JP2004230391A - Auxiliary sheet for carbon dioxide laser boring - Google Patents

Auxiliary sheet for carbon dioxide laser boring Download PDF

Info

Publication number
JP2004230391A
JP2004230391A JP2003018451A JP2003018451A JP2004230391A JP 2004230391 A JP2004230391 A JP 2004230391A JP 2003018451 A JP2003018451 A JP 2003018451A JP 2003018451 A JP2003018451 A JP 2003018451A JP 2004230391 A JP2004230391 A JP 2004230391A
Authority
JP
Japan
Prior art keywords
copper
carbon dioxide
dioxide laser
clad plate
auxiliary sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003018451A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ikeguchi
信之 池口
Hiroki Aoto
弘紀 青砥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2003018451A priority Critical patent/JP2004230391A/en
Publication of JP2004230391A publication Critical patent/JP2004230391A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an auxiliary sheet for boring which is for boring a small-diameter blind via hole and/or a through-hole by irradiating especially a thin copper-clad plate with a carbon dioxide laser and which can be laminate-bonded on the rear face of the copper-clad plate at room temperature. <P>SOLUTION: A substance, in which an adhesive agent is added to a resin composition, is bonded to an organic film. It is made as the auxiliary sheet for boring. It is arranged on the surface of the copper-clad plate and it is laminate-bonded at room temperature. The through-hole is bored by directly irradiating the surface of the copper-clad plate with the carbon dioxide laser. The lamination is executed at room temperature. Accordingly, there is no warpage during the lamination. The small-diameter hole with an excellent hole shape can be bored at high speed with the carbon dioxide laser. Even when the auxiliary sheet for boring is peeled off, it can be easily peeled off without the occurrence of break of the thin copper-clad plate. It is obvious that the auxiliary sheet for the carbon dioxide laser boring is excellent in workability and mass productivity. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、プリント配線板を製造する銅張板に炭酸ガスレーザーにてブラインドビア孔及び/又は貫通孔あけするために銅張板の表面に室温で張り合わせる孔あけ用補助シートに関するものであり、主として形成された孔は小型プリント配線板のブラインドビア孔及び/又はスルーホールとして使用され、得られた小径孔を有するプリント配線板は半導体プラスチックパッケージ、マザーボード等に用いられる。
【0002】
【従来の技術】
従来、半導体プラスチックパッケージ等に用いられる高密度のプリント配線板は、スルーホール用の貫通孔をドリルであけていた。近年、ますますドリルの径は小径となり、孔径は0.15mm以下となってきており、このような小径の孔をあける場合、ドリル径が細いため、孔あけ時にドリルが曲がる、折れが多い、加工速度が遅い等の欠点があり、作業性、生産性、信頼性等に問題のあるものであった。更に、上下の銅箔にあらかじめネガフィルムを使用して所定の方法で同じ大きさの孔をあけておき、炭酸ガスレーザーで上下を導通するスルーホールを形成しようとすると、上下の孔の位置にズレを生じ、ランドが形成しにくい、製造工程が増える等の欠点があった。
【0003】
ブラインドビア孔を形成する場合、予め表面の銅箔を所定の大きさにエッチングしておき、この孔に低エネルギーの炭酸ガスレーザーを照射して形成していた(例えば、特許文献1,2、3参照。)。一方、孔あけ用に、銅箔表面に黒色酸化銅処理等を施して、この上に直接炭酸ガスレーザーを照射して孔あけする方法があるが(例えば、特許文献4、5参照。)、これは処理の擦れによって孔の大きさ、形状が異なることがあり、問題のあるものであった。更に加工された樹脂等の残さが飛散して銅箔表面に付着し、これをそのまま加工して回路を形成するとパターン切れ、ショート等の問題を起こすことがあった。
【0004】
また銅張板表面に加熱して補助シートをラミネート接着すると反りが生じ、その後の孔あけで銅張板を炭酸ガスレーザーのXYテーブルにテープ等で止める必要があるために作業性が悪く、反面テープで止めない場合はXYテーブルから浮いた部分の孔形状が変形し、その後の不良が増え、信頼性が悪くなる等の問題が生じていた。加えて、厚さが厚い銅箔を使用した銅張板を用いた場合、高密度のプリント配線板の回路の幅とスペースとはますます狭くなってきた現在では、ライン/スペースが50μm/50μm以下となるものも作製されており、この場合もパターン切れ、或いはショート不良が多く、歩留りの悪いものであった。
【0005】
【特許文献1】特公平4−3676号公報
【特許文献2】特許第2805742号公報
【特許文献3】特開2000−31640号公報
【特許文献4】特開昭61−99596号公報
【特許文献5】特許第2881515号公報
【0006】
【発明が解決しようとする課題】
本発明は、以上の問題点を解決した、主として小径で形状の良好なブラインドビア孔及び/又は貫通孔を、炭酸ガスレーザーを銅張板に直接照射して形成するため、有機シートの少なくとも片面に室温にて粘着効果のある粘着剤入り樹脂層を形成して作製し、これを室温で銅張板に張り合わせることにより銅張板の反りが発生せず、剥離時にも簡単に剥離できる孔あけ用補助シートを提供するものである。
【0007】
【発明が解決するための手段】
本発明は、銅箔を除去できるに十分な炭酸ガスレーザーエネルギーを用いて、炭酸ガスレーザーのパルス発振により、直接炭酸ガスレーザーを銅張板表面に照射し、少なくとも2層以上の銅の層を有する銅張積層板、耐熱性フィルム銅張板等、その他の一般に公知の両面銅張板、多層板の銅箔を加工して貫通孔をあける孔あけにおいて、炭酸ガスレーザーが照射される銅張板の銅箔表面に、室温で加圧下に接着させることが可能な孔あけ用補助シートを用い、この銅張板の表面に直接炭酸ガスレーザーを照射してブラインドビア孔及び/又は貫通孔を形成することにより、張り合わせした銅張板は反りがないために孔形状に優れ、更に孔形成後に補助シートを剥離するのも簡単にでき、剥離時の薄い銅張板の折れ、銅張板への樹脂付着がなく、孔信頼性、作業性、量産性等に優れていることが確認できた。
【0008】
銅箔厚さが厚い場合には、孔あけされた銅張板は、孔部に銅箔のバリが発生するため、機械的研磨や薬液による内外層銅箔バリの除去を行う。機械的研磨は、特に薄い銅張板の場合には板が伸びるために寸法変化率が大きくなる等の問題が生じることがあり、好適には薬液での後処理を行い、銅箔の両表面を厚さ方向に平面的に一部の厚さをエッチング除去すると同時に、孔部に張り出した銅箔バリをエッチング除去して孔を形成することによって、孔部の金属メッキのバリによるメッキ異常等がなく、且つ、銅箔厚さが薄くなるために、その後の金属メッキでメッキアップして得られた表裏銅箔の細密回路形成において、ショートやパターン切れ等の不良の発生もなく、高密度のプリント配線板を作製することができた。更に炭酸ガスレーザーでの加工速度はドリルであける場合に比べて格段に速く、生産性も良好で、経済性にも優れているものが得られた。
【0009】
【発明の実施の形態】
本発明は、炭酸ガスレーザーを用いて銅張板にブラインドビア孔及/又は貫通孔、特に小径の孔をあけるために用いる孔あけ用補助シートに関するものであり、この補助シートを使用して孔あけされたプリント配線板は孔信頼性に優れ、半導体チップの搭載用、マザーボード用等として使用される。銅張板の炭酸ガスレーザーによる孔あけにおいて、炭酸ガスレーザーを照射する銅箔面に室温で圧着できる孔あけ用補助シートを接着させて配置し、この上から直接炭酸ガスレーザーを照射することにより、接着時の反りがないために孔あけ時の孔形状に優れ、且つ孔あけ後の補助材料剥離も容易にできるために、特に薄厚の銅張板において剥離時の樹脂残存、折れ等がなく、孔信頼性、作業性、量産性等に優れたものが得られる。この補助シートにおいて、有機シート両面に粘着剤入り樹脂層を付着させたものを銅張板の間に使用して複数枚銅張板を接着させて一度に炭酸ガスレーザーで貫通孔あけすることも可能であり、量産性にも優れている。
【0010】
