JP2003012945A - Conductive resin composition and its manufacturing method - Google Patents
Conductive resin composition and its manufacturing methodInfo
- Publication number
- JP2003012945A JP2003012945A JP2002084874A JP2002084874A JP2003012945A JP 2003012945 A JP2003012945 A JP 2003012945A JP 2002084874 A JP2002084874 A JP 2002084874A JP 2002084874 A JP2002084874 A JP 2002084874A JP 2003012945 A JP2003012945 A JP 2003012945A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- weight
- resin composition
- carbon fiber
- carbon fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、導電性が高く電磁
波のシールド効果に優れ、剛性が高く、物性が安定し表
面性が良い成形品とすることのできる導電性樹脂組成物
に関し、特に電気機器の筐体部品、中でもパソコンの筐
体や携帯電話などの情報端末のハウジングとして好適に
使用できる導電性樹脂組成物に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive resin composition which can be formed into a molded product having high conductivity, excellent electromagnetic wave shielding effect, high rigidity, stable physical properties and good surface property, and more particularly to an electric resin composition. The present invention relates to a conductive resin composition that can be suitably used as a housing part of equipment, especially a housing of a personal computer or a housing of an information terminal such as a mobile phone.
【0002】[0002]
【従来の技術】パソコンの筐体やカバーなどの電磁波シ
ールド用材料として使用される樹脂組成物には、電磁波
をシールドするために高い導電性が要求される。このよ
うな要求を満たすものとして、熱可塑性樹脂のマトリク
ス中に導電性のフィラーを分散した樹脂組成物が提案さ
れている。2. Description of the Related Art A resin composition used as a material for shielding electromagnetic waves such as a case or cover of a personal computer is required to have high conductivity in order to shield electromagnetic waves. As a material satisfying such requirements, a resin composition in which a conductive filler is dispersed in a thermoplastic resin matrix has been proposed.
【0003】熱可塑性樹脂に配合するフィラーとして
は、導電性を有し、しかも強化剤として効果も有するこ
とから一般に炭素繊維が使用されている。熱可塑性樹脂
に炭素繊維を配合した樹脂組成物からなる成形品は、剛
性に優れ、導電性を有するものの、電磁波のシールドを
目的として使用するためには、さらに高い導電性を有す
る必要があり、そのためには炭素繊維を熱可塑性樹脂に
多量に配合する必要がある。As a filler to be mixed with a thermoplastic resin, carbon fiber is generally used because it has conductivity and also has an effect as a reinforcing agent. A molded article made of a resin composition in which a carbon fiber is mixed with a thermoplastic resin is excellent in rigidity and has conductivity, but in order to be used for the purpose of shielding electromagnetic waves, it is necessary to have higher conductivity. For that purpose, it is necessary to mix a large amount of carbon fibers with the thermoplastic resin.
【0004】しかしながら、上記のように多量に炭素繊
維を配合した樹脂組成物を成形品にすると、炭素繊維が
配向して反りが大きくなるだけでなく、物性も高配合で
は逆に低下する傾向にあり、そのうえコスト高になると
いう問題がある。However, when a resin composition containing a large amount of carbon fibers as described above is used as a molded article, not only the carbon fibers are oriented and warpage becomes large, but also the physical properties tend to decrease when the content is high. There is also the problem that the cost becomes high.
【0005】このような問題を解決するものとして、特
開平3−181532号公報には、例えば、ポリエステ
ル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ
アミド樹脂、アクリロニトリル・ブタジエン・スチレン
共重合体(以下「ABS」と称す)、ポリアセタール樹
脂、変性ポリフェニレンオキサイド樹脂、ポリカーボネ
ート樹脂などの熱可塑性樹脂に、粒径が20μm以下の
膨潤黒鉛を5〜30重量%の割合で配合した樹脂組成物
が提案されている。この樹脂組成物からなる成形品は、
反りは小さくなるものの、導電性の点で炭素繊維が配合
された成形品に較べて劣るものとなる。As a solution to such a problem, JP-A-3-181532 discloses, for example, polyester resin, polyethylene resin, polypropylene resin, polyamide resin, acrylonitrile-butadiene-styrene copolymer (hereinafter referred to as "ABS"). (Hereinafter referred to as)), a polyacetal resin, a modified polyphenylene oxide resin, a polycarbonate resin or the like, and a resin composition in which swollen graphite having a particle size of 20 μm or less is mixed at a ratio of 5 to 30% by weight has been proposed. A molded article composed of this resin composition,
Although the warp is small, it is inferior to the molded product containing the carbon fiber in terms of electrical conductivity.
【0006】一方、導電性は、炭素繊維長に大きく影響
されるが、熱可塑性樹脂と炭素繊維を混練する際、炭素
繊維が折れて短くなってしまうため、十分な導電性が得
られない。そこで、ペレット寸法=炭素繊維長である長
繊維ペレットも使用されているが、長繊維の配合比が多
いため物性が不安定になるという問題がある。On the other hand, the conductivity is greatly affected by the length of the carbon fiber, but when the thermoplastic resin and the carbon fiber are kneaded, the carbon fiber is broken and shortened, so that sufficient conductivity cannot be obtained. Therefore, long-fiber pellets having a pellet size = carbon fiber length are also used, but there is a problem that the physical properties become unstable because the blending ratio of the long fibers is large.
【0007】[0007]
【発明が解決しようとする課題】本発明は前記問題点を
解決し、導電性が高く電磁波のシールド性に優れ、剛性
が高く、物性のばらつきが小さくて表面性が良い成形品
とすることのできる導電性樹脂組成物を提供するもので
ある。SUMMARY OF THE INVENTION The present invention solves the above problems and provides a molded article having high conductivity, excellent electromagnetic wave shielding properties, high rigidity, small variation in physical properties, and good surface properties. The present invention provides a conductive resin composition that can be used.
【0008】[0008]
【課題を解決するための手段】本発明者は、上記課題を
解決するために鋭意検討をした結果、熱可塑性樹脂と炭
素繊維を混練する際、炭素繊維供給後の混練操作を、図
1に示すように搬送→混練→搬送→堰→搬送の順に行う
ことにより、炭素繊維が折れる割合を少なくすることが
でき、その結果炭素繊維の繊維長分布が広範囲となるこ
とで、導電性が高く、表面性が良い樹脂組成物が得られ
ることを見出し、本発明に至ったものである。Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventor has shown in FIG. 1 the kneading operation after supplying the carbon fibers when kneading the thermoplastic resin and the carbon fibers. As shown in the order of carrying → kneading → carrying → weir → carrying, it is possible to reduce the rate at which the carbon fibers are broken, and as a result, the fiber length distribution of the carbon fibers becomes wide, so that the conductivity is high, The present inventors have found that a resin composition having a good surface property can be obtained, and have reached the present invention.
【0009】すなわち、本発明は、熱可塑性樹脂と炭素
繊維を含有する樹脂組成物100重量部に対し、炭素繊
維の割合が10〜50重量部であって、該炭素繊維のう
ち、繊維長が500μm以上のものの割合が10〜50
重量%であることを特徴とする導電性樹脂組成物に関す
るものである。また、本発明は、熱可塑性樹脂を混練機
の先頭から供給し、炭素繊維を混練機の途中から供給し
て溶融混合するに際し、炭素繊維供給後の混練操作を、
搬送→混練→搬送→堰→搬送の順に行うことを特徴とす
る前記導電性樹脂組成物の製造方法に関するものであ
る。That is, according to the present invention, the ratio of the carbon fiber is 10 to 50 parts by weight to 100 parts by weight of the resin composition containing the thermoplastic resin and the carbon fiber, and the fiber length of the carbon fiber is 10 to 50 parts by weight. The ratio of particles of 500 μm or more is 10 to 50
The present invention relates to a conductive resin composition characterized in that the content is% by weight. Further, the present invention, the thermoplastic resin is supplied from the head of the kneading machine, when the carbon fiber is supplied from the middle of the kneading machine and melt-mixed, the kneading operation after the carbon fiber supply,
The present invention relates to the method for producing a conductive resin composition, which is carried out in the order of transportation → kneading → transportation → weir → transportation.
【0010】[0010]
【発明の実施の形態】本発明の導電性樹脂組成物は、熱
可塑性樹脂と炭素繊維を含有する樹脂組成物100重量
部に対し、炭素繊維の割合が10〜50重量部であっ
て、該炭素繊維のうち、繊維長が500μm以上のもの
の割合が10〜50重量%である。BEST MODE FOR CARRYING OUT THE INVENTION The conductive resin composition of the present invention has a carbon fiber content of 10 to 50 parts by weight based on 100 parts by weight of a resin composition containing a thermoplastic resin and carbon fibers. The proportion of carbon fibers having a fiber length of 500 μm or more is 10 to 50% by weight.
