JP2003008203A - Method of boring blind via hole in double-sided board using carbon dioxide laser - Google Patents

Method of boring blind via hole in double-sided board using carbon dioxide laser

Info

Publication number
JP2003008203A
JP2003008203A JP2001194496A JP2001194496A JP2003008203A JP 2003008203 A JP2003008203 A JP 2003008203A JP 2001194496 A JP2001194496 A JP 2001194496A JP 2001194496 A JP2001194496 A JP 2001194496A JP 2003008203 A JP2003008203 A JP 2003008203A
Authority
JP
Japan
Prior art keywords
copper foil
copper
blind via
via hole
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001194496A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ikeguchi
信之 池口
Sadahiro Kato
禎啓 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2001194496A priority Critical patent/JP2003008203A/en
Publication of JP2003008203A publication Critical patent/JP2003008203A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of boring a blind via hole of high reliability in a thin copper foil laminate, by irradiating the laminate direct with a carbon dioxide gas laser beam. SOLUTION: A thin copper foil (a) having a protective metal plate (c) is used as the back copper foil of a copper-plated laminate with at least two or more-layered copper layers (a), and a blind via hole (d) is bored in the copper-plated laminate by irradiating it directly with a carbon dioxide laser pulse beam, having an energy of 5 to 60 mJ. Thereafter, the rear protective metal plate (c) is separated off, and the copper-plated laminate is made to serve as a printed wiring board through a conventional method after it is subjected to a smear removing treatment. Therefore, there is no via hole bored in the back copper foil, and the reliable and well-shaped blind via hole can be bored at a high speed, so that a high-density printed wiring board which is improved in cost benefit can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、厚さ3〜5μmの薄銅箔
のシャニー面側に厚みの厚い金属板を付着した金属板補
強薄銅箔を少なくともブラインドビア孔底部になる裏面
に張った2層以上の銅の層を有する銅張板の表面に、銅
箔を加工するに十分なパルスエネルギーの炭酸ガスレー
ザーを直接照射してブラインドビア孔を形成する方法に
関するものであり、得られた両面プリント配線板、多層
プリント配線板は、小径の孔を有する、高密度の小型プ
リント配線板として、新規な半導体プラスチックパッケ
ージ、マザーボード用等に使用される。
BACKGROUND OF THE INVENTION The present invention relates to a thin copper foil having a thickness of 3 to 5 μm and a metal plate reinforced thin copper foil having a thick metal plate attached to the shanny side of the thin copper foil, which is stretched on at least the rear surface of the blind via hole. The present invention relates to a method of forming blind via holes by directly irradiating a surface of a copper clad plate having two or more copper layers with a carbon dioxide gas laser having a pulse energy sufficient to process a copper foil. The double-sided printed wiring board and the multi-layered printed wiring board are used as a new semiconductor plastic package, a mother board, etc. as a high-density small printed wiring board having holes of small diameter.

【0002】[0002]

【従来の技術】従来、半導体プラスチックパッケージ等
に用いられる高密度のプリント配線板において、ブライ
ンドビア孔を形成する場合、表層の銅箔にあらかじめ所
定の方法で所定の大きさの孔を銅箔をエッチング、YAG
レーザー、メカニカルドリル等で除去してあけておき、
この部分に炭酸ガスレーザーを照射して絶縁層を加工し
てブラインドビア孔をあけていた。この場合、予め銅箔
に孔をあけておく工程が必要であり、作業性が悪いなど
の欠点があった。また、黒色酸化銅処理を銅箔表面に施
し、この上から炭酸ガスレーザーを直接照射してブライ
ンドビア孔をあける方法が知られているが、この場合、
ブラインドビア孔底部となる裏面の銅箔は貫通する孔が
出てきて、歩留まりの悪いものであった。
2. Description of the Related Art Conventionally, in the case of forming a blind via hole in a high density printed wiring board used for a semiconductor plastic package or the like, a copper foil having a predetermined size is previously formed in a surface copper foil by a predetermined method. Etching, YAG
Remove by laser, mechanical drill, etc.
This portion was irradiated with a carbon dioxide laser to process the insulating layer to form a blind via hole. In this case, there is a defect that workability is poor because a step of making holes in the copper foil in advance is required. In addition, a method is known in which black copper oxide treatment is applied to the copper foil surface, and a carbon dioxide gas laser is directly radiated from above to open a blind via hole.
The copper foil on the back surface, which is the bottom of the blind via hole, had a through hole, and the yield was poor.

【0003】[0003]

【発明が解決しようとする課題】本発明は、以上の問題
点を解決した、薄い銅箔を張った厚みの薄い両面銅張板
に小径のブラインドビア孔を形成する方法提供するもの
である。
SUMMARY OF THE INVENTION The present invention provides a method for forming a blind via hole having a small diameter in a thin double-sided copper clad plate with a thin copper foil, which solves the above problems.

【0004】[0004]

【発明が解決するための手段】銅張板の少なくとも裏面
に、保護金属板を薄銅箔シャイニー面と接着させた銅箔
を張った薄い銅張板の表面から、銅箔を加工するに十分
な5〜60mJから選ばれるパルスエネルギーの炭酸ガスレ
ーザーの1つのエネルギーを直接照射してブラインドビ
ア孔を形成する。裏面銅箔は金属板と接着しており、炭
酸ガスレーザーが裏面銅箔に照射された場合、熱は裏面
の金属板を通って拡散するため裏面の銅箔に孔があか
ず、良好なブラインドビア孔が形成される。表面の銅箔
が薄い場合、孔あけにおいて、孔周辺に銅箔のバリは殆
ど無く、裏面の補強金属を剥離後、孔底部に残存した樹
脂層をデスミア処理、プラズマ処理等で除去し、銅メッ
キを行い、通常の方法でプリント配線板とする。
Means for Solving the Invention At least on the back surface of a copper clad plate, a protective metal plate is adhered to a thin copper foil shiny surface. A blind via hole is formed by directly irradiating one energy of a carbon dioxide laser with a pulse energy selected from 5 to 60 mJ. The backside copper foil is adhered to the metal plate, and when the carbon dioxide laser is applied to the backside copper foil, the heat diffuses through the backside metal plate, so there is no hole in the backside copper foil, and a good blind Via holes are formed. When the copper foil on the surface is thin, there is almost no burr on the copper foil around the hole during drilling, and after removing the reinforcing metal on the back surface, the resin layer remaining at the bottom of the hole is removed by desmear treatment, plasma treatment, etc. Plate and make a printed wiring board by the usual method.