炭酸ガスレーザー孔あけ用補助シートの有機シートに付着させる樹脂組成物としては公知の樹脂に炭酸ガスレーザー孔あけ用成分を配合したものが使用される。炭酸ガスレーザーの孔あけを促進する成分は、例えば、融点900℃以上で、且つ結合エネルギー300kJ/mol 以上の金属化合物粉、カーボン粉、金属粉の1種或いは2種以上を3〜97vol%配合し、この樹脂組成物に粘着剤を適当量配合し、これを有機シート、例えばポリエチレンテレフタレート(PET)フィルム等の少なくとも片面に付着させて孔あけ用補助シートとする。炭酸ガスレーザーの貫通孔あけにおいては、銅張板の裏面に室温で圧着できるバックアップシートを使用するのが好ましい。
【0011】
本発明で使用する銅張板は、2層以上の銅の層を有する銅張板であり、熱可塑性樹脂銅張板、熱硬化性樹脂銅張板等、一般に公知の銅張板が使用可能である。熱硬化性樹脂銅張板としては、無機、有機基材の熱硬化性樹脂銅張積層板、その銅張積層板を内層に使用し、その外側に樹脂付き銅箔、或いは無機、有機基材補強熱硬化性樹脂プリプレグを配置し、更にその外側に、必要により銅箔を置いて、積層成形して得られる多層板等、一般に公知の構成の銅張板を含むものである。また、ポリイミドフィルム、液晶ポリエステルフィルム、ポリパラバン酸フィルム、全芳香族ポリアミドフィルム等の耐熱性フィルムに銅箔を接着させた銅張板、多層板等、一般に公知のものも使用できる。これらを組み合わせたリジットフレキ銅張板も使用できる。
【0012】
基材としては、一般に公知の無機、有機の繊維の織布、不織布が使用できる。具体的には、無機繊維としては、E、A、C、L、M、S、D、N、C、NE、クオーツ、高誘電率セラミック等の繊維が挙げられ、単独或いは、混抄で用いられる。有機繊維としては、全芳香族ポリアミド繊維、液晶ポリエステル繊維等が挙げられる。もちろん、無機、有機繊維の混抄基材も使用できる。
【0013】
本発明で使用される熱硬化性樹脂組成物の樹脂としては、一般に公知の熱硬化性樹脂が使用される。具体的には、エポキシ樹脂、多官能性シアン酸エステル樹脂、 多官能性マレイミドーシアン酸エステル樹脂、多官能性マレイミド樹脂、不飽和基含有ポリフェニレンエーテル樹脂、シアナト化ポリフェニレンエーテル樹脂、エポキシ化ポリフェニレンエーテル樹脂等が挙げられ、1種或いは2種類以上が組み合わせて使用される。炭酸ガスレーザーでの孔形状の点からは、耐熱性の高い、ガラス転移温度150℃以上の樹脂組成物が好ましい。更に無機充填剤を添加するのが好ましい。耐熱性、耐湿性、耐マイグレーション性、吸湿後の電気的特性等の点から多官能性シアン酸エステル系樹脂組成物が好適である。
【0014】
本発明の好適な熱硬化性樹脂分である多官能性シアン酸エステル化合物とは、分子内に2個以上のシアナト基を有する化合物である。具体的に例示すると、1,3−又は1,4−ジシアナトベンゼン、1,3,5−トリシアナトベンゼン、1,3−、1,4−、1,6−、1,8−、2,6−又は2,7−ジシアナトナフタレン、1,3,6−トリシアナトナフタレン、4,4−ジシアナトビフェニル、ビス(4−ジシアナトフェニル)メタン、2,2−ビス(4−シアナトフェニル)プロパン、2,2−ビス(3,5−ジブロモー4−シアナトフェニル)プロパン、ビス(4−シアナトフェニル)エーテル、ビス(4−シアナトフェニル)チオエーテル、ビス(4−シアナトフェニル)スルホン、トリス(4−シアナトフェニル)ホスファイト、トリス(4−シアナトフェニル)ホスフェート、およびノボラックとハロゲン化シアンとの反応により得られるシアネート類などである。
【0015】
これらのほかに特公昭41−1928、同43−18468、同44−4791、同45−11712、同46−41112、同47−26853及び特開昭51−63149等に記載の多官能性シアン酸エステル化合物類、シアナト化ポリフェニレンエーテル樹脂等も用いられ得る。また、これら多官能性シアン酸エステル化合物のシアナト基の三量化によって形成されるトリアジン環を有する分子量400〜6,000 のプレポリマーが使用される。このプレポリマーは、上記の多官能性シアン酸エステルモノマーを、例えば鉱酸、ルイス酸等の酸類;ナトリウムアルコラート等、第三級アミン類等の塩基;炭酸ナトリウム等の塩類等を触媒として重合させることにより得られる。このプレポリマー中には一部未反応のモノマーも含まれており、モノマーとプレポリマーとの混合物の形態をしており、このような原料は本発明の用途に好適に使用される。一般には可溶な有機溶剤に溶解させて使用する。
【0016】
エポキシ樹脂としては特に限定はなく、一般に公知のものが使用できる。具体的には、液状或いは固形のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂、ナフタレン環含有エポキシ樹脂;ブタジエン、ペンタジエン、ビニルシクロヘキセン、ジシクロペンチルエーテル等の二重結合をエポキシ化したポリエポキシ化合物類;ポリオール、水酸基含有シリコン樹脂類とエポハロヒドリンとの反応によって得られるポリグリシジル化合物、エポキシ化ポリフェニレンエーテル樹脂類等が挙げられる。これらは1種或いは2種類以上が組み合わせて使用され得る。
【0017】
ポリイミド樹脂としては、一般に公知のものが使用され得る。具体的には、多官能性マレイミド類とポリアミン類との反応物、特公昭57−005406 に記載の末端三重結合のポリイミド類が挙げられる。
【0018】
これらの熱硬化性樹脂は、単独でも使用されるが、特性のバランスを考え、適宜組み合わせて使用するのが良い。
【0019】
本発明の熱硬化性樹脂組成物には、組成物本来の特性が損なわれない範囲で、所望に応じて種々の添加物を配合することができる。これらの添加物としては、不飽和ポリエステル等の重合性二重結合含有モノマー類及びそのプレポリマー類;ポリブタジエン、エポキシ化ブタジエン、マレイン化ブタジエン、ブタジエン−アクリロニトリル共重合体、ポリクロロプレン、ブタジエン−スチレン共重合体、ポリイソプレン、ブチルゴム、フッ素ゴム、天然ゴム等の低分子量液状〜高分子量のelasticなゴム類;ポリエチレン、ポリプロピレン、ポリブテン、ポリ−4−メチルペンテン、ポリスチレン、AS樹脂、ABS樹脂、MBS樹脂、スチレン−イソプレンゴム、ポリエチレン−プロピレン共重合体、4−フッ化エチレン−6−フッ化エチレン共重合体類;ポリカーボネート、ポリフェニレンエーテル、ポリスルホン、ポリエステル、ポリフェニレンサルファイド等の高分子量プレポリマー若しくはオリゴマー、スチレン化ポリフェニレンエーテル樹脂、ポリウレタン等が例示され、適宜使用される。また、その他、公知の有機、無機の充填剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、沈降防止剤、レベリング剤、光増感剤、難燃剤、光沢剤、重合禁止剤、チキソ性付与剤等の各種添加剤が、所望に応じて適宜組み合わせて用いられる。必要により、反応基を有する化合物はその硬化剤、触媒が適宜配合される。
【0020】
本発明の熱硬化性樹脂組成物は、それ自体は加熱により硬化するが硬化速度が遅く、作業性、経済性等に劣るため使用した熱硬化性樹脂に対して公知の熱硬化触媒を用い得る。使用量は、熱硬化性樹脂100重量部に対して0.005〜10重量部、好ましくは0.01〜5重量部である。
【0021】
炭酸ガスレーザーの照射で、孔形状を良好にするには、種々の添加剤を銅張板の樹脂中に入れるのが好ましい。特に好ましくは無機充填剤を配合するが、この無機充填剤としては、一般に公知の球状、針状、不定形のものが使用できる。具体的には、天然シリカ、焼成シリカ、球状シリカ、アモルファスシリカ等のシリカ類;ホワイトカーボン、チタンホワイト、アエロジル、クレー、タルク、ウォラストナイト、天然マイカ、合成マイカ、カオリン、マグネシア、アルミナ、パーライト等が挙げられる。添加量は特に制限はないが、一般には10〜80重量%、好適には15〜60重量%である。
【0022】
また、炭酸ガスレーザーの照射で、光が分散しないように樹脂に黒色の染料、或いは顔料を添加することが好ましい。染料、顔料の種類は、一般に公知のものが使用され得る。添加量は、0.1〜10重量%が好適である。さらには、繊維の表面を黒色に染める方法、有機繊維の中に黒色の願料等を配合する方法等も使用し得る。
【0023】
銅張板の最外層の金属箔は、一般に公知のものが使用できる。好適には厚さ3〜12μmの銅箔、銅合金箔等が使用される。
【0024】
基材補強銅張積層板は、まず上記基材に熱硬化性樹脂組成物を含浸、乾燥させてBステージとし、プリプレグを作製する。次に、このプリプレグを所定枚数用い、上下に銅箔を配置して、加熱、加圧下に積層成形し、両面銅張積層板とする。
【0025】
基材補強のないポリイミドフィルム等の銅張板は、ポリイミドフィルム基材等に接着剤を使用して銅箔を接着するか、或いは直接銅層を付着させる一般に公知の方法で作製される。
【0026】
熱可塑性樹脂は、一般に公知のものが使用される。具体的には、ポリカーボネート板、ポリフェニレンエーテル板等があるが、プリント配線板とする場合、炭酸ガスレーザーの熱加工の点からは熱硬化性樹脂の方が好ましい。
【0027】
本発明の孔あけ補助シートは、炭酸ガスレーザーを照射した場合にエネルギーを吸収し、分解して加熱され、銅箔を加工できるようにする成分を配合する。これらは特に限定はないが、好ましくは融点900℃以上で且つ結合エネルギーが300kJ/mol 以上の金属化合物粉、カーボン粉、又は金属粉の1種或いは2種以上を組み合わせたものであり、これらを3〜97vol%樹脂中に配合して樹脂組成物とし、有機シートの少なくとも片面に付着させてシートとしたものを銅張板の表面に室温で圧着して配置し、この上から直接目的とする径まで絞った炭酸ガスーレーザービームを照射することによりブラインドビア孔及び/又は貫通孔あけを行なう。銅張板を1枚孔あけする場合、表面に上記孔あけ補助シートを配置し、室温でロール等にて圧着して一体化して使用する。銅張板を複数枚貫通孔あけする場合には、表層には有機フィルム片面に粘着剤入り樹脂層を形成した補助シートを配置し、銅張板間には有機フィルム両面に粘着剤入り樹脂層を形成した補助シートを配置し、好適には裏面に金属箔片面に粘着剤入り樹脂層を形成したバックアップシートを配置し、これらを一度に室温で圧着して複数枚銅張板を一体化し、これを用いて貫通孔あけを行う。
【0028】
本発明で使用する、銅箔表面に使用する孔あけ補助材料の中の材料の1つである、融点900℃以上で且つ結合エネルギーが300kJ/mol 以上の金属化合物粉とは、一般に公知のものが使用できる。例えば、酸化物としてのチタニア類;マグネシア類;鉄酸化物;亜鉛酸化物;コバルト酸化物;スズ酸化物類等が挙げられ、非酸化物としては、炭化ケイ素、炭化タングステン、窒化硼素、窒化ケイ素、窒化チタン、硫酸バリウム等が挙げられる。その他、カーボンも使用できる。
【0029】
更には、一般に公知の金属粉が使用される。しかしながら、水、溶剤に溶解した場合、発熱、発火するようなものは使用しない。これらは、一般には平均粒子径5μm以下、好ましくは1μm以下である。孔あけ用樹脂組成物は必ずしもこれらに限定されるものではなく、公知の樹脂組成物を用いることが可能であり、この樹脂組成物中に粘着剤を配合することが特徴である。
【0030】