【0011】樹脂組成物における炭素繊維の割合が10
重量部よりも少なくなると、導電性が安定して発現せず
成形品とした際の剛性に劣り、配合割合が50重量部を
超えると機械的物性の低下が始まり、炭素繊維が配向し
て成形品の反りが大きくなるため外観性に劣る。The ratio of carbon fiber in the resin composition is 10
When the amount is less than the weight part, the conductivity is not stably expressed and the rigidity when formed into a molded product is poor, and when the mixing ratio exceeds 50 parts by weight, the mechanical properties start to deteriorate and the carbon fiber is oriented and molded. The warp of the product increases, resulting in poor appearance.
【0012】該炭素繊維のうち、繊維長が500μm以
上のものの割合が10重量%よりも少なくなると、十分
な導電性が得られず、また割合が50重量%を超える
と、物性のばらつきが大きくなり、成形品表面が荒れる
ため、外観性に劣る。If the proportion of carbon fibers having a fiber length of 500 μm or more is less than 10% by weight, sufficient conductivity cannot be obtained, and if the proportion exceeds 50% by weight, the physical properties vary greatly. And the surface of the molded product becomes rough, resulting in poor appearance.
【0013】また、本発明においては、前記炭素繊維の
うち、繊維長が50μm以下のものが3〜12重量部、
50μm超のものが7〜38重量部であることが好まし
い。繊維長が50μm以下のものが3重量部よりも少な
くなると、成形品表面が荒れるため、外観性に劣る。ま
た12重量部を超えると、十分な導電性が得られない。
一方、繊維長が50μm超のものが7重量部よりも少な
くなると、十分な導電性が得られず、また38重量部を
超えると、成形品表面が荒れるため、外観性に劣る。Further, in the present invention, 3 to 12 parts by weight of the carbon fibers having a fiber length of 50 μm or less,
It is preferable that the amount of particles exceeding 50 μm is 7 to 38 parts by weight. If the fiber length is less than 50 μm and is less than 3 parts by weight, the surface of the molded product becomes rough, resulting in poor appearance. If it exceeds 12 parts by weight, sufficient conductivity cannot be obtained.
On the other hand, if the fiber length is more than 50 μm less than 7 parts by weight, sufficient conductivity cannot be obtained, and if it exceeds 38 parts by weight, the surface of the molded product becomes rough, resulting in poor appearance.
【0014】導電性樹脂組成物の主成分となる熱可塑性
樹脂としては、例えば、ナイロン6、ナイロン66やナ
イロン12などのポリアミド樹脂、ポリエチレンテレフ
タレートやポリブチレンテレフタレートなどのポリエス
テル樹脂、ポリカーボネート樹脂、ポリアリレート樹
脂、塩化ビニル樹脂、ポリエチレン樹脂、塩素化ポリエ
チレン樹脂、塩素化ポリプロピレン樹脂、ポリプロピレ
ン樹脂、ポリスチレン樹脂、アクリロニトリル・スチレ
ン系樹脂、ABS樹脂、塩化ビニリデン樹脂、酢酸ビニ
ル樹脂、熱可塑性ポリイミド樹脂、ブタジエン樹脂、ポ
リアセタール樹脂、アイオノマー樹脂、エチレン−塩化
ビニル共重合樹脂、エチレン−酢酸ビニルコポリマー樹
脂、ポリフェニレンオキサイド樹脂、変性ポリフェニレ
ンオキサイド樹脂、ポリサルホン樹脂、アクリル樹脂、
メタクリル樹脂、フェノキシ樹脂、ポリビニルホルマー
ル樹脂、ポリビニルブチラール樹脂などが挙げられ、ま
た、これらの樹脂2種以上の混合物も挙げられる。その
中でもポリアミド樹脂、ポリエステル樹脂、ポリカーボ
ネート樹脂、ポリカABS樹脂(ポリカーボネートをブ
レンドしたABS樹脂)、ポリアリレート樹脂が好まし
く、中でもポリアミド樹脂は炭素繊維との親和性が良好
である点で特に好ましい。Examples of the thermoplastic resin which is the main component of the conductive resin composition include polyamide resins such as nylon 6, nylon 66 and nylon 12, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polycarbonate resins and polyarylate. Resin, vinyl chloride resin, polyethylene resin, chlorinated polyethylene resin, chlorinated polypropylene resin, polypropylene resin, polystyrene resin, acrylonitrile-styrene resin, ABS resin, vinylidene chloride resin, vinyl acetate resin, thermoplastic polyimide resin, butadiene resin, Polyacetal resin, ionomer resin, ethylene-vinyl chloride copolymer resin, ethylene-vinyl acetate copolymer resin, polyphenylene oxide resin, modified polyphenylene oxide resin, Risaruhon resin, acrylic resin,
Examples thereof include methacrylic resin, phenoxy resin, polyvinyl formal resin, polyvinyl butyral resin, and the like, and also a mixture of two or more of these resins. Among them, polyamide resin, polyester resin, polycarbonate resin, polycarbonate ABS resin (ABS resin blended with polycarbonate), and polyarylate resin are preferable, and among them, polyamide resin is particularly preferable because it has good affinity with carbon fiber.
【0015】ポリアミド樹脂としては、ラクタム、アミ
ノカルボン酸及び/又はジアミンとジカルボン酸などの
モノマーを重合して得られるホモポリアミドおよびコポ
リアミドそしてこれらの混合物が挙げられる。すなわ
ち、ポリカプロアミド(ナイロン6)、ポリヘキサメチ
レンアジパミド(ナイロン66)、ポリテトラメチレン
アジパミド(ナイロン46)、ポリヘキサメチレンセバ
カミド(ナイロン610)、ポリヘキサメチレンドデカ
ミド(ナイロン612)、ポリウンデカメチレンアジパ
ミド(ナイロン116)、ポリビス(4−アミノシクロ
ヘキシル)メタンドデカミド(ナイロンPACM1
2)、ポリビス(3−メチル−4アミノシクロヘキシ
ル)メタンドデカミド(ナイロンジメチルPACM1
2)、ポリノナメチレンテレフタルアミド(ナイロン9
T)、ポリウンデカメチレンテレフタルアミド(ナイロ
ン11T)、ポリウンデカメチレンヘキサヒドロテレフ
タルアミド(ナイロン11T(H))、ポリウンデカミ
ド(ナイロン11)、ポリドデカミド(ナイロン1
2)、ポリトリメチルヘキサメチレンテレフタルアミド
(ナイロンTMDT)、ポリヘキサメチレンテレフタル
アミド(ナイロン6T)、ポリヘキサメチレンイソフタ
ルアミド(ナイロン6I)、ポリメタキシリレンアジパ
ミド(ナイロンMXD6)及びこれらの共重合物、混合
物等が挙げられ、中でも、ナイロン6、ナイロン66、
ナイロン12、これらの共重合ポリアミドや混合ポリア
ミドが特に好ましい。The polyamide resin includes homopolyamide and copolyamide obtained by polymerizing monomers such as lactam, aminocarboxylic acid and / or diamine and dicarboxylic acid, and a mixture thereof. That is, polycaproamide (nylon 6), polyhexamethylene adipamide (nylon 66), polytetramethylene adipamide (nylon 46), polyhexamethylene sebacamide (nylon 610), polyhexamethylene dodecamide (nylon) 612), polyundecamethylene adipamide (nylon 116), polybis (4-aminocyclohexyl) methandodecamide (nylon PACM1)
2), polybis (3-methyl-4aminocyclohexyl) methandodecamide (nylon dimethyl PACM1
2), Polynonamethylene terephthalamide (nylon 9
T), polyundecamethylene terephthalamide (nylon 11T), polyundecamethylene hexahydroterephthalamide (nylon 11T (H)), polyundecamide (nylon 11), polydodecamide (nylon 1)
2), polytrimethylhexamethylene terephthalamide (nylon TMDT), polyhexamethylene terephthalamide (nylon 6T), polyhexamethylene isophthalamide (nylon 6I), polymethaxylylene adipamide (nylon MXD6) and copolymers thereof. , A mixture, etc., among them, nylon 6, nylon 66,
Nylon 12, copolymerized polyamides or mixed polyamides thereof are particularly preferable.