【0005】[0005]

【発明の実施の形態】本発明は、炭酸ガスレーザーを用
いて、2層以上の銅の層を有する薄い銅張板に小径のブ
ラインドビア孔を形成する方法である。両面銅張板の少
なくともブラインドビア孔の底部になる裏面の銅箔は、
保護金属板を厚さ3〜5μmの銅箔と接着したものを使用
し、炭酸ガスレーザーが照射されても底部の孔はあか
ず、良好なブラインドビア孔を形成できる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is a method for forming a blind via hole having a small diameter in a thin copper clad plate having two or more copper layers using a carbon dioxide laser. The copper foil on the back side, which is at least the bottom of the blind via hole of the double-sided copper clad board,
A protective metal plate bonded to a copper foil having a thickness of 3 to 5 μm is used, and even if a carbon dioxide laser is irradiated, the bottom hole is not opened and a good blind via hole can be formed.

【0006】厚さの薄い銅張板の少なくとも裏面には、
金属板に厚さ3〜5μmの銅箔を接着させたものを使用す
る。表面は同じ銅箔でも良い。厚さが3〜5μmの場合、
銅箔表面を処理しなくても、高エネルギーの炭酸ガスレ
ーザーを直接銅箔の上に照射して孔を形成できる。しか
しながら、好適には銅箔のシャイニー面にニッケル金
属、コバルト金属、これらの合金処理を施した銅箔を使
用する。また一般の銅箔上に黒色酸化銅処理、薬液処理
等を行ったものも使用できる。
At least the back surface of the thin copper clad plate is
Use a metal plate to which a copper foil with a thickness of 3 to 5 μm is bonded. The surface may be the same copper foil. If the thickness is 3-5 μm,
The holes can be formed by directly irradiating the copper foil with a high-energy carbon dioxide gas laser without treating the surface of the copper foil. However, it is preferable to use a copper foil in which nickel metal, cobalt metal, or an alloy thereof is applied to the shiny surface of the copper foil. Further, a general copper foil that has been subjected to black copper oxide treatment, chemical treatment, etc. can also be used.

【0007】本発明で使用する、保護金属板に接着した
銅箔は、一般に公知のものが挙げられる。銅箔の厚さは
3〜5μmであり、銅箔のシャイニー面は、好適にはニッ
ケル金属、コバルト金属、これらの合金処理がなされて
いるものが好ましい。金属処理をされている場合、表面
に銅箔を積層して張り、表層の保護金属板を除去後、こ
の上から直接比較的低エネルギーの5〜20mJの炭酸ガス
レーザーを照射して孔が形成できるため、底部の孔貫通
も無く、良好なブラインドビア孔が形成できる。
As the copper foil adhered to the protective metal plate used in the present invention, generally known ones can be mentioned. The thickness of copper foil
The thickness is 3 to 5 μm, and the shiny surface of the copper foil is preferably nickel metal, cobalt metal, or an alloy thereof. When metal treatment is applied, copper foil is laminated on the surface, the protective metal plate on the surface is removed, and then a hole is formed by directly irradiating a relatively low energy carbon dioxide laser of 5 to 20 mJ from above. Therefore, it is possible to form a good blind via hole without penetrating the hole at the bottom.

【0008】本発明で使用する銅張板は、2層以上の銅
の層を有する銅張板であり、熱硬化性樹脂銅張積層板と
しては、無機、有機基材の公知の熱硬化性銅張積層板、
その多層銅張板、表層に樹脂付き銅箔シートを使用した
多層板等、一般に公知の構成の多層銅張板、また、ポリ
イミドフィルム、ポリパラバン酸フィルム等の基材の銅
張板が挙げられる。基材補強銅張積層板は、まず補強基
材に熱硬化性樹脂組成物を含浸、乾燥させてBステージ
とし、プリプレグを作成する。次に、このプリプレグを
所定枚数重ね、その外側に保護金属板付き銅箔を配置し
て、加熱、加圧下に積層成形し、銅張積層板とする。多
層板は、銅箔厚み12〜70μmの銅張板を作製後、この両
面銅張積層板の銅箔を加工して回路を形成し、銅箔表面
を処理して内層板を作製し、この外側にプリプレグ、ま
たはBステージ樹脂シートをおいて、保護金属板付き薄
銅箔をその外側に配置し、積層成形するか、或いは保護
金属板付き薄銅箔付きBステージ樹脂シートを内層板の
外側に配置し、積層成形して多層銅張板とする。炭酸ガ
スレーザーの孔径は一般には80〜180μmのため、銅張板
の厚さが厚いと、その後の銅メッキにおいて、内部に銅
が付着しない等の問題が起こるため、絶縁層の厚さは30
μmから150μm程度が好ましい。
The copper-clad board used in the present invention is a copper-clad board having two or more layers of copper. The thermosetting resin copper-clad laminate is a known thermosetting resin for inorganic and organic base materials. Copper clad laminate,
Examples thereof include a multilayer copper clad board, a multilayer board using a resin-coated copper foil sheet as a surface layer, and the like, and a copper clad board as a base material such as a polyimide film and a polyparabanic acid film. In the base material-reinforced copper-clad laminate, a reinforcing base material is first impregnated with a thermosetting resin composition and dried to form a B-stage to prepare a prepreg. Next, a predetermined number of these prepregs are stacked, a copper foil with a protective metal plate is placed on the outside thereof, and laminated under heat and pressure to form a copper clad laminate. Multilayer board, after producing a copper clad board of copper foil thickness 12 ~ 70 (mu) m, the copper foil of this double-sided copper clad laminate is processed to form a circuit, the copper foil surface is processed to produce an inner layer board, and Place a prepreg or B-stage resin sheet on the outside and place a thin copper foil with a protective metal plate on the outside and laminate it, or place a B-stage resin sheet with a thin copper foil with a protective metal plate on the outside of the inner layer plate. And then laminated and molded to form a multilayer copper clad plate. Since the hole diameter of carbon dioxide laser is generally 80 to 180 μm, if the thickness of the copper clad plate is thick, problems such as copper not adhering inside will occur during subsequent copper plating.
It is preferably about μm to 150 μm.