補助材料の有機物としては、特に制限はないが、ワニスとし、有機シート表面に塗布、乾燥した場合、剥離、欠落しないものを選択する。好ましくは、一般に公知の樹脂が使用される。特に、環境、或いは加工後の銅箔表面の洗浄除去の点からも、水溶性の樹脂、例えば、ポリビニルアルコール、ポリエステル、澱粉等の、一般に公知の樹脂が使用される。更に、必要により、前述の各種樹脂、添加剤等が適宜選択して添加し、使用され得る。
【0031】
上記粉体と有機物からなる組成物を作製する方法は、特に限定しないが、例えばニーダー等で無溶剤にて高温で練り、シート状に押し出す方法、溶剤或いは水に溶解する樹脂組成物を用い、これに粉体を加え、均一に攪拌混合し、塗料として銅箔表面に塗布、乾燥して皮膜とする方法、スプレーで銅箔面に直接吹きかける方法、フィルムに塗布、乾燥してシート状にする方法、有機、無機基材に含浸、乾燥して基材入りシートとする方法等、一般に公知の方法が使用し得る。樹脂層の厚さは、好適には20〜100μmとなるようにする。塗布するシートとしては、特に限定はなく一般に公知のものが使用できるが、例えばポリエチレンテレフタレート、ポリプロピレンフィルム、ポリエチレンフィルム、これらの混合品、多層フィルム等の一般に公知のフィルム類;ガラス織布、不織布基材補強積層シート等、一般に公知のシート類が使用され得る。巻き取りの点からはフィルム類が好適に使用される。シートの厚さは特に制限はないが、好適には 25〜200μmである。
【0032】
貫通孔を形成する場合には、炭酸ガスレーザーを照射する銅張板の銅箔面とは反対側の面に貫通した炭酸ガスレーザーを吸収するバックアップシートを用いるのが好ましく、これは銅張板を貫通した炭酸ガスレーザーが跳ね返って孔あけした銅張板に当たらないで、且つ突き抜けないで止まる素材であることが要求される。そのために、銅張板の、炭酸ガスレーザーを照射する面とは反対面の銅箔面に、好適には厚さ20〜100μmの粘着剤を配合した樹脂層、好ましくは水溶性樹脂層を、好適には厚さ50〜200μmの光沢のある金属箔に少なくとも部分的に付着したバックアップシートを配置して室温でラミネートして付着させた後、炭酸ガスレーザーの出力2〜60mJ、好適には4〜40mJから選ばれたエネルギーを、孔あけ用補助シートを張った銅張板の表面に直接照射して貫通孔をあけることにより、銅張板を貫通した炭酸ガスレーザーエネルギーがバックアップシートの樹脂層に吸収され、残りのエネルギーは、その下の光沢金属箔の表面でエネルギーの一部を反射して、金属に孔をあけることもなく、且つ跳ね返ったエネルギーもバックアップシートの樹脂層で吸収されて止まるため、銅張板の裏面の銅箔をキズ付けずに貫通孔をあけることができる。孔あけ用補助シート、バックアップシートは、加熱下に銅張板にラミネートできるが、銅張板が薄い場合は温度によっては孔あけ用補助シートとバックアップシートの熱膨張率が異なるために張り付けた後に銅張板の反りが発生するので室温での張り付けが好適である。
【0033】
孔あけ用補助シートに使用する樹脂組成物は特に限定はなく、熱可塑性樹脂、熱硬化性樹脂、その混合物等、一般に公知のものが使用できる。環境、リサイクル等の面からは熱可塑性樹脂が好ましく、また水溶性樹脂が好ましい。これらの樹脂は特に限定はなく、上記の熱可塑性樹脂、熱硬化性樹脂、水溶性樹脂等が使用できる。もちろん、上記の各種添加剤、無機充填剤等も適宜配合され得る。
【0034】
本発明の孔あけ用補助シートの樹脂層内には粘着剤を配合する。この粘着剤は、特に限定はなく、一般に公知のものが使用できる。具体的には、ゴム、架橋型アクリル、非架橋型アクリル、水溶性アクリル、ウレタン、酢酸ビニル、セルロース等が挙げられるが、好適には水溶性のものが使用される。配合量は特に限定はないが、貫通孔あけ後に手で剥離できる接着性のある程度とする。粘着剤は一般には樹脂組成物内の1〜90重量%、好適には5〜50重量%である。混練方法は上記の補助材料を混練する方法、装置が使用できる。 有機フィルムに付着させる粘着剤入り樹脂組成物の厚みは特に限定はないが、好適には20〜100μmとする。
【0035】
バックアップシート表面にも粘着剤入り樹脂組成物層を形成したものが好適に使用される。樹脂組成物層を接着する金属箔は特に限定はないが、具体的にはアルミニウム、銅、スズ、鉄、ニッケル等、これらの合金等が挙げられるが、価格、作業性等の点から、アルミニウムが好適に使用される。この金属箔の厚さは特に限定はないが、作業性、価格等の点から厚さは20〜300μm、好適には30〜200μm、更に好適には50〜100μmの厚さのものを使用する。この金属箔の上に樹脂層を形成する方法は公知の方法が使用し得る。例えば、直接ロールコーターで金属箔上に塗布する方法、離型フィルムに樹脂層を形成し、これを連続的に金属箔にラミネートして貼り付ける方法等が挙げられる。金属箔表面は事前に物理的或いは薬液で処理を施して凹凸をつけていても良く、またプライマーで前処理していても良い。
【0036】
銅張板の銅箔厚さが一般に7μm以上であると炭酸ガスレーザーを照射して孔を形成した場合、表裏の孔周辺はバリが発生する。そのため、炭酸ガスレーザー照射後、銅箔の両表面を厚さ方向に平面的にエッチングし、同時にバリもエッチング除去し、且つ、薄くなった銅箔は細密回路形成に適しており、高密度のプリント配線板に適したものが得られる。
【0037】
本発明の孔部に発生した銅のバリをエッチング除去する方法としては、特に限定しないが、例えば、特開平02−22887、同02−22896、同02−25089、同02−25090、同02−59337、同02−60189、同02−166789、同03−25995、同03−60183、同03−94491、同04−199592、同04−263488で開示された、薬品で金属表面を溶解除去する方法(SUEP法と呼ぶ)による。エッチング速度は、0.02〜1.0μm/秒 で行う。銅箔のバリを機械研磨で削ることは可能であるが、銅張板が薄い場合、寸法変化が大きくなる等の問題点が生じ、又、バリも完全に取れない。
【0038】
炭酸ガスレーザーは、赤外線波長域にある9.3〜10.6μmの波長が一般に使用される。また、本発明の孔あけ補助シートは加工した残さの銅箔への付着防止上からも、UV−YAGレーザー、エキシマレーザー孔あけ時にも使用可能である。
【0039】
【実施例】
以下に実施例、比較例で本発明を具体的に説明する。尚、特に断らない限り、『部』は重量部を表す。
(実施例1)
2,2−ビス(4−シアナトフェニル)プロパン900部、ビス(4−マレイミドフェニル)メタン100部を150℃に溶融させ、撹拌しながら4時間反応させ、プレポリマーを得た。これをメチルエチルケトンとジメチルホルムアミドの混合溶剤に溶解した。これにビスフェノールA型エポキシ樹脂(商品名:エピコート1001、ジャパンエポキシレジン<株>製)400部、クレゾールノボラック型エポキシ樹脂(商品名:ESCN−220F、住友化学工業<株>製)600部、黒色顔料8部を加え、均一に溶解混合した。更に触媒としてオクチル酸亜鉛0.4部を加え、溶解混合し、これに無機充填剤(商品名:焼成タルク、日本タルク<株>製)500部を加え、均一撹拌混合してワニスAを得た。このワニスAを厚さ100μmのガラス織布に含浸し150℃で乾燥して、ゲル化時間(at170℃)120秒、樹脂組成物含有量が49重量%のプリプレグ(プリプレグB)を作成した。厚さ12μmの電解銅箔を、上記プリプレグB 1枚の上下に配置し、200℃、20kgf/cm、30mmHg以下の真空下で2時間積層成形し、絶縁層厚み100μmの両面銅張積層板Cを得た。
【0040】
一方、ポリビニルアルコール水溶液にエマルジョン型アクリル粘着剤を13重量%となるように配合添加したワニスDに酸化銅粉(平均粒子径0.8μm)を厚さ50μmのPETフィルムの片面に厚さ40μmとなるように塗布、乾燥して、酸化銅粉30vol%の膜を形成した孔あけ用補助シートEを作製した。また、厚さ100μmの金属光沢を有するアルミニウム箔の上に、水溶性ポリエステル樹脂及び粘着剤としてエマルジョン型アクリル粘着剤を10重量%となるように配合し、水に溶解したものを、厚さ50μmとなるように塗布し、加熱乾燥して水を飛ばし、バックアップシートFを作製した。
【0041】
上記両面銅張積層板Cの表面に孔あけ用補助シートE、裏面にバックアップシートFを配置し、室温で線圧6kgf/cmにて銅張板にラミネート接着し、この上から、孔径100μmの孔を直接炭酸ガスレーザーで、出力20mJで3ショット照射し貫通孔をあけた。SUEP法にて、孔周辺の銅箔バリを溶解除去すると同時に、表面の銅箔も4μmになるまで溶解した。この板に公知の方法にて銅メッキを15μm(総厚み:19μm)施した。この表面に、定法にて回路(ライン/スペース=40/40μmを200個)を、裏面にハンダボール用ランド等を形成し、プリント配線板を作製した。このプリント配線板の評価結果を表1に示す。
【0042】
(実施例2)
エポキシ樹脂(商品名:エピコート5045、ジャパンエポキシレジン<株>製)700部、及びエポキシ樹脂(商品名:ESCN220F)300部、ジシアンジアミド35部、2−エチル−4−メチルイミダゾール1部をメチルエチルケトンとジメチルホルムアミドの混合溶剤に溶解し、さらに実施例1の焼成タルクを800部加え、強制撹拌して均一分散し、ワニスGを得た。これを厚さ100μmのガラス織布に含浸、乾燥して、ゲル化時間150秒、樹脂組成物含有量47重量%のプリプレグ(プリプレグH)を作製した。このプリプレグHを2枚使用し、両面に18μmの電解銅箔を置き、190℃、20kgf/cm、30mmHg以下の真空下で2時間積層成形して両面銅張積層板を作製した。絶縁層の厚みは200μmであった。この表裏に回路を形成して、黒色酸化銅処理を施し、内層板を作製した。又、厚さ80μmのガラス織布に上記ワニスGを含浸、乾燥してゲル化時間105秒、樹脂組成物含有量60重量%のプリプレグIを得た。このプリプレグIを上記内層板Hの上下に配置し、その外側に7μmの電解銅箔を置き、同様に積層成形して4層板Jを得た。
【0043】
一方、上記ポリビニルアルコール90部と澱粉10部及び粘着剤としてエマルジョン型酢酸ビニル粘着剤を15重量%となるように添加し、ワニスKを作製した。このワニスKを厚さ38μmのポリプロピレンフィルムの片面に厚さ22μmとなるように塗布、乾燥して孔あけ用補助材料L を作製した。上記4層板Jの表層に孔あけ用補助材料Lを配置し、室温で線圧7kgf/cmで接着させ、裏面には厚さ1mmのガラスエポキシ積層板を置き、この上から、炭酸ガスレーザーの出力25mJ にて2ショット直接照射し、孔径90μmのブラインドビア孔をあけた。また後は実施例1と同様にして加工し、プリント配線板を作製した。評価結果を表1に示す。
【0044】
(実施例3)
実施例1において、銅張積層板Cの表面に孔あけ用補助シートEを配置し、室温で5kgf/cmの線圧でラミネート接着した。この裏側に厚さ1mmのガラスエポキシ積層板を置き、表面に直接炭酸ガスレーザーエネルギーを20mJで1ショット、更に5mJで1ショット照射してブラインドビア孔をあけた。この表面の銅箔を厚さ4μmまでSUEP法でエッチングし、定法で回路を形成し、プリント配線板とした。評価結果を表1に示す。
