JP2005183599A - B stage resin composition sheet and method of manufacturing printed circuit substrate for mounting flip chip using the same - Google Patents

B stage resin composition sheet and method of manufacturing printed circuit substrate for mounting flip chip using the same Download PDF

Info

Publication number
JP2005183599A
JP2005183599A JP2003421018A JP2003421018A JP2005183599A JP 2005183599 A JP2005183599 A JP 2005183599A JP 2003421018 A JP2003421018 A JP 2003421018A JP 2003421018 A JP2003421018 A JP 2003421018A JP 2005183599 A JP2005183599 A JP 2005183599A
Authority
JP
Japan
Prior art keywords
resin composition
composition layer
copper plating
copper
semiconductor chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003421018A
Other languages
Japanese (ja)
Inventor
Morio Take
杜夫 岳
Nobuyuki Ikeguchi
信之 池口
Takafumi Omori
貴文 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2003421018A priority Critical patent/JP2005183599A/en
Publication of JP2005183599A publication Critical patent/JP2005183599A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a printed circuit substrate for mounting a flip chip which can be mounted on the rear surface of a semiconductor chip without manufacturing a bump, and to obtain a B stage resin composition sheet suitable for the same. <P>SOLUTION: The B stage resin composition sheet with a copper foil includes a first resin composition layer b made of a thermoplastic resin composition formed on one side surface of the copper foil a and a second resin composition layer c made of a thermosetting resin composition on the first resin composition layer b. The B stage resin composition sheet is disposed oppositely at least on the semiconductor chip mounting surface of a substrate e on which a conductor circuit d is formed, heated and cured to a substrate for mounting the semiconductor chip. A blind via hole g and/or a through hole u are formed in the semiconductor chip mounting part, and then copper plated to fill the copper plate in the hole. A front layer copper foil and/or copper plating part is etched to the surface of the first resin composition layer. Then, the first resin composition layer is dissolved and removed to the surface of the second resin composition layer with a chemical liquid which does not dissolve the copper plating, and the distal end of the copper plating filling part is projected from the surface of the second resin composition layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、プリント配線板用の積層用のBステージ樹脂組成物シート、並びにこのBステージ樹脂組成物シートを使用したフリップチップ搭載用プリント配線板の製造方法に関するものである。本発明のBステージ樹脂組成物シートは、一般のビルドアップ積層用のシートとしても使用できるが、プリント配線板側に半導体チップ搭載接続用のバンプが形成された構造を有するフリップチップ搭載用プリント配線板の製法に好適であり、このプリント配線板は、小型、軽量で高密度な半導体プラスチックパッケージ用等に好適に使用される。   The present invention relates to a B-stage resin composition sheet for lamination for a printed wiring board, and a method for producing a printed wiring board for flip chip mounting using the B-stage resin composition sheet. The B-stage resin composition sheet of the present invention can be used as a sheet for general build-up lamination, but has a structure in which bumps for semiconductor chip mounting connection are formed on the printed wiring board side. This printed wiring board is suitable for a small, light and high density semiconductor plastic package.

近年、ますます小型、薄型、軽量化する電子機器において、高密度のプリント配線板が使用されるようになってきており、半導体チップをプリント配線板に搭載接続する方法は、ワイヤボンディング方式からフリップチップ方式になってきている。このフリップチップは裏面にハンダバンプ等が付いた半導体チップであり、これをバンプ接続用回路が形成されたプリント配線板上にバンプ金属を溶融させて搭載接続し、アンダーフィル樹脂で半導体チップとプリント配線板間の隙間を充填する構造となっている(例えば特許文献1〜3参照)。この場合、フリップチップを搭載するプリント配線板の表面は、一般にUV選択熱硬化型レジストで被覆されているが、UV選択熱硬化型レジストを塗布、露光、現像して得られる表面は凹凸が大きいことから、半導体チップを搭載接続後にアンダーフィル樹脂で充填する際に、未充填箇所が発生し、吸湿後の耐熱性が低下する等の問題があった。更に、バンプ接続用回路間の距離は狭いため、該UV選択熱硬化型レジストでは耐マイグレーション性等の電気的信頼性が劣る問題があり、改善が必要であった。更に、フリップチップにハンダバンプ等の接続用金属を予め接着するため厳密さが要求され、作製時の不良が多い等の問題点があった。   In recent years, high-density printed wiring boards have come to be used in electronic devices that are becoming smaller, thinner, and lighter. The method for mounting and connecting a semiconductor chip to a printed wiring board is flipped from the wire bonding method. It is becoming a chip system. This flip chip is a semiconductor chip with solder bumps etc. on the back side, and this is mounted and connected by melting the bump metal on the printed wiring board on which the circuit for bump connection is formed, and the semiconductor chip and printed wiring with underfill resin It has a structure that fills the gap between the plates (see, for example, Patent Documents 1 to 3). In this case, the surface of the printed wiring board on which the flip chip is mounted is generally coated with a UV selective thermosetting resist, but the surface obtained by applying, exposing and developing the UV selective thermosetting resist has large irregularities. For this reason, when the semiconductor chip is filled with the underfill resin after being mounted and connected, there is a problem that unfilled portions are generated and the heat resistance after moisture absorption is lowered. Further, since the distance between the bump connection circuits is narrow, the UV selective thermosetting resist has a problem that the electrical reliability such as migration resistance is inferior and needs to be improved. Furthermore, since bonding metals such as solder bumps are bonded in advance to the flip chip, strictness is required, and there are problems such as many defects during production.

特開2001-007478号公報JP 2001-007478 特開2001-111228号公報Japanese Patent Laid-Open No. 2001-111228 特開2001-111235号公報JP 2001-111235 A

本発明は、フリップチップにハンダバンプ等の接続用金属を接着することなく、半導体チップをプリント配線板に搭載接続することが可能であり、且つ、プリント配線板の半導体チップ搭載面の被覆樹脂表面が平滑な、耐熱性、信頼性に優れるフリップチップ搭載用プリント配線板の製造方法を提供するものであり、この製造方法に適したBステージ樹脂組成物シートを提供するものである。   The present invention is capable of mounting and connecting a semiconductor chip to a printed wiring board without adhering a connecting metal such as a solder bump to the flip chip, and the surface of the printed wiring board on which the semiconductor chip is mounted has a coating resin surface. The present invention provides a method for producing a smooth printed circuit board for mounting on a flip chip that is excellent in heat resistance and reliability, and provides a B-stage resin composition sheet suitable for this production method.