【0016】なお、本発明においては上記結晶性のポリ
アミド樹脂に非晶性ポリアミドを配合すると、外観性に
優れた樹脂組成物が得られる。非晶性ポリアミド樹脂と
しては、例えば、イソフタル酸/テレフタル酸/ヘキサ
メチレンジアミン/ビス(3−メチル−4−アミノシク
ロヘキシル)メタンの重縮合体、テレフタル酸/2,
2,4−トリメチルヘキサメチレンジアミン/2,4,
4−トリメチルヘキサメチレンジアミンの重縮合体、イ
ソフタル酸/ビス(3−メチル−4−アミノシクロヘキ
シル)メタン/ω−ラウロラクタムの重縮合体、イソフ
タル酸/テレフタル酸/ヘキサメチレンジアミンの重縮
合体、イソフタル酸/2,2,4−トリメチルヘキサメ
チレンジアミン/2,4,4−トリメチルヘキサメチレ
ンジアミンの重縮合体、イソフタル酸/テレフタル酸/
2,2,4−トリメチルヘキサメチレンジアミン/2,
4,4−トリメチルヘキサメチレンジアミンの重縮合
体、イソフタル酸/ビス(3−メチル−4−アミノシク
ロヘキシル)メタン/ω−ラウロラクタムの重縮合体等
が挙げられる。また、これらの重縮合体を構成するテレ
フタル酸成分及び/又はイソフタル酸成分のベンゼン環
が、アルキル基やハロゲン原子で置換されたものも含ま
れる。さらに、これらの非晶性ポリアミドは2種以上併
用することもできる。好ましくは、イソフタル酸/テレ
フタル酸/ヘキサメチレンジアミン/ビス(3−メチル
−4−アミノシクロヘキシル)メタンの重縮合体、又は
テレフタル酸/2,2,4−トリメチルヘキサメチレン
ジアミン/2,4,4−トリメチルヘキサメチレンジア
ミンの重縮合体、又はイソフタル酸/テレフタル酸/ヘ
キサメチレンジアミン/ビス(3−メチル−4−アミノ
シクロヘキシル)メタンの重縮合体とテレフタル酸/
2,2,4−トリメチルヘキサメチレンジアミン/2,
4,4−トリメチルヘキサメチレンジアミンの重縮合体
との混合物が用いられる。In the present invention, when an amorphous polyamide is blended with the crystalline polyamide resin, a resin composition having excellent appearance can be obtained. Examples of the amorphous polyamide resin include polycondensates of isophthalic acid / terephthalic acid / hexamethylenediamine / bis (3-methyl-4-aminocyclohexyl) methane, terephthalic acid / 2,
2,4-trimethylhexamethylenediamine / 2,4,
4-trimethylhexamethylenediamine polycondensate, isophthalic acid / bis (3-methyl-4-aminocyclohexyl) methane / ω-laurolactam polycondensate, isophthalic acid / terephthalic acid / hexamethylenediamine polycondensate, Isophthalic acid / 2,2,4-trimethylhexamethylenediamine / 2,4,4-trimethylhexamethylenediamine polycondensate, isophthalic acid / terephthalic acid /
2,2,4-trimethylhexamethylenediamine / 2,
Examples thereof include polycondensates of 4,4-trimethylhexamethylenediamine and polyphthalates of isophthalic acid / bis (3-methyl-4-aminocyclohexyl) methane / ω-laurolactam. In addition, the terephthalic acid component and / or the isophthalic acid component constituting these polycondensates may have the benzene ring substituted with an alkyl group or a halogen atom. Furthermore, these amorphous polyamides can be used in combination of two or more kinds. Preferably, a polycondensate of isophthalic acid / terephthalic acid / hexamethylenediamine / bis (3-methyl-4-aminocyclohexyl) methane, or terephthalic acid / 2,2,4-trimethylhexamethylenediamine / 2,4,4 Polycondensate of trimethylhexamethylenediamine, or polycondensate of isophthalic acid / terephthalic acid / hexamethylenediamine / bis (3-methyl-4-aminocyclohexyl) methane and terephthalic acid /
2,2,4-trimethylhexamethylenediamine / 2,
A mixture with a polycondensate of 4,4-trimethylhexamethylenediamine is used.
【0017】ポリアミド樹脂の結晶性の緩和を考慮する
と、この非晶性ポリアミド樹脂の融解熱量は、示差走査
熱量計を用いて窒素雰囲気下で16℃/分の昇温速度に
より測定したとき、1cal/g以下であることが好ま
しい。Considering the relaxation of the crystallinity of the polyamide resin, the heat of fusion of this amorphous polyamide resin is 1 cal when measured with a differential scanning calorimeter at a temperature rising rate of 16 ° C./min in a nitrogen atmosphere. / G or less is preferable.
【0018】結晶性ポリアミドと非晶性ポリアミドとの
配合割合は特に限定されるものではないが、(結晶性ポ
リアミド)/(非晶性ポリアミド)=50/50〜98
/2(重量比)であることが好ましい。非晶性ポリアミ
ドが2重量%より少ないと、高濃度に炭素繊維を配合し
た際に、表面平滑性すなわち光沢度が失われる傾向にあ
り、非晶性ポリアミドが50重量%より多いと、高濃度
に炭素繊維を配合した際に、非晶性ポリアミドは一般的
に溶融粘度が高いため高温の金型で成形しなければ平滑
な表面が得られず、又結晶性が低くなるため射出成形等
での成形サイクルが延び生産性が悪くなる。The mixing ratio of the crystalline polyamide and the amorphous polyamide is not particularly limited, but (crystalline polyamide) / (amorphous polyamide) = 50/50 to 98
It is preferably / 2 (weight ratio). If the amount of the amorphous polyamide is less than 2% by weight, the surface smoothness, that is, the glossiness tends to be lost when the carbon fiber is mixed in a high concentration, and if the amount of the amorphous polyamide is more than 50% by weight, the high concentration is obtained. When carbon fiber is blended with, amorphous polyamide generally has a high melt viscosity, so a smooth surface cannot be obtained unless it is molded with a high temperature mold, and the crystallinity is low, so injection molding etc. The molding cycle is extended and the productivity deteriorates.
【0019】本発明に用いるポリアミド樹脂の相対粘度
は、特に限定されないが、溶媒として96重量%濃硫酸
を用いて温度が25℃で濃度が1g/dlの条件で測定
した相対粘度が、1.4〜4.0の範囲であることが好
ましい。相対粘度が1.4より小さいと、低粘度の為、
溶融混練後の引き取り性が困難となり組成物に所望の物
性が得られにくくなる。また4.0より大きいと、高粘
度のため成形加工時の流動性が悪く、十分な射出圧力が
かからないため、成形品が作りにくくなる。The relative viscosity of the polyamide resin used in the present invention is not particularly limited, but the relative viscosity measured by using 96 wt% concentrated sulfuric acid as a solvent at a temperature of 25 ° C. and a concentration of 1 g / dl is 1. It is preferably in the range of 4 to 4.0. If the relative viscosity is less than 1.4, the viscosity is low,
After the melt-kneading, the take-up property becomes difficult, and it becomes difficult to obtain desired physical properties in the composition. On the other hand, when it is more than 4.0, the fluidity at the time of molding is poor due to the high viscosity, and a sufficient injection pressure is not applied, which makes it difficult to form a molded product.
【0020】本発明において、導電剤および強化剤とし
ての役割を果たす炭素繊維は、高強度、高導電率を有す
るポリアクリロニトリル系(PAN系)やピッチ系の炭
素繊維が挙げられる。PAN系炭素繊維としては、具体
的には、東邦レーヨン社製のベスファイト・チョップド
ファイバーやベスファイト・ミルドファイバー、東レ社
性のトレカ・チョップドファイバーやトレカ・ミルドフ
ァイバー、三菱レイヨン社製のパイロフィル、Fort
afil Fiber社製のFortafilなどが挙
げられ、また、ピッチ系炭素繊維としては、具体的に
は、大阪ガス社製のドナカーボ・チョップドファイバー
やドナカーボ・ミルドファイバー、クレハ化学社製のク
レカ・チョップドファイバーやクレカ・ミルドファイバ
ーなどが挙げられる。In the present invention, examples of the carbon fibers which serve as a conductive agent and a reinforcing agent include polyacrylonitrile-based (PAN-based) and pitch-based carbon fibers having high strength and high conductivity. Specific examples of the PAN-based carbon fiber include Bethfight chopped fiber and Bethfight milled fiber manufactured by Toho Rayon Co., Ltd., Toraysha's trading card chopped fiber and trading card milled fiber, Mitsubishi Rayon Pyrofil, Fort
Examples of the pitch-based carbon fiber include Donacarbo chopped fiber and Donacarbo milled fiber manufactured by Osaka Gas Co., Ltd., and Creca Chopped Fiber manufactured by Kureha Chemical Co., Ltd. Examples include creca and milled fiber.