【0045】
(実施例4)
実施例1において、ワニスDを厚さ25μmのPETフィルムの両面に厚さ40μmとなるように塗布、乾燥して孔あけ用補助材料Mを作製した。まず実施例1の孔あけ用補助材料Eを一番上の最外層に配置し、両面銅張積層板C、孔あけ用補助材料M、両面銅張積層板Cと順次に両面銅張積層板Cが5枚となるように配置し、最後にバックアップシートFを配置し、室温で線圧10kgf/cmにて全体を一体化し、この表層から炭酸ガスレーザーエネルギー25mJにて11ショット照射して貫通孔をあけた。後は実施例1と同様にSUEP処理を施し、公知の方法にて銅メッキを15μm(総厚み:19μm)施した。この表面に、定法にて回路(ライン/スペース=40/40μmを200個)を、裏面にハンダーボール用ランド等を形成し、プリント配線板を作製した。このプリント配線板の評価結果を表1に示す。
【0046】
(比較例1)
実施例3の孔あけ用補助シートとして粘着剤を入れないでワニスNを調整し、これをPETフィルムに同様に塗工して同じ厚みで孔あけ用補助シートOを作製した。これを両面銅張積層板Cの表面に配置し、100℃にて線圧4kgf/cmでラミネート接着し、後は同様にしてブラインドビア孔を形成し、SUEP処理を行わずにデスミア処理、銅メッキを15μm付着し、同様に加工し、同様にプリント配線板した。評価結果を表1に示す。
【0047】
(比較例2)
実施例2において粘着剤を使用せずにワニスPを調整し、これを用いて同様に孔あけ用補助シートQを作製し、表面に100℃で線圧6kgf/cmにてラミネート接着し、SUEP処理を行わずにデスミア処理、銅メッキを15μm付着し、同様に加工し、同様にプリント配線板した。評価結果を表1に示す。
【0048】
(比較例3)
実施例1において、表裏に黒色酸化銅処理を施し、これを厚さ1.6mmのステンレス板の上に置き、同様に炭酸ガスレーザーで貫通孔をあけた。これは裏面のステンレス板に反射し、裏面の孔形状は不定形が多く発生した。これを用い、SUEP処理を行わずにデスミア処理、銅メッキを15μm付着し、同様に加工し、同様にプリント配線板した。評価結果を表1に示す。
【0049】
(比較例4)
実施例2の4層板の銅箔表面に間隔500μmにて、孔径100μmの孔を銅箔をエッチングしてあけた。同様に裏面にも同じ位置に孔径100μmの孔をあけ、表面から炭酸ガスレーザーで、出力20mJにて8ショットかけ、スルーホール用貫通孔をあけた。後は比較例3と同様にして、SUEP処理を行わずにデスミア処理を施し、銅メッキを15μm施し、表裏に回路を形成し、同様にプリント配線板を作成した。評価結果を表1に示す。
【0050】
(比較例5)
実施例1の両面銅張積層板Cを1枚用い、この表面に厚さ150μmのアルミニウム箔、裏面に厚さ1.6mmの紙フェノール積層板を配置し、径100μmのメカニカルドリルにて、回転数15万rpmで500μm間隔で孔をあけた。SUEPを行わずに同様に銅メッキを15μm施し、表裏に回路形成し、同様に加工してプリント配線板を作製した。途中でドリルの折れが1本発生した。評価結果を表1に示す。
【0051】
【表1】

Figure 2004230391
【0052】
<測定方法>
1)銅張板に孔あけ用補助シートをラミネート接着した場合の反り : 定盤にて反りを観察した。
2) 銅張板から孔あけ用補助シートを剥離する際の折れ : 各実施例、比較例で孔あけ後に孔あけ用補助シートを剥離した場合の銅張板の折れを見た。
3)孔形状 : 孔あけした銅張板の銅箔をエッチングして、貫通孔上下、及び断面の観察を顕微鏡で行なった。
4)回路パターン切れ、及びショート : 実施例、比較例で、孔のあいていない板を同様に作製し、ライン/スペース=40/40μm の櫛形パターンを作成した後、拡大鏡でエッチング後の200パターンを目視にて観察し、パターン切れ、及びショートしているパターンの合計を分子に示した。
5)ガラス転移温度 : JIS C6481のDMA法にて測定した。
6)ブラインドビア孔、スルーホールのヒートサイクル試験 : 孔間隔1mmで作製した孔径100μmの各孔にランド径200μmを作製し、900孔を表裏交互につなぎ、1サイクルが、260℃・ハンダ・浸せき30秒→室温・5分 を1サイクルとして、200サイクル実施し、抵抗値の変化率の最大値を示した。
7)孔あけ加工時間 : 500μm間隔で100,000孔を加工する時間を測定し、1枚当たりの加工時間で表わした。時間は4捨5入し分単位で表示した。
【0053】
【発明の効果】
銅箔を炭酸ガスレーザーで除去できるに十分なエネルギーを用いて、炭酸ガスレーザーのパルス発振により、銅張板に炭酸ガスレーザーを照射し、少なくとも2層以上の銅の層を有する銅張板の銅箔を加工しブラインドビア孔及び/又は貫通孔をあける孔あけにおいて、孔あけ用補助シートとして、有機フィルムに粘着剤を添加した樹脂層を好適には20〜100μm付着させたものを配置し、室温で銅張板に加圧接着することにより銅張板の反りが無く、この表面から炭酸ガスレーザーで貫通孔あけを行うことにより、形状の良好で信頼線に優れた孔が形成でき、更に薄板から補助シートを剥離する時も折れが発生せずに容易に剥離ができ、作業性、量産性等に優れていることが明らかである。また、銅張板のもとの銅箔の厚さ方向の一部をエッチング除去することにより、同時に孔部に発生した金属のバリをエッチング除去することにより、その後の銅メッキでメッキアップして得られた表裏銅箔の回路形成においても、ショートやパターン切れ等の不良発生もなく信頼性等に優れた高密度のプリント配線板を作製できた。また、加工速度はメカニカルドリルであけるのに比べて格段に速く、生産性についても大幅に改善できるものである。[0001]
[Industrial application fields]
The present invention relates to a punching auxiliary sheet for laminating a surface of a copper-clad board at room temperature in order to drill a blind via hole and / or a through-hole with a carbon dioxide laser in a copper-clad board for manufacturing a printed wiring board. The mainly formed holes are used as blind via holes and / or through holes of small printed wiring boards, and the obtained printed wiring boards having small diameter holes are used for semiconductor plastic packages, motherboards and the like.
[0002]
[Prior art]
Conventionally, high-density printed wiring boards used for semiconductor plastic packages or the like have drilled through holes for through holes. In recent years, the diameter of drills has become smaller and the hole diameter has become 0.15 mm or less, and when drilling such small diameter holes, the drill diameter is thin, so the drill bends during drilling, and there are many breaks. There are drawbacks such as slow processing speed, and there are problems in workability, productivity, reliability, and the like. Furthermore, if negative holes are used in the upper and lower copper foils in advance and holes of the same size are made by a predetermined method, and a through-hole that conducts the upper and lower sides with a carbon dioxide laser is formed, the positions of the upper and lower holes are There were disadvantages such as deviation, difficult formation of lands, and increased manufacturing processes.
[0003]
When forming the blind via hole, the copper foil on the surface was previously etched to a predetermined size, and this hole was formed by irradiating a low energy carbon dioxide laser (for example, Patent Documents 1 and 2, 3). On the other hand, for drilling, there is a method in which black copper oxide treatment or the like is performed on the surface of the copper foil, and a carbon dioxide laser is directly irradiated on the copper foil surface (for example, see Patent Documents 4 and 5). This is problematic because the size and shape of the holes may differ depending on the rubbing of the treatment. Furthermore, the residue of the processed resin or the like is scattered and adheres to the surface of the copper foil, and if this is processed as it is to form a circuit, problems such as pattern cuts and shorts may occur.
