JP2004281872A - Method for forming hole by laser - Google Patents

Method for forming hole by laser Download PDF

Info

Publication number
JP2004281872A
JP2004281872A JP2003073629A JP2003073629A JP2004281872A JP 2004281872 A JP2004281872 A JP 2004281872A JP 2003073629 A JP2003073629 A JP 2003073629A JP 2003073629 A JP2003073629 A JP 2003073629A JP 2004281872 A JP2004281872 A JP 2004281872A
Authority
JP
Japan
Prior art keywords
copper
foil
copper foil
holes
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003073629A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ikeguchi
信之 池口
Katsuji Komatsu
勝次 小松
Hamao Hashimoto
浜穂 橋本
Taro Yoshida
太郎 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2003073629A priority Critical patent/JP2004281872A/en
Publication of JP2004281872A publication Critical patent/JP2004281872A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To improve the reliability of blind via holes/through holes by directly irradiating the surface of a copper clad board to which general copper foil is stuck with carbon dioxide laser beams and piercing holes without polluting the surface layer. <P>SOLUTION: Thin copper foil provided with a carrier metallic foil and having ≤5μm general thickness is used as the copper foil of the copper clad board having at least two copper layers and the surface of the carrier metallic foil is directly irradiated with carbon dioxide laser beams to form blind via holes and/or through holes. Since the holes can be formed by directly irradiating the surface of the metallic foil with carbon dioxide laser beams without treating the surface of the copper foil, the carrier metallic foil prevents the pollution of the copper foil and highly reliable blind via holes and/or through holes having fine hole shapes can be quickly pierced without generating defects at the time of forming a pattern, a high-density printed board whose economic efficiency is improved can be obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、キャリア金属箔に付着させた厚さ5μm以下の薄銅箔を最外層に張った銅張板の表面に直接レーザーを照射してブラインドビア孔及び/又は貫通孔を形成し、その後の処理方法に関するものであり、得られた両面プリント配線板、多層プリント配線板は、小径の孔を有する、高密度の小型プリント配線板として、半導体プラスチックパッケージ、マザーボード用等に使用される。
【0002】
【従来の技術】
従来、半導体プラスチックパッケージ等に用いられる高密度のプリント配線板において、ブラインドビア孔及び/又は貫通孔を形成する場合、表層の銅箔にあらかじめ所定の方法で所定の大きさの孔の銅箔をエッチング、YAGレーザー、メカニカルドリル等で除去してあけておき、この部分に炭酸ガスレーザーを照射して絶縁層を加工してブラインドビア孔をあけていた(例えば、特許文献1〜3参照)。この場合、予め銅箔に孔をあけておく工程が必要であり、作業性が悪いなどの欠点があった。更に加工されて飛散した樹脂等が表面に付着し、その後のパターン形成において不良を発生していた。また、黒色酸化銅処理等の処理を銅箔表面に施し、この上から炭酸ガスレーザーを直接照射してブラインドビア孔をあける方法が知られている(例えば、特許文献4参照)が、この場合、表面処理をこすったりすると表面処理が取れやすく、孔あけでこの部分の孔形状のばらつきが発生し易い欠点があった。
【0003】
【特許文献1】特開平3676号公報
【特許文献2】特許第2805742号公報
【特許文献3】特開2000−31640号公報
【特許文献4】特開昭61−99596号公報
【0004】
【発明が解決しようとする課題】
本発明は、以上の問題点を解決した、銅箔の上に加工した樹脂等が付着せず、孔形状のばらつきも少ない小径のブラインドビア孔及び/又は貫通孔を、炭酸ガスレーザーを銅張板の上に直接照射して形成する方法を提供するものである。
【0005】
【発明が解決するための手段】
キャリア金属箔を付着させた厚さが5μm以下の一般の銅箔を最外層に張った銅張板の上から、銅箔を加工するに十分なエネルギーの炭酸ガスレーザーを直接照射してブラインドビア孔及び/又は貫通孔を形成する。その後、薬液或いは手等で表層のキャリア金属箔を除去することにより表層のキャリア金属箔に付着した加工残渣樹脂等も一緒に除去されるために表層銅箔の汚染によるパターン形成時の不良はなくなる。又、孔部に発生したバリは薬液で溶解除去すると、その後の銅メッキでも付着不良等が発生せず、良好な孔が得られる。得られた銅張板はその後に一般のプリント配線板製造工程を通して加工し、高密度プリント配線板とする。
【0006】
【発明の実施の形態】
本発明は、レーザー、好ましくは炭酸ガスレーザーを用いて、2層以上の銅の層を有する銅張板に小径のブラインドビア孔及び/又は貫通孔を形成する方法である。両面銅張板、多層銅張板の少なくとも最外層の銅箔は、キャリア金属箔が付着した厚さ5μm以下の一般の銅箔を張ったものであり、この上から直接レーザーを照射することによってブラインドビア孔及び/又は貫通孔を形成することができる。