本発明は、銅箔或いは離型フィルムの片面に、熱可塑性樹脂組成物からなる第1樹脂組成物層を形成し、この樹脂組成物層の上に熱硬化性樹脂組成物からなる第2樹脂組成物層を形成させた銅箔或いは離型フィルム付きBステージ樹脂組成物シートに関するものであり、好ましくは、第1樹脂組成物層の厚みが、1〜10μmであり、より好ましくは、第2樹脂組成物層が、基材補強されており、シアン酸エステル樹脂を必須成分とする樹脂組成物である銅箔或いは離型フィルム付きBステージ樹脂組成物シートである。又、(1)上記Bステージ樹脂組成物シートの第2樹脂組成物層面を、導体回路を形成した基板の少なくとも半導体チップ搭載面に対向させて配置し、加熱して硬化させて半導体チップ搭載用基板とし、(2)半導体チップ搭載用基板の半導体チップ搭載部にブラインドビア孔及び/又は貫通孔を形成させた後、銅メッキして孔内部を銅メッキで充填させ、(3)表層銅箔及び/又は銅メッキ部分を、第1樹脂組成物層面まで、厚さ方向に平面的にエッチングした後、(4)第1樹脂組成物層を、銅メッキを溶解しない薬液で、第2樹脂組成物層面まで溶解除去させ、銅メッキ充填部の先端部分を第2樹脂組成物層面より突出させることを特徴とするフリップチップ搭載用プリント配線板の製造方法であり、好ましくは、(2)の工程後に、銅メッキ表面を研磨して表面を平滑にし、(4)の工程後に、(5)露出した銅メッキ充填部の先端部分を保護用金属で被覆し、被覆された銅メッキ充填部の先端部分に、バンプ用金属を付着させる製造方法であり、より好適には、第2樹脂組成物が、シアン酸エステル樹脂を必須成分とする樹脂組成物であるフリップチップ搭載用プリント配線板の製造方法である。   In the present invention, a first resin composition layer made of a thermoplastic resin composition is formed on one surface of a copper foil or a release film, and a second resin made of a thermosetting resin composition is formed on the resin composition layer. The present invention relates to a B-stage resin composition sheet with a copper foil or a release film on which a composition layer is formed. Preferably, the thickness of the first resin composition layer is 1 to 10 μm, more preferably, the second The resin composition layer is a B-stage resin composition sheet with a copper foil or a release film, which is a resin composition having a base material reinforced and containing a cyanate ester resin as an essential component. (1) The second resin composition layer surface of the B-stage resin composition sheet is disposed to face at least the semiconductor chip mounting surface of the substrate on which the conductor circuit is formed, and is heated and cured to mount the semiconductor chip. (2) After forming blind via holes and / or through holes in the semiconductor chip mounting portion of the semiconductor chip mounting substrate, copper plating is performed to fill the hole with copper plating, and (3) surface copper foil And / or after the copper plating portion is planarly etched in the thickness direction to the surface of the first resin composition layer, (4) the second resin composition is formed with a chemical solution that does not dissolve the copper plating. A method for producing a printed circuit board for mounting on a flip chip, characterized in that it is dissolved and removed to the surface of the physical layer, and the tip of the copper plating filling portion protrudes from the surface of the second resin composition layer, preferably the step (2) Later, the copper mesh The surface is polished to smooth the surface, and after the step (4), (5) the exposed tip portion of the copper plating filling portion is covered with a protective metal, and the tip portion of the coated copper plating filling portion is coated with This is a manufacturing method for attaching a bump metal, and more preferably a method for manufacturing a flip-chip-mounted printed wiring board in which the second resin composition is a resin composition containing a cyanate ester resin as an essential component.

本発明は、半導体チップ側でなく、プリント配線板側に半導体チップを接続するバンプを形成しておくことで、半導体チップにバンプを形成する手間が省け、作業性、経済性等に優れたフリップチップ搭載用プリント配線板を製造することができる。更に、プリント配線板の半導体チップ搭載面の樹脂組成物表面が平滑となるため、半導体チップ搭載接続後にアンダーフィル樹脂の充填不良発生がなく、また第2樹脂組成物層の被覆樹脂として、シアン酸エステル樹脂組成物を使用することにより、耐熱性、電気的信頼性等に優れたものが得られ、今後ますます高密度化するフリップチップ搭載用プリント配線板として非常に有用なものが得られた。   The present invention eliminates the trouble of forming bumps on the semiconductor chip by forming bumps for connecting the semiconductor chip on the printed wiring board side, not on the semiconductor chip side. A printed wiring board for chip mounting can be manufactured. Furthermore, since the resin composition surface on the semiconductor chip mounting surface of the printed wiring board becomes smooth, there is no occurrence of poor filling of the underfill resin after the semiconductor chip mounting connection, and as a coating resin for the second resin composition layer, cyanic acid is used. By using the ester resin composition, a product excellent in heat resistance, electrical reliability, etc. was obtained, and a very useful printed wiring board for flip chip mounting, which will become increasingly dense in the future, was obtained. .

本発明のBステージ樹脂組成物シートは、銅箔或いは離型フィルムの片面に、熱可塑性樹脂組成物からなる第1樹脂組成物層を形成し、この樹脂組成物層の上に熱硬化性樹脂組成物からなる第2樹脂組成物層を形成させた銅箔付き或いは離型フィルム付きBステージ樹脂組成物シートであり、一般のビルドアップ積層用のBステージ樹脂組成物シートとしても使用できるが、プリント配線板側に半導体チップ搭載接続用のバンプが形成された構造を有するフリップチップ搭載用プリント配線板を製法する際に使用することが好適である。   In the B-stage resin composition sheet of the present invention, a first resin composition layer made of a thermoplastic resin composition is formed on one side of a copper foil or a release film, and a thermosetting resin is formed on the resin composition layer. A B-stage resin composition sheet with a copper foil or a release film on which a second resin composition layer made of the composition is formed, and can be used as a B-stage resin composition sheet for general build-up lamination, It is preferable to use when manufacturing a flip chip mounting printed wiring board having a structure in which bumps for mounting and mounting semiconductor chips are formed on the printed wiring board side.

本発明に使用する銅箔或いは離型フィルム付きBステージ樹脂組成物シートとは、銅箔或いは離型フィルムの片面に、熱可塑性樹脂組成物からなる第1組成物層が形成され、その上に熱硬化性樹脂組成物からなる第2樹脂組成物層が形成された銅箔或いは離型フィルム付きBステージ樹脂組成物シートであれば、特に限定されない。   The B-stage resin composition sheet with a copper foil or a release film used in the present invention has a first composition layer made of a thermoplastic resin composition formed on one side of the copper foil or the release film. It will not specifically limit if it is a copper foil in which the 2nd resin composition layer which consists of a thermosetting resin composition was formed, or a B stage resin composition sheet with a release film.

銅箔或いは離型フィルム付きBステージ樹脂組成物シートの第1樹脂組成物層に使用する熱可塑性樹脂組成物は、特に限定されないが、軟化温度が 180℃以上のものが好適に使用される。具体的には、ポリフェニレンエーテル、ポリサルフォン、ポリエーテルサルフォン、ポリカーボネート、ポリフェニレンサルファイド、可溶性ポリイミド樹脂、液晶ポリマー等、及びこれらの公知の変性品が使用できる。これらは、用途により1種或いは2種以上が適宜選択して使用する。これら熱可塑性樹脂組成物には、各種の公知の添加剤や銅メッキの付着を良くするために公知のメッキ付着強度向上金属、例えばパラジウム等を添加ですることも可能である。   The thermoplastic resin composition used for the first resin composition layer of the copper foil or the B-stage resin composition sheet with a release film is not particularly limited, but those having a softening temperature of 180 ° C. or higher are preferably used. Specifically, polyphenylene ether, polysulfone, polyether sulfone, polycarbonate, polyphenylene sulfide, soluble polyimide resin, liquid crystal polymer, and the like and their known modified products can be used. One or more of these are appropriately selected and used depending on the application. These thermoplastic resin compositions may be added with various known additives and known plating adhesion strength improving metals such as palladium in order to improve the adhesion of copper plating.