【0021】炭素繊維は、混練前の繊維長が0.1〜1
2mmのものが好ましく、1〜8mmのものが特に好ま
しい。また、繊維径は5〜15μmの範囲にあるものが
好ましい。The carbon fiber has a fiber length of 0.1 to 1 before kneading.
2 mm is preferable, and 1-8 mm is particularly preferable. The fiber diameter is preferably in the range of 5 to 15 μm.
【0022】上記のように構成された導電性樹脂組成物
には、臭素系難燃剤あるいはリン系難燃剤を、樹脂組成
物100重量部に対し50重量部以下、好ましくは20
〜40重量部の割合とすると、上記の特性に加えてさら
に難燃性も向上できるため好ましい。配合割合が50重
量部を超えると、成形品としての機械的強度が損なわれ
る傾向にある。The conductive resin composition having the above-mentioned composition contains a brominated flame retardant or a phosphorus flame retardant in an amount of 50 parts by weight or less, preferably 20 parts by weight, based on 100 parts by weight of the resin composition.
It is preferable that the proportion is ˜40 parts by weight because the flame retardancy can be further improved in addition to the above characteristics. If the blending ratio exceeds 50 parts by weight, the mechanical strength of the molded product tends to be impaired.
【0023】本発明で用いる臭素系難燃剤は、臭素含有
率が50〜90重量%であるものが好ましい。臭素含有
率が50重量%未満では、難燃効果に乏しく多量の難燃
剤を添加する必要があり、機械的強度が損なわれる。ま
た、臭素含有率が90重量%を超えると、成形加工時に
臭素が遊離しやすいので本発明の効果を充分発揮するこ
とができない。具体的には、例えば、臭素化ポリスチレ
ン、臭素化架橋芳香族重合体、臭素化スチレン/無水マ
レイン酸共重合体、臭素化ポリフェニレンエーテル、臭
素化エポキシ樹脂、臭素化フェノキシ樹脂などがある
が、中でもとくに臭素化ポリスチレンが好適に使用でき
る。The brominated flame retardant used in the present invention preferably has a bromine content of 50 to 90% by weight. When the bromine content is less than 50% by weight, the flame retardant effect is poor and it is necessary to add a large amount of flame retardant, which impairs the mechanical strength. Further, when the bromine content exceeds 90% by weight, bromine is likely to be liberated during molding, so that the effect of the present invention cannot be sufficiently exhibited. Specifically, for example, brominated polystyrene, brominated crosslinked aromatic polymer, brominated styrene / maleic anhydride copolymer, brominated polyphenylene ether, brominated epoxy resin, brominated phenoxy resin, etc. Particularly, brominated polystyrene can be preferably used.
【0024】ここで用いられる臭素化ポリスチレンとし
ては、ポリスチレンに臭素を付加させたもの、もしくは
臭素が付加したスチレンモノマーを重合したもの、ある
いはこれらの両者の混合物が挙げられ、特に、臭素を付
加したスチレンモノマーを重合したグレートレイクス社
製のPDBSや、ポリスチレンに臭素を付加させたフェ
ロ社製のパイロチェック68PBが、色調、流動性及び
耐熱性の点で好ましい。Examples of the brominated polystyrene used here include those obtained by adding bromine to polystyrene, those obtained by polymerizing a styrene monomer to which bromine has been added, or a mixture of both of these. In particular, bromine has been added. PDBS manufactured by Great Lakes Co., which is obtained by polymerizing a styrene monomer, and Pyrocheck 68PB manufactured by Ferro Co., which is obtained by adding bromine to polystyrene, is preferable in terms of color tone, fluidity and heat resistance.
【0025】リン系難燃剤としては、リンの名称で販売
されている様々な無機リンの同素体種(赤、紫または黒
リン)や有機リン系の難燃剤、例えば、有機リン酸エス
テル類が使用できる。加工温度が高くなるポリアミド等
のエンジニアリングプラスチック樹脂では赤リンやリン
酸メラミンが好ましい。熱可塑性樹脂に配合する際の赤
リンの形状は特に限定されるものではないが、樹脂組成
物への分散性を考慮すると、一般的に微細に分割された
形、例えば200μm以下の粒子径に分割された形、好
ましくは1〜100μmの範囲の平均粒径を有する粒子
の形の赤リンを使用するのが望ましい。As the phosphorus-based flame retardant, various allotrope species of inorganic phosphorus (red, purple or black phosphorus) sold under the name of phosphorus and organic phosphorus-based flame retardants such as organic phosphates are used. it can. Red phosphorus and melamine phosphate are preferred for engineering plastic resins such as polyamides that have high processing temperatures. The shape of red phosphorus when blended in the thermoplastic resin is not particularly limited, but in consideration of dispersibility in the resin composition, it is generally a finely divided shape, for example, a particle diameter of 200 μm or less. It is desirable to use red phosphorus in divided form, preferably in the form of particles having an average particle size in the range of 1-100 μm.
【0026】赤リンは、赤リンのみで使用してもよい
が、赤リン粒子の表面をポリマー皮膜や無機コート材で
被覆した形状の耐熱性改善タイプが好ましい。赤リン粒
子の表面を被覆するポリマーとしては、エポキシ樹脂
や、マレイン酸、フマル酸またはアリル不飽和結合を有
するポリマーや、50〜90℃の融点でかつ10000
以下の分子量を有する不飽和ポリエステルや、ノボラッ
クタイプの熱可塑性フェノール−ホルムアルデヒド重縮
合生成物や、熱可塑性フェノール−イソブチルアルデヒ
ド重縮合生成物が挙げられ、中でも熱可塑性フェノール
−イソブチルアルデヒド重縮合生成物が好適に使用でき
る。これらのポリマーの配合量は特に限定されるもので
はないが、赤リンと被覆用ポリマーとの混合物の合計重
量に対し高々90重量%であり、一般的には、2〜50
重量%であることが好ましい。The red phosphorus may be used only as the red phosphorus, but a red heat-resistant type having a shape in which the surface of the red phosphorus particles is coated with a polymer film or an inorganic coating material is preferable. As the polymer for coating the surface of the red phosphorus particles, an epoxy resin, a polymer having maleic acid, fumaric acid or an allyl unsaturated bond, a melting point of 50 to 90 ° C. and 10,000
Unsaturated polyesters having the following molecular weights, novolac type thermoplastic phenol-formaldehyde polycondensation products and thermoplastic phenol-isobutyraldehyde polycondensation products are mentioned, among them thermoplastic phenol-isobutyraldehyde polycondensation products. It can be preferably used. The blending amount of these polymers is not particularly limited, but is at most 90% by weight with respect to the total weight of the mixture of red phosphorus and the coating polymer, and generally 2 to 50%.
It is preferably in the weight%.
【0027】また、本発明の樹脂組成物には、難燃剤の
効果を十分に引出す目的で上記の難燃剤に加えて難燃助
剤を配合しても良い。臭素系難燃剤とともに使用する難
燃助剤としては、三酸化アンチモン、アンチモン酸ナト
リウム、酸化スズ(IV)、酸化鉄(III)、酸化亜
鉛、ホウ酸亜鉛などが挙げられ、赤リン系難燃剤ととも
に使用する難燃助剤としては、ポリリン酸メラミン、メ
ラミンシアヌレート、水酸化マグネシウムなどが挙げら
れる。難燃助剤の難燃剤に対する配合割合は、重量比で
臭素系難燃剤の場合、難燃剤:難燃助剤=5:1〜1:
1、赤燐系場合、難燃剤:難燃助剤=1:2〜1:7で
あることが好ましい。The resin composition of the present invention may contain a flame retardant aid in addition to the above flame retardant for the purpose of bringing out the effect of the flame retardant sufficiently. Examples of the flame retardant aid used with the brominated flame retardant include antimony trioxide, sodium antimonate, tin oxide (IV), iron oxide (III), zinc oxide, zinc borate, etc., and red phosphorus flame retardant. Examples of the flame retardant auxiliary used together include melamine polyphosphate, melamine cyanurate, and magnesium hydroxide. The blending ratio of the flame retardant aid to the flame retardant is, in the case of a brominated flame retardant in a weight ratio, flame retardant: flame retardant aid = 5: 1 to 1:
1. In the case of red phosphorus, it is preferable that the ratio of flame retardant: flame retardant aid = 1: 2 to 1: 7.