【0007】
本発明の5μm以下の薄い銅箔は、キャリアとなる金属箔、好適にはアルミニウム箔に薄い銅箔を接着させたものを使用し、積層成形して両面銅張板、多層板とした後、キャリア金属箔を残したまま、この上から銅箔を加工するに十分なエネルギーのレーザー、好適には炭酸ガスレーザーを直接照射してブラインドビア孔及び/又は貫通孔を形成する。貫通孔を形成する場合は裏面の銅箔を貫通した時点でレーザー照射を止めるか、裏面にバックアップシートを配置して孔あけを行う。バックアップシートは裏面に接着させても、置くだけでも良い。
【0008】
キャリア金属箔は一般に公知のものが使用でき、例えばアルミニウム、銅箔等が挙げられるが、アルミニウム箔が好適に使用される。この金属箔はエッチングして溶解除去する方法、手で剥離する方法等、手段は選ばないが、孔あけ後の孔部のバリを溶解除去する場合は、薬液を使用してバリを溶解すると同時にキャリア金属箔も溶解除去する。孔部のバリが発生しない銅箔厚みの場合は、手で剥離する方法が良い。また薬液で銅箔のバリを最初に溶解し、その後に最外層のキャリア金属箔を手等で物理的に剥離する。
【0009】
本発明で使用する、キャリア金属箔に接着した一般の銅箔は、一般に公知のものが挙げられる。例えば、Piotec社のアルミニウムキャリア箔付き薄銅箔等が使用できる。銅箔の厚さは5μm以下であり、銅箔のシャイニー面は一般に公知の防錆処理が施されたもの或いは無処理の平滑な表面のもの等、公知のものが使用できる。キャリア金属箔が炭酸ガスレーザーで孔が形成しにくい場合、その表面を公知の処理を行う。具体的には黒色酸化銅処理、エッチングによる凹凸付与処理等が挙げられる。
【0010】
本発明で使用する銅張板は、2層以上の銅の層を有する銅張板であり、熱硬化性樹脂銅張積層板としては、無機、有機基材の公知の熱硬化性銅張積層板、その多層銅張板、表層に樹脂付き銅箔シートを使用した多層銅張板等、一般に公知の構成の多層銅張板、また、ポリイミドフィルム、ポレエステルフィルム、ポリパラバン酸フィルム、全芳香族ポリアミドフィルム、液晶ポリエステルフィルム等の基材の銅張板が挙げられる。
【0011】
基材補強銅張積層板は、まず補強基材に熱硬化性樹脂組成物を含浸、乾燥させてBステージとし、プリプレグを作製する。次に、このプリプレグを所定枚数重ね、その外側にキャリア金属箔付き銅箔を配置して、加熱、加圧下に積層成形し、銅張積層板とする。多層銅張板は、この両面銅張積層板の銅箔を加工して回路を形成し、銅箔表面を化学処理して内層板を作製し、この外側にプリプレグ、またはBステージ樹脂シート等を置いて、キャリア金属箔付き薄銅箔をその外側に配置し、積層成形するか、或いはキャリア金属板付き薄銅箔付きBステージ樹脂シートを内層板の外側に配置し、積層成形して多層銅張板とする。
【0012】
基材としては、一般に公知の、有機、無機の織布、不織布が使用できる。具体的には、無機の繊維としては、具体的にはE、S、D、M、NEガラス等の繊維等が挙げられる。又、有機繊維としては、全芳香族ポリアミド、液晶ポリエステル等一般に公知の繊維等が挙げられる。これらは、混抄でも良い。また、フィルム基材も挙げられる。
【0013】
本発明で使用される熱硬化性樹脂組成物の樹脂としては、一般に公知の熱硬化性樹脂が使用される。具体的には、エポキシ樹脂、多官能性シアン酸エステル樹脂、 多官能性マレイミドーシアン酸エステル樹脂、多官能性マレイミド樹脂、不飽和基含有ポリフェニレンエーテル樹脂等が挙げられ、1種或いは2種類以上が組み合わせて使用される。出力の高い炭酸ガスレーザー照射による加工でのスルーホール形状の点からは、ガラス転移温度が150℃以上の熱硬化性樹脂組成物が好ましく、耐湿性、耐マイグレーション性、吸湿後の電気的特性等の点から多官能性シアン酸エステル樹脂組成物が好適である。
【0014】
本発明の好適な熱硬化性樹脂分である多官能性シアン酸エステル化合物とは、分子内に2個以上のシアナト基を有する化合物である。具体的に例示すると、1,3−又は1,4−ジシアナトベンゼン、1,3,5−トリシアナトベンゼン、1,3−、1,4−、1,6−、1,8−、2,6−又は2,7−ジシアナトナフタレン、1,3,6−トリシアナトナフタレン、4,4−ジシアナトビフェニル、ビス(4−ジシアナトフェニル)メタン、2,2−ビス(4−シアナトフェニル)プロパン、2,2−ビス(3,5−ジブロモー4−シアナトフェニル)プロパン、ビス(4−シアナトフェニル)エーテル、ビス(4−シアナトフェニル)チオエーテル、ビス(4−シアナトフェニル)スルホン、トリス(4−シアナトフェニル)ホスファイト、トリス(4−シアナトフェニル)ホスフェート、およびノボラックとハロゲン化シアンとの反応により得られるシアネート類、シアナト化ポリフェニレンエーテル樹脂等である。これらの公知のBr付加化合物も挙げられる。
【0015】
これらのほかに特公昭41−1928、同43−18468、同44−4791、同45−11712、同46−41112、同47−26853及び特開昭51−63149等に記載の多官能性シアン酸エステル化合物類も用いられ得る。また、これら多官能性シアン酸エステル化合物のシアナト基の三量化によって形成されるトリアジン環を有する分子量400〜6,000 のプレポリマーが使用される。このプレポリマーは、上記の多官能性シアン酸エステルモノマーを、例えば鉱酸、ルイス酸等の酸類;ナトリウムアルコラート等、第三級アミン類等の塩基;炭酸ナトリウム等の塩類等を触媒として重合させることにより得られる。このプレポリマー中には一部未反応のモノマーも含まれており、モノマーとプレポリマーとの混合物の形態をしており、このような原料は本発明の用途に好適に使用される。一般には可溶な有機溶剤に溶解させて使用する。
【0016】
エポキシ樹脂としては、一般に公知のものが使用できる。具体的には、液状或いは固形のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂;ブタジエン、ペンタジエン、ビニルシクロヘキセン、ジシクロペンチルエーテル等の二重結合をエポキシ化したポリエポキシ化合物類;ポリオール、エポキシ化ポリフェニレンエーテル樹脂、水酸基含有シリコン樹脂類とエポハロヒドリンとの反応によって得られるポリグリシジル化合物類等が挙げられる。また、これらの公知のBr付加樹脂、リン含有エポキシ樹脂等が挙げられる。これらは1種或いは2種類以上が組み合わせて使用され得る。
【0017】
ポリイミド樹脂としては、一般に公知のものが使用され得る。具体的には、多官能性マレイミド類とポリアミン類との反応物、特公昭57−005406 に記載の末端三重結合のポリイミド類が挙げられる。
【0018】
これらの熱硬化性樹脂は、単独でも使用されるが、特性のバランスを考え、適宜組み合わせて使用するのが良い。
【0019】
