solution was 15 to 32 ° C., and the hydrogen peroxide concentration was maintained at −0.1 V based on the iron concentration in the solution based on Example 10 and FIG. Hydrogen peroxide was adjusted at a concentration to achieve.

上記混酸処理により得られた鋼板の表面のシリコン酸化膜の酸洗の有無を観察し、その結果を下記表7に示した。   The presence or absence of pickling of the silicon oxide film on the surface of the steel sheet obtained by the mixed acid treatment was observed, and the results are shown in Table 7 below.

シリコン酸化物が残存しない場合を○で表示し、シリコン酸化物が残存する場合を未酸洗として×で表示し、酸洗されても圧延方向に対して60°の反射角で測定された光沢度が150未満の場合は過酸洗と判断して×で表示した。   The case where silicon oxide does not remain is indicated by ○, the case where silicon oxide remains is indicated by × as non-pickling, and the gloss measured at a reflection angle of 60 ° with respect to the rolling direction even when pickled. When the degree was less than 150, it was judged as peracid washing and indicated by x.

Figure 0006031606
Figure 0006031606

上記表7から分かるように、温度20〜32℃、硫酸110〜150g/l、遊離フッ酸25〜40g/l、及び鉄イオン濃度による最小の過酸化水素が実施例10のように組成されている酸洗組成物に10〜100秒間沈積して酸洗することが好ましい。
As can be seen from Table 7 above, the temperature is 20 to 32 ° C., the sulfuric acid is 110 to 150 g / l, the free hydrofluoric acid is 25 to 40 g / l, and the minimum hydrogen peroxide according to the iron ion concentration is composed as in Example 10. The pickling composition is preferably deposited for 10 to 100 seconds for pickling.

Claims (11)