[0004]
Also, when the auxiliary sheet is laminated and heated on the surface of the copper-clad plate, warping occurs, and the workability is poor because it is necessary to stop the copper-clad plate with a carbon dioxide gas laser XY table by tape or the like in subsequent drilling. When it was not stopped with tape, the hole shape of the part floating from the XY table was deformed, resulting in problems such as increased defects and poor reliability. In addition, when copper-clad boards using thick copper foil are used, the circuit width and space of high-density printed wiring boards are becoming increasingly narrow, and now the line / space is 50 μm / 50 μm. The followings were also produced, and in this case as well, there were many pattern breaks or short-circuit defects, and the yield was poor.
[0005]
[Patent Document 1] Japanese Patent Publication No. 4-3676 [Patent Document 2] Japanese Patent No. 2805742 [Patent Document 3] Japanese Patent Laid-Open No. 2000-31640 [Patent Document 4] Japanese Patent Laid-Open No. 61-99596 [Patent Document] 5 Japanese Patent No. 2881515 [0006]
[Problems to be solved by the invention]
The present invention solves the above problems and mainly forms blind via holes and / or through holes having a small diameter and a good shape by directly irradiating a copper-clad plate with a carbon dioxide laser, so that at least one side of the organic sheet is formed. A resin layer containing an adhesive that has an adhesive effect at room temperature is prepared and bonded to a copper-clad plate at room temperature. An auxiliary sheet for opening is provided.
[0007]
[Means for Solving the Invention]
The present invention uses a carbon dioxide laser energy sufficient to remove the copper foil, and directly irradiates the surface of the copper clad plate with a carbon dioxide laser pulse by a pulse oscillation of the carbon dioxide laser to form at least two copper layers. Copper-clad laminates, heat-resistant film copper-clad plates, etc. Other commonly known double-sided copper-clad plates, copper-clad irradiated with a carbon dioxide laser in drilling through-holes by processing copper foil of multilayer boards Using a punching auxiliary sheet that can be bonded to the copper foil surface of the plate under pressure at room temperature, the surface of this copper-clad plate is directly irradiated with a carbon dioxide laser to form blind via holes and / or through holes. By forming, the bonded copper-clad plate is excellent in hole shape because there is no warping, and it is also easy to peel off the auxiliary sheet after forming the hole, and the thin copper-clad plate breaks at the time of peeling, to the copper-clad plate There is no resin adhesion Hole reliability, workability, it was confirmed that the excellent in mass production and the like.
[0008]
When the copper foil thickness is thick, the perforated copper-clad plate generates burrs of the copper foil in the hole portions, and therefore the inner and outer layer copper foil burrs are removed by mechanical polishing or chemicals. Mechanical polishing, especially in the case of a thin copper-clad plate, may cause problems such as an increase in the dimensional change rate due to the elongation of the plate, preferably after treatment with a chemical solution, both surfaces of the copper foil Etching and removing a part of the thickness in a plane in the thickness direction, and simultaneously removing the copper foil burrs protruding from the holes to form holes, thereby causing abnormal plating due to metal plating burrs in the holes, etc. In addition, since the copper foil thickness is reduced, in the formation of fine circuits of the front and back copper foils obtained by subsequent metal plating, there is no occurrence of defects such as short-circuits or pattern breaks, and high density. The printed wiring board was able to be produced. Furthermore, the carbon dioxide laser processing speed was much faster than when drilling, the productivity was good, and the economy was excellent.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a drilling auxiliary sheet used for drilling blind via holes and / or through holes, particularly small-diameter holes, in a copper-clad plate using a carbon dioxide laser, and a hole is formed using this auxiliary sheet. The punched printed wiring board has excellent hole reliability, and is used for mounting semiconductor chips, motherboards, and the like. When drilling a copper-clad plate with a carbon dioxide laser, an auxiliary sheet for punching that can be crimped at room temperature is adhered to the copper foil surface irradiated with the carbon dioxide laser, and the carbon dioxide laser is directly irradiated from above.・ Because there is no warping at the time of bonding, the hole shape at the time of drilling is excellent, and the auxiliary material can be easily peeled off after drilling. In addition, a material excellent in hole reliability, workability, mass productivity and the like can be obtained. In this auxiliary sheet, it is also possible to attach a plurality of copper clad plates with a resin layer containing an adhesive on both sides of the organic sheet between the copper clad plates, and to perforate with a carbon dioxide laser at once. Yes, and excellent in mass productivity.
[0010]
As the resin composition to be adhered to the organic sheet of the auxiliary sheet for carbon dioxide laser drilling, a known resin blended with a component for drilling carbon dioxide laser is used. The component that promotes the drilling of the carbon dioxide laser includes, for example, 3-97 vol% of one or more of metal compound powder, carbon powder, metal powder having a melting point of 900 ° C. or higher and a binding energy of 300 kJ / mol or higher. Then, an appropriate amount of a pressure-sensitive adhesive is blended in the resin composition, and this is adhered to at least one surface of an organic sheet such as a polyethylene terephthalate (PET) film to form an auxiliary sheet for punching. In the through-hole drilling of the carbon dioxide laser, it is preferable to use a backup sheet that can be crimped to the back surface of the copper-clad plate at room temperature.
[0011]
The copper clad plate used in the present invention is a copper clad plate having two or more copper layers, and generally known copper clad plates such as thermoplastic resin copper clad plates and thermosetting resin copper clad plates can be used. It is. As thermosetting resin copper clad plate, inorganic and organic substrate thermosetting resin copper clad laminate, copper clad laminate is used as inner layer, and resin coated copper foil or inorganic or organic substrate on the outside A reinforced thermosetting resin prepreg is disposed, and a copper foil having a generally known structure, such as a multilayer board obtained by laminating and forming a copper foil on the outer side if necessary, is also included. Moreover, generally well-known things, such as a copper clad board which bonded copper foil to heat resistant films, such as a polyimide film, a liquid crystal polyester film, a polyparabanic acid film, and a wholly aromatic polyamide film, a multilayer board, can also be used. A rigid-flexible copper-clad plate combining these can also be used.
[0012]
As the substrate, generally known woven or non-woven fabrics of inorganic and organic fibers can be used. Specifically, examples of the inorganic fiber include fibers such as E, A, C, L, M, S, D, N, C, NE, quartz, and high dielectric constant ceramic, which are used alone or in a mixed form. . Examples of organic fibers include wholly aromatic polyamide fibers and liquid crystal polyester fibers. Of course, a mixed base material of inorganic and organic fibers can also be used.
[0013]
As the resin of the thermosetting resin composition used in the present invention, generally known thermosetting resins are used. Specifically, epoxy resin, polyfunctional cyanate ester resin, polyfunctional maleimide-cyanate ester resin, polyfunctional maleimide resin, unsaturated group-containing polyphenylene ether resin, cyanated polyphenylene ether resin, epoxidized polyphenylene ether Resin etc. are mentioned, 1 type or 2 types or more are used in combination. From the viewpoint of the hole shape with a carbon dioxide laser, a resin composition having high heat resistance and a glass transition temperature of 150 ° C. or higher is preferable. Further, it is preferable to add an inorganic filler. In view of heat resistance, moisture resistance, migration resistance, electrical properties after moisture absorption, and the like, a polyfunctional cyanate ester resin composition is preferable.
[0014]
The polyfunctional cyanate ester compound which is a preferred thermosetting resin component of the present invention is a compound having two or more cyanato groups in the molecule. Specifically, 1,3- or 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-, 1,4-, 1,6-, 1,8-2, , 6- or 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4-dicyanatobiphenyl, bis (4-dicyanatophenyl) methane, 2,2-bis (4-cyanato) Phenyl) propane, 2,2-bis (3,5-dibromo-4-cyanatophenyl) propane, bis (4-cyanatophenyl) ether, bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) ) Sulfone, tris (4-cyanatophenyl) phosphite, tris (4-cyanatophenyl) phosphate, and cyanates obtained by reaction of novolaks with cyanogen halides. It is.
[0015]
In addition to these, polyfunctional cyanic acids described in JP-B-41-1928, JP-A-43-18468, JP-A-44-4791, JP-A-45-11712, JP-A-46-41112, JP-A-47-26853, and JP-A-51-63149 Ester compounds, cyanated polyphenylene ether resins and the like can also be used. Further, a prepolymer having a molecular weight of 400 to 6,000 having a triazine ring formed by trimerization of cyanate groups of these polyfunctional cyanate compounds is used. This prepolymer polymerizes the above-mentioned polyfunctional cyanate ester monomers using, for example, acids such as mineral acids and Lewis acids; bases such as sodium alcoholates and tertiary amines; salts such as sodium carbonate and the like as catalysts. Can be obtained. This prepolymer also includes a partially unreacted monomer, which is in the form of a mixture of the monomer and the prepolymer, and such a raw material is suitably used for the application of the present invention. Generally, it is used after being dissolved in a soluble organic solvent.
[0016]
There is no limitation in particular as an epoxy resin, Generally a well-known thing can be used. Specifically, liquid or solid bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, alicyclic epoxy resin, naphthalene ring-containing epoxy resin; butadiene, pentadiene, vinyl Examples thereof include polyepoxy compounds obtained by epoxidizing double bonds such as cyclohexene and dicyclopentyl ether; polyols, polyglycidyl compounds obtained by reaction of hydroxyl group-containing silicon resins with epohalohydrin, and epoxidized polyphenylene ether resins. These may be used alone or in combination of two or more.
[0017]
As the polyimide resin, generally known resins can be used. Specific examples include a reaction product of a polyfunctional maleimide and a polyamine, and a terminal triple bond polyimide described in JP-B-57-005406.
[0018]
These thermosetting resins may be used alone, but may be used in appropriate combination in consideration of balance of characteristics.