【0009】基材としては、一般に公知の、有機、無機
の織布、不織布が使用できる。具体的には、無機の繊維
としては、具体的にはE、S、D、Mガラス等の繊維等
が挙げられる。又、有機繊維としては、全芳香族ポリア
ミド、液晶ポリエステル等一般に公知の繊維等が挙げら
れる。これらは、混抄でも良い。また、フィルム基材も
挙げられる。
As the substrate, generally known organic and inorganic woven fabrics and nonwoven fabrics can be used. Specifically, examples of the inorganic fiber include fibers such as E, S, D, and M glass. Examples of the organic fiber include generally known fibers such as wholly aromatic polyamide and liquid crystal polyester. These may be mixed papers. Moreover, a film base material can also be used.

【0010】本発明使用される熱硬化性樹脂組成物の樹
脂としては、一般に公知の熱硬化性樹脂が使用される。
具体的には、エポキシ樹脂、多官能性シアン酸エステル
樹脂、 多官能性マレイミドーシアン酸エステル樹脂、
多官能性マレイミド樹脂、不飽和基含有ポリフェニレン
エーテル樹脂等が挙げられ、1種或いは2種類以上が組み
合わせて使用される。出力の高い炭酸ガスレーザー照射
による加工でのスルーホール形状の点からは、ガラス転
移温度が150℃以上の熱硬化性樹脂組成物が好ましく、
更に無機充填剤を、好適には10〜80重量%配合する。耐
湿性、耐マイグレーション性、吸湿後の電気的特性等の
点から多官能性シアン酸エステル樹脂組成物が好適であ
る。
As the resin of the thermosetting resin composition used in the present invention, generally known thermosetting resins are used.
Specifically, epoxy resin, polyfunctional cyanate ester resin, polyfunctional maleimide-cyanate ester resin,
Examples thereof include polyfunctional maleimide resins and unsaturated group-containing polyphenylene ether resins, and they may be used alone or in combination of two or more. From the viewpoint of through-hole shape in processing by high-power carbon dioxide laser irradiation, a thermosetting resin composition having a glass transition temperature of 150 ° C. or higher is preferable,
Further, an inorganic filler is preferably added in an amount of 10 to 80% by weight. A polyfunctional cyanate ester resin composition is preferable from the viewpoints of moisture resistance, migration resistance, electrical characteristics after moisture absorption, and the like.

【0011】本発明の好適な熱硬化性樹脂分である多官
能性シアン酸エステル化合物とは、分子内に2個以上の
シアナト基を有する化合物である。具体的に例示する
と、1,3-又は1,4-ジシアナトベンゼン、1,3,5-トリシア
ナトベンゼン、1,3-、1,4-、1,6-、1,8-、2,6-又は2,7-
ジシアナトナフタレン、1,3,6-トリシアナトナフタレ
ン、4,4-ジシアナトビフェニル、ビス(4-ジシアナトフ
ェニル)メタン、2,2-ビス(4-シアナトフェニル)プロパ
ン、2,2-ビス(3,5-ジブロモー4-シアナトフェニル)プロ
パン、ビス(4-シアナトフェニル)エーテル、ビス(4-シ
アナトフェニル)チオエーテル、ビス(4-シアナトフェニ
ル)スルホン、トリス(4-シアナトフェニル)ホスファイ
ト、トリス(4-シアナトフェニル)ホスフェート、および
ノボラックとハロゲン化シアンとの反応により得られる
シアネート類等である。これらの公知の分子内へのBr付
加化合物も挙げられる。
The polyfunctional cyanate ester compound which is a preferable thermosetting resin component of the present invention is a compound having two or more cyanato groups in the molecule. Specifically, 1,3- or 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-, 1,4-, 1,6-, 1,8-, 2 , 6- or 2,7-
Dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4-dicyanatobiphenyl, bis (4-dicyanatophenyl) methane, 2,2-bis (4-cyanatophenyl) propane, 2,2- Bis (3,5-dibromo-4-cyanatophenyl) propane, bis (4-cyanatophenyl) ether, bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) sulphone, tris (4-cis) Examples thereof include anatophenyl) phosphite, tris (4-cyanatophenyl) phosphate, and cyanates obtained by reacting novolac with a cyanogen halide. Examples thereof include Br addition compounds in the known molecule.

【0012】これらのほかに特公昭41-1928、同43-1846
8、同44-4791、同45-11712、同46-41112、同47-26853及
び特開昭51-63149等に記載の多官能性シアン酸エステル
化合物類も用いられる。また、これら多官能性シアン酸
エステル化合物のシアナト基の三量化によって形成され
るトリアジン環を有する分子量400〜6,000 のプレポリ
マーが使用される。このプレポリマーは、上記の多官能
性シアン酸エステルモノマーを、例えば鉱酸、ルイス酸
等の酸類;ナトリウムアルコラート等、第三級アミン類
等の塩基;炭酸ナトリウム等の塩類等を触媒として重合
させることにより得られる。このプレポリマー中には一
部未反応のモノマーも含まれており、モノマーとプレポ
リマーとの混合物の形態をしており、このような原料は
本発明の用途に好適に使用される。一般には可溶な有機
溶剤に溶解させて使用する。
In addition to these, Japanese Examined Patent Publications No. 41-1928 and No. 43-1846
8, polyfunctional cyanate ester compounds described in JP-A-51-63149 and JP-A-44-4791, JP-A-45-11712, JP-A-46-41112 and JP-A-47-26853 can also be used. Further, a prepolymer having a molecular weight of 400 to 6,000 and having a triazine ring formed by trimerizing the cyanato group of these polyfunctional cyanate ester compounds is used. This prepolymer is obtained by polymerizing the above-mentioned polyfunctional cyanate ester monomer using, for example, acids such as mineral acid and Lewis acid; bases such as sodium alcoholate and tertiary amines; salts such as sodium carbonate as a catalyst. It is obtained by The prepolymer also contains some unreacted monomer and is in the form of a mixture of the monomer and the prepolymer. Such a raw material is suitably used for the purpose of the present invention. Generally, it is used by dissolving it in a soluble organic solvent.