【0028】また、本発明の導電性樹脂組成物には、さ
らに加えて必要に応じて離型剤、熱安定剤、酸化防止
剤、光安定剤、滑剤、顔料、可塑剤、架橋剤、耐衝撃性
向上剤、無機物、染料などの各種添加剤や炭素系や金属
系の導電助剤を添加してもよく、これらは樹脂組成物を
溶融混練もしくは溶融成形する際に加えられる。In addition to the conductive resin composition of the present invention, a releasing agent, a heat stabilizer, an antioxidant, a light stabilizer, a lubricant, a pigment, a plasticizer, a cross-linking agent, and a resistance to Various additives such as impact modifiers, inorganic substances and dyes, and carbon-based or metal-based conductive aids may be added, and these are added when the resin composition is melt-kneaded or melt-molded.
【0029】本発明の導電性樹脂組成物は、熱可塑性樹
脂と炭素繊維と、必要に応じて配合した難燃剤および各
種の添加剤とともに混練機を用いて溶融混練し、ペレッ
ト化することにより製造されるが、その際、熱可塑性樹
脂を混練機の先頭から供給し、炭素繊維を混練機の途中
から供給し、炭素繊維供給後の混練操作を、図1に示す
ように搬送→混練→搬送→堰→搬送の順に行うことによ
り製造することができる。The conductive resin composition of the present invention is produced by melting and kneading a thermoplastic resin, carbon fiber, a flame retardant and various additives optionally blended with a kneader and pelletizing. At that time, the thermoplastic resin is supplied from the top of the kneading machine, the carbon fiber is supplied from the middle of the kneading machine, and the kneading operation after the carbon fiber is supplied is carried out as shown in FIG. It can be manufactured by carrying out in the order of → weir → transfer.
【0030】従来、熱可塑性樹脂と炭素繊維を混練機で
混練する場合には、炭素繊維供給後の混練操作は、図2
に示すように搬送→混練→堰→搬送の順に行われてい
た。これは、熱可塑性樹脂と炭素繊維との混合を十分に
行うためには、堰で一旦搬送を止めた状態で混練する必
要があると考えられていたためである。しかし、この方
法では、混合時に炭素繊維が折れてしまい、例えば、混
練前には3mmだったものが、300μm程度まで短く
なってしまうため、十分な導電性が得られない。Conventionally, when the thermoplastic resin and the carbon fiber are kneaded by a kneader, the kneading operation after the carbon fiber is fed is as shown in FIG.
As shown in Figure 3, the process was carried out in the order of transfer → kneading → weir → transfer. This is because in order to sufficiently mix the thermoplastic resin and the carbon fiber, it was considered necessary to carry out the kneading with the weir once stopping the transportation. However, in this method, the carbon fibers are broken during mixing, and for example, what was 3 mm before kneading is shortened to about 300 μm, so that sufficient conductivity cannot be obtained.
【0031】これに対し、本発明においては、炭素繊維
供給後の混練操作は、図1に示すように搬送→混練→搬
送→堰→搬送の順に行うことにより、炭素繊維が折れる
割合を少なくすることができ、繊維長が500μm以上
のものが5〜50重量%残存しているので、導電性が高
く、表面性が良い樹脂組成物が得られる。On the other hand, in the present invention, the kneading operation after supplying the carbon fibers is carried out in the order of transportation → kneading → transportation → weir → transportation as shown in FIG. Since a resin having a fiber length of 500 μm or more remains in an amount of 5 to 50% by weight, a resin composition having high conductivity and good surface property can be obtained.
【0032】また、本発明において、炭素繊維のうち、
繊維長が50μm以下のものが3〜12重量部、50μ
m超のものが7〜38重量部である導電性樹脂組成物
は、熱可塑性樹脂と、炭素繊維3〜12重量部を混練機
の先頭から供給し、炭素繊維7〜38重量部を混練機の
途中から供給して上記と同様の混練操作で混合すること
により製造することができる。In the present invention, among the carbon fibers,
Fiber having a fiber length of 50 μm or less, 3 to 12 parts by weight, 50 μ
The conductive resin composition having 7 to 38 parts by weight of more than m supplies thermoplastic resin and 3 to 12 parts by weight of carbon fiber from the head of the kneader, and 7 to 38 parts by weight of carbon fiber. It can be produced by supplying from the middle of the step and mixing by the same kneading operation as described above.
【0033】このように、炭素繊維を2箇所に分けて供
給することにより、最初に供給した炭素繊維は混練の
際、樹脂のせん断溶融ゾーンで強く混錬される為切断さ
れて50μm以下の微細な繊維となり、後から供給した
炭素繊維は、上記混錬ゾーンを通過しない為、50μm
超の長さを維持したものとなる。その結果、導電性が高
く、かつ表面性が良い樹脂組成物が得られる。As described above, by supplying the carbon fibers separately in two places, the carbon fibers initially supplied are strongly kneaded in the shear melting zone of the resin at the time of kneading, so that the carbon fibers are cut into fine particles of 50 μm or less. Since the carbon fiber supplied later does not pass through the above kneading zone, it is 50 μm.
It will be a very long length. As a result, a resin composition having high conductivity and good surface property can be obtained.
【0034】このようにして得られた樹脂組成物により
成形品を得るためには、射出成形機を用いて、前記樹脂
組成物を射出成形するか、プレス成形機を用いてプレス
成形すれば良い。上記のように構成された導電性樹脂組
成物からなる成形品は、導電性が高く電磁波シールド効
果に優れ、剛性が高く、物性のばらつきの少ない表面性
が良い成形品とすることができるため、燃料系部品や電
気・電子部品や電気機器の筐体、例えば、パソコンの筐
体やカバー、メカニカル軸受けや、メカニカルパッキン
グシール剤やフューエチューブ、フューエコネクタやク
リーンルームの機器やプリンター、コピー機部品として
好適に使用できる。In order to obtain a molded product from the resin composition thus obtained, the resin composition may be injection-molded using an injection molding machine or press-molded using a press molding machine. . A molded article composed of the conductive resin composition configured as described above has a high conductivity and an excellent electromagnetic wave shielding effect, a high rigidity, and a good surface property with little variation in physical properties can be obtained. Fuel system parts, electric / electronic parts and electric equipment housings, such as PC housings and covers, mechanical bearings, mechanical packing sealants, fuel tubes, fuel connectors, clean room equipment, printers and copier parts. Can be suitably used as.
【0035】[0035]
【実施例】次に実施例に基づき本発明を具体的に説明す
るが、本発明はこれらの実施例のみに限定されるもので
はない。なお、以下の実施例、比較例における各種物性
値の測定は、以下の方法により実施した。EXAMPLES The present invention will now be specifically described based on examples, but the present invention is not limited to these examples. The measurement of various physical properties in the following examples and comparative examples was carried out by the following methods.
【0036】[炭素繊維の繊維長分布の測定]炭素繊維
を含有した熱可塑性樹脂のペレットを濃度96%以上の
硫酸に溶解させ、この溶液より炭素繊維をとり顕微鏡に
て拡大写真を撮影しその写真の中の炭素繊維の繊維長を
測定し、繊維長の分布より50μm未満、50μm以上
500μm未満、500μm以上の重量分率を算出し
た。[Measurement of Fiber Length Distribution of Carbon Fiber] A pellet of a thermoplastic resin containing carbon fiber was dissolved in sulfuric acid having a concentration of 96% or more, and the carbon fiber was taken from this solution and an enlarged photograph was taken with a microscope. The fiber length of the carbon fiber in the photograph was measured, and the weight fraction of less than 50 μm, 50 μm or more and less than 500 μm, or 500 μm or more was calculated from the distribution of the fiber length.
【0037】[導電性]住友重機工業(株)ネスタール
SG75を用いて射出成形で成形したASTM1号片に
図5で示す150mm間隔で市販の半田ごてを使用して
金属端子を加熱圧入し端子を埋め込んで、この端子間の
抵抗をHIOKI製MODEL3010のテスターで測定した。[Conductivity] Metal terminals are heated and press-fitted into ASTM No. 1 pieces molded by injection molding using NESTAL SG75 manufactured by Sumitomo Heavy Industries, Ltd. at a 150 mm interval shown in FIG. Was embedded, and the resistance between the terminals was measured with a tester of MODEL3010 manufactured by HIOKI.
【0038】[曲げ弾性率]ASTM D790に従
い、住友重機工業(株)ネスタールSG75を用いて射
出成形で成形したASTM1号片を用いて測定した。[Flexural Modulus] According to ASTM D790, it was measured using ASTM No. 1 piece molded by injection molding using Nestal SG75 manufactured by Sumitomo Heavy Industries, Ltd.
【0039】[表面性]JIS B0601に従い、住
友重機工業(株)ネスタールSG75を用いて射出成形
で成形したASTM1号片を用いて株式会社 東京精密
Handy Surf E-30Aを使用し中心線平行粗さ(Ra)を測定し
た。[Surface property] In accordance with JIS B0601, Sumitomo Heavy Industries, Ltd. Nestal SG75 injection molded using ASTM No. 1 piece, Tokyo Seimitsu Co., Ltd.