[0019]
In the thermosetting resin composition of the present invention, various additives can be blended as desired within a range where the original properties of the composition are not impaired. These additives include polymerizable double bond-containing monomers such as unsaturated polyesters and prepolymers thereof; polybutadiene, epoxidized butadiene, maleated butadiene, butadiene-acrylonitrile copolymer, polychloroprene, butadiene-styrene copolymer. Low molecular weight liquid to high molecular weight elastic rubber such as polymer, polyisoprene, butyl rubber, fluoro rubber, natural rubber; polyethylene, polypropylene, polybutene, poly-4-methylpentene, polystyrene, AS resin, ABS resin, MBS resin , Styrene-isoprene rubber, polyethylene-propylene copolymer, 4-fluoroethylene-6-fluoroethylene copolymers; polycarbonate, polyphenylene ether, polysulfone, polyester, polyphenylene sulfide High molecular weight prepolymer or oligomer, styrene polyphenylene ether resin, polyurethane, etc. are exemplified, it is appropriately used. In addition, other known organic and inorganic fillers, dyes, pigments, thickeners, lubricants, antifoaming agents, dispersants, anti-settling agents, leveling agents, photosensitizers, flame retardants, brighteners, polymerization prohibition Various additives such as an agent and a thixotropic agent are suitably used in combination as desired. If necessary, the compound having a reactive group is appropriately mixed with a curing agent and a catalyst.
[0020]
Although the thermosetting resin composition of the present invention itself is cured by heating, the curing rate is slow and the workability, economy, etc. are inferior, so that a known thermosetting catalyst can be used for the thermosetting resin used. . The amount used is 0.005 to 10 parts by weight, preferably 0.01 to 5 parts by weight, based on 100 parts by weight of the thermosetting resin.
[0021]
In order to improve the hole shape by irradiation with a carbon dioxide gas laser, it is preferable to add various additives into the resin of the copper-clad plate. Particularly preferably, an inorganic filler is blended, and as this inorganic filler, generally known spherical, needle-like, and amorphous ones can be used. Specifically, silicas such as natural silica, calcined silica, spherical silica, amorphous silica; white carbon, titanium white, aerosil, clay, talc, wollastonite, natural mica, synthetic mica, kaolin, magnesia, alumina, perlite Etc. The addition amount is not particularly limited, but is generally 10 to 80% by weight, preferably 15 to 60% by weight.
[0022]
Further, it is preferable to add a black dye or pigment to the resin so that light is not dispersed by irradiation with a carbon dioxide laser. Generally known dyes and pigments can be used. The addition amount is preferably 0.1 to 10% by weight. Furthermore, the method of dyeing the surface of a fiber black, the method of mix | blending a black application material etc. in an organic fiber, etc. can be used.
[0023]
A generally known metal foil can be used as the outermost metal foil of the copper-clad plate. Preferably, a copper foil, a copper alloy foil or the like having a thickness of 3 to 12 μm is used.
[0024]
A base material reinforced copper clad laminate is prepared by first impregnating the base material with a thermosetting resin composition and drying it to form a B stage to produce a prepreg. Next, a predetermined number of the prepregs are used, copper foils are arranged on the upper and lower sides, and are laminated and formed under heating and pressure to obtain a double-sided copper-clad laminate.
[0025]
A copper-clad plate such as a polyimide film without substrate reinforcement is produced by a generally known method in which a copper foil is adhered to a polyimide film substrate or the like using an adhesive, or a copper layer is directly attached.
[0026]
As the thermoplastic resin, generally known thermoplastic resins are used. Specifically, there are a polycarbonate plate, a polyphenylene ether plate, and the like. When a printed wiring board is used, a thermosetting resin is preferable from the viewpoint of thermal processing of a carbon dioxide laser.
[0027]
The punching assisting sheet of the present invention contains a component that absorbs energy when decomposed with a carbon dioxide laser, is decomposed and heated, and can process the copper foil. These are not particularly limited, but preferably a metal compound powder having a melting point of 900 ° C. or higher and a binding energy of 300 kJ / mol or higher, a carbon powder, or a combination of two or more metal powders. A resin composition is blended in 3-97 vol% resin to form a resin composition, which is adhered to at least one side of an organic sheet and placed on the surface of a copper-clad plate at room temperature, and directly from above. Blind via holes and / or through holes are formed by irradiating a carbon dioxide gas laser beam with a reduced diameter. When punching one copper-clad plate, the above-mentioned punching auxiliary sheet is arranged on the surface, and is used by being crimped and integrated with a roll or the like at room temperature. When punching through multiple copper-clad plates, an auxiliary sheet with an adhesive resin layer formed on one side of the organic film is placed on the surface layer, and an adhesive-added resin layer on both sides of the organic film between the copper-clad plates Auxiliary sheet that is formed is arranged, preferably a back-up sheet in which a resin layer containing an adhesive is formed on one side of the metal foil on the back side, and these are crimped at room temperature at a time to integrate a plurality of copper-clad plates, Using this, a through hole is made.
[0028]
A metal compound powder having a melting point of 900 ° C. or higher and a binding energy of 300 kJ / mol or higher, which is one of the drilling auxiliary materials used on the copper foil surface used in the present invention, is generally known. Can be used. Examples include titanias as oxides; magnesias; iron oxides; zinc oxides; cobalt oxides; tin oxides, etc. Non-oxides include silicon carbide, tungsten carbide, boron nitride, silicon nitride , Titanium nitride, barium sulfate and the like. In addition, carbon can be used.
[0029]
Furthermore, generally known metal powder is used. However, those that generate heat or ignite when dissolved in water or solvents are not used. These generally have an average particle diameter of 5 μm or less, preferably 1 μm or less. The resin composition for punching is not necessarily limited to these, and a known resin composition can be used, and a feature is that an adhesive is blended in the resin composition.
[0030]
The organic material of the auxiliary material is not particularly limited, but a varnish is selected that does not peel or lose when applied to the surface of the organic sheet and dried. Preferably, generally known resins are used. In particular, water-soluble resins such as polyvinyl alcohol, polyester, starch and the like are generally used from the viewpoint of the environment or washing and removal of the copper foil surface after processing. Furthermore, if necessary, the above-mentioned various resins, additives and the like can be appropriately selected and added and used.
[0031]
The method for producing the composition comprising the powder and the organic material is not particularly limited.For example, a kneader or the like is kneaded at a high temperature without a solvent and extruded into a sheet, or a resin composition dissolved in a solvent or water is used. Add powder to this, stir and mix uniformly, apply to copper foil surface as paint, dry to form film, spray directly on copper foil surface, apply to film and dry to form sheet Generally known methods such as a method, a method of impregnating an organic or inorganic base material, and drying to form a base material-containing sheet can be used. The thickness of the resin layer is preferably 20 to 100 μm. The sheet to be applied is not particularly limited and generally known ones can be used. For example, generally known films such as polyethylene terephthalate, polypropylene film, polyethylene film, a mixture thereof, multilayer film, etc .; glass woven fabric, nonwoven fabric base Generally known sheets such as a material-reinforced laminated sheet can be used. From the viewpoint of winding, films are preferably used. The thickness of the sheet is not particularly limited, but is preferably 25 to 200 μm.
[0032]
When forming the through hole, it is preferable to use a backup sheet that absorbs the carbon dioxide laser penetrating the surface opposite to the copper foil surface of the copper clad plate that irradiates the carbon dioxide laser. It is required that the carbon dioxide laser penetrating through the substrate does not hit the copper-clad plate that is bounced back and does not penetrate and stops. For that purpose, a resin layer, preferably a water-soluble resin layer, suitably blended with an adhesive having a thickness of 20 to 100 μm on the copper foil surface of the copper clad plate opposite to the surface irradiated with the carbon dioxide laser, Preferably, a backup sheet at least partially adhered to a glossy metal foil having a thickness of 50 to 200 μm is disposed and laminated and adhered at room temperature, and then the output of the carbon dioxide laser is 2 to 60 mJ, preferably 4 The energy selected from -40mJ is directly applied to the surface of the copper-clad plate with a hole-forming auxiliary sheet to open a through-hole, so that the carbon dioxide laser energy penetrating the copper-clad plate is used as a resin layer for the backup sheet. The remaining energy is absorbed by the surface of the glossy metal foil underneath, and a part of the energy is reflected so that the metal does not perforate and the bounced energy is backed up. Since it is absorbed by the resin layer of the sheet and stops, the through hole can be formed without scratching the copper foil on the back surface of the copper-clad plate. Auxiliary sheet for punching and backup sheet can be laminated to a copper-clad plate under heating, but if the copper-clad plate is thin, the thermal expansion coefficient of the auxiliary sheet for drilling differs from the backup sheet depending on the temperature. Since warping of the copper-clad plate occurs, it is preferable to stick at room temperature.
[0033]
There are no particular limitations on the resin composition used for the auxiliary sheet for drilling, and generally known ones such as thermoplastic resins, thermosetting resins, and mixtures thereof can be used. From the viewpoints of environment and recycling, a thermoplastic resin is preferable, and a water-soluble resin is preferable. These resins are not particularly limited, and the above thermoplastic resins, thermosetting resins, water-soluble resins and the like can be used. Of course, the above-mentioned various additives, inorganic fillers and the like can be appropriately blended.
[0034]
An adhesive is blended in the resin layer of the auxiliary hole punching sheet of the present invention. The pressure-sensitive adhesive is not particularly limited, and generally known pressure-sensitive adhesives can be used. Specific examples include rubber, cross-linked acrylic, non-cross-linked acrylic, water-soluble acrylic, urethane, vinyl acetate, cellulose, and the like, but water-soluble ones are preferably used. The blending amount is not particularly limited, but is set to a certain degree of adhesiveness that can be peeled by hand after drilling a through hole. The pressure-sensitive adhesive is generally 1 to 90% by weight, preferably 5 to 50% by weight in the resin composition. As a kneading method, a method and an apparatus for kneading the auxiliary material described above can be used. The thickness of the adhesive-containing resin composition to be attached to the organic film is not particularly limited, but is preferably 20 to 100 μm.
[0035]
What formed the resin composition layer containing an adhesive also on the backup sheet surface is used suitably. The metal foil for adhering the resin composition layer is not particularly limited, and specific examples include aluminum, copper, tin, iron, nickel, and alloys thereof. However, from the viewpoint of price, workability, etc., aluminum Are preferably used. The thickness of the metal foil is not particularly limited, but from the viewpoint of workability, price, etc., the thickness is 20 to 300 μm, preferably 30 to 200 μm, more preferably 50 to 100 μm. . As a method for forming the resin layer on the metal foil, a known method can be used. For example, a method of directly applying on a metal foil with a roll coater, a method of forming a resin layer on a release film, and laminating this on a metal foil and pasting them, etc. can be mentioned. The metal foil surface may be roughened by physical or chemical treatment in advance, or may be pretreated with a primer.