【0013】エポキシ樹脂としては、一般に公知のもの
が使用できる。具体的には、液状或いは固形のビスフェ
ノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹
脂、フェノールノボラック型エポキシ樹脂、クレゾール
ノボラック型エポキシ樹脂、脂環式エポキシ樹脂;ブタ
ジエン、ペンタジエン、ビニルシクロヘキセン、ジシク
ロペンチルエーテル等の二重結合をエポキシ化したポリ
エポキシ化合物類;ポリオール、水酸基含有シリコン樹
脂類とエポハロヒドリンとの反応によって得られるポリ
グリシジル化合物類等が挙げられる。また、これらの公
知の分子内へのBr付加樹脂が挙げられる。これらは1種
或いは2種類以上が組み合わせて使用され得る。
As the epoxy resin, generally known epoxy resins can be used. Specifically, liquid or solid bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, alicyclic epoxy resin; butadiene, pentadiene, vinylcyclohexene, dicyclopentyl ether, etc. And polyglycidyl compounds obtained by reacting a hydroxyl group-containing silicone resin with epohalohydrin. Moreover, the Br addition resin to these well-known molecules is mentioned. These may be used alone or in combination of two or more.

【0014】ポリイミド樹脂としては、一般に公知のも
のが使用され得る。具体的には、多官能性マレイミド類
とポリアミン類との反応物、特公昭57-005406 に記載の
末端三重結合のポリイミド類が挙げられる。これらの熱
硬化性樹脂は、単独でも使用されるが、特性のバランス
を考え、適宜組み合わせて使用するのが良い。
As the polyimide resin, a generally known one can be used. Specific examples thereof include reaction products of polyfunctional maleimides and polyamines, and polyimides having a terminal triple bond described in JP-B-57-005406. These thermosetting resins may be used alone, but it is preferable to use them in combination as appropriate in consideration of the balance of properties.

【0015】本発明の熱硬化性樹脂組成物には、組成物
本来の特性が損なわれない範囲で、所望に応じて種々の
添加物を配合することができる。これらの添加物として
は、不飽和ポリエステル等の重合性二重結合含有モノマ
ー類及びそのプレポリマー類;ポリブタジエン、エポキ
シ化ブタジエン、マレイン化ブタジエン、ブタジエン-
アクリロニトリル共重合体、ポリクロロプレン、ブタジ
エン-スチレン共重合体、ポリイソプレン、ブチルゴ
ム、フッ素ゴム、天然ゴム等の低分子量液状〜高分子量
のelasticなゴム類;ポリエチレン、ポリプロピレン、ポ
リブテン、ポリ-4-メチルペンテン、ポリスチレン、AS
樹脂、ABS樹脂、MBS樹脂、スチレン-イソプレンゴム、
アクリルゴム、これらのコアシェルゴム、ポリエチレン
-プロピレン共重合体、4-フッ化エチレン-6-フッ化エチ
レン共重合体類;ポリカーボネート、ポリフェニレンエ
ーテル、ポリスルホン、ポリエステル、ポリフェニレン
サルファイド等の高分子量プレポリマー若しくはオリゴ
マー;ポリウレタン等が例示され、適宜使用される。ま
た、その他、公知の有機の充填剤、染料、顔料、増粘
剤、滑剤、消泡剤、分散剤、レベリング剤、光増感剤、
難燃剤、光沢剤、重合禁止剤、チキソ性付与剤等の各種
添加剤が、所望に応じて適宜組み合わせて用いられる。
必要により、反応基を有する化合物は硬化剤、触媒が適
宜配合される。
Various additives can be added to the thermosetting resin composition of the present invention as desired, as long as the original properties of the composition are not impaired. These additives include polymerizable double bond-containing monomers such as unsaturated polyester and prepolymers thereof; polybutadiene, epoxidized butadiene, maleated butadiene, butadiene-
Low molecular weight liquid to high molecular weight elastic rubbers such as acrylonitrile copolymer, polychloroprene, butadiene-styrene copolymer, polyisoprene, butyl rubber, fluororubber, natural rubber; polyethylene, polypropylene, polybutene, poly-4-methyl Penten, polystyrene, AS
Resin, ABS resin, MBS resin, styrene-isoprene rubber,
Acrylic rubber, these core shell rubber, polyethylene
-Propylene copolymers, 4-fluorinated ethylene-6-fluorinated ethylene copolymers; high molecular weight prepolymers or oligomers such as polycarbonate, polyphenylene ether, polysulfone, polyester, polyphenylene sulfide; polyurethane and the like are used as appropriate. To be done. In addition, other known organic fillers, dyes, pigments, thickeners, lubricants, defoamers, dispersants, leveling agents, photosensitizers,
Various additives such as a flame retardant, a brightening agent, a polymerization inhibitor, and a thixotropic agent are appropriately combined and used as desired.
If necessary, the compound having a reactive group is appropriately mixed with a curing agent and a catalyst.

【0016】本発明の熱硬化性樹脂組成物は、それ自体
は加熱により硬化するが硬化速度が遅く、作業性、経済
性等に劣るため使用した熱硬化性樹脂に対して公知の熱
硬化触媒を用い得る。使用量は、熱硬化性樹脂100重量
部に対して0.005〜10重量部、好ましくは0.01〜5重量部
である。
The thermosetting resin composition of the present invention is itself cured by heating, but has a slow curing rate and is inferior in workability, economical efficiency and the like. Therefore, a known thermosetting catalyst is used for the thermosetting resin used. Can be used. The amount used is 0.005 to 10 parts by weight, preferably 0.01 to 5 parts by weight, based on 100 parts by weight of the thermosetting resin.

【0017】炭酸ガスレーザーは、赤外線波長域にある
9.3〜10.6μmの波長が一般に使用される。エネルギーは
5〜60mJ、好適には7〜45mJ にてパルス発振で銅箔を加
工し、孔をあける。エネルギーは表層の銅箔上の処理、
銅箔の厚さによって適宜選択する。もちろん、YAGレー
ザー等のUVレーザーも使用可能である。
Carbon dioxide lasers are in the infrared wavelength range.
Wavelengths of 9.3 to 10.6 μm are commonly used. Energy is
The copper foil is processed by pulse oscillation at 5 to 60 mJ, preferably 7 to 45 mJ, and holes are drilled. Energy is processed on the surface copper foil,
It is appropriately selected depending on the thickness of the copper foil. Of course, a UV laser such as a YAG laser can also be used.