Centerline parallel roughness (Ra) was measured using Handy Surf E-30A.
【0040】[難燃性]UL94 V−0に従い難燃性
を測定した。[Flame retardancy] The flame retardancy was measured according to UL94 V-0.
【0041】実施例1
ポリアミドA(宇部興産製UBEナイロン1011FB)
80wt%を図1のスクリュー構成をもつ押出機(東芝
機械(株)Tem35B)に投入し樹脂が溶融状態(樹
脂温度280℃)になっているところに図1のように炭
素繊維A(三菱レイヨン パイロフィル TR06NEB3E)が
20wt%になるように投入し混練・ペレット化し、炭
素繊維の分布長測定をした。また、得られたペレットを
用いてASTM1号片を住友重機工業(株)ネスタール
SG75にて樹脂温度280℃金型温度80℃で射出成
形し導電性、曲げ弾性率、表面性を測定した。得られた
結果を表1に示す。Example 1 Polyamide A (UBE Nylon 1011FB manufactured by Ube Industries)
Carbon fiber A (Mitsubishi Rayon) as shown in FIG. 1 is placed in the place where the resin is in a molten state (resin temperature 280 ° C.) when 80 wt% is charged into an extruder (Tem35B manufactured by Toshiba Machine Co., Ltd.) having the screw configuration shown in FIG. Pyrofil TR06NEB3E) was added so as to be 20 wt%, kneaded and pelletized, and the distribution length of carbon fiber was measured. Further, using the obtained pellets, ASTM No. 1 pieces were injection-molded by NESTAL SG75 manufactured by Sumitomo Heavy Industries, Ltd. at a resin temperature of 280 ° C. and a mold temperature of 80 ° C., and the conductivity, bending elastic modulus and surface property were measured. The results obtained are shown in Table 1.
【0042】比較例1
実施例1においてスクリュー構成を図3にした以外は実
施例1と同様に行い、炭素繊維の分布長測定、導電性、
曲げ弾性率、表面性を測定した。得られた結果を表1に
示す。Comparative Example 1 The procedure of Example 1 was repeated except that the screw structure was changed to that shown in FIG.
Flexural modulus and surface properties were measured. The results obtained are shown in Table 1.
【0043】実施例2
ポリアミドA(宇部興産製UBEナイロン1011FB)
90wt%を図1のスクリュー構成をもつ押出機(東芝
機械(株)Tem35B)に投入し樹脂が溶融状態(樹
脂温度280℃)になっているところに図1のように炭
素繊維B(Fortafil Fiber Inc. Fortafil243)が10
wt%になるように投入し混練・ペレット化し、炭素繊
維の分布長測定をした。また、得られたペレットを用い
てASTM1号片を住友重機工業(株)ネスタールSG
75にて樹脂温度280℃金型温度80℃で射出成形し
導電性、曲げ弾性率、表面性を測定した。得られた結果
を表1に示す。Example 2 Polyamide A (UBE Nylon 1011FB made by Ube Industries)
90 wt% was put into an extruder (Tem35B manufactured by Toshiba Machine Co., Ltd.) having the screw configuration shown in FIG. 1, and when the resin was in a molten state (resin temperature 280 ° C.), carbon fiber B (Fortafil Fiber) as shown in FIG. Inc. Fortafil 243) is 10
The carbon fiber was added so as to be wt%, kneaded and pelletized, and the distribution length of the carbon fiber was measured. Also, using the pellets obtained, ASTM No. 1 pieces were put together by Sumitomo Heavy Industries, Ltd. Nestal SG
The resin was injection molded at a resin temperature of 280 ° C. and a mold temperature of 80 ° C. at 75, and the conductivity, bending elastic modulus and surface property were measured. The results obtained are shown in Table 1.
【0044】比較例2
実施例2においてスクリュー構成を図3にした以外は実
施例2と同様に行い、炭素繊維の分布長測定、導電性、
曲げ弾性率、表面性を測定した。得られた結果を表1に
示す。Comparative Example 2 The same procedure as in Example 2 was carried out except that the screw structure in Example 2 was changed to that shown in FIG.
Flexural modulus and surface properties were measured. The results obtained are shown in Table 1.
【0045】実施例3
ポリアミドA(宇部興産製UBEナイロン1011FB)
47wt%、ポリアミドB(EMS−CHEIE社製
グリボリー21 )5wt%、酸化アンチモン(三国製
錬株式会社 三酸化アンチモン No.0 )7wt%および
難燃剤(グレートレークスケミカルコーポレーション社
製GLC PDBS−80 )21wt%を図1のスクリ
ュー構成をもつ押出機(東芝機械(株)Tem35B)
に投入し樹脂が溶融状態(樹脂温度280℃)になって
いるところに図1のように炭素繊維A(三菱レイヨン
パイロフィル TR06NEB3E)が20wt%になるように投
入し混練・ペレット化し、炭素繊維の分布長測定をし
た。また、得られたペレットを用いてASTM1号片を
住友重機工業(株)ネスタールSG75にて樹脂温度2
80℃金型温度80℃で射出成形し導電性、曲げ弾性
率、表面性、難燃性を測定した。得られた結果を表1に
示す。Example 3 Polyamide A (UBE Nylon 1011FB manufactured by Ube Industries)
47 wt%, polyamide B (manufactured by EMS-CHEIE)
Extrusion having 5% by weight of grivory 21), 7% by weight of antimony oxide (antimony trioxide No. 0 of Mikuni Smelting Co., Ltd.) and 21% by weight of flame retardant (GLC PDBS-80 by Great Lakes Chemical Corporation) with the screw configuration shown in FIG. Machine (Toshiba Machinery Co., Ltd. tem35B)
The carbon fiber A (Mitsubishi Rayon) as shown in Fig. 1 is placed in the place where the resin is in a molten state (resin temperature 280 ° C).
Pyrofil TR06NEB3E) was added so as to be 20 wt%, kneaded and pelletized, and the distribution length of carbon fiber was measured. Also, using the obtained pellets, ASTM No. 1 pieces were subjected to resin temperature 2 at Nestal SG75 manufactured by Sumitomo Heavy Industries, Ltd.
Injection molding was performed at a mold temperature of 80 ° C., and the conductivity, flexural modulus, surface property, and flame retardancy were measured. The results obtained are shown in Table 1.
【0046】実施例4
ポリアミドA(宇部興産製UBEナイロン1011FB)
46wt%、ポリアミドB(EMS−CHEIE社製
グリボリー21 )2wt%、酸化アンチモン(三国製
錬株式会社 三酸化アンチモン No.0 )7wt%、難燃
剤(グレートレークスケミカルコーポレーション社製G
LC PDBS−80 )20wt%および炭素繊維B
(Fortafil Fiber Inc. Fortafil243)5wt%を図2
のスクリュー構成をもつ押出機(東芝機械(株)Tem
35B)のから投入し樹脂が溶融状態(樹脂温度28
0℃)になっているところに図2のから炭素繊維A
(三菱レイヨン パイロフィル TR06NEB3E)20wt%
を追加投入し混練・ペレット化し、炭素繊維の分布長測
定をした。また、得られたペレットを用いてASTM1
号片を住友重機工業(株)ネスタールSG75にて樹脂
温度280℃金型温度80℃で射出成形し導電性、曲げ
弾性率、表面性、難燃性を測定した。得られた結果を表
1に示す。Example 4 Polyamide A (UBE Nylon 1011FB made by Ube Industries)
46 wt%, polyamide B (manufactured by EMS-CHEIE)
Grivory 21) 2 wt%, antimony oxide (Mikuni Smelting Co., Ltd. antimony trioxide No. 0) 7 wt%, flame retardant (G made by Great Lakes Chemical Corporation G
LC PDBS-80) 20 wt% and carbon fiber B
(Fortafil Fiber Inc. Fortafil 243) 5wt% Figure 2
Extruder with screw configuration (Toshiba Machinery Co., Ltd.
35B) and the resin is in a molten state (resin temperature 28
Carbon fiber A from Fig. 2 at the temperature of 0 ° C)
(Mitsubishi Rayon Pyrofil TR06NEB3E) 20wt%
Was additionally charged, kneaded and pelletized, and the distribution length of carbon fiber was measured. In addition, using the obtained pellet, ASTM1
The piece was injection-molded by Nestal SG75 manufactured by Sumitomo Heavy Industries, Ltd. at a resin temperature of 280 ° C. and a mold temperature of 80 ° C., and the conductivity, flexural modulus, surface property, and flame retardancy were measured. The results obtained are shown in Table 1.