[0036]
When the copper foil thickness of the copper-clad plate is generally 7 μm or more, when holes are formed by irradiating a carbon dioxide laser, burrs are generated around the front and back holes. Therefore, after carbon dioxide laser irradiation, both surfaces of the copper foil are planarly etched in the thickness direction, and burrs are etched away at the same time, and the thinned copper foil is suitable for forming a fine circuit and has a high density. Products suitable for printed wiring boards can be obtained.
[0037]
The method for removing the copper burrs generated in the holes of the present invention by etching is not particularly limited. For example, JP-A Nos. 02-2287, 02-22896, 02-25089, 02-25090, 02- 59337, 02-60189, 02-166789, 03-25995, 03-60183, 03-94491, 04-199592, and 04-263488, a method for dissolving and removing a metal surface with a chemical. (Referred to as the SUEP method). The etching rate is 0.02 to 1.0 μm / second. It is possible to scrape the copper foil burrs by mechanical polishing, but if the copper-clad plate is thin, problems such as large dimensional changes occur, and burrs cannot be completely removed.
[0038]
The carbon dioxide laser generally has a wavelength of 9.3 to 10.6 μm in the infrared wavelength region. In addition, the hole drilling auxiliary sheet of the present invention can be used for drilling UV-YAG laser and excimer laser from the viewpoint of preventing adhesion of the processed residue to the copper foil.
[0039]
【Example】
The present invention will be specifically described below with reference to examples and comparative examples. Unless otherwise specified, “parts” represents parts by weight.
(Example 1)
900 parts of 2,2-bis (4-cyanatophenyl) propane and 100 parts of bis (4-maleimidophenyl) methane were melted at 150 ° C. and reacted for 4 hours with stirring to obtain a prepolymer. This was dissolved in a mixed solvent of methyl ethyl ketone and dimethylformamide. 400 parts of bisphenol A type epoxy resin (trade name: Epicoat 1001, manufactured by Japan Epoxy Resin Co., Ltd.), 600 parts of cresol novolac type epoxy resin (trade name: ESCN-220F, manufactured by Sumitomo Chemical Co., Ltd.), black 8 parts of pigment was added and dissolved and mixed uniformly. Further, 0.4 parts of zinc octylate as a catalyst was added, dissolved and mixed, and 500 parts of an inorganic filler (trade name: calcined talc, manufactured by Nippon Talc Co., Ltd.) was added thereto, and uniformly stirred and mixed to obtain varnish A. It was. This varnish A was impregnated into a 100 μm thick glass woven fabric and dried at 150 ° C. to prepare a prepreg (prepreg B) having a gelation time (at 170 ° C.) of 120 seconds and a resin composition content of 49% by weight. An electrolytic copper foil having a thickness of 12 μm is placed on the top and bottom of one prepreg B, laminated and molded for 2 hours under a vacuum of 200 ° C., 20 kgf / cm 2 , 30 mmHg or less, and a double-sided copper-clad laminate having an insulating layer thickness of 100 μm C was obtained.
[0040]
On the other hand, copper oxide powder (average particle diameter 0.8 μm) was added to a varnish D in which an emulsion-type acrylic adhesive was added to a polyvinyl alcohol aqueous solution so as to be 13% by weight, and the thickness was 40 μm on one side of a 50 μm thick PET film. It was applied and dried as described above to prepare an auxiliary sheet E for drilling in which a film of copper oxide powder 30 vol% was formed. Also, a water-soluble polyester resin and an emulsion-type acrylic pressure-sensitive adhesive as a pressure-sensitive adhesive are blended at 10% by weight on an aluminum foil having a metallic luster having a thickness of 100 μm, and dissolved in water to a thickness of 50 μm. It applied so that it might become, and heat-dried, water was blown off, and the backup sheet F was produced.
[0041]
The auxiliary sheet E for drilling is arranged on the surface of the double-sided copper-clad laminate C, and the backup sheet F is arranged on the back side, and laminated and bonded to the copper-clad board at a linear pressure of 6 kgf / cm at room temperature. The holes were directly irradiated with a carbon dioxide laser at an output of 20 mJ for 3 shots to form through holes. The copper foil burrs around the holes were dissolved and removed by the SUEP method, and at the same time, the copper foil on the surface was dissolved to 4 μm. The plate was plated with copper by 15 μm (total thickness: 19 μm) by a known method. Circuits (200 lines / space = 40/40 μm) were formed on the front surface by a conventional method, and solder ball lands and the like were formed on the back surface, thereby producing a printed wiring board. The evaluation results of this printed wiring board are shown in Table 1.
[0042]
(Example 2)
700 parts of epoxy resin (trade name: Epicoat 5045, manufactured by Japan Epoxy Resins Co., Ltd.), 300 parts of epoxy resin (trade name: ESCN220F), 35 parts of dicyandiamide, 1 part of 2-ethyl-4-methylimidazole and methyl ethyl ketone and dimethyl Dissolved in a mixed solvent of formamide, 800 parts of the calcined talc of Example 1 was further added, and the mixture was forcibly stirred and uniformly dispersed to obtain varnish G. This was impregnated into a 100 μm thick glass woven fabric and dried to prepare a prepreg (prepreg H) having a gelation time of 150 seconds and a resin composition content of 47% by weight. Two sheets of this prepreg H were used, 18 μm electrolytic copper foil was placed on both sides, and laminate molding was carried out for 2 hours under a vacuum of 190 ° C., 20 kgf / cm 2 , 30 mmHg or less to prepare a double-sided copper-clad laminate. The thickness of the insulating layer was 200 μm. Circuits were formed on the front and back surfaces, and black copper oxide treatment was applied to produce an inner layer plate. Moreover, the varnish G was impregnated into a glass woven fabric having a thickness of 80 μm and dried to obtain a prepreg I having a gel time of 105 seconds and a resin composition content of 60% by weight. This prepreg I was placed on the upper and lower sides of the inner layer plate H, an electrolytic copper foil of 7 μm was placed on the outer side thereof, and laminate molding was similarly performed to obtain a four-layer plate J.
[0043]
On the other hand, 90 parts of the polyvinyl alcohol, 10 parts of starch, and an emulsion-type vinyl acetate pressure-sensitive adhesive were added as the pressure-sensitive adhesive so as to be 15% by weight, and varnish K was produced. This varnish K was applied to one side of a 38 μm-thick polypropylene film so as to have a thickness of 22 μm, and dried to produce an auxiliary material L 1 for drilling. An auxiliary material L for drilling is arranged on the surface layer of the above four-layer plate J, adhered at room temperature with a linear pressure of 7 kgf / cm, and a glass epoxy laminated plate having a thickness of 1 mm is placed on the back surface. 2 shots were directly irradiated at an output of 25 mJ to open a blind via hole with a hole diameter of 90 μm. Thereafter, processing was performed in the same manner as in Example 1 to produce a printed wiring board. The evaluation results are shown in Table 1.
[0044]
(Example 3)
In Example 1, an auxiliary sheet E for drilling was placed on the surface of the copper clad laminate C, and was laminated and bonded at room temperature with a linear pressure of 5 kgf / cm. A glass epoxy laminate having a thickness of 1 mm was placed on the back side, and a blind via hole was formed by directly irradiating the surface with a carbon dioxide laser energy of one shot at 20 mJ and one shot at 5 mJ. The copper foil on the surface was etched to a thickness of 4 μm by the SUEP method, and a circuit was formed by a conventional method to obtain a printed wiring board. The evaluation results are shown in Table 1.
[0045]
Example 4
In Example 1, varnish D was applied to both sides of a PET film having a thickness of 25 μm so as to have a thickness of 40 μm, and dried to prepare auxiliary material M for drilling. First, the auxiliary drilling material E of Example 1 is arranged in the uppermost outermost layer, and the double-sided copper-clad laminate C, the auxiliary drilling material M, the double-sided copper-clad laminate C and the double-sided copper-clad laminate in this order. Arrange so that there are 5 sheets of C, and finally place backup sheet F, integrate the whole at room temperature at a linear pressure of 10 kgf / cm, and irradiate 11 shots from this surface with carbon dioxide laser energy of 25 mJ. A hole was made. Thereafter, SUEP treatment was performed in the same manner as in Example 1, and copper plating was performed by 15 μm (total thickness: 19 μm) by a known method. Circuits (200 lines / space = 40/40 μm) were formed on the front surface by a conventional method, and solder ball lands and the like were formed on the back surface, thereby producing a printed wiring board. The evaluation results of this printed wiring board are shown in Table 1.
[0046]
(Comparative Example 1)
Varnish N was prepared without adding an adhesive as an auxiliary sheet for punching of Example 3, and this was coated on a PET film in the same manner to produce an auxiliary sheet O for punching with the same thickness. This is placed on the surface of the double-sided copper-clad laminate C, laminated and bonded at 100 ° C. with a linear pressure of 4 kgf / cm, and then blind via holes are formed in the same manner, desmear treatment without using SUEP treatment, copper Plating was deposited to 15 μm, processed in the same manner, and printed wiring board in the same manner. The evaluation results are shown in Table 1.
[0047]
(Comparative Example 2)
In Example 2, the varnish P was prepared without using an adhesive, and an auxiliary sheet Q for drilling was similarly prepared using the varnish P. The laminate was adhered to the surface at a linear pressure of 6 kgf / cm at 100 ° C., and SUEP Without performing the treatment, desmear treatment and copper plating of 15 μm were adhered, processed in the same manner, and printed wiring board was similarly produced. The evaluation results are shown in Table 1.
[0048]
(Comparative Example 3)
In Example 1, the front and back were subjected to black copper oxide treatment, and this was placed on a stainless steel plate having a thickness of 1.6 mm, and through holes were similarly formed with a carbon dioxide laser. This was reflected on the stainless steel plate on the back surface, and many irregular holes were formed on the back surface. Using this, 15 μm of desmear treatment and copper plating adhered without performing the SUEP treatment, processed in the same manner, and similarly printed wiring boards. The evaluation results are shown in Table 1.