【0018】[0018]

【実施例】以下に実施例、比較例で本発明を具体的に説
明する。尚、特に断らない限り、『部』は重量部を表
す。 実施例1 2,2-ビス(4-シアナトフェニル)プロパン900部、ビス(4-
マレイミドフェニル)メタン1000部を150℃に熔融させ、
撹拌しながら4時間反応させ、プレポリマーを得た。こ
れをメチルエチルケトンとジメチルホルムアミドの混合
溶剤に溶解した。これにビスフェノールA型エポキシ樹
脂(商品名:エピコート1001、ジャパンエポキシレジン<
株>製)400部、クレゾールノボラック型エポキシ樹脂
(商品名:ESCN-220F、住友化学工業<株>製)600部を加
え、均一に溶解混合した。更に触媒としてオクチル酸亜
鉛0.4部を加え、溶解混合し、これに無機充填剤(商品
名:焼成タルク、日本タルク<株>製)2000部を加え、均
一撹拌混合してワニスAを得た。このワニスを厚さ60μm
のガラス織布に含浸し150℃で乾燥して、ゲル化時間(at
170℃)110秒、樹脂組成物の含有量が60重量%のプリプレ
グ(プリプレグB)を作成した。厚さ5μmの電解銅箔のシ
ャイニー面にコバルト合金が処理された銅箔(商品名:
F3B-WS、古河サーキットフォイル<株>製)のシャイニー
面に保護金属板として厚さ35μmの銅板を接着させて張
ったものを上記プリプレグB1枚の両面に配置し、200
℃、20kgf/cm2、30mmHg以下の真空下で2時間積層成形
し、絶縁層厚み80μmの両面銅張積層板Cを得た。
The present invention will be specifically described below with reference to Examples and Comparative Examples. Unless otherwise specified, “part” means part by weight. Example 1 900 parts of 2,2-bis (4-cyanatophenyl) propane, bis (4-
Melt 1000 parts of maleimidophenyl) methane to 150 ° C,
The reaction was carried out for 4 hours with stirring to obtain a prepolymer. This was dissolved in a mixed solvent of methyl ethyl ketone and dimethylformamide. In addition to this, bisphenol A type epoxy resin (trade name: Epicoat 1001, Japan Epoxy Resin <
Co., Ltd.) 400 parts, cresol novolac type epoxy resin
(Product name: ESCN-220F, manufactured by Sumitomo Chemical Co., Ltd.) 600 parts were added and uniformly dissolved and mixed. Furthermore, 0.4 part of zinc octylate as a catalyst was added, dissolved and mixed, and 2000 parts of an inorganic filler (trade name: calcined talc, manufactured by Nippon Talc Co., Ltd.) was added thereto, and uniformly stirred and mixed to obtain a varnish A. This varnish has a thickness of 60 μm
Impregnated into a glass woven fabric and dried at 150 ℃, gelation time (at
A prepreg (prepreg B) having a resin composition content of 60% by weight at 170 ° C. for 110 seconds was prepared. Copper foil treated with cobalt alloy on the shiny surface of 5 μm thick electrolytic copper foil (trade name:
F3B-WS, made by Furukawa Circuit Foil Co., Ltd.), a protective metal plate with a 35 μm thick copper plate adhered to the shiny surface and placed on both sides of the above prepreg B.
Laminate molding was performed for 2 hours at a temperature of 20 kgf / cm 2 and a vacuum of 30 mmHg or less to obtain a double-sided copper-clad laminate C having an insulating layer thickness of 80 μm.

【0019】この銅張積層板Cの表面の35μmの保護銅板
を剥離し、裏面の保護銅板は剥離しないでそのままにし
て、表面から炭酸ガスレーザーパルスエネルギー10mJを
1ショット照射して孔径100μmのブラインドビア孔をあ
けた。裏面に張ってある保護銅板を剥離し、シャイニー
面の表層のコバルト合金層を薬液で溶解して銅箔厚さを
3.5μmとした。その後、デスミア処理を行い、銅メッキ
を15μm付着させた。この表裏に、既存の方法にて回路
(ライン/スペース=50/50μmを200個)、ハンダボール用
ランド等を形成し、少なくとも半導体チップ搭載部、ボ
ンディング用パッド部、ハンダボールランド部を除いて
メッキレジストで被覆し、ニッケル、金メッキを施し、
プリント配線板を作成した。このプリント配線板の評価
結果を表1に示す。
The protective copper plate of 35 μm on the surface of this copper-clad laminate C was peeled off, the protective copper plate on the back side was left as it was, and one shot of carbon dioxide laser pulse energy of 10 mJ was irradiated from the front surface to form a blind having a pore diameter of 100 μm. A via hole was opened. Peel off the protective copper plate on the back side and dissolve the cobalt alloy layer on the surface of the shiny surface with a chemical solution to reduce the copper foil thickness.
It was 3.5 μm. After that, desmear treatment was performed to deposit copper plating of 15 μm. This front and back, the circuit by the existing method
(200 lines / space = 50/50 μm), solder ball lands, etc. are formed, and at least the semiconductor chip mounting area, bonding pad area, solder ball land area are covered with plating resist, and nickel and gold plating are applied. Giving,
A printed wiring board was created. Table 1 shows the evaluation results of this printed wiring board.