銅箔或いは離型フィルム付きBステージ樹脂組成物シートの第1樹脂組成物層が形成される銅箔は、プリント配線板に使用される公知の銅箔であれば、特に限定されないが、好適には電解銅箔、圧延銅箔、これらの銅合金が使用される。銅箔表面は平滑でも凹凸が大きくても良く、熱可塑性樹脂組成物が剥離しない密着度が保持できれば良い。銅箔の厚さは特に限定されないが、好適には 3〜35μmである。一方、離型フィルムとしては公知のものが使用できるが、具体的にはポリエチレンテレフタレート、ポリブチレンテレフタレート等が挙げられる。これらは、熱可塑性樹脂組成物との密着性が悪い場合は、離型フィルムの表面に微細な凹凸を付けることも可能である。これは積層成形等の工程で収縮、溶融のないものを選択して使用する。   The copper foil on which the first resin composition layer of the B-stage resin composition sheet with a copper foil or a release film is formed is not particularly limited as long as it is a known copper foil used for a printed wiring board, but preferably Electrolytic copper foil, rolled copper foil, and these copper alloys are used. The surface of the copper foil may be smooth or uneven, as long as the adhesiveness that prevents the thermoplastic resin composition from peeling off can be maintained. The thickness of the copper foil is not particularly limited, but is preferably 3 to 35 μm. On the other hand, known release films can be used, and specific examples include polyethylene terephthalate and polybutylene terephthalate. When these have poor adhesion to the thermoplastic resin composition, it is also possible to attach fine irregularities to the surface of the release film. This is selected and used without shrinkage or melting in a process such as lamination molding.

銅箔或いは離型フィルムの片面に第1樹脂組成物層を形成する方法は特に限定はなく、溶剤に溶解した第1樹脂組成物溶液をロール等で銅箔或いは離型フィルムに塗布・乾燥する方法、第1樹脂組成物を無溶剤で加熱溶融させてシート状に押し出してから銅箔或いは離型フィルムに加熱下にラミネート等で圧着させる方法等、公知の方法が用いられる。第1樹脂組成物の厚さは特に限定はなく、好適には 1〜10μmである。銅箔或いは離型フィルム上に形成させた第1樹脂組成物層の表面は、積層成形後に第1樹脂組成物層を溶解除去した際に、第2樹脂組成物層表面を平滑にするため、好ましくは表面凹凸を3μm以下とする。   The method for forming the first resin composition layer on one side of the copper foil or release film is not particularly limited, and the first resin composition solution dissolved in the solvent is applied to the copper foil or release film with a roll or the like and dried. A known method is used, such as a method, a method in which the first resin composition is heated and melted without a solvent and extruded into a sheet shape, and then bonded to a copper foil or a release film by heating or the like by lamination. The thickness of the first resin composition is not particularly limited, and is preferably 1 to 10 μm. The surface of the first resin composition layer formed on the copper foil or the release film is to smooth the surface of the second resin composition layer when the first resin composition layer is dissolved and removed after the lamination molding, Preferably, the surface unevenness is 3 μm or less.

銅箔或いは離型フィルム付きBステージ樹脂組成物シートの第2樹脂組成物層に使用する熱硬化性樹脂組成物は、プリント配線板に使用される公知の熱硬化性樹脂組成物であれば、特に限定されない。これらの樹脂としては、例えば、エポキシ樹脂、ポリイミド樹脂、シアン酸エステル樹脂、マレイミド樹脂、2重結合付加ポリフェニレンエーテル樹脂、これらの樹脂の臭素やリン含有化合物等の樹脂組成物などが挙げられ、1種或いは2種以上が組み合わせて使用される。耐マイグレーション性等の信頼性、耐熱性等の点から、シアン酸エステル樹脂を必須成分とする樹脂組成物、例えばエポキシ樹脂等との併用が好適である。これら熱硬化性樹脂には、必要に応じて、公知の触媒、硬化剤、硬化促進剤を使用する。   If the thermosetting resin composition used for the second resin composition layer of the B-stage resin composition sheet with a copper foil or a release film is a known thermosetting resin composition used for a printed wiring board, There is no particular limitation. Examples of these resins include epoxy resins, polyimide resins, cyanate ester resins, maleimide resins, double bond-added polyphenylene ether resins, and resin compositions such as bromine and phosphorus-containing compounds of these resins. Species or two or more are used in combination. From the viewpoint of reliability such as migration resistance and heat resistance, it is preferable to use a resin composition containing a cyanate ester resin as an essential component, for example, an epoxy resin. For these thermosetting resins, known catalysts, curing agents, and curing accelerators are used as necessary.

第2樹脂組成物層に好適に使用されるシアン酸エステル樹脂とは、分子内に2個以上のシアナト基を有する化合物である。具体的に例示すると、1,3-又は1,4-ジシアナトベンゼン、1,3,5-トリシアナトベンゼン、1,3-、1,4-、1,6-、1,8-、2,6-又は2,7-ジシアナトナフタレン、1,3,6-トリシアナトナフタレン、4,4-ジシアナトビフェニル、ビス(4-ジシアナトフェニル)メタン、2,2-ビス(4-シアナトフェニル)プロパン、2,2-ビス(3,5-ジブロモー4-シアナトフェニル)プロパン、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)チオエーテル、ビス(4-シアナトフェニル)スルホン、トリス(4-シアナトフェニル)ホスファイト、トリス(4-シアナトフェニル)ホスフェート、およびノボラックとハロゲン化シアンとの反応により得られるシアネート類等である。   The cyanate ester resin suitably used for the second resin composition layer is a compound having two or more cyanato groups in the molecule. Specific examples include 1,3- or 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-, 1,4-, 1,6-, 1,8-, 2 , 6- or 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4-dicyanatobiphenyl, bis (4-dicyanatophenyl) methane, 2,2-bis (4-cyanato Phenyl) propane, 2,2-bis (3,5-dibromo-4-cyanatophenyl) propane, bis (4-cyanatophenyl) ether, bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) ) Sulfone, tris (4-cyanatophenyl) phosphite, tris (4-cyanatophenyl) phosphate, and cyanates obtained by the reaction of novolac and cyanogen halide.