本発明の熱硬化性樹脂組成物には、組成物本来の特性が損なわれない範囲で、所望に応じて種々の添加物を配合することができる。これらの添加物としては、不飽和ポリエステル等の重合性二重結合含有モノマー類及びそのプレポリマー類;ポリブタジエン、エポキシ化ブタジエン、マレイン化ブタジエン、ブタジエン−アクリロニトリル共重合体、ポリクロロプレン、ブタジエン−スチレン共重合体、ポリイソプレン、ブチルゴム、フッ素ゴム、天然ゴム等の低分子量液状〜高分子量のelasticなゴム類;ポリエチレン、ポリプロピレン、ポリブテン、ポリ−4−メチルペンテン、ポリスチレン、AS樹脂、ABS樹脂、MBS樹脂、スチレン−イソプレンゴム、アクリルゴム、これらのコアシェルゴム、ポリエチレン−プロピレン共重合体、4−フッ化エチレン−6−フッ化エチレン共重合体類;ポリカーボネート、ポリフェニレンエーテル、ポリスルホン、ポリエステル、ポリフェニレンサルファイド等の高分子量プレポリマー若しくはオリゴマー;ポリウレタン等が例示され、適宜使用される。また、その他、公知の有機、無機の充填剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光増感剤、難燃剤、光沢剤、重合禁止剤、チキソ性付与剤等の各種添加剤が、所望に応じて適宜組み合わせて用いられる。必要により、反応基を有する化合物は硬化剤、触媒が適宜配合される。特に孔形状を良好にするためは無機の充填剤が好適に添加される。例えば、シリカ、球状シリカ、アルミナ、タルク、焼成タルク、ウォラストナイト、合成雲母、水酸化アルミニウム等の一般に公知のものが使用される。更に、これらの針状のもの等、公知の形状のものも使用できる。
【0020】
本発明の熱硬化性樹脂組成物は、それ自体は加熱により硬化するが硬化速度が遅く、作業性、経済性等に劣るため使用した熱硬化性樹脂に対して公知の熱硬化触媒を用いる。使用量は、熱硬化性樹脂100重量部に対して0.005〜10重量部、好ましくは0.01〜5重量部である。
【0021】
炭酸ガスレーザーは、赤外線波長域にある9.3〜10.6μmの波長が一般に使用される。エネルギーは5〜60mJ、好適には6〜40mJ にてパルス発振で銅箔を加工し、孔をあける。エネルギーは表層の銅箔の厚さによって適宜選択する。UV−YAGレーザーも使用でき、波長200〜400nmが好適に使用される。
【0022】
本発明の孔部に発生した銅のバリをエッチング除去する方法としては、特に限定しないが、例えば、特開平02−22887、同02−22896、同02−25089、同02−25090、同02−59337、同02−60189、同02−166789、同03−25995、同03−60183、同03−94491、同04−199592、同04−263488で開示された、薬品で金属表面を溶解除去する方法(SUEP法と呼ぶ)による。エッチング速度は、0.02〜1.0μm/秒 で行う。もちろんバリがない場合は手で剥離できるものを使用し、SUEP法は使用しない。
【0023】
例えば、アルミニウムキャリア金属箔張り原銅箔を使用した場合、孔部のバリを取る。例えばSUEP溶液でバリを取り、その後に手等で剥離する。また、キャリア金属箔及び銅箔を同時に溶解する薬液で銅箔バリを溶解すると同時に最外層のキャリア金属箔を溶解することもできる。
【0024】
【実施例】
以下に実施例、比較例で本発明を具体的に説明する。尚、特に断らない限り、『部』は重量部を表す。
(実施例1)
2,2−ビス(4−シアナトフェニル)プロパン900部、ビス(4−マレイミドフェニル)メタン100部を150℃に溶融させ、撹拌しながら4時間反応させ、プレポリマーを得た。これをメチルエチルケトンとジメチルホルムアミドの混合溶剤に溶解した。これにビスフェノールA型エポキシ樹脂(商品名:エピコート1001、ジャパンエポキシレジン<株>製)400部、クレゾールノボラック型エポキシ樹脂(商品名:ESCN−220F、住友化学工業<株>製)600部を加え、均一に溶解混合した。更に触媒としてオクチル酸亜鉛0.4部を加え、溶解混合し、これに無機充填剤(商品名:焼成タルク、日本タルク<株>製)1000部を加え、均一撹拌混合してワニスAを得た。このワニスを厚さ60μmのガラス織布に含浸し150℃で乾燥して、ゲル化時間(at170℃)110秒、樹脂組成物の含有量が60重量%のプリプレグ(プリプレグB)を作成した。厚さ40μmのキャリアアルミニウム箔の片面に5μmの電解銅箔を付着させた銅箔(商品名:KosFoilR CCF Piotec社製)を密着させて張ったものを上記プリプレグB4枚の両面に配置し、200℃、20kgf/cm、30mmHg以下の真空下で2時間積層成形し、両面銅張積層板Cを得た。
【0025】
この銅張積層板Cの表面のアルミニウムキャリア箔の上から炭酸ガスレーザーパルスエネルギ25mJを4ショット照射して孔径100μmの貫通孔をあけた。アルミニウムキャリア箔を塩酸と硫酸及び過酸化水素水混合溶液にて溶解除去した後、この銅張積層板の孔部に発生したバリを溶解除去すると同時にアルミニウム箔も溶解除去した。デスミア処理を行い、定法にて無電解銅メッキ、電気銅メッキをトータルで15μm付着させた。この表裏に、既存の方法にて回路(ライン/スペース=50/50μmを200個)、ハンダボール用ランド等を形成し、少なくとも半導体チップ部、ボンディング用パッド部、ハンダボールパッド部を除いてメッキレジストで被覆し、ニッケル、金メッキを施し、プリント配線板を作成した。このプリント配線板の評価結果を表1に示す。
【0026】
(実施例2)
エポキシ樹脂(商品名:エピコート5045、ジャパンエポキシレジン<株>製)700部、及びエポキシ樹脂(商品名:ESCN220F)300部、ジシアンジアミド35部、2−エチル−4−メチルイミダゾール1部をメチルエチルケトンとジメチルホルムアミドの混合溶剤に溶解し、さらに実施例1の焼成タルクを800部を加え、強制撹拌して均一分散し、ワニスDを得た。これを厚さ20μmのガラス織布に含浸、乾燥して、ゲル化時間150秒、樹脂組成物含有量70重量%のプリプレグ(プリプレグE)及びゲル化時間178秒、樹脂組成物含有量80重量%のプリプレグ(プリプレグF)を作成した。このプリプレグEを1枚使用し、厚さ18μmの一般の電解銅箔を両面に置き、190℃、20kgf/cm、30mmHg以下の真空下で2時間積層成形して両面銅張積層板Gを作製した。この両面に回路を形成し、黒色酸化銅処理を施し、この両面に上記プリプレグFを各1枚配置し、その外側に厚さ5μmの一般の電解銅箔のシャイニー面側に18μmの電解銅箔を接着して張った銅箔(Micro thin銅箔、三井金属<株>製)を配置して同様に積層成形し、4層板を作製した。
【0027】
この表面上に薬液で微細な凹凸を付け、この上から15mJの炭酸ガスレーザーを2ショット照射して、孔径100μmのブラインドビア孔をあけた。この銅張積層板の孔部に発生したバリをSUEP法にて溶解除去した後、キャリア銅箔を手で剥離後、これをプラズマ装置の中に入れ、処理後に実施例1と同様にトータル15μmの銅メッキを施した後、定法にて実施例1と同様にこの両面に回路を形成し、プリント配線板とした。評価結果を表1に示す。
【0028】
(比較例1)
実施例1のプリプレグBの両面に厚さ12μmの一般の電解銅箔を配置し、同様に積層成形して両面銅張積層板を作製した。この銅箔表層に何も処理を施さずに同様に炭酸ガスレーザーを照射したが、ビームが反射し、孔はあかなかった。回路形成はSUEP処理を行わずに行った。評価結果を表1に示す。
【0029】
(比較例2)
比較例1において、銅箔表面に黒色酸化銅処理を施したものの表面を布で擦ってから、この上から同様に実施例1と同じ炭酸ガスレーザーエネルギーで孔あけを行ったが、91%の孔が孔径100μmであり、その他は孔径が小さかったり、あいていないものが見られた。後はSUEP処理を行わずに回路を形成した。評価結果を表1に示す。
【0030】
(比較例3)
比較例1において、表層の銅箔をエッチングして厚さ5μmまで溶解し、この上から直接炭酸ガスレーザーを14mJで6ショット照射して貫通孔をあけた。これに銅メッキを15μm付着させ、同様に回路を形成し、同様に加工してプリント配線板とした。評価結果を表1に示す。
【0031】