【0020】実施例2 エポキシ樹脂(商品名:エピコート5045、ジャパンエポキ
シレジン<株>製)700部、及びエポキシ樹脂(商品名:ESCN
220F)300部、ジシアンジアミド35部、2-エチル-4-メチ
ルイミダゾール1部をメチルエチルケトンとジメチルホ
ルムアミドの混合溶剤に溶解し、さらに実施例1の焼成
タルクを800部を加え、強制撹拌して均一分散し、ワニ
スDを得た。これを厚さ20μmのガラス織布に含浸、乾燥
して、ゲル化時間150秒、樹脂組成物含有量76重量%のプ
リプレグ(プリプレグE)及びゲル化時間178秒、樹脂組成
物含有量80重量%のプリプレグ(プリプレグF)を作成し
た。このプリプレグEを1枚使用し、厚さ12μmの一般の
電解銅箔を両面に置き、190℃、20kgf/cm2、30mmHg以下
の真空下で2時間積層成形して絶縁層厚さ35μmの両面銅
張積層板Gを作製した。この両面に回路を形成し、黒色
酸化銅処理を施し、この両外側に上記プリプレグFを各
1枚配置し、その外側に厚さ3μmの一般の電解銅箔のシ
ャイニー面側に35μmの電解銅箔を接着して張った銅箔
(Micro Thin銅箔、三井金属<株>製)を配置して同様に
積層成形し、4層板を作製した。この表面の保護金属板
を剥離し裏面の保護金属板である銅板はそのままにし
て、表面の銅箔上に、炭酸ガスレーザーパルスエネルギ
ー15mJで1ショット照射し、絶縁層厚さ120μmに孔径15
0μmのブラインドビア孔を裏面の銅箔に到達するように
あけた。これをプラズマ装置の中に入れ、底部の残存樹
脂を除去し、15μmの銅メッキを施した後、定法にて実
施例1と同様にこの両面に回路を形成し、プリント配線
板とした。評価結果を表1に示す。
Example 2 700 parts of epoxy resin (trade name: Epicoat 5045, manufactured by Japan Epoxy Resin Co., Ltd.), and epoxy resin (trade name: ESCN)
220F) 300 parts, dicyandiamide 35 parts, 2-ethyl-4-methylimidazole 1 part are dissolved in a mixed solvent of methyl ethyl ketone and dimethylformamide, and 800 parts of the calcined talc of Example 1 is further added, and the mixture is forcibly stirred to uniformly disperse. And got Varnish D. This was impregnated in a glass woven fabric having a thickness of 20 μm and dried, and a gelling time of 150 seconds, a resin composition content of 76 wt% prepreg (prepreg E) and a gelling time of 178 seconds, a resin composition content of 80 weight% % Prepreg (prepreg F) was created. Using one piece of this prepreg E, put a general electrolytic copper foil with a thickness of 12 μm on both sides, and laminate-mold it for 2 hours under a vacuum of 190 ° C, 20 kgf / cm 2 , 30 mmHg or less, and have an insulating layer thickness of 35 μm on both sides. A copper clad laminate G was produced. Circuits are formed on both sides of this, black copper oxide treatment is applied, one piece of each of the above prepregs F is placed on both outer sides, and 35 µm electrolytic copper is placed on the shiny side of a general electrolytic copper foil with a thickness of 3 µm on the outside. A copper foil (Micro Thin copper foil, manufactured by Mitsui Kinzoku Co., Ltd.) in which foils were adhered and stretched was placed and laminated in the same manner to produce a four-layer board. Peel off the protective metal plate on the front side and leave the copper plate as the protective metal plate on the back side as it is, irradiate 1 shot with carbon dioxide laser pulse energy of 15 mJ on the copper foil on the front side, insulating layer thickness 120 μm and hole diameter 15
A blind via hole of 0 μm was drilled to reach the backside copper foil. This was put in a plasma device, the residual resin at the bottom was removed, and after copper plating of 15 μm was applied, circuits were formed on both sides of this in the same manner as in Example 1 by a conventional method to obtain a printed wiring board. The evaluation results are shown in Table 1.

【0021】比較例1 実施例1のプリプレグBの両面に7μmの一般の電解銅箔を
配置し、同様に積層成形して両面銅張積層板を作製し
た。この銅箔表層に黒色酸化銅処理を施し、XYテーブル
の上に置き、表面から炭酸ガスレーザーパルスエネルギ
ー25mJで2ショット照射して孔径100μmのブラインドビ
ア孔をあけた。この孔のうち、84%に裏面銅箔に孔が
あいていた。これをデスミア処理し、銅メッキを15μm
付着させ、同様にプリント配線板とした。評価結果を表
1に示す。
Comparative Example 1 A general electrolytic copper foil having a thickness of 7 μm was placed on both sides of the prepreg B of Example 1 and laminated in the same manner to prepare a double-sided copper clad laminate. This copper foil surface layer was subjected to black copper oxide treatment, placed on an XY table, and irradiated with 2 shots from the surface at a carbon dioxide gas laser pulse energy of 25 mJ to form blind via holes with a hole diameter of 100 μm. Of these holes, 84% had holes in the backside copper foil. Desmearing this, copper plating 15μm
It was attached and similarly used as a printed wiring board. The evaluation results are shown in Table 1.

【0022】比較例2 実施例2の4層銅張積層板の表層に金属板付き銅箔では
なく、12μmの一般の電解銅箔を張り、これを平均厚さ3
μmまでエッチングして表面に3μmの凹凸をつけた。
これをXYテーブルの上に置き、表銅箔面から15mJの炭酸
ガスレーザーパルスエネルギー1ショット照射してブラ
インドビア孔をあけたが、裏面銅箔は93%孔があいてい
た。銅メッキを15μm施し、表裏に回路を形成し、同様
にプリント配線板を作成した。評価結果を表1に示す。
Comparative Example 2 Instead of a copper foil with a metal plate, a general electrolytic copper foil having a thickness of 12 μm was applied to the surface layer of the four-layer copper clad laminate of Example 2 and the average thickness was 3
Etching was performed up to μm to form a 3 μm unevenness on the surface.
This was placed on an XY table and a blind via hole was formed by irradiating one shot of carbon dioxide laser pulse energy of 15 mJ from the surface of the front copper foil, but the backside copper foil had 93% holes. Copper plating was applied to 15 μm, circuits were formed on the front and back, and a printed wiring board was similarly prepared. The evaluation results are shown in Table 1.