16重量%以上のクロムを含有する高クロムオーステナイト系ステンレス冷延鋼板からシリコン酸化物を除去する、高クロムオーステナイト系ステンレス冷延鋼板の酸洗方法であって、
前記酸洗方法は、硫酸電解処理段階及び混酸溶液浸漬段階を含み、
前記硫酸電解処理段階は硫酸を電解質として含む硫酸電解溶液を用いてCr及びFeの残留スケールを電解除去し、
前記混酸溶液浸漬段階は硝酸を含まず、初期組成が硫酸110〜150g/l、遊離フッ酸15〜30g/l及び過酸化水素濃度4.5g/l以上を含み、鉄イオンは実質的に含まない混酸溶液中に、冷延鋼板を浸漬することにより、前記冷延鋼板からシリコン酸化物を除去し、
前記混酸溶液中の前記過酸化水素の濃度は混酸溶液中の鉄イオン濃度との関係で下記式(1)を満たし、前記混酸溶液の酸化還元電位(ORP)は混酸溶液中の鉄イオン濃度との関係で下記式(2)又は(3)を満たす、高クロムオーステナイト系ステンレス冷延鋼板の酸洗方法。
過酸化水素濃度≧0.00736+10×e−[metal]/13.2 …(1)
ORP≧600mV、但し、鉄イオン濃度≦10g/l …(2)
ORP≧310+431×e−[metal]/25.24、但し、鉄イオン濃度>10g/l …(3)
(前記式(1)〜(3)において[metal]は混酸溶液中の鉄イオン濃度を示す。)
A method for pickling high chrome austenitic stainless cold-rolled steel sheet, which removes silicon oxide from a high chrome austenitic stainless cold-rolled steel sheet containing 16 wt% or more of chromium,
The pickling method includes a sulfuric acid electrolytic treatment step and a mixed acid solution immersion step,
In the sulfuric acid electrolysis process, residual scale of Cr and Fe is electrolytically removed using a sulfuric acid electrolytic solution containing sulfuric acid as an electrolyte,
The step of immersing the mixed acid solution does not include nitric acid, the initial composition includes 110 to 150 g / l sulfuric acid, 15 to 30 g / l free hydrofluoric acid, and a hydrogen peroxide concentration of 4.5 g / l or more, and substantially contains iron ions. The silicon oxide is removed from the cold-rolled steel sheet by immersing the cold-rolled steel sheet in no mixed acid solution,
The concentration of the hydrogen peroxide in the mixed acid solution satisfies the following formula (1) in relation to the iron ion concentration in the mixed acid solution, and the oxidation-reduction potential (ORP) of the mixed acid solution is the iron ion concentration in the mixed acid solution. The pickling method of the high chromium austenitic stainless steel cold-rolled steel sheet which satisfy | fills following formula (2) or (3) by the relationship.
Hydrogen peroxide concentration ≧ 0.00736 + 10 × e − [metal] /13.2 (1)
ORP ≧ 600 mV, provided that iron ion concentration ≦ 10 g / l (2)
ORP ≧ 310 + 431 × e − [metal] /25.24 , provided that iron ion concentration> 10 g / l (3)
(In the above formulas (1) to (3), [metal] represents the iron ion concentration in the mixed acid solution.)
酸洗後の結晶粒界の幅(W)を1μm以上に形成する、請求項1に記載の高クロムオーステナイト系ステンレス冷延鋼板の酸洗方法。   The pickling method for a high chromium austenitic stainless cold-rolled steel sheet according to claim 1, wherein the width (W) of the grain boundary after pickling is formed to be 1 µm or more. 前記浸漬は、前記混酸溶液の温度(T)、フッ酸濃度(C)及び処理時間(t)が下記式(4)を満たすように制御される、請求項2に記載の高クロムオーステナイト系ステンレス冷延鋼板の酸洗方法。
酸洗後の結晶粒界の幅(W)=−0.184+0.0131・t+0.016・C+0.01・T …(4)
The high-chromium austenitic stainless steel according to claim 2, wherein the immersion is controlled such that the temperature (T), hydrofluoric acid concentration (C), and treatment time (t) of the mixed acid solution satisfy the following formula (4). Pickling method for cold-rolled steel sheet.
Width of crystal grain boundary after pickling (W) = − 0.184 + 0.0131 · t + 0.016 · C + 0.01 · T (4)
16重量%以上のクロムを含有する高クロムオーステナイト系ステンレス冷延鋼板からシリコン酸化物を除去する、高クロムオーステナイト系ステンレス冷延鋼板の酸洗方法であって、
前記酸洗方法は、硫酸電解処理段階及び混酸溶液浸漬段階を含み、
前記硫酸電解処理段階は硫酸を電解質として含む硫酸電解溶液を用いてCr及びFeの残留スケールを電解除去し、
前記混酸溶液浸漬段階は20〜32℃の温度に維持され、硝酸を含まず、初期組成が硫酸110〜150g/l、遊離フッ酸25〜40g/l及び過酸化水素濃度5.5g/l以上を含み、鉄イオンは実質的に含まない混酸溶液中に、冷延鋼板を浸漬することにより、前記冷延鋼板からシリコン酸化物を除去し、
前記過酸化水素は、鉄イオンの濃度との関係で下記式(5)を満たす、高クロムオーステナイト系ステンレス冷延鋼板の酸洗方法。
過酸化水素濃度≧0.805+9.2×e−[metal/15.56] …(5)
(前記式(5)において[metal]は混酸溶液中の鉄イオン濃度を示す。)
A method for pickling high chrome austenitic stainless cold-rolled steel sheet, which removes silicon oxide from a high chrome austenitic stainless cold-rolled steel sheet containing 16 wt% or more of chromium,
The pickling method includes a sulfuric acid electrolytic treatment step and a mixed acid solution immersion step,
In the sulfuric acid electrolysis process, residual scale of Cr and Fe is electrolytically removed using a sulfuric acid electrolytic solution containing sulfuric acid as an electrolyte,
The mixed acid solution immersion step is maintained at a temperature of 20 to 32 ° C., does not contain nitric acid, has an initial composition of 110 to 150 g / l of sulfuric acid, 25 to 40 g / l of free hydrofluoric acid, and a hydrogen peroxide concentration of 5.5 g / l or more. And immersing the cold rolled steel sheet in a mixed acid solution substantially free of iron ions to remove silicon oxide from the cold rolled steel sheet,