Figure 2004281872
【0032】
<測定方法>
1)表面銅箔貫通率 : ワークサイズ250mm角内に、孔を1mm間隔で900孔/ブロック として70ブロック作製し(孔計63,000孔)、表面の銅箔を貫通した孔径が100±15μmの数を数え、%で表示した。
2)ガラス転移温度 : JIS C6481のDMA法に準じて測定した。
3)ショート/パターン切れ : ライン/スペース=50/50 μmの櫛形パターンを200個作製し、このショート、パターン切れのある個数を示した。
4)耐マイグレーション性 : 各実施例、比較例において、孔径100±15μmのブラインドビア孔又は貫通孔を孔壁間150μmとなるように2列並行して1000孔あけ、この表裏にランド径200μmを作製し、これを表裏交互につないで、85℃・85%RH・50VDC印加し、絶縁抵抗値を測定した。
【0033】
【発明の効果】
キャリア金属箔付きの厚さ5μm以下の一般銅箔を張った銅張積層板の表面のキャリア金属箔上に直接金属を加工するに十分なエネルギーの炭酸ガスレーザーエネルギーを照射してブラインドビア孔及び/又は貫通孔を形成することにより、表面の銅箔の表面処理を施す必要もなく、更に加工した樹脂等の銅箔への付着もないのでパターン形成で不良もなく、且つ得られた孔は孔信頼性に優れたものが得られた。[0001]
[Industrial applications]
The present invention forms a blind via hole and / or a through hole by directly irradiating a laser to the surface of a copper-clad plate in which a thin copper foil having a thickness of 5 μm or less adhered to a carrier metal foil is applied to the outermost layer, The resulting double-sided printed wiring board and multilayer printed wiring board are used as a high-density small printed wiring board having a small-diameter hole for a semiconductor plastic package, a mother board, and the like.
[0002]
[Prior art]
Conventionally, when forming a blind via hole and / or a through-hole in a high-density printed wiring board used for a semiconductor plastic package or the like, a copper foil having a hole of a predetermined size is previously formed in a surface copper foil by a predetermined method. Etching, removal with a YAG laser, a mechanical drill, or the like, and opening, and irradiating this portion with a carbon dioxide gas laser to process the insulating layer to form blind via holes (for example, see Patent Documents 1 to 3). In this case, a step of making holes in the copper foil in advance is required, and there are drawbacks such as poor workability. Further, the resin and the like scattered after being processed adhere to the surface, and a defect occurs in the subsequent pattern formation. In addition, a method is known in which a copper foil surface is subjected to a treatment such as a black copper oxide treatment, and a carbon dioxide laser is directly irradiated thereon to form a blind via hole (for example, see Patent Document 4). If the surface treatment is rubbed, the surface treatment can be easily removed, and the hole shape is liable to vary in the hole shape at the time of drilling.
[0003]
[Patent Document 1] Japanese Patent Application Laid-Open No. 3676 [Patent Document 2] Japanese Patent No. 2805742 [Patent Document 3] Japanese Patent Application Laid-Open No. 2000-31640 [Patent Document 4] Japanese Patent Application Laid-Open No. 61-99596
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems. A small-diameter blind via hole and / or a through-hole in which a resin or the like processed on a copper foil does not adhere and the hole shape does not vary greatly is coated with a carbon dioxide laser using a copper gas laser. It is intended to provide a method of irradiating directly onto a plate.
[0005]
Means for Solving the Invention
Blind vias by directly irradiating a carbon dioxide laser with sufficient energy to process the copper foil from a copper-clad board on which the outermost layer is made of a general copper foil having a thickness of 5 μm or less with a carrier metal foil attached Form holes and / or through holes. Thereafter, by removing the carrier metal foil of the surface layer with a chemical solution or by hand, the processing residue resin and the like adhered to the carrier metal foil of the surface layer are also removed, so that there is no defect at the time of pattern formation due to contamination of the surface copper foil. . Also, when the burrs generated in the holes are dissolved and removed with a chemical solution, good adhesion can be obtained without the occurrence of poor adhesion even in the subsequent copper plating. The obtained copper-clad board is then processed through a general printed wiring board manufacturing process to obtain a high-density printed wiring board.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention is a method for forming a small-diameter blind via hole and / or a through hole in a copper clad board having two or more copper layers by using a laser, preferably a carbon dioxide laser. At least the outermost copper foil of the double-sided copper-clad, multi-layer copper-clad board is a copper foil having a thickness of 5 μm or less to which a carrier metal foil is adhered, and by directly irradiating a laser from above. Blind via holes and / or through holes can be formed.
[0007]
The thin copper foil of 5 μm or less of the present invention is a metal foil serving as a carrier, preferably a thin copper foil bonded to an aluminum foil, and laminated and formed into a double-sided copper-clad board, a multilayer board. While leaving the carrier metal foil, a laser having sufficient energy to process the copper foil from above, preferably a carbon dioxide gas laser, is directly irradiated to form blind via holes and / or through holes. When forming a through-hole, the laser irradiation is stopped when the copper foil on the back surface is penetrated, or a back-up sheet is disposed on the back surface to form the hole. The backup sheet may be adhered to the back surface or simply placed.
[0008]
As the carrier metal foil, generally known ones can be used, for example, aluminum, copper foil and the like. Aluminum foil is preferably used. This metal foil can be etched and dissolved and removed by any means, such as by hand.However, when dissolving and removing the burrs in the hole after drilling, use a chemical solution to dissolve the burrs at the same time. The carrier metal foil is also dissolved and removed. When the thickness of the copper foil does not cause burrs at the holes, a method of peeling by hand is preferable. Further, the burrs of the copper foil are first dissolved with a chemical solution, and then the outermost carrier metal foil is physically peeled off by hand or the like.
[0009]
Examples of the general copper foil adhered to the carrier metal foil used in the present invention include generally known ones. For example, a thin copper foil with an aluminum carrier foil manufactured by Piotec can be used. The thickness of the copper foil is 5 μm or less, and a known shiny surface of the copper foil, such as one subjected to a generally known rust preventive treatment or an untreated smooth surface, can be used. If holes are not easily formed in the carrier metal foil by the carbon dioxide gas laser, the surface thereof is subjected to a known treatment. Specific examples include a black copper oxide treatment and a treatment for providing unevenness by etching.
[0010]
The copper-clad board used in the present invention is a copper-clad board having two or more copper layers, and as the thermosetting resin copper-clad laminate, a known thermosetting copper-clad laminate of an inorganic or organic base material is used. Boards, their multilayer copper-clad boards, multilayer copper-clad boards using a copper foil sheet with resin for the surface layer, etc., multilayer copper-clad boards of generally known configurations, also polyimide films, polyester films, polyparabanic acid films, wholly aromatic A copper clad board of a base material such as a polyamide film and a liquid crystal polyester film may be used.
[0011]
In the substrate-reinforced copper-clad laminate, first, a reinforcing substrate is impregnated with a thermosetting resin composition and dried to form a B stage to prepare a prepreg. Next, a predetermined number of the prepregs are stacked, and a copper foil with a carrier metal foil is arranged outside the prepreg, and laminated under heat and pressure to form a copper-clad laminate. The multilayer copper-clad board is formed by processing the copper foil of this double-sided copper-clad laminate to form a circuit, chemically treating the surface of the copper foil to produce an inner layer board, and prepreg or B-stage resin sheet or the like on the outside. Place and place the thin copper foil with the carrier metal foil on its outside and laminate molding, or place the B-stage resin sheet with the thin copper foil with the carrier metal plate on the outside of the inner layer plate and laminate and mold to form a multilayer copper It will be a veneer.