【0023】 (表1) 実施例 比較例項目 1 2 1 2 裏面銅箔貫通率(%) 0 0 84 93 ガラス転移温度( ℃) 235 160 235 160 ブラインドビア孔・ヒートサイクル試験(%) 2.3 4.8 7.9 9.5 耐マイグレーション性 常態 5x1014 6x1014 5x1014 4x1014 200hrs. 3x1011 4x10 8 7x1010 <1x10 8 700hrs. 6x1010 <1x10 8 6x10 9(Table 1) Example Comparative Example Item 1 2 1 2 Backside copper foil penetration rate (%) 0 0 84 93 Glass transition temperature (° C) 235 160 235 160 Blind via hole / heat cycle test (%) 2.3 4.8 7.9 9.5 migration resistance ordinary state 5x10 14 6x10 14 5x10 14 4x10 14 200hrs. 3x10 11 4x10 8 7x10 10 <1x10 8 700hrs. 6x10 10 <1x10 8 6x10 9 over

【0024】<測定方法> 1)裏面銅箔貫通率 : ワークサイズ250mm角内に、ブライ
ンドビア孔を1mm間隔で900孔/ブロックとして70ブロッ
ク作製し(孔計63,000孔)、裏面の銅箔を貫通した数を
数え、%で表示した。 2)ガラス転移温度 : JIS C6481のDMA法にて測定し
た。 3)ブラインドビア孔・ヒートサイクル試験 : 各ブライ
ンドビア孔にランド径250μmを作成し、900孔を表裏交
互につなぎ、1サイクルが、260℃・ハンダ・浸せき30秒
→室温・5分 で、200サイクル実施し、抵抗値の変化率
の最大値を示した。 4)耐マイグレーション性 : 各実施例、比較例におい
て、ブラインドビア孔を孔壁間150μmとなるように2列
並行して各々1000孔あけ、この表裏にランド径250μmを
作製し、1000孔を表裏つないで、2列配置し、85℃・85
%RH・50VDC印加し、絶縁抵抗値を測定した。
<Measurement method> 1) Backside copper foil penetration rate: Within the work size of 250 mm square, 70 blind blind via holes were made at 1 mm intervals as 900 holes / block (63,000 holes in total), and the copper foil on the backside was prepared. The number of penetrations was counted and expressed in%. 2) Glass transition temperature: Measured by the DMA method of JIS C6481. 3) Blind via hole / heat cycle test: A land diameter of 250 μm was created for each blind via hole, 900 holes were connected alternately on the front and back sides, and one cycle was 200 ° C at 260 ° C, solder, immersion for 30 seconds → room temperature for 5 minutes. The cycle was performed and the maximum rate of change in resistance was shown. 4) Migration resistance: In each of the Examples and Comparative Examples, blind via holes were opened in parallel in two rows so that the distance between the hole walls was 150 μm, 1000 holes were formed in each row, and a land diameter of 250 μm was produced on the front and back sides. Connected and arranged in 2 rows, 85 ℃ ・ 85
% RH / 50VDC was applied and the insulation resistance value was measured.

【0025】[0025]

【発明の効果】少なくとも2層以上の銅の層を有する、
表層銅箔が薄い銅張積層板の銅表面に直接、パルスエネ
ルギー5〜60mJから選ばれる1つのエネルギーを照射し
てブラインドビア孔を形成するにあたり、銅張積層板の
裏面に、保護金属板付きの3〜5μmの薄銅箔を配置して
孔あけすることにより、裏面の銅箔の貫通もなく、孔信
頼性に優れたブラインドビア孔が形成できた。
The present invention has at least two copper layers,
When a blind via hole is formed by directly irradiating one energy selected from pulse energy of 5 to 60 mJ directly on the copper surface of a copper clad laminate having a thin surface copper foil, a protective metal plate is provided on the back surface of the copper clad laminate. By arranging and punching a thin copper foil of 3 to 5 μm, a blind via hole with excellent hole reliability could be formed without penetrating the copper foil on the back surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1のブラインドビア孔形成工程図。FIG. 1 is a process diagram of forming a blind via hole according to the first embodiment.

【図2】比較例1のブラインドビア孔形成工程図。FIG. 2 is a process diagram of forming a blind via hole in Comparative Example 1.

【符号の説明】[Explanation of symbols]

a 表面コバルト合金処理銅箔 b 積層板 c 保護金属板 d 炭酸ガスレーザーで孔あけしたブラインドビア孔 e 残存樹脂層 f デスミア処理後に銅メッキされたブラインドビア
孔 g 回路 h 孔があいた裏面銅箔 i 裏面銅箔に孔があいたブラインドビア孔 j デスミア処理後に銅メッキした裏面銅箔に孔のあ
いたブラインドビア孔
a surface cobalt alloy treated copper foil b laminated plate c protective metal plate d blind via hole made by carbon dioxide laser e residual resin layer f blind via hole copper plated after desmear treatment g circuit h backside copper foil i with holes Blind via hole with holes in the backside copper foil j Blind via hole with holes in the backside copper foil plated with copper after desmearing

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5E317 AA24 BB02 BB03 BB12 CC31 CD27 CD32 GG17 5E346 AA12 AA15 AA42 CC04 CC09 CC32 DD12 FF03 FF04 FF09 FF10 GG15 HH31    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5E317 AA24 BB02 BB03 BB12 CC31                       CD27 CD32 GG17                 5E346 AA12 AA15 AA42 CC04 CC09                       CC32 DD12 FF03 FF04 FF09                       FF10 GG15 HH31

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 補強金属板付きの厚さ3〜5μmの薄銅箔
を、少なくとも最外層のブラインドビア孔底部となる裏
片面に張った両面銅張板の表面から、銅箔を加工するに
十分なパルスエネルギー5〜60mJから選ばれる1つの炭
酸ガスレーザーエネルギーをパルス発振により直接照射
し、少なくとも2層以上の銅張板にブラインドビア孔を
形成した後、裏面の補強金属板を剥離除去することを特
徴とする炭酸ガスレーザーによるブラインドビア孔の形
成方法。
1. A copper foil is processed from the surface of a double-sided copper-clad plate in which a thin copper foil with a reinforcing metal plate and a thickness of 3 to 5 μm is stretched on at least one outer surface of a blind via hole bottom portion of the outermost layer. Sufficient pulse energy One carbon dioxide laser energy selected from 5 to 60 mJ is directly irradiated by pulse oscillation to form blind via holes in at least two or more layers of copper clad plate, and then the reinforcing metal plate on the back surface is peeled and removed. A method for forming blind via holes by a carbon dioxide laser, which is characterized by the above.
【請求項2】 該薄銅箔のシャイニー面にニッケル処
理、コバルト処理、或いはこれらの合金処理を施した補
強金属板付き薄銅箔である請求項1記載のブラインドビ
ア孔の形成方法。
2. The method for forming blind via holes according to claim 1, wherein the thin copper foil is a thin copper foil with a reinforcing metal plate, the shiny surface of which is treated with nickel, cobalt, or an alloy thereof.
JP2001194496A 2001-06-27 2001-06-27 Method of boring blind via hole in double-sided board using carbon dioxide laser Pending JP2003008203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001194496A JP2003008203A (en) 2001-06-27 2001-06-27 Method of boring blind via hole in double-sided board using carbon dioxide laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001194496A JP2003008203A (en) 2001-06-27 2001-06-27 Method of boring blind via hole in double-sided board using carbon dioxide laser