これらのほかに特公昭41-1928、同43-18468、同44-4791、同45-11712、同46-41112、同47-26853及び特開昭51-63149等に記載のフェノールノボラック型シアン酸エステル化合物類等も用い得る。又、ナフタレン型シアン酸エステル化合物類も用いられ得る。更に、これらシアン酸エステル化合物のシアナト基の三量化によって形成されるトリアジン環を有する分子量 400〜6,000 のプレポリマーが使用される。このプレポリマーは、上記のシアン酸エステルモノマーを、例えば鉱酸、ルイス酸等の酸類;ナトリウムアルコラート等、第三級アミン類等の塩基;炭酸ナトリウム等の塩類等を触媒として重合させることにより得られる。この樹脂中には一部未反応のモノマーも含まれており、モノマーとプレポリマーとの混合物の形態をしており、このような原料は本発明の用途に好適に使用される。更にはシアナト化ポリフェニレンエーテル樹脂も使用できる。これらに1官能のシアン酸エステル化合物も特性に大きく影響しない量を添加できる。好適には 1〜10重量%である。これらのシアン酸エステル化合物は上記のものに限定されず、公知のものが使用可能である。これらは1種或いは2種以上が適宜組み合わせて使用される。   In addition to these, phenol novolac type cyanic acid described in JP-B-41-1928, 43-18468, 44-4791, 45-11712, 46-41112, 47-26853 and JP-A-51-63149, etc. Ester compounds and the like can also be used. Naphthalene-type cyanate ester compounds can also be used. Further, a prepolymer having a molecular weight of 400 to 6,000 having a triazine ring formed by trimerization of cyanate groups of these cyanate ester compounds is used. This prepolymer is obtained by polymerizing the above-mentioned cyanate ester monomers using, for example, acids such as mineral acids and Lewis acids; bases such as sodium alcoholates and tertiary amines; salts such as sodium carbonate and the like as catalysts. It is done. This resin also contains a partially unreacted monomer and is in the form of a mixture of a monomer and a prepolymer, and such a raw material is suitably used for the application of the present invention. Furthermore, cyanated polyphenylene ether resin can also be used. A monofunctional cyanate ester compound can also be added to these in an amount that does not significantly affect the properties. 1 to 10% by weight is preferred. These cyanate ester compounds are not limited to those described above, and known compounds can be used. These may be used alone or in combination of two or more.

シアン酸エステル樹脂に好適に併用されるエポキシ樹脂としては、公知のものが使用できる。具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂、ビフェニル型エポキシ樹脂、フルオレン型エポキシ樹脂、レゾルシン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、エポキシ化ポリフェニレンエーテル樹脂類;ブタジエン、ペンタジエン、ビニルシクロヘキセン、ジシクロペンチルエーテル等の二重結合をエポキシ化したポリエポキシ化合物類;ポリオール、水酸基含有シリコン樹脂類とエポハロヒドリンとの反応によって得られるポリグリシジル化合物類等が挙げられる。又、これらの公知の臭素付加樹脂、リン含有エポキシ樹脂等が挙げられる。これらは1種或いは2種類以上が適宜組み合わせて使用される。   As an epoxy resin suitably used in combination with a cyanate ester resin, known resins can be used. Specifically, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, alicyclic epoxy resin, biphenyl type epoxy resin, fluorene type epoxy resin, resorcin type epoxy resin, Naphthalene type epoxy resins, phenol aralkyl type epoxy resins, biphenyl aralkyl type epoxy resins, epoxidized polyphenylene ether resins; polyepoxy compounds epoxidized with double bonds such as butadiene, pentadiene, vinylcyclohexene, dicyclopentyl ether; polyols, And polyglycidyl compounds obtained by the reaction of hydroxyl group-containing silicon resins with epohalohydrin. Moreover, these well-known bromine addition resin, phosphorus containing epoxy resin, etc. are mentioned. These may be used alone or in combination of two or more.

第2樹脂組成物層に使用する樹脂組成物には、組成物本来の特性が損なわれない範囲で、所望に応じて種々の添加物を配合することができる。これらの添加物としては、不飽和ポリエステル等の重合性二重結合含有モノマー類及びそのプレポリマー類;ポリブタジエン、マレイン化ブタジエン、ブタジエン-アクリロニトリル共重合体、ポリクロロプレン、ブタジエン-スチレン共重合体、ポリイソプレン、ブチルゴム、フッ素ゴム、天然ゴム等の低分子量液状〜高分子量のelasticなゴム類;ポリエチレン、ポリプロピレン、ポリブテン、ポリ-4-メチルペンテン、ポリスチレン、AS樹脂、ABS樹脂、MBS樹脂、スチレン-イソプレンゴム、アクリルゴム、これらのコアシェルゴム、ポリエチレン-プロピレン共重合体、4-フッ化エチレン-6-フッ化エチレン共重合体類;ポリカーボネート、ポリフェニレンエーテル、ポリスルホン、ポリエステル、ポリフェニレンサルファイド等の高分子量プレポリマー若しくはオリゴマー;ポリウレタン等が例示され、適宜使用される。また、その他、公知の有機、無機の充填剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光増感剤、難燃剤、光沢剤、重合禁止剤、チキソ性付与剤等の各種添加剤が、所望に応じて適宜組み合わせて用いられる。必要により、反応基を有する化合物は硬化剤、触媒が適宜配合される。特に炭酸ガスレーザーで孔あけする場合、孔形状を良好にするためは無機の充填剤が好適に添加される。例えば、シリカ、球状シリカ、アルミナ、タルク、焼成タルク、ウォラストナイト、合成雲母、酸化チタン、水酸化アルミニウム等の一般に公知のものが使用される。更に、これらの針状のもの等、公知の形状のものも使用できる。   In the resin composition used for the second resin composition layer, various additives can be blended as desired within a range that does not impair the original characteristics of the composition. These additives include unsaturated double bond-containing monomers such as unsaturated polyesters and prepolymers thereof; polybutadiene, maleated butadiene, butadiene-acrylonitrile copolymer, polychloroprene, butadiene-styrene copolymer, poly Low molecular weight liquid to high molecular weight elastic rubber such as isoprene, butyl rubber, fluoro rubber, natural rubber; polyethylene, polypropylene, polybutene, poly-4-methylpentene, polystyrene, AS resin, ABS resin, MBS resin, styrene-isoprene Rubber, acrylic rubber, these core-shell rubbers, polyethylene-propylene copolymers, 4-fluoroethylene-6-fluoroethylene copolymers; high molecular weight prepolymers such as polycarbonate, polyphenylene ether, polysulfone, polyester, polyphenylene sulfide Properly oligomer; are exemplified polyurethane, etc., it is suitably used. In addition, other known organic and inorganic fillers, dyes, pigments, thickeners, lubricants, antifoaming agents, dispersants, leveling agents, photosensitizers, flame retardants, brighteners, polymerization inhibitors, thixotropic properties Various additives such as an imparting agent are used in appropriate combination as desired. If necessary, the compound having a reactive group is appropriately mixed with a curing agent and a catalyst. In particular, when drilling with a carbon dioxide laser, an inorganic filler is suitably added to improve the hole shape. For example, generally known materials such as silica, spherical silica, alumina, talc, calcined talc, wollastonite, synthetic mica, titanium oxide, and aluminum hydroxide are used. Furthermore, those having a known shape such as these needle-like ones can also be used.