[0012]
As the substrate, generally known organic and inorganic woven fabrics and nonwoven fabrics can be used. Specifically, examples of the inorganic fibers include fibers such as E, S, D, M, and NE glass. Examples of the organic fibers include generally known fibers such as wholly aromatic polyamide and liquid crystal polyester. These may be mixed. In addition, a film substrate is also used.
[0013]
As the resin of the thermosetting resin composition used in the present invention, generally known thermosetting resins are used. Specific examples include an epoxy resin, a polyfunctional cyanate ester resin, a polyfunctional maleimide-cyanate ester resin, a polyfunctional maleimide resin, and an unsaturated group-containing polyphenylene ether resin. Are used in combination. From the viewpoint of the shape of the through-hole in processing by high-output carbon dioxide laser irradiation, a thermosetting resin composition having a glass transition temperature of 150 ° C. or higher is preferable, and has moisture resistance, migration resistance, electrical characteristics after moisture absorption, and the like. In view of the above, a polyfunctional cyanate resin composition is preferred.
[0014]
The polyfunctional cyanate compound which is a suitable thermosetting resin component of the present invention is a compound having two or more cyanato groups in a molecule. Specific examples include 1,3- or 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-, 1,4-, 1,6-, 1,8-, , 6- or 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4-dicyanatobiphenyl, bis (4-dicyanatophenyl) methane, 2,2-bis (4-cyanato Phenyl) propane, 2,2-bis (3,5-dibromo-4-cyanatophenyl) propane, bis (4-cyanatophenyl) ether, bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) ) Sulfones, tris (4-cyanatophenyl) phosphite, tris (4-cyanatophenyl) phosphate, and cyanates obtained by reacting novolaks with cyanogen halides; It is Anat polyphenylene ether resin. These known Br addition compounds are also included.
[0015]
In addition to these, polyfunctional cyanic acids described in JP-B-41-1928, JP-B-43-18468, JP-A-44-4791, JP-A-45-11712, JP-A-46-41112, JP-B-47-26853 and JP-A-51-63149. Ester compounds can also be used. In addition, a prepolymer having a molecular weight of 400 to 6,000 having a triazine ring formed by trimerization of a cyanato group of these polyfunctional cyanate compounds is used. This prepolymer is obtained by polymerizing the above-mentioned polyfunctional cyanate ester monomer using, for example, an acid such as a mineral acid or a Lewis acid; a base such as a sodium alcoholate or a tertiary amine; a salt such as sodium carbonate as a catalyst. It can be obtained by: The prepolymer also contains some unreacted monomers and is in the form of a mixture of the monomer and the prepolymer, and such a raw material is suitably used for the purpose of the present invention. Generally, it is used after being dissolved in a soluble organic solvent.
[0016]
As the epoxy resin, a generally known epoxy resin can be used. Specifically, liquid or solid bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, alicyclic epoxy resin; butadiene, pentadiene, vinylcyclohexene, dicyclopentyl ether, etc. Polyepoxy compounds obtained by epoxidizing the double bond of the above; polyols, epoxidized polyphenylene ether resins, polyglycidyl compounds obtained by reacting hydroxyl-containing silicone resins with ephalohydrin, and the like. In addition, these known Br-added resins, phosphorus-containing epoxy resins and the like can be mentioned. These can be used alone or in combination of two or more.
[0017]
As the polyimide resin, generally known ones can be used. Specific examples thereof include a reaction product of a polyfunctional maleimide and a polyamine, and a polyimide having a terminal triple bond described in JP-B-57-005406.
[0018]
These thermosetting resins may be used alone, but it is preferable to use them in combination as appropriate in consideration of the balance of properties.
[0019]
Various additives can be added to the thermosetting resin composition of the present invention as desired, as long as the inherent properties of the composition are not impaired. These additives include polymerizable double bond-containing monomers such as unsaturated polyesters and prepolymers thereof; polybutadiene, epoxidized butadiene, maleated butadiene, butadiene-acrylonitrile copolymer, polychloroprene, butadiene-styrene copolymer. Low molecular weight liquid to high molecular weight elastic rubbers such as polymers, polyisoprene, butyl rubber, fluoro rubber, and natural rubber; polyethylene, polypropylene, polybutene, poly-4-methylpentene, polystyrene, AS resin, ABS resin, MBS resin Styrene-isoprene rubber, acrylic rubber, their core-shell rubber, polyethylene-propylene copolymer, 4-fluoroethylene-6-fluoroethylene copolymers; polycarbonate, polyphenylene ether, polysulfone, Esters, high molecular weight prepolymers or oligomers such as polyphenylene sulfide; polyurethane and the like are exemplified, are appropriately used. In addition, other known organic and inorganic fillers, dyes, pigments, thickeners, lubricants, defoamers, dispersants, leveling agents, photosensitizers, flame retardants, brighteners, polymerization inhibitors, thixotropic Various additives such as imparting agents are used in combination as needed. If necessary, the compound having a reactive group is appropriately blended with a curing agent and a catalyst. In particular, an inorganic filler is preferably added to improve the pore shape. For example, generally known materials such as silica, spherical silica, alumina, talc, calcined talc, wollastonite, synthetic mica, and aluminum hydroxide are used. Further, those having a known shape such as these needles can be used.
[0020]
The thermosetting resin composition of the present invention itself is cured by heating, but has a low curing rate and is inferior in workability, economic efficiency, and the like. Therefore, a known thermosetting catalyst is used for the thermosetting resin used. The amount used is 0.005 to 10 parts by weight, preferably 0.01 to 5 parts by weight, per 100 parts by weight of the thermosetting resin.
[0021]
As the carbon dioxide laser, a wavelength of 9.3 to 10.6 μm in an infrared wavelength range is generally used. The copper foil is processed by pulse oscillation at an energy of 5 to 60 mJ, preferably 6 to 40 mJ to form holes. The energy is appropriately selected depending on the thickness of the surface copper foil. A UV-YAG laser can also be used, and a wavelength of 200 to 400 nm is preferably used.
[0022]
The method of etching and removing copper burrs generated in the holes according to the present invention is not particularly limited, and examples thereof include, but are not limited to, JP-A Nos. 02-22887, 02-22896, 02-25089, 02-25090, and 02-90. No. 59337, No. 02-60189, No. 02-166789, No. 03-25995, No. 03-60183, No. 03-94491, No. 04-199592, No. 04-263488. (Referred to as the SUEP method). The etching rate is 0.02 to 1.0 μm / sec. Of course, if there is no burr, a material that can be peeled by hand is used, and the SUEP method is not used.
[0023]
For example, in the case of using an original copper foil covered with an aluminum carrier metal foil, burrs at the holes are removed. For example, burrs are removed with a SUEP solution, and thereafter, they are peeled off by hand or the like. In addition, it is also possible to dissolve the outermost layer of the carrier metal foil at the same time as dissolving the copper foil burrs with a chemical solution that simultaneously dissolves the carrier metal foil and the copper foil.