Publications (1)

Publication Number Publication Date
JP2003008203A true JP2003008203A (en) 2003-01-10

Family

ID=19032626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001194496A Pending JP2003008203A (en) 2001-06-27 2001-06-27 Method of boring blind via hole in double-sided board using carbon dioxide laser

Country Status (1)

Country Link
JP (1) JP2003008203A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016335A (en) * 2008-06-30 2010-01-21 Samsung Electro-Mechanics Co Ltd Metal laminate plate and manufacturing method thereof
US7696617B2 (en) 2003-05-30 2010-04-13 Shinko Electric Industries Co., Ltd. Package for semiconductor devices
JP2010285699A (en) * 2009-06-09 2010-12-24 Kb Seiren Ltd Ultrafine polyurethane fiber and method for producing the same
CN104394658A (en) * 2014-11-18 2015-03-04 广州兴森快捷电路科技有限公司 Rigid-flexible combined circuit board and manufacturing method thereof
KR20150052051A (en) 2012-09-05 2015-05-13 미쓰이금속광업주식회사 Printed wiring board production method and printed wiring board
TWI565386B (en) * 2014-12-19 2017-01-01 先豐通訊股份有限公司 Mefhod for processing in hole of circuit board and circuit board made there from

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347767A (en) * 1998-06-01 1999-12-21 Mitsubishi Gas Chem Co Inc Method of making through-hole on copper-plate sheet by laser
JP2001111233A (en) * 1999-10-07 2001-04-20 Mitsubishi Gas Chem Co Inc Flip-chip mounting high-density multilayer printed interconnection board
JP2001131309A (en) * 1999-11-04 2001-05-15 Mitsubishi Gas Chem Co Inc High-dielectric constant b-stage sheet and printed wiring board using the same
JP2001135913A (en) * 1999-11-04 2001-05-18 Mitsubishi Gas Chem Co Inc Copper-plated board with surface-finished copper foil and printed wiring board thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347767A (en) * 1998-06-01 1999-12-21 Mitsubishi Gas Chem Co Inc Method of making through-hole on copper-plate sheet by laser
JP2001111233A (en) * 1999-10-07 2001-04-20 Mitsubishi Gas Chem Co Inc Flip-chip mounting high-density multilayer printed interconnection board
JP2001131309A (en) * 1999-11-04 2001-05-15 Mitsubishi Gas Chem Co Inc High-dielectric constant b-stage sheet and printed wiring board using the same
JP2001135913A (en) * 1999-11-04 2001-05-18 Mitsubishi Gas Chem Co Inc Copper-plated board with surface-finished copper foil and printed wiring board thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7696617B2 (en) 2003-05-30 2010-04-13 Shinko Electric Industries Co., Ltd. Package for semiconductor devices
JP2010016335A (en) * 2008-06-30 2010-01-21 Samsung Electro-Mechanics Co Ltd Metal laminate plate and manufacturing method thereof
JP2010285699A (en) * 2009-06-09 2010-12-24 Kb Seiren Ltd Ultrafine polyurethane fiber and method for producing the same
KR20150052051A (en) 2012-09-05 2015-05-13 미쓰이금속광업주식회사 Printed wiring board production method and printed wiring board
KR20180108880A (en) 2012-09-05 2018-10-04 미쓰이금속광업주식회사 Printed wiring board production method and printed wiring board
CN104394658A (en) * 2014-11-18 2015-03-04 广州兴森快捷电路科技有限公司 Rigid-flexible combined circuit board and manufacturing method thereof
TWI565386B (en) * 2014-12-19 2017-01-01 先豐通訊股份有限公司 Mefhod for processing in hole of circuit board and circuit board made there from

Similar Documents

Publication Publication Date Title
EP1097806B1 (en) Copper-clad board, method of making hole in said copper-clad board and printing wiring board comprising said copper-clad board
JP2003008203A (en) Method of boring blind via hole in double-sided board using carbon dioxide laser
JP2001230519A (en) Method for forming hole using carbon dioxide gas laser and its post-treatment method
JP2001260274A (en) B-stage resin sheet with both face-treated copper foil for preparing copper-clad sheet and its printed wiring board
JP4078715B2 (en) Highly reliable via hole formation method
JP4888517B2 (en) Method for manufacturing printed circuit board for extra fine wire circuit
JPH11346059A (en) Printed circuit board with reliable via hole
JP2001028475A (en) Manufacture of polybenzazole fabric base-material printed wiring board
JP2001007535A (en) Manufacture of multilayer printed wiring board with through-hole of high reliability
JP2001347596A (en) Metal foil-clad sheet suitable for carbon dioxide laser perforation, and printed wiring board using the same
JP2001239386A (en) Boring method by co2 gas laser
JPH11330310A (en) Laser boring copper-plated laminate
JP2001135911A (en) Boring method on copper-plated board with carbon dioxide
JPH11320174A (en) Auxiliary material for carbon dioxide gas laser boring
JP2001156460A (en) Build-up multilayer printed wiring board
JP2004281872A (en) Method for forming hole by laser
JP2001347598A (en) Copper-clad sheet suitable for carbon dioxide laser perforation, and high density printed wiring board using the same
JPH11220243A (en) Formation of hole for through hole by carbon-dioxide-gas laser
JP2002004085A (en) Electrolytic copper foil suitable for direct perforating with carbon dioxide laser
JPH11347767A (en) Method of making through-hole on copper-plate sheet by laser
JP2002353638A (en) Multi-layer copper-clad board suitable for mass productive carbon dioxide laser boring process
JP2001196713A (en) Both-side processed copper foil with protective metal plate, and printed wiring board
JP2000061679A (en) Method for forming through hole by laser beam
JPH11346044A (en) Backup sheet for making penetration hole by laser
JP2001018324A (en) Laminated plate coated with polybenzasol fiber cloth base material metal foil

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080508

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20100324

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20100513

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20101006

Free format text: JAPANESE INTERMEDIATE CODE: A02