【0047】実施例5
ポリカABS(宇部サイコン(株)社製ウベロイCX5
5B )80wt%を図1のスクリュー構成をもつ押出
機(東芝機械(株)Tem35B)に投入し樹脂が溶融
状態(樹脂温度280℃)になっているところに図1の
ように炭素繊維B(Fortafil Fiber Inc. Fortafil24
3)が20wt%になるように投入し混練・ペレット化
し、炭素繊維の分布長測定をした。また、得られたペレ
ットを用いてASTM1号片を住友重機工業(株)ネス
タールSG75にて樹脂温度280℃金型温度80℃で
射出成形し導電性、曲げ弾性率、表面性を測定した。得
られた結果を表1に示す。Example 5 Polycarbonate ABS (Uberoi CX5 manufactured by Ube Saikon Co., Ltd.)
5B) 80 wt% was charged into an extruder (Tem35B manufactured by Toshiba Machine Co., Ltd.) having the screw structure shown in FIG. 1, and carbon fiber B (resin temperature 280 ° C.) was applied to the resin in a molten state (resin temperature 280 ° C.) as shown in FIG. Fortafil Fiber Inc. Fortafil24
3) was added so as to be 20 wt%, kneaded and pelletized, and the distribution length of carbon fiber was measured. Further, using the obtained pellets, ASTM No. 1 pieces were injection-molded by NESTAL SG75 manufactured by Sumitomo Heavy Industries, Ltd. at a resin temperature of 280 ° C. and a mold temperature of 80 ° C., and the conductivity, bending elastic modulus and surface property were measured. The results obtained are shown in Table 1.
【0048】実施例6
ポリアミドA(宇部興産製UBEナイロン1011FB)
70wt%を図1のスクリュー構成をもつ押出機(東芝
機械(株)Tem35B)に投入し樹脂が溶融状態(樹
脂温度280℃)になっているところに図1のように炭
素繊維C(日本ポリマー産業株式会社 CFPA−LC
3)が30wt%になるように投入し混練・ペレット化
し、炭素繊維の分布長測定をした。また、得られたペレ
ットを用いてASTM1号片を住友重機工業(株)ネス
タールSG75にて樹脂温度280℃金型温度80℃で
射出成形し導電性、曲げ弾性率、表面性を測定した。得
られた結果を表2に示す。Example 6 Polyamide A (UBE Nylon 1011FB made by Ube Industries)
Carbon fiber C (Nippon Polymer Co., Ltd.) as shown in FIG. 1 is put in the place where the resin is in a molten state (resin temperature 280 ° C.) when 70 wt% is put into an extruder (Tem35B manufactured by Toshiba Machine Co., Ltd.) having the screw configuration shown in FIG. Sangyo Co., Ltd. CFPA-LC
3) was added so as to be 30 wt%, kneaded and pelletized, and the distribution length of carbon fiber was measured. Further, using the obtained pellets, ASTM No. 1 pieces were injection-molded by NESTAL SG75 manufactured by Sumitomo Heavy Industries, Ltd. at a resin temperature of 280 ° C. and a mold temperature of 80 ° C., and the conductivity, bending elastic modulus and surface property were measured. The obtained results are shown in Table 2.
【0049】比較例3
実施例6においてスクリュー構成を図3にした以外は実
施例6と同様に行い、炭素繊維の分布長測定、導電性、
曲げ弾性率、表面性を測定した。得られた結果を表2に
示す。Comparative Example 3 The procedure of Example 6 was repeated except that the screw structure was changed to that shown in FIG.
Flexural modulus and surface properties were measured. The obtained results are shown in Table 2.
【0050】比較例4
実施例6においてスクリュー構成を図4にした以外は実
施例6と同様に行い、炭素繊維の分布長測定、導電性、
曲げ弾性率、表面性を測定した。得られた結果を表2に
示す。Comparative Example 4 The procedure of Example 6 was repeated except that the screw structure was changed to that shown in FIG.
Flexural modulus and surface properties were measured. The obtained results are shown in Table 2.
【0051】[0051]
【表1】 [Table 1]
【0052】[0052]
【表2】 [Table 2]
【0053】[0053]
【発明の効果】本発明によれば、熱可塑性樹脂に繊維長
分布が広範囲である炭素繊維を所定の割合で配合するこ
とで、電磁波のシールド用に使用できる程の導電性が得
られるとともに、剛性が高く、表面性が良い樹脂組成物
が得られる。従って、導電性や剛性を必要とする電磁波
シールドとして好適に使用でき、電気機器、特にパソコ
ンの筐体やカバーとして好適に使用できる導電性樹脂組
成物を提供できる。According to the present invention, by blending a thermoplastic resin with carbon fibers having a wide fiber length distribution in a predetermined ratio, it is possible to obtain conductivity which can be used for electromagnetic wave shielding, and A resin composition having high rigidity and good surface property can be obtained. Therefore, it is possible to provide a conductive resin composition that can be suitably used as an electromagnetic wave shield that requires conductivity and rigidity, and can be suitably used as a casing or cover of electric equipment, particularly a personal computer.
【図1】 図1は、本発明の実施例1における混練機に
よる熱可塑性樹脂と炭素繊維の混練操作の概要を示す図
である。FIG. 1 is a diagram showing an outline of a kneading operation of a thermoplastic resin and a carbon fiber by a kneader in Example 1 of the present invention.
【図2】 図2は、本発明の実施例4における混練機に
よる熱可塑性樹脂と炭素繊維の混練操作の概要を示す図
である。FIG. 2 is a diagram showing an outline of a kneading operation of a thermoplastic resin and carbon fibers by a kneading machine in Example 4 of the present invention.
【図3】 図3は、本発明の比較例1における混練機に
よる熱可塑性樹脂と炭素繊維の混練操作の概要を示す図
である。FIG. 3 is a diagram showing an outline of a kneading operation of a thermoplastic resin and carbon fibers by a kneader in Comparative Example 1 of the present invention.
【図4】 図4は、本発明の比較例4における混練機に
よる熱可塑性樹脂と炭素繊維の混練操作の概要を示す図
である。FIG. 4 is a diagram showing an outline of a kneading operation of a thermoplastic resin and carbon fibers by a kneader in Comparative Example 4 of the present invention.
【図5】 図5は、導電性の測定方法を示す概略図であ
る。FIG. 5 is a schematic diagram showing a method for measuring conductivity.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 1/18 H01B 1/18 5/00 5/00 H 13/00 13/00 Z // B29K 105:06 B29K 105:06 Fターム(参考) 4F071 AA02 AA12X AA22X AA34X AA43 AA48 AA50 AA54 AB03 AD01 AF37 AH05 AH12 AH16 4F201 AA29 AB11 AB18 AB25 AD16 AE03 AH33 AR12 BA01 BD06 BK02 BK13 BK38 BK49 BK63 BK66 BK69 BQ07 BQ50 4J002 BN15X CG00W CL001 CL002 DA016 FA046 FD116 GG01 GN00 GQ00 5G301 DA20 DA42 DA51 DD10 DE01 DE02 5G307 AA08 ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) H01B 1/18 H01B 1/18 5/00 5/00 H 13/00 13/00 Z // B29K 105: 06 B29K 105: 06 F-term (reference) 4F071 AA02 AA12X AA22X AA34X AA43 AA48 AA50 AA54 AB03 AD01 AF37 AH05 AH12 AH16 4F201 AA29 AB11 AB18 AB25 AD16 AE03 AH33 AR12 BA01 BD06 BK02 BK13 BK38 BK49 BK63 BK66 BK69 BQ07 BQ50 4J002 BN15X CG00W CL001 CL002 DA016 FA046 FD116 GG01 GN00 GQ00 5G301 DA20 DA42 DA51 DD10 DE01 DE02 5G307 AA08
Claims (6)
組成物100重量部に対し、炭素繊維の割合が10〜5
0重量部であって、該炭素繊維のうち、繊維長が500
μm以上のものの割合が10〜50重量%であることを
特徴とする導電性樹脂組成物。1. The ratio of carbon fiber is 10 to 5 relative to 100 parts by weight of a resin composition containing a thermoplastic resin and carbon fiber.
0 parts by weight of the carbon fibers having a fiber length of 500
A conductive resin composition, characterized in that the proportion of particles having a thickness of μm or more is 10 to 50% by weight.
組成物100重量部に対し、炭素繊維の割合が10〜5
0重量部であって、該炭素繊維のうち、繊維長が500
μm以上のものの割合が10〜50重量%であり、か
つ、該炭素繊維のうち、繊維長が50μm以下のものが
3〜12重量部、50μm超のものが7〜38重量部で
あることを特徴とする導電性樹脂組成物。2. The proportion of carbon fibers is 10 to 5 relative to 100 parts by weight of a resin composition containing a thermoplastic resin and carbon fibers.