The hydrogen peroxide is a pickling method for a high chromium austenitic stainless cold-rolled steel sheet, which satisfies the following formula (5) in relation to the concentration of iron ions.
Hydrogen peroxide concentration ≧ 0.805 + 9.2 × e − [metal / 15.56] (5)
(In the above formula (5), [metal] represents the iron ion concentration in the mixed acid solution.)
前記混酸溶液中に浸漬された前記冷延鋼板の表面電位は−0.2〜0.1Vに維持される、請求項1から4のいずれか一項に記載の高クロムオーステナイト系ステンレス冷延鋼板の酸洗方法。   The high-chromium austenitic stainless cold-rolled steel sheet according to any one of claims 1 to 4, wherein a surface potential of the cold-rolled steel sheet immersed in the mixed acid solution is maintained at -0.2 to 0.1V. Pickling method. 前記混酸溶液に前記冷延鋼板を10〜100秒間浸漬する、請求項1から5のいずれか一項に記載の高クロムオーステナイト系ステンレス冷延鋼板の酸洗方法。   The pickling method of the high chromium austenitic stainless cold-rolled steel sheet according to any one of claims 1 to 5, wherein the cold-rolled steel sheet is immersed in the mixed acid solution for 10 to 100 seconds. 前記冷延鋼板からのシリコン酸化物の除去は、前記硫酸電解処理段階の前に中性塩電解処理段階をさらに含み、
前記中性塩電解処理段階は硫酸ナトリウム電解質を含む中性塩電解溶液を用いて鋼板の表面からCr‐リッチスケールを電解除去する、請求項1から6のいずれか一項に記載の高クロムオーステナイト系ステンレス冷延鋼板の酸洗方法。
The removal of silicon oxide from the cold-rolled steel sheet further includes a neutral salt electrolytic treatment step before the sulfuric acid electrolytic treatment step,
The high chromium austenite according to any one of claims 1 to 6, wherein the neutral salt electrolytic treatment step performs electrolytic removal of Cr-rich scale from the surface of the steel sheet using a neutral salt electrolytic solution containing a sodium sulfate electrolyte. Pickling method for stainless steel cold-rolled steel sheet.
前記中性塩電解処理段階は、オーステナイト系ステンレス鋼板を50〜90℃の温度の中性塩電解溶液内に浸漬し、鋼板の表面電位が+、−、+の順に形成されるように10〜30A/dmの電流密度を30秒〜120秒間印加することにより行われる、請求項7に記載の高クロムオーステナイト系ステンレス冷延鋼板の酸洗方法。 In the neutral salt electrolysis treatment step, the austenitic stainless steel plate is immersed in a neutral salt electrolytic solution at a temperature of 50 to 90 ° C., and the surface potential of the steel plate is formed in the order of +, −, +. The pickling method of the high chromium austenitic stainless cold-rolled steel sheet according to claim 7, which is performed by applying a current density of 30 A / dm 2 for 30 seconds to 120 seconds. 前記中性塩電解溶液内に硫酸ナトリウム電解質を100〜250g/l含む、請求項7又は8に記載の高クロムオーステナイト系ステンレス冷延鋼板の酸洗方法。   The pickling method of the high chromium austenitic stainless cold-rolled steel sheet according to claim 7 or 8, wherein the neutral salt electrolytic solution contains a sodium sulfate electrolyte in an amount of 100 to 250 g / l. 前記硫酸電解処理段階は、中性塩電解処理段階を経たオーステナイト系ステンレス鋼板を30〜60℃の温度の硫酸電解溶液に浸漬し、鋼板の表面電位が+、−、+の順に形成されるように10〜30A/dmの電流密度を5〜50秒間印加することにより行われる、請求項7から9のいずれか一項に記載の高クロムオーステナイト系ステンレス冷延鋼板の酸洗方法。 In the sulfuric acid electrolytic treatment step, the austenitic stainless steel plate that has been subjected to the neutral salt electrolytic treatment step is immersed in a sulfuric acid electrolytic solution at a temperature of 30 to 60 ° C. so that the surface potential of the steel plate is formed in the order of +, −, +. The pickling method for a high chromium austenitic stainless cold-rolled steel sheet according to any one of claims 7 to 9, which is carried out by applying a current density of 10 to 30 A / dm 2 to 5 to 50 seconds. 前記硫酸電解溶液は硫酸を50〜150g/l含む、請求項1から10のいずれか一項に記載の高クロムオーステナイト系ステンレス冷延鋼板の酸洗方法。   The pickling method for a high chromium austenitic stainless cold-rolled steel sheet according to any one of claims 1 to 10, wherein the sulfuric acid electrolytic solution contains 50 to 150 g / l of sulfuric acid.
JP2015525357A 2012-07-31 2013-07-31 High speed pickling process for producing austenitic stainless cold rolled steel sheet Active JP6031606B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
KR1020120084151A KR101382934B1 (en) 2012-07-31 2012-07-31 High Speed Pickling Process for Improving Corrosion Resistance of Austenitic Stainless Cold Strip
KR1020120084149A KR101359098B1 (en) 2012-07-31 2012-07-31 High speed pickling process for austenitic stainless cold strip
KR10-2012-0084151 2012-07-31
KR10-2012-0084150 2012-07-31
KR1020120084150A KR101353856B1 (en) 2012-07-31 2012-07-31 High speed pickling process at low temperature for austenitic stainless cold strip
KR10-2012-0084149 2012-07-31
PCT/KR2013/006902 WO2014021639A1 (en) 2012-07-31 2013-07-31 High-speed pickling process for manufacturing austenitic stainless cold-rolled steel plate