[0049]
(Comparative Example 4)
A hole having a hole diameter of 100 μm was formed by etching the copper foil on the surface of the copper foil of the four-layer plate of Example 2 at an interval of 500 μm. Similarly, a hole having a hole diameter of 100 μm was formed on the back surface at the same position, and a through-hole for through-hole was formed from the front surface with a carbon dioxide laser by applying 8 shots at an output of 20 mJ. Thereafter, in the same manner as in Comparative Example 3, desmear treatment was performed without performing SUEP treatment, copper plating was performed at 15 μm, circuits were formed on the front and back surfaces, and printed wiring boards were similarly produced. The evaluation results are shown in Table 1.
[0050]
(Comparative Example 5)
Using one double-sided copper-clad laminate C of Example 1, an aluminum foil having a thickness of 150 μm is disposed on the front surface, a paper phenol laminate having a thickness of 1.6 mm is disposed on the rear surface, and rotated with a mechanical drill having a diameter of 100 μm. Holes were made at intervals of 500 μm at several 150,000 rpm. Similarly, copper plating was applied at 15 μm without performing SUEP, circuits were formed on the front and back surfaces, and processed similarly to produce a printed wiring board. One breakage of the drill occurred on the way. The evaluation results are shown in Table 1.
[0051]
[Table 1]
Figure 2004230391
[0052]
<Measurement method>
1) Warpage when laminating an auxiliary sheet for punching on a copper-clad plate: Warpage was observed on a surface plate.
2) Folding at the time of peeling the auxiliary sheet for punching from the copper-clad plate: In each Example and Comparative Example, the folding of the copper-clad plate was observed when the auxiliary sheet for punching was peeled after drilling.
3) Hole shape: The copper foil of the perforated copper clad plate was etched, and the top and bottom of the through hole and the cross section were observed with a microscope.
4) Circuit pattern cuts and shorts: In Examples and Comparative Examples, a board without holes was similarly prepared to form a comb-shaped pattern of line / space = 40/40 μm, and then 200 after etching with a magnifying glass. The pattern was observed visually, and the sum of the pattern cut and short patterns was shown in the molecule.
5) Glass transition temperature: measured by the DMA method of JIS C6481.
6) Blind via hole, through-hole heat cycle test: Lands of 200 μm are made in each hole of 100 μm hole diameter made with a hole interval of 1 mm, and 900 holes are connected alternately on the front and back, one cycle is 260 ° C., solder, immersion 30 cycles from 30 seconds to room temperature and 5 minutes were carried out for 200 cycles, and the maximum value of the resistance value change rate was shown.
7) Drilling time: The time for processing 100,000 holes at intervals of 500 μm was measured and expressed as the processing time per sheet. Time is rounded to the nearest whole number.
[0053]
【The invention's effect】
A copper clad plate having at least two copper layers is irradiated with carbon dioxide laser by pulsating the carbon dioxide laser using a pulsed oscillation of the carbon dioxide gas laser with sufficient energy to remove the copper foil with the carbon dioxide laser. In drilling blind copper holes and / or through holes by processing copper foil, as an auxiliary sheet for drilling, a resin layer with an adhesive added to an organic film, preferably 20 to 100 μm, is placed. There is no warpage of the copper-clad plate by pressure bonding to the copper-clad plate at room temperature, and through holes are drilled with a carbon dioxide laser from this surface, a hole with a good shape and excellent reliability line can be formed, Furthermore, when the auxiliary sheet is peeled off from the thin plate, it can be easily peeled off without causing any breakage, and it is clear that the workability and mass productivity are excellent. In addition, by removing a part of the copper foil in the thickness direction of the copper-clad plate by etching, and simultaneously removing the metal burrs generated in the hole, Even in the circuit formation of the obtained front and back copper foils, it was possible to produce a high-density printed wiring board excellent in reliability and the like without occurrence of defects such as short-circuiting or pattern breakage. In addition, the machining speed is much faster than that of a mechanical drill, and the productivity can be greatly improved.

Claims (2)

銅箔を炭酸ガスレーザーで除去できるに十分なエネルギーを用いて、炭酸ガスレーザーのパルス発振により、炭酸ガスレーザーを照射し、少なくとも2層以上の銅の層を有する銅張板の銅箔を加工して貫通孔をあける孔あけにおいて、銅張板の、炭酸ガスレーザーが照射される面の銅箔面に接着配置する炭酸ガスレーザー孔あけ用補助シートにおいて、その構成が有機シートに、炭酸ガスレーザー孔あけ用樹脂組成物層を付着した構造であって、樹脂組成物層に粘着剤が配合され、室温で銅張板に圧着できることを特徴とする炭酸ガスレーザー孔あけ用補助シート。Using a sufficient amount of energy to remove the copper foil with a carbon dioxide laser, irradiate the carbon dioxide laser with the pulse oscillation of the carbon dioxide laser to process the copper foil of a copper clad plate having at least two copper layers. In the auxiliary sheet for carbon dioxide laser drilling, which is bonded to the copper foil surface of the surface of the copper clad plate to which the carbon dioxide laser is irradiated, the configuration is an organic sheet, carbon dioxide gas An auxiliary sheet for carbon dioxide laser drilling having a structure in which a resin composition layer for laser drilling is attached, wherein an adhesive is blended in the resin composition layer and can be pressure-bonded to a copper-clad plate at room temperature. 該炭酸ガスレーザー孔あけ用補助シートの有機シート面に形成される樹脂組成物が、樹脂に融点900℃以上で、且つ結合エネルギー300kJ/mol 以上の金属化合物粉、カーボン粉、金属粉の1種或いは2種以上を3〜97vol%を配合した樹脂組成物である請求項1記載の炭酸ガスレーザーによる孔あけ用補助シート。The resin composition formed on the organic sheet surface of the carbon dioxide laser drilling auxiliary sheet is one of metal compound powder, carbon powder, and metal powder having a melting point of 900 ° C. or higher and a binding energy of 300 kJ / mol or higher. Alternatively, the auxiliary sheet for drilling with a carbon dioxide gas laser according to claim 1, which is a resin composition containing 2 or more of 3 to 97 vol%.
JP2003018451A 2003-01-28 2003-01-28 Auxiliary sheet for carbon dioxide laser boring Pending JP2004230391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003018451A JP2004230391A (en) 2003-01-28 2003-01-28 Auxiliary sheet for carbon dioxide laser boring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003018451A JP2004230391A (en) 2003-01-28 2003-01-28 Auxiliary sheet for carbon dioxide laser boring

Publications (1)

Publication Number Publication Date
JP2004230391A true JP2004230391A (en) 2004-08-19

Family

ID=32948576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003018451A Pending JP2004230391A (en) 2003-01-28 2003-01-28 Auxiliary sheet for carbon dioxide laser boring

Country Status (1)

Country Link
JP (1) JP2004230391A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192474A (en) * 2005-01-14 2006-07-27 Nitto Denko Corp Method for producing laser beam-machined product, and adhesive sheet for laser beam machining
JP2006192478A (en) * 2005-01-14 2006-07-27 Nitto Denko Corp Method for producing laser beam-machined product, and protective sheet for laser beam machining
US8778118B2 (en) 2003-04-25 2014-07-15 Nitto Denko Corporation Manufacturing method of laser processed parts, and pressure-sensitive adhesive sheet for laser processing used for the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8778118B2 (en) 2003-04-25 2014-07-15 Nitto Denko Corporation Manufacturing method of laser processed parts, and pressure-sensitive adhesive sheet for laser processing used for the same
JP2006192474A (en) * 2005-01-14 2006-07-27 Nitto Denko Corp Method for producing laser beam-machined product, and adhesive sheet for laser beam machining
JP2006192478A (en) * 2005-01-14 2006-07-27 Nitto Denko Corp Method for producing laser beam-machined product, and protective sheet for laser beam machining
US8168030B2 (en) 2005-01-14 2012-05-01 Nitto Denko Corporation Manufacturing method of laser processed parts and adhesive sheet for laser processing
US8624156B2 (en) 2005-01-14 2014-01-07 Nitto Denko Corporation Manufacturing method of laser processed parts and protective sheet for laser processing

Similar Documents

Publication Publication Date Title
JP4348785B2 (en) High elastic modulus glass cloth base thermosetting resin copper clad laminate
JP2004330236A (en) Auxiliary sheet for laser boring
JP4595284B2 (en) Auxiliary sheet for drilling with carbon dioxide laser
JP2009119879A (en) High elastic modulus copper-clad laminate of thermosetting resin-impregnated glass fabric base material and drilling method
JP2004230391A (en) Auxiliary sheet for carbon dioxide laser boring
JP2001260274A (en) B-stage resin sheet with both face-treated copper foil for preparing copper-clad sheet and its printed wiring board
JP4078713B2 (en) Backup sheet for drilling through holes with laser
JP4727013B2 (en) Manufacturing method of multilayer printed wiring board having through hole by carbon dioxide laser processing
JP2001044597A (en) Copper clad plate having excellent carbon dioxide laser boring properties
JP2004228204A (en) Backup sheet for boring through-hole with laser
JP2004228294A (en) Backup sheet for boring through-hole with laser
JP4854834B2 (en) Method for forming holes in copper-clad plate using carbon dioxide laser
JP2004281872A (en) Method for forming hole by laser
JP2004235195A (en) Backup sheet for boring through-hole with laser
JP2005005283A (en) Laser boring auxiliary sheet
JP2004311749A (en) Perforating method by laser
JP2003246843A (en) Curable resin composition
JP4826031B2 (en) Formation method of through-hole by carbon dioxide laser
JP2001262372A (en) Double-face treated copper foil suitable for carbon- dioxide laser perforating
JPH11320174A (en) Auxiliary material for carbon dioxide gas laser boring
JPH11347767A (en) Method of making through-hole on copper-plate sheet by laser
JPH11342492A (en) Auxiliary sheet for carbon dioxide laser piercing
JP4826033B2 (en) Backup sheet for through-hole formation by carbon dioxide laser
JP2005183792A (en) Method for manufacturing printed-wiring board for flip-chip mounting
JP2003290958A (en) Method for forming through-hole to multilayered both- side copper clad plate by laser