[0024]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. Unless otherwise specified, “parts” indicates parts by weight.
(Example 1)
900 parts of 2,2-bis (4-cyanatophenyl) propane and 100 parts of bis (4-maleimidophenyl) methane were melted at 150 ° C., and reacted with stirring for 4 hours to obtain a prepolymer. This was dissolved in a mixed solvent of methyl ethyl ketone and dimethylformamide. 400 parts of bisphenol A type epoxy resin (trade name: Epicoat 1001, manufactured by Japan Epoxy Resin Co., Ltd.) and 600 parts of cresol novolac type epoxy resin (trade name: ESCN-220F, manufactured by Sumitomo Chemical Co., Ltd.) are added. And homogeneously mixed. Further, 0.4 part of zinc octylate was added as a catalyst, and the mixture was dissolved and mixed. To this, 1000 parts of an inorganic filler (trade name: calcined talc, manufactured by Nippon Talc Co., Ltd.) was added, and the mixture was uniformly stirred and mixed to obtain Varnish A. Was. This varnish was impregnated in a glass woven fabric having a thickness of 60 μm and dried at 150 ° C. to prepare a prepreg (prepreg B) having a gelation time (at 170 ° C.) of 110 seconds and a resin composition content of 60% by weight. A copper foil (trade name, manufactured by KosFoilR CCF Biotec) having a 5 μm electrolytic copper foil adhered to one side of a carrier aluminum foil having a thickness of 40 μm is tightly attached and placed on both sides of the four prepregs B. The laminate was laminated and molded under a vacuum of 20 kgf / cm 2 , 30 mmHg or less at 2 ° C. for 2 hours to obtain a double-sided copper-clad laminate C.
[0025]
Four shots of 25 mJ of carbon dioxide laser pulse energy were irradiated from above the aluminum carrier foil on the surface of the copper-clad laminate C to form a through-hole having a hole diameter of 100 μm. After dissolving and removing the aluminum carrier foil with a mixed solution of hydrochloric acid, sulfuric acid and aqueous hydrogen peroxide, burrs generated in the holes of the copper-clad laminate were dissolved and removed, and the aluminum foil was also dissolved and removed. Desmear treatment was performed, and electroless copper plating and electrolytic copper plating were adhered by a standard method in a total of 15 μm. Circuits (200 lines / space = 50/50 μm), lands for solder balls, etc. are formed on the front and back sides by an existing method, and plating is performed except for at least a semiconductor chip portion, a bonding pad portion, and a solder ball pad portion. It was coated with a resist and plated with nickel and gold to produce a printed wiring board. Table 1 shows the evaluation results of the printed wiring board.
[0026]
(Example 2)
700 parts of an epoxy resin (trade name: Epicoat 5045, manufactured by Japan Epoxy Resin Co., Ltd.), 300 parts of an epoxy resin (trade name: ESCN220F), 35 parts of dicyandiamide, 1 part of 2-ethyl-4-methylimidazole are treated with methyl ethyl ketone and dimethyl. After dissolving in a mixed solvent of formamide, 800 parts of the calcined talc of Example 1 was further added, and the mixture was uniformly dispersed by forced stirring to obtain Varnish D. This is impregnated into a 20 μm-thick glass woven fabric and dried to prepare a prepreg (prepreg E) having a gelling time of 150 seconds, a resin composition content of 70% by weight and a gelling time of 178 seconds, and a resin composition content of 80% by weight. % Of prepreg (prepreg F) was prepared. Using one piece of this prepreg E, a general electrolytic copper foil having a thickness of 18 μm is placed on both sides, and laminated at 190 ° C., 20 kgf / cm 2 , and a vacuum of 30 mmHg or less for 2 hours to form a double-sided copper-clad laminate G. Produced. A circuit is formed on both sides, black copper oxide treatment is applied, one prepreg F is arranged on each side, and an 18 μm electrolytic copper foil is provided on the shiny side of a general electrolytic copper foil having a thickness of 5 μm on the outside. And a copper foil (Micro thin copper foil, manufactured by Mitsui Kinzoku Co., Ltd.) was arranged and laminated and molded in the same manner to produce a four-layer plate.
[0027]
Fine irregularities were formed on the surface with a chemical solution, and two shots of a carbon dioxide gas laser of 15 mJ were irradiated from above to form a blind via hole having a hole diameter of 100 μm. The burrs generated in the holes of the copper-clad laminate were dissolved and removed by the SUEP method, the carrier copper foil was peeled off by hand, and then placed in a plasma device. After the treatment, a total of 15 μm was obtained in the same manner as in Example 1. After copper plating, a circuit was formed on both sides in the same manner as in Example 1 by a conventional method to obtain a printed wiring board. Table 1 shows the evaluation results.
[0028]
(Comparative Example 1)
A general electrolytic copper foil having a thickness of 12 μm was arranged on both surfaces of the prepreg B of Example 1, and laminated and molded in the same manner to produce a double-sided copper-clad laminate. The surface layer of the copper foil was similarly irradiated with a carbon dioxide laser without any treatment, but the beam was reflected and no holes were formed. The circuit was formed without performing the SUEP process. Table 1 shows the evaluation results.
[0029]
(Comparative Example 2)
In Comparative Example 1, the surface of the copper foil surface that had been subjected to the black copper oxide treatment was rubbed with a cloth, and then a hole was formed from above with the same carbon dioxide gas laser energy as in Example 1, but 91% The pores had a pore diameter of 100 μm, and the other pores were small or missing. Thereafter, a circuit was formed without performing the SUEP process. Table 1 shows the evaluation results.
[0030]
(Comparative Example 3)
In Comparative Example 1, the surface copper foil was etched and dissolved to a thickness of 5 μm, and a carbon dioxide laser was directly irradiated thereon with 6 shots at 14 mJ to form through holes. Copper plating was applied to this to 15 μm, a circuit was formed in the same manner, and processed similarly to obtain a printed wiring board. Table 1 shows the evaluation results.
[0031]
Figure 2004281872
[0032]
<Measurement method>
1) Penetration rate of surface copper foil: Within a work size of 250 mm square, 70 blocks were prepared with 900 holes / block at 1 mm intervals (63,000 holes total), and the hole diameter penetrating the surface copper foil was 100 ± 15 μm. Were counted and expressed in%.
2) Glass transition temperature: Measured according to the DMA method of JIS C6481.
3) Short / cut pattern: 200 comb-shaped patterns of line / space = 50/50 μm were prepared, and the number of short / cut patterns was shown.
4) Migration resistance: In each of Examples and Comparative Examples, a blind via hole or a through hole having a hole diameter of 100 ± 15 μm was formed in two rows in parallel so as to have a hole wall of 150 μm, and a land diameter of 200 μm was formed on the front and back sides. They were fabricated and connected alternately to the front and back, and 85 ° C./85% RH / 50 VDC was applied to measure the insulation resistance value.
[0033]
【The invention's effect】
Blind via holes by irradiating carbon dioxide laser energy of sufficient energy to directly process the metal on the carrier metal foil on the surface of the copper-clad laminate with a copper foil laminated with a carrier metal foil and having a thickness of 5 μm or less and By forming the through-hole, there is no need to perform surface treatment of the copper foil on the surface, and there is no adhesion of the processed resin or the like to the copper foil. One having excellent hole reliability was obtained.