銅箔或いは離型フィルム付きBステージ樹脂組成物シートに使用する第2樹脂組成物層には、全体のプリント配線板の剛性率を向上させることから、基材を使用することが好適である。使用される基材としては、プリント配線板に使用される公知の基材であれば、特に限定されない。具体的には、E、NE、D、S、Tガラス等の一般に公知のガラス繊維の不織布、織布;、ポリオキサゾール、全芳香族ポリアミド、液晶ポリエステル等の一般に公知の有機繊維不織布、織布;これらの混抄布;ポリイミドフィルム、全芳香族ポリアミドフィルム、ポリオキサゾールフィルム、液晶ポリエステルフィルム等が挙げられる。これらの基材は、樹脂との密着性を向上させるため、公知の表面処理等を施すことが好ましい。   In order to improve the rigidity of the entire printed wiring board, it is preferable to use a base material for the second resin composition layer used for the copper foil or the B-stage resin composition sheet with a release film. As a base material to be used, if it is a well-known base material used for a printed wiring board, it will not specifically limit. Specifically, generally known non-woven fabrics and woven fabrics of glass fibers such as E, NE, D, S, and T glass; generally known non-woven fabrics and woven fabrics of organic fibers such as polyoxazole, wholly aromatic polyamide, and liquid crystalline polyester These mixed papers; polyimide films, wholly aromatic polyamide films, polyoxazole films, liquid crystal polyester films, and the like. These base materials are preferably subjected to a known surface treatment or the like in order to improve adhesion with the resin.

銅箔或いは離型フィルム付きBステージ樹脂組成物シートの第1樹脂組成物層に第2樹脂組成物層を形成する方法は特に限定はなく、前記第1樹脂組成物層の形成方法や、基材を使用する場合、第2樹脂組成物ワニスを基材に塗布、乾燥させてBステージ化するか、或いは前記第1樹脂組成物層の形成方法等で形成した第2樹脂組成物シートを、基材の両面に配置して加熱圧着等で一体化してプリプレグを作製し、ラミネート等で第1樹脂組成物層の上に圧着させる方法等、公知の方法が用いられる。第2樹脂組成物層の厚さは特に限定されないが、好適には 4〜100μmであり、用途によって適宜選択する。例えば、フリップチップ搭載用プリント配線板用途に使用する場合、好適には厚さ 10〜80μmとし、積層する基板の導体回路の厚さ、銅残率等によって、導体回路を形成した基板の導体回路上の熱硬化性樹脂組成物(a)層が被覆される厚み、好適には導体回路上1〜70μmとなるようにする。第2樹脂組成物の硬化度は、第1樹脂組成物層上に形成させた時点でBステージとする。以上により、本発明の銅箔或いは離型フィルム付きBステージ樹脂組成物シートが得られ、一般のビルドアップ積層用のBステージ樹脂組成物シートとしても使用できる。   The method for forming the second resin composition layer on the first resin composition layer of the copper foil or the B-stage resin composition sheet with a release film is not particularly limited. When using a material, the second resin composition varnish is applied to a substrate and dried to form a B-stage, or the second resin composition sheet formed by the method for forming the first resin composition layer, etc., A known method is used, such as a method of arranging on both surfaces of the substrate and integrating them by thermocompression bonding or the like to produce a prepreg and then press-bonding it onto the first resin composition layer by lamination or the like. The thickness of the second resin composition layer is not particularly limited, but is preferably 4 to 100 μm, and is appropriately selected depending on the application. For example, when used for a printed circuit board for flip chip mounting, the thickness is preferably 10 to 80 μm, and the conductive circuit of the substrate on which the conductive circuit is formed by the thickness of the conductive circuit of the laminated substrate, the copper residual ratio, etc. The thickness of the upper thermosetting resin composition (a) layer to be coated, preferably 1 to 70 μm on the conductor circuit. The degree of cure of the second resin composition is B stage when it is formed on the first resin composition layer. As described above, the B-stage resin composition sheet with the copper foil or release film of the present invention is obtained, and can be used as a B-stage resin composition sheet for general build-up lamination.

次に、本発明の銅箔或いは離型フィルム付きBステージ樹脂組成物シートを使用するフリップチップ搭載用プリント配線板の製造方法は、下記の製造工程によるものである。(1)上記Bステージ樹脂組成物シートの第2樹脂組成物層面を、導体回路を形成した基板の少なくとも半導体チップ搭載面に対向させて配置し、加熱して硬化させて半導体チップ搭載用基板とし、(2)半導体チップ搭載用基板の半導体チップ搭載部にブラインドビア孔及び/又は貫通孔を形成させた後、必要によりデスミア処理を行った後、銅メッキして孔内部を銅メッキで充填させ、(3)表層銅箔及び/又は銅メッキ部分を、第1樹脂組成物層面まで、厚さ方向に平面的にエッチングした後、(4)第1樹脂組成物層を、銅メッキを溶解しない薬液で、第2樹脂組成物層面まで溶解除去させ、銅メッキ充填部の先端部分を第2樹脂組成物層面より突出させることを特徴とするフリップチップ搭載用プリント配線板の製造方法であり、好ましくは、(2)の工程後に、銅メッキ表面を研磨して表面を平滑にする。これにより、銅メッキ充填部孔の表面は同じ高さで、且つ平滑となり、バンブ形成時の不良が更に改善され、(4)の工程後に、(5)露出した銅メッキ充填部分の先端部分を、例えばニッケルメッキと金メッキ、ハンダメッキ等の保護用金属で被覆し、被覆された銅メッキ充填部の先端部分に、バンプ用金属を付着させる製造方法であり以上の工程でプリント配線板を製造することにより、プリント配線板に半導体チップ搭載用バンプが形成されたフリップチップ搭載用プリント配線板が得られる。   Next, the manufacturing method of the printed wiring board for flip chip mounting which uses the B stage resin composition sheet | seat with a copper foil or a release film of this invention is based on the following manufacturing process. (1) The second resin composition layer surface of the B-stage resin composition sheet is disposed to face at least the semiconductor chip mounting surface of the substrate on which the conductor circuit is formed, and is heated and cured to obtain a semiconductor chip mounting substrate. (2) After forming blind via holes and / or through holes in the semiconductor chip mounting portion of the semiconductor chip mounting substrate, desmearing is performed if necessary, and then copper plating is performed to fill the hole with copper plating. (3) After the surface layer copper foil and / or the copper plating part is etched in the thickness direction up to the first resin composition layer surface, (4) the first resin composition layer is not dissolved in the copper plating. A method for producing a printed circuit board for mounting on a flip chip, characterized in that it is dissolved and removed to the surface of the second resin composition layer with a chemical solution, and the tip portion of the copper plating filling portion protrudes from the surface of the second resin composition layer. Details, (2) after the process, to smooth the surface by polishing the copper plated surface. Thereby, the surface of the copper plating filling part hole becomes the same height and smooth, and the defect at the time of bump formation is further improved. After the step (4), (5) the exposed tip part of the copper plating filling part is removed. This is a manufacturing method in which a bump metal is attached to the tip of a copper plating filling portion coated with a protective metal such as nickel plating, gold plating, or solder plating, and a printed wiring board is manufactured by the above process. Thus, a flip-chip mounting printed wiring board in which semiconductor chip mounting bumps are formed on the printed wiring board is obtained.