0 parts by weight of the carbon fibers having a fiber length of 500
The proportion of the carbon fibers having a fiber length of 50 μm or more is 10 to 50% by weight, and the carbon fibers having a fiber length of 50 μm or less are 3 to 12 parts by weight, and those having a fiber length of more than 50 μm are 7 to 38 parts by weight. A characteristic conductive resin composition.
ことを特徴とする請求項1又は2記載の導電性樹脂組成
物。3. The conductive resin composition according to claim 1, wherein the thermoplastic resin is a polyamide resin.
し、炭素繊維を混練機の途中から供給して溶融混合する
に際し、炭素繊維供給後の混練操作を、搬送→混練→搬
送→堰→搬送の順に行うことを特徴とする請求項1記載
の導電性樹脂組成物の製造方法。4. When the thermoplastic resin is supplied from the head of the kneading machine and the carbon fibers are supplied from the middle of the kneading machine to be melt-mixed, the kneading operation after the carbon fiber supply is carried out → kneading → carrying → weir → The method for producing a conductive resin composition according to claim 1, wherein the steps are performed in the order of transportation.
混合するに際し、熱可塑性樹脂と、炭素繊維3〜12重
量部を混練機の先頭から供給し、次いで炭素繊維7〜3
8重量部を混練機の途中から供給し、搬送→混練→搬送
→堰→搬送の順に混練操作を行うことを特徴とする請求
項2記載の導電性樹脂組成物の製造方法。5. When the thermoplastic resin and the carbon fibers are melt-mixed by a kneader, the thermoplastic resin and 3 to 12 parts by weight of the carbon fibers are supplied from the top of the kneader, and then the carbon fibers 7 to 3 are added.
The method for producing a conductive resin composition according to claim 2, wherein 8 parts by weight are supplied from the middle of the kneading machine, and the kneading operation is carried out in the order of transportation → kneading → transportation → weir → transportation.
成形してなる成形品。6. A molded product obtained by molding the conductive resin composition according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002084874A JP2003012945A (en) | 2001-03-28 | 2002-03-26 | Conductive resin composition and its manufacturing method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001092307 | 2001-03-28 | ||
JP2001-92307 | 2001-03-28 | ||
JP2002084874A JP2003012945A (en) | 2001-03-28 | 2002-03-26 | Conductive resin composition and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003012945A true JP2003012945A (en) | 2003-01-15 |
Family
ID=26612326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002084874A Pending JP2003012945A (en) | 2001-03-28 | 2002-03-26 | Conductive resin composition and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003012945A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002371197A (en) * | 2001-04-09 | 2002-12-26 | Ube Ind Ltd | Conductive resin composition and method for manufacturing the same |
WO2004108802A1 (en) * | 2003-06-11 | 2004-12-16 | Semtech Corporated | Cellular phone case and method of manufacturing the same |
JP2005146057A (en) * | 2003-11-12 | 2005-06-09 | Polymatech Co Ltd | High-thermal-conductivity molding and method for producing the same |
US7575800B2 (en) | 2001-11-02 | 2009-08-18 | Kitagawa Industries Co., Ltd. | Sliding parts, precision parts and timepieces and electronic equipment using the same |
US8257075B2 (en) | 2008-11-10 | 2012-09-04 | Apple Inc. | Carbon composite mold design |
JP5095025B1 (en) * | 2012-04-27 | 2012-12-12 | 株式会社名機製作所 | Plasticizing apparatus and plasticizing method |
CN106409424A (en) * | 2016-12-15 | 2017-02-15 | 耒阳市诚松新材料有限公司 | Carbon-fiber metal composite shielded wire |
WO2019065786A1 (en) * | 2017-09-26 | 2019-04-04 | 株式会社日本製鋼所 | Kneading method for fiber-reinforced thermoplastic resin, plasticizing device, and extruding machine |
JP2019059081A (en) * | 2017-09-26 | 2019-04-18 | 株式会社日本製鋼所 | Extruder for fiber reinforced thermoplastic resin |
JP2019069527A (en) * | 2017-10-06 | 2019-05-09 | 株式会社日本製鋼所 | Kneading method and plasticizing apparatus for fiber reinforced thermoplastic resin |
-
2002
- 2002-03-26 JP JP2002084874A patent/JP2003012945A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002371197A (en) * | 2001-04-09 | 2002-12-26 | Ube Ind Ltd | Conductive resin composition and method for manufacturing the same |
US7575800B2 (en) | 2001-11-02 | 2009-08-18 | Kitagawa Industries Co., Ltd. | Sliding parts, precision parts and timepieces and electronic equipment using the same |
WO2004108802A1 (en) * | 2003-06-11 | 2004-12-16 | Semtech Corporated | Cellular phone case and method of manufacturing the same |
JP2005146057A (en) * | 2003-11-12 | 2005-06-09 | Polymatech Co Ltd | High-thermal-conductivity molding and method for producing the same |
US8257075B2 (en) | 2008-11-10 | 2012-09-04 | Apple Inc. | Carbon composite mold design |
US8734706B2 (en) | 2008-11-10 | 2014-05-27 | Apple Inc. | Carbon composite mold design |
JP2013230582A (en) * | 2012-04-27 | 2013-11-14 | Meiki Co Ltd | Plasticization device and plasticization method |
JP5095025B1 (en) * | 2012-04-27 | 2012-12-12 | 株式会社名機製作所 | Plasticizing apparatus and plasticizing method |
CN106409424A (en) * | 2016-12-15 | 2017-02-15 | 耒阳市诚松新材料有限公司 | Carbon-fiber metal composite shielded wire |
WO2019065786A1 (en) * | 2017-09-26 | 2019-04-04 | 株式会社日本製鋼所 | Kneading method for fiber-reinforced thermoplastic resin, plasticizing device, and extruding machine |
JP2019059081A (en) * | 2017-09-26 | 2019-04-18 | 株式会社日本製鋼所 | Extruder for fiber reinforced thermoplastic resin |
US11992973B2 (en) | 2017-09-26 | 2024-05-28 | The Japan Steel Works, Ltd. | Kneading method for fiber-reinforced thermoplastic resin, plasticizing device, and extruding machine |
JP2019069527A (en) * | 2017-10-06 | 2019-05-09 | 株式会社日本製鋼所 | Kneading method and plasticizing apparatus for fiber reinforced thermoplastic resin |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7026388B2 (en) | Conductive resin composition and process for producing the same | |
EP1842879A1 (en) | Polyamide resin composition and conductive shaft-shaped molded article | |
WO2013069365A1 (en) | Thermoplastic resin composition and molded body formed from same | |
JP6490682B2 (en) | Carbon fiber reinforced plastic molding material | |
CN103694697B (en) | A kind of Heat Conduction Material with selectivity deposition metal and preparation method and application | |
JP2008106265A (en) | Polyamide resin composition and molded article comprising the same | |
JP2010168559A (en) | Polyamide resin composition and molded article comprising the same | |
JP2000095947A (en) | Conductive resin composition | |
JP2003012945A (en) | Conductive resin composition and its manufacturing method | |
JP3960096B2 (en) | Conductive resin composition and method for producing the same | |
JP2010037372A (en) | Polyamide resin composition and molded article comprising the same | |
CN107418197A (en) | A kind of heat conduction nylon engineering plastic and preparation method thereof | |
CN103694698B (en) | Daiamid composition of a kind of selectivity metal refining and preparation method thereof and application | |
JP3487034B2 (en) | PBT resin molding material | |
JP4382259B2 (en) | Thermoplastic resin pellet composition and molded product obtained by injection molding | |
JP5224686B2 (en) | Mixture for molding conductive thermoplastic resin composition and molded article formed by molding the mixture | |
JP3406816B2 (en) | Thermoplastic resin composition | |
JPH069819A (en) | Resin composition for shielding electromagnetic wave | |
JP2002338794A (en) | Electrically conductive resin composition and molding material or molded part prepared from the composition | |
JPH10219105A (en) | Polyamide resin composition and housing part of electric appliance produced therefrom | |
JPH11279411A (en) | Resin molding material | |
JP2000230117A (en) | Flame-retardant resin composition, its filament pellet and molding product thereof | |
JPH11329078A (en) | Conductive resin composition and its molding | |
JP2021113308A (en) | Thermally conductive resin composition and molded article comprising the same | |
JP2006045330A (en) | Electroconductive resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040824 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060821 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061107 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070306 |