Claims (5)

キャリア金属箔付きの厚さ5μm以下の薄銅箔を最外層に張って得られた銅張板のキャリア金属箔の上から金属を加工するに十分なレーザーエネルギーを直接照射して孔を形成する孔の作製方法。A hole is formed by directly irradiating sufficient laser energy to process metal from above the carrier metal foil of the copper-clad board obtained by stretching a thin copper foil having a thickness of 5 μm or less with a carrier metal foil on the outermost layer. How to make holes. 該孔あけ後、この銅張積層板の孔部に発生した銅箔バリを銅を溶解する薬液にて溶解除去した後、キャリア金属箔を剥離して得られる請求項1記載の孔の作製方法。2. The method for producing a hole according to claim 1, wherein the copper foil burr generated in the hole of the copper-clad laminate is removed by dissolving with a chemical solution that dissolves copper, and then the carrier metal foil is peeled off. . 該孔あけ後、キャリア金属箔及び銅箔を溶解する薬液によってこの表面のキャリア金属箔を溶解除去し、孔部に発生した銅箔バリを銅を溶解する薬液にて溶解除去して得られる請求項1記載の孔の作製方法。After the perforation, the carrier metal foil on the surface is dissolved and removed by a chemical solution for dissolving the carrier metal foil and the copper foil, and the copper foil burrs generated in the holes are dissolved and removed with a chemical solution for dissolving copper. Item 4. A method for producing a hole according to Item 1. 該キャリア金属箔がアルミニウムである請求項1,2,3記載の孔の作製方法。4. The method according to claim 1, wherein said carrier metal foil is aluminum. 該レーザーが炭酸ガスレーザーである請求項1,2,3,4記載の孔の作製方法。5. The method according to claim 1, wherein said laser is a carbon dioxide laser.
JP2003073629A 2003-03-18 2003-03-18 Method for forming hole by laser Pending JP2004281872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003073629A JP2004281872A (en) 2003-03-18 2003-03-18 Method for forming hole by laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003073629A JP2004281872A (en) 2003-03-18 2003-03-18 Method for forming hole by laser