本発明で使用される導体回路を形成する基板は、特に限定されず、プリント配線板材料用の公知の金属箔張板、好適には銅張板が使用できる。具体的には、熱硬化性樹脂組成物及び/又は熱可塑性樹脂組成物などを使用した、無機繊維及び/又は有機繊維基材銅張積層板、耐熱性フィルム基材銅張板、更にはこれらの基材の組み合わせた複合基材銅張積層板及びこれらの多層銅張板、アディティブ法等で作製した多層銅張板等、公知のものが使用できる。金属箔張板に導体回路を形成した基板の導体厚さは特に限定されないが、好適には 3〜35μmである。この導体回路上は、銅箔或いは離型フィルム付きBステージ樹脂組成物シートの樹脂との接着性を高める公知の処理、例えば黒色酸化銅処理、薬液処理(例えばメック社のCZ処理)等を施すのが好ましい。   The board | substrate which forms the conductor circuit used by this invention is not specifically limited, The well-known metal foil tension board for printed wiring board materials, Preferably a copper tension board can be used. Specifically, inorganic fiber and / or organic fiber-based copper-clad laminates, heat-resistant film-based copper-clad plates using thermosetting resin compositions and / or thermoplastic resin compositions, and further these Known materials such as composite base material copper clad laminates obtained by combining these base materials, multilayer copper clad plates, multilayer copper clad plates prepared by the additive method, and the like can be used. The conductor thickness of the substrate in which the conductor circuit is formed on the metal foil-clad plate is not particularly limited, but is preferably 3 to 35 μm. On this conductor circuit, a known treatment for improving the adhesion of the copper foil or the B-stage resin composition sheet with a release film to the resin, for example, black copper oxide treatment, chemical treatment (for example, CZ treatment by Meck Co.) is performed. Is preferred.

フリップチップ搭載用プリント配線板の製造方法の(1)の工程は、この導体回路を形成した基板の少なくとも半導体チップ搭載面に、銅箔或いは離型フィルム付きBステージ樹脂組成物シートの第2樹脂組成物層面対向させて配置し、加熱して硬化させて半導体チップ搭載用基板とする。積層条件は特に限定されないが、好ましくは、温度 100〜250℃、圧力 5〜40kgf/cm、真空度 30mmHg以下で 30分〜5時間積層成形する。積層は、最初から最後までこの条件でも良いが、ゲル化までは積層成形し、その後、取り出して加熱炉で後硬化することも可能である。もちろん、半硬化しておいて、表層銅メッキ部分及び金属箔を第1樹脂組成物層面の位置までエッチング除去した後に、更に第1樹脂組成物層を溶解する薬液で第2樹脂組成物表面まで溶解して銅メッキ充填部の先端を突出させ、後硬化することも可能である。これは樹脂の薬液への耐性により、適宜選択することができる。この半導体チップ搭載用の突起は、半導体チップを裏面に搭載する場合は、同様に裏面にも形成できる。フリップチップ搭載面の裏面のハンダボールを接着する側のBステージ樹脂組成物シートは、上記銅箔或いは離型フィルム付きBステージ樹脂組成物シートを使用して積層しても、第2樹脂組成物樹脂層のみ付着した銅箔或いは離型フィルム付きBステージ樹脂組成物シートを使用しても良いが、信頼性等の点からは、好適には第2樹脂組成物樹脂層のみ付着した銅箔或いは離型フィルム付きBステージ樹脂組成物シートを使用する。 The step (1) of the method for producing a printed circuit board for flip chip mounting includes the second resin of the B stage resin composition sheet with copper foil or release film on at least the semiconductor chip mounting surface of the substrate on which the conductor circuit is formed. It arrange | positions so that a composition layer surface may be opposed, it heats and hardens | cures, and it is set as the substrate for semiconductor chip mounting. Lamination conditions are not particularly limited. Preferably, lamination molding is performed at a temperature of 100 to 250 ° C., a pressure of 5 to 40 kgf / cm 2 , and a degree of vacuum of 30 mmHg or less for 30 minutes to 5 hours. Lamination may be performed under these conditions from the beginning to the end, but it is also possible to laminate and form until gelation, and then take out and post-cure in a heating furnace. Of course, after semi-curing, the surface copper plating portion and the metal foil are removed by etching to the position of the first resin composition layer surface, and further to the surface of the second resin composition with a chemical solution that dissolves the first resin composition layer. It is also possible to melt and cause the tip of the copper plating filling portion to protrude and to be post-cured. This can be appropriately selected depending on the resistance of the resin to the chemical solution. The semiconductor chip mounting protrusion can be formed on the back surface in the same manner when the semiconductor chip is mounted on the back surface. Even if the B stage resin composition sheet on the side to which the solder ball on the back surface of the flip chip mounting surface is bonded is laminated using the copper foil or the B stage resin composition sheet with a release film, the second resin composition A copper foil attached only to the resin layer or a B-stage resin composition sheet with a release film may be used. However, from the viewpoint of reliability and the like, preferably the copper foil attached only to the second resin composition resin layer or A B-stage resin composition sheet with a release film is used.

フリップチップ搭載用プリント配線板の製造方法の(2)の工程は、半導体チップ搭載用基板に公知の方法でブラインドビア孔及び/又は貫通孔を形成する。基板に孔を形成する方法は特に限定はなく、公知の方法が使用できる。例えば、孔径 20〜100μmであればUV-YAGレーザー、UV-Vanadateレーザー等の公知のUVレーザー、孔径 60〜150μmであれば炭酸ガスレーザーを使用する。又、ブラインドビア孔においてはプラズマ等の公知の方法でも加工可能である。貫通孔は金属ドリルでも形成できる。UV-YAGレーザー、UV-Vanadateレーザーを使用した場合は、直接レーザーを照射してブラインドビア孔及び/又は貫通孔を形成できる。炭酸ガスレーザーで孔あけする場合、予め銅箔にエッチングで所定の大きさの孔をあけておいてこの孔部の樹脂を加工してブラインドビア孔を形成する方法(コンフォーマルマスク法)、銅箔を薬液で処理して凹凸を付け、この上に直接炭酸ガスレーザーを照射してブラインドビア孔、貫通孔あけする方法、銅箔表面に黒色酸化銅処理を施してからブラインドビア孔、貫通孔あけする方法、銅箔の表面に孔あけ補助材料を配置してブラインドビア孔、貫通孔あけする方法等、一般に公知の方法でブラインドビア孔を形成する。離型フィルムを使用した場合は、そのまま炭酸ガスレーザー、UVレーザーで孔が形成できる。樹脂や基材加工屑が飛散して離型フィルム上に付着するため、離型フィルムは加工後に剥離するのが好ましい。   In the step (2) of the method of manufacturing the printed circuit board for flip chip mounting, blind via holes and / or through holes are formed in the semiconductor chip mounting substrate by a known method. The method for forming the holes in the substrate is not particularly limited, and known methods can be used. For example, a known UV laser such as a UV-YAG laser or a UV-Vanadate laser is used if the pore diameter is 20 to 100 μm, and a carbon dioxide gas laser is used if the pore diameter is 60 to 150 μm. The blind via hole can be processed by a known method such as plasma. The through hole can also be formed by a metal drill. When a UV-YAG laser or UV-Vanadate laser is used, blind via holes and / or through holes can be formed by direct laser irradiation. When drilling with a carbon dioxide laser, a method for forming a blind via hole by forming a hole of a predetermined size in a copper foil in advance and processing the resin in this hole (conformal mask method), copper The foil is treated with a chemical solution to make irregularities, and a carbon dioxide laser is directly irradiated on the foil to blind via holes and through holes, and the copper foil surface is treated with black copper oxide before blind via holes and through holes. Blind via holes are formed by a generally known method such as a method of drilling, a method of arranging a drilling auxiliary material on the surface of the copper foil, and a method of drilling blind via holes or through holes. When a release film is used, holes can be formed with a carbon dioxide laser or UV laser. It is preferable that the release film is peeled off after the processing because the resin and substrate processing scraps are scattered and adhere on the release film.