Publications (2)

Publication Number Publication Date
JP2015523469A JP2015523469A (en) 2015-08-13
JP6031606B2 true JP6031606B2 (en) 2016-11-24

Family

ID=50028251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015525357A Active JP6031606B2 (en) 2012-07-31 2013-07-31 High speed pickling process for producing austenitic stainless cold rolled steel sheet

Country Status (3)

Country Link
JP (1) JP6031606B2 (en)
CN (1) CN104520473B (en)
WO (1) WO2014021639A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107964662B (en) * 2017-11-02 2019-10-18 马鞍山市宝奕金属制品工贸有限公司 A method of promoting stainless steel surface glossiness
CN110592656B8 (en) * 2019-09-17 2021-06-11 义乌市择木工业产品设计有限公司 Rust removing device for hardware
CN115386880B (en) * 2022-09-02 2024-03-15 中国第一汽车股份有限公司 Treatment fluid for stripping steel product surface as well as preparation method and application thereof
CN116083917B (en) * 2023-02-23 2024-04-05 深圳美荣达技术有限公司 Acidic cleaning agent, preparation method and cleaning method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243289A (en) * 1984-05-17 1985-12-03 Kobe Steel Ltd Pickling method
FR2587369B1 (en) * 1985-09-19 1993-01-29 Ugine Gueugnon Sa PROCESS OF ACID STRIPPING OF STAINLESS STEEL PRODUCTS
JPH01162786A (en) * 1987-12-21 1989-06-27 Kawasaki Steel Corp Method for pickling high strength austenitic stainless steel
IT1255655B (en) * 1992-08-06 1995-11-09 STAINLESS STEEL PICKLING AND PASSIVATION PROCESS WITHOUT THE USE OF NITRIC ACID
JPH08269549A (en) * 1995-03-31 1996-10-15 Kawasaki Steel Corp Hot rolled austenitic stainless steel plate excellent in surface characteristic after cold rolling and its production
JPH09217184A (en) * 1996-02-09 1997-08-19 Mitsubishi Gas Chem Co Inc Pickling treatment liquid
JPH09324286A (en) * 1996-06-07 1997-12-16 Nisshin Steel Co Ltd Descaling method for stainless steel strip and heat resistant steel strip
ITRM20010747A1 (en) * 2001-12-19 2003-06-19 Ct Sviluppo Materiali Spa PROCEDURE WITH REDUCED ENVIRONMENTAL IMPACT AND RELATED PLANT FOR DESCALING, PICKLING AND FINISHING / PASSIVATING, IN A CONTINUOUS, INTEGRATED AND FL
DE102009017701A1 (en) * 2009-01-22 2010-07-29 Sms Siemag Aktiengesellschaft Method and apparatus for annealing and descaling stainless steel strip
CN101709477B (en) * 2009-11-28 2011-04-27 山西太钢不锈钢股份有限公司 Method for continuous pickling of double-phase stainless steel coil
KR101289147B1 (en) * 2010-12-28 2013-07-23 주식회사 포스코 Environmental-Friendly and High Speed Pickling Process for Ferritic Stainless Cold Strip with Good Surface Quality
KR101403064B1 (en) * 2010-12-28 2014-06-02 주식회사 포스코 Process for descaling a ferrite stainless steel strip using nitric acid free solutions
KR101228730B1 (en) * 2010-12-28 2013-02-01 주식회사 포스코 High Speed Pickling Method for Surface Improvement of High Chromium Ferritic Stainless Cold Steel Strip