Publications (1)

Publication Number Publication Date
JP2004281872A true JP2004281872A (en) 2004-10-07

Family

ID=33289479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003073629A Pending JP2004281872A (en) 2003-03-18 2003-03-18 Method for forming hole by laser

Country Status (1)

Country Link
JP (1) JP2004281872A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312265A (en) * 2005-05-09 2006-11-16 Furukawa Circuit Foil Kk Extremely thin copper foil with carrier, printed wiring board using it and multilayered printed wiring board
JP2014197604A (en) * 2013-03-29 2014-10-16 日立化成株式会社 Laminate and multilayer wiring board manufacturing method
JP2015082535A (en) * 2013-10-21 2015-04-27 味の素株式会社 Wiring board manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312265A (en) * 2005-05-09 2006-11-16 Furukawa Circuit Foil Kk Extremely thin copper foil with carrier, printed wiring board using it and multilayered printed wiring board
JP2014197604A (en) * 2013-03-29 2014-10-16 日立化成株式会社 Laminate and multilayer wiring board manufacturing method
JP2015082535A (en) * 2013-10-21 2015-04-27 味の素株式会社 Wiring board manufacturing method

Similar Documents

Publication Publication Date Title
JP2004330236A (en) Auxiliary sheet for laser boring
JP2009119879A (en) High elastic modulus copper-clad laminate of thermosetting resin-impregnated glass fabric base material and drilling method
JP4595284B2 (en) Auxiliary sheet for drilling with carbon dioxide laser
JP2005183599A (en) B stage resin composition sheet and method of manufacturing printed circuit substrate for mounting flip chip using the same
JP2004281872A (en) Method for forming hole by laser
JP2001260274A (en) B-stage resin sheet with both face-treated copper foil for preparing copper-clad sheet and its printed wiring board
JP4888517B2 (en) Method for manufacturing printed circuit board for extra fine wire circuit
JP2001044597A (en) Copper clad plate having excellent carbon dioxide laser boring properties
JP2001135911A (en) Boring method on copper-plated board with carbon dioxide
JP2001262372A (en) Double-face treated copper foil suitable for carbon- dioxide laser perforating
JP2004165411A (en) Method of manufacturing extremely thin copper foil-plated board excellent in thickness uniformity of copper foil
JP2004230391A (en) Auxiliary sheet for carbon dioxide laser boring
JP2001347596A (en) Metal foil-clad sheet suitable for carbon dioxide laser perforation, and printed wiring board using the same
JP2001007535A (en) Manufacture of multilayer printed wiring board with through-hole of high reliability
JP2004273911A (en) Method for manufacturing superthin-wire circuit printed wiring board
JP2005183792A (en) Method for manufacturing printed-wiring board for flip-chip mounting
JPH11320174A (en) Auxiliary material for carbon dioxide gas laser boring
JP4479033B2 (en) Double-sided copper foil with protective film and printed wiring board using the same
JP2001347598A (en) Copper-clad sheet suitable for carbon dioxide laser perforation, and high density printed wiring board using the same
JP2000061679A (en) Method for forming through hole by laser beam
JP4826033B2 (en) Backup sheet for through-hole formation by carbon dioxide laser
JP4826031B2 (en) Formation method of through-hole by carbon dioxide laser
JP2004319887A (en) Method for boring additive resin composition substrate by means of laser and process for producing printed wiring board
JPH11220243A (en) Formation of hole for through hole by carbon-dioxide-gas laser
JP2003290958A (en) Method for forming through-hole to multilayered both- side copper clad plate by laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060222

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090204