その後、孔あけした半導体チップ搭載用基板を銅メッキして、基板全体を銅メッキするとともに、孔内部を銅メッキで充填する。銅メッキは、無電解銅メッキ、電解銅メッキでブラインドビア孔を充填する公知の方法で行う。銅メッキ終了後に銅メッキの表面は、研磨して平滑するのが好ましい。炭酸ガスレーザーでブラインドビア孔及び/又は貫通孔を形成した場合、孔部の銅箔上に僅かに樹脂層が残存するために、デスミア処理等の処理を行って樹脂残を除去する。この場合、孔部には銅箔バリが発生するが、これはエッチング除去しても、そのまま使用しても良い。その後に全体を銅メッキするとともに、ブラインドビア孔及び/又は貫通孔内を銅メッキで充填する。   Thereafter, the holed semiconductor chip mounting substrate is plated with copper, the entire substrate is plated with copper, and the inside of the hole is filled with copper. Copper plating is performed by a known method of filling blind via holes by electroless copper plating or electrolytic copper plating. The surface of the copper plating is preferably polished and smoothed after the copper plating is completed. When blind via holes and / or through-holes are formed with a carbon dioxide laser, a resin layer slightly remains on the copper foil in the hole, so that a resin residue is removed by performing a treatment such as a desmear process. In this case, copper foil burrs are generated in the holes, which may be removed by etching or used as they are. Thereafter, the whole is plated with copper, and the blind via hole and / or the through hole is filled with copper plating.

フリップチップ搭載用プリント配線板の製造方法の(3)の工程は、表層銅メッキ部分、及び銅箔を、第1樹脂組成物層面の位置まで、厚さ方向に平面的にエッチングする。エッチングの方法は、プリント配線板の製造工程で使用される公知の銅メッキ部分、及び銅箔のエッチング方法による。   In the step (3) of the method of manufacturing the printed circuit board for flip-chip mounting, the surface copper plating portion and the copper foil are etched in a plane in the thickness direction up to the position of the first resin composition layer surface. The etching method is based on a known copper plating part used in the manufacturing process of the printed wiring board and a copper foil etching method.

フリップチップ搭載用プリント配線板の製造方法の(4)の工程は、銅メッキが溶解しにくい薬液を使用して、第1樹脂組成物層を溶解し、第2樹脂組成物層表面を露出させる。使用する薬液は、熱可塑性樹脂が溶解する有機溶剤等を使用する。具体的には、第2樹脂組成物の種類にもよるが、一般にはメチルエチルケトン等のケトン類:ジメチルホルムアミド等の極性溶剤;トルエン、キシレン等の芳香族炭化水素類等の1種或いは2種以上が使用され、第1樹脂組成物と第2樹脂組成物の耐薬品性により適宜選択して使用する。第1樹脂組成物層は薬液で溶解し易い樹脂組成物であり、銅メッキ部は薬液に対し殆ど溶解しないことから、銅メッキ充填部の先端部分が、第2樹脂組成物層面より 1〜10μm 突出した形状となり、第2樹脂組成物表面が平滑なプリント配線板が得られる。これら一連の工程により、プリント配線板側に半導体チップ搭載接続用のバンプが形成された構造を有するフリップチップ搭載用プリント配線板が作製される。   In the step (4) of the method of manufacturing the printed circuit board for flip chip mounting, the first resin composition layer is dissolved by using a chemical solution in which the copper plating is difficult to dissolve, and the surface of the second resin composition layer is exposed. . As the chemical solution to be used, an organic solvent or the like in which the thermoplastic resin is dissolved is used. Specifically, although depending on the type of the second resin composition, generally one or two or more ketones such as methyl ethyl ketone; polar solvents such as dimethylformamide; aromatic hydrocarbons such as toluene and xylene; Is used as appropriate depending on the chemical resistance of the first resin composition and the second resin composition. The first resin composition layer is a resin composition that is easy to dissolve in the chemical solution, and the copper plating portion hardly dissolves in the chemical solution, so that the tip portion of the copper plating filling portion is 1 to 10 μm from the second resin composition layer surface. A printed wiring board having a protruding shape and a smooth second resin composition surface is obtained. Through these series of steps, a flip chip mounting printed wiring board having a structure in which a bump for connecting a semiconductor chip is formed on the printed wiring board side is manufactured.

次に、プリント配線板の表裏面に露出した回路を保護用金属、例えば、ニッケルメッキ及び金メッキ、ハンダメッキ等で被覆する。もちろん保護用金属で被覆しないですぐに銅メッキ充填部の先端部上に公知のバンプ用金属、例えばハンダ、ハンダペースト等を付着させ、必要により加熱して銅メッキ充填部の頭頂部上に半導体チップ接続用バンプ金属を接着させることは可能であるが、裏面のハンダボール接着までには時間がかかり、回路表面が酸化される、錆が発生する等のために、公知の保護用金属で被覆する。その後、銅メッキ充填部の凸形状頭頂部上にバンプ用金属を接着させ、このバンプ用金属面と半導体チップのバンプ接続面を合わせて加熱することにより搭載接続し、フリップチップ搭載プリント配線板とする。この半導体チップとプリント配線板の表層との隙間には、アンダーフィル樹脂で充填することが好適である。プリント配線板表面の第2樹脂組成物層面は平滑なため、アンダーフィル樹脂は確実に充填される。又、導体回路を被覆するのにUV選択熱硬化型レジストを使用しないため、耐熱性、信頼性等に優れたフリップチップ搭載プリント配線板が得られる。   Next, the circuit exposed on the front and back surfaces of the printed wiring board is covered with a protective metal such as nickel plating, gold plating, or solder plating. Of course, without covering with a protective metal, immediately attach a known bump metal such as solder, solder paste, etc. on the tip of the copper plating filling part, and if necessary, heat the semiconductor on the top of the copper plating filling part. It is possible to bond the bump metal for chip connection, but it takes time to bond the solder ball on the back surface, and the circuit surface is oxidized and rust is generated. To do. Thereafter, a bump metal is bonded onto the convex top of the copper-plated filling portion, and the bump metal surface and the bump connection surface of the semiconductor chip are mounted and connected, and the flip chip mounted printed wiring board and To do. The gap between the semiconductor chip and the surface layer of the printed wiring board is preferably filled with an underfill resin. Since the second resin composition layer surface on the surface of the printed wiring board is smooth, the underfill resin is surely filled. Further, since a UV selective thermosetting resist is not used to coat the conductor circuit, a flip-chip mounted printed wiring board having excellent heat resistance and reliability can be obtained.