Also Published As

Publication number Publication date
JP2015523469A (en) 2015-08-13
CN104520473A (en) 2015-04-15
CN104520473B (en) 2017-08-29
WO2014021639A1 (en) 2014-02-06

Similar Documents

Publication Publication Date Title
JP5768141B2 (en) Eco-friendly high-speed pickling process for producing low chromium ferritic stainless steel cold rolled steel sheets with excellent surface quality
KR101228730B1 (en) High Speed Pickling Method for Surface Improvement of High Chromium Ferritic Stainless Cold Steel Strip
EP1307609B1 (en) Continuous electrolytic pickling method for metallic products using alternate current supplied cells
JP6105167B2 (en) Pickling method of high chromium ferritic stainless cold rolled steel sheet
JP6031606B2 (en) High speed pickling process for producing austenitic stainless cold rolled steel sheet
JP5897717B2 (en) Pickling of stainless steel in an oxidative electrolytic acid bath
KR101243021B1 (en) Pickling method and pickling solution for preventing and removing defects of low-chrome ferritic stainless steel in the pickling process
KR101359098B1 (en) High speed pickling process for austenitic stainless cold strip
KR101382934B1 (en) High Speed Pickling Process for Improving Corrosion Resistance of Austenitic Stainless Cold Strip
KR101528052B1 (en) The Method for Pickling High Cromium Ferrite Stainless Cold Steel Strip using Mixed Acid
JP3792335B2 (en) Finishing electrolytic pickling method in descaling of stainless steel strip
KR101353856B1 (en) High speed pickling process at low temperature for austenitic stainless cold strip
JP2577619B2 (en) Method and apparatus for descaling alloy steel strip
JP2002348700A (en) DESCALING METHOD FOR COLD-ROLLED AND ANNEALED Cr-BASED STAINLESS STEEL SHEET
JP4316029B2 (en) Stainless steel pickling method and pickling solution
KR102300834B1 (en) Ionic liquid for pickling stainless steel and pickling method for stainless steel using the same
JPH0810823A (en) Annealing and descaling method for cold rolled stainless steel strip
JP4804657B2 (en) A descaling method for austenitic stainless steel cold-rolled annealed steel sheets
JP2005232546A (en) Descaling method for stainless cold rolled annealed steel sheet
KR100650887B1 (en) A high speed descaling method for low cr ferritic stainless steel

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161024

R150 Certificate of patent or registration of utility model

Ref document number: 6031606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250