以下に実施例、比較例で本発明を具体的に説明する。尚、『部』は重量部を表す。
合成例1
5リットルのフラスコにp-フェニレンジアミン 108g(1モル)に、N-メチル-2−ピロリドン(以下NMP)2100gを加え攪拌溶解した後。3, 3’,4, 4’-ビフェニルテトラカルボン酸二無水物 294g(1モル)を 30℃以下に冷却しながら徐々に加え、その後2時間反応させ、ポリアミド酸のNMP溶液Aを得た。
The present invention will be specifically described below with reference to examples and comparative examples. “Parts” represents parts by weight.
Synthesis example 1
After adding 2100 g of N-methyl-2-pyrrolidone (hereinafter referred to as NMP) to 108 g (1 mol) of p-phenylenediamine in a 5 liter flask and dissolving with stirring. 294 g (1 mol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride was gradually added while cooling to 30 ° C. or lower, and then reacted for 2 hours to obtain an NMP solution A of polyamic acid.

実施例1
2,2-ビス(4-シアナトフェニル)プロパンモノマー 400部を 150℃に溶融させ、撹拌しながら4時間反応させ、モノマーとプレポリマーの混合物を得、これをメチルエチルケトンに溶解し、ワニスBとした。これにビスフェノールA型エポキシ樹脂(エピコート828、ジャパンエポキシレジン<株>製) 350部、ビフェニル型エポキシ樹脂(NC3000、日本化薬<株>製) 50部、フェノールノボラック型エポキシ樹脂(DEN431、ダウ・ケミカル<株>製) 100部を配合し、アセチルアセトン鉄 0.3部、緑色顔料 5部をメチルエチルケトンに溶解混合し、更に焼成タルク(BST200、日本タルク<株>製) 500部加え、均一に攪拌混合してワニスCとした。又、ポリカーボネートをメチルエチルケトンとN,N’-ジメチルホルムアミド混合溶剤に溶解した溶液を厚さ25μmのPETフィルム(表面凹凸Max.2.2μm)の片面に塗布、乾燥して、厚さ 9μmの熱可塑性樹脂組成物層を形成した離型フィルム付き第1樹脂組成物シートDを作製した。次に上記ワニスCを、厚さ 30μmの液晶ポリエステル不織布基材に含浸、乾燥して、厚さ 40μmでゲル化時間(at170℃、以下同じ) 112秒のBステージ熱硬化性樹脂組成物シートを作製し、この両面に厚さ 25μmの離型PETフィルムを 90℃、4kgf/cmの線圧でラミネートして接着させ、第2樹脂組成物シートEとした。このシートEの片面のPETフィルムを剥離し、この面と離型フィルム付き第1樹脂組成物シートDの樹脂面を対向させて配置し、90℃、5kgf/cmの線圧でラミネートして接着させ、第1、2樹脂組成物層の形成された離型フィルム付きBステージ樹脂組成物シートFを作製した。一方、厚さ 0.2mmのBTレジン銅張積層板(CCL-HL832、三菱ガス化学<株>)の表層銅箔(12μm)をエッチングして 3μmとした後に、金属ドリルで孔径 75μmの貫通孔を全体に形成し、デスミア処理後に銅メッキを全体に付着させるとともに貫通孔内を銅メッキで充填した。銅張積層板の表裏を研磨して平滑にした後、回路を形成し、表層回路に黒色酸化銅処理を施して回路基板Gとした。この回路基板Gの半導体チップ搭載面側に、離型フィルム付きBステージ樹脂組成物シートFを置き、裏面のハンダボールを接続する面には、第2樹脂組成物シートEの片面のPETフィルムを剥離して配置し、180℃、20kgf/cm2、10mmHgの真空下で3時間積層成形して半導体チップ搭載用基板Hを作製した。この基板Hに炭酸ガスレーザーを片面ずつ照射して、半導体チップ搭載部の表面に孔径 80μmの半導体チップバンプ形成用ブラインドビア孔だけをあけた。反対の裏面は同様に孔径 150μmのブラインドビア孔をあけた。PETフィルムを剥離後にデスミア溶液でブラインドビア孔部に残存する樹脂残を除去し、その後ブラインドビア孔内部を銅メッキで充填するとともに基板全体に銅メッキを施した。その後、表層の銅メッキ部分を厚さ方向にエッチングして、表面の第1樹脂組成物層、裏面の第2樹脂組成物層を露出させた後、メチルエチルケトンとN,N’-ジメチルホルムアミド混合溶剤で表面の第1樹脂組成物層を溶解除去して表面の銅メッキ充填部の先端部分を突出させ、その後、ニッケルメッキ、金メッキを施し、フリップチップ搭載用プリント配線板を作製した。その後、銅メッキ充填部の貴金属メッキされた先端部分にバンプ用ハンダを付着させて、この上にバンプ接続用の回路を裏面に形成した半導体チップを置き、加熱して半導体チップを搭載接着した。次いで半導体チップと表層の熱硬化性樹脂組成物層の間にアンダーフィル樹脂を充填し、硬化させ、裏面にはハンダボールを接合し、フリップチップ搭載プリント配線板とした。評価結果を表1に示す。
Example 1
400 parts of 2,2-bis (4-cyanatophenyl) propane monomer was melted at 150 ° C. and reacted for 4 hours with stirring to obtain a mixture of monomer and prepolymer, which was dissolved in methyl ethyl ketone, and varnish B and did. Bisphenol A type epoxy resin (Epicoat 828, manufactured by Japan Epoxy Resin Co., Ltd.) 350 parts, biphenyl type epoxy resin (NC3000, manufactured by Nippon Kayaku Co., Ltd.) 50 parts, phenol novolac type epoxy resin (DEN431, Dow (Chemical Co., Ltd.) 100 parts, 100 parts of acetylacetone iron, 5 parts of green pigment are dissolved and mixed in methyl ethyl ketone, and 500 parts of baked talc (BST200, Nihon Talc Co., Ltd.) is added and mixed evenly. Varnish C. Also, a solution in which polycarbonate is dissolved in a mixed solvent of methyl ethyl ketone and N, N'-dimethylformamide is applied to one side of a 25 μm thick PET film (surface irregularity Max.2.2 μm), dried, and a 9 μm thick thermoplastic resin The 1st resin composition sheet | seat D with a release film which formed the composition layer was produced. Next, the above-mentioned varnish C was impregnated into a 30 μm-thick liquid crystal polyester nonwoven fabric substrate, dried, and a B-stage thermosetting resin composition sheet having a gelation time of 40 μm (at 170 ° C., hereinafter the same) 112 seconds was obtained. Then, a release PET film having a thickness of 25 μm was laminated on both sides by bonding at 90 ° C. with a linear pressure of 4 kgf / cm to obtain a second resin composition sheet E. The PET film on one side of this sheet E is peeled off, this surface is placed facing the resin surface of the first resin composition sheet D with a release film, and laminated and bonded at 90 ° C. with a linear pressure of 5 kgf / cm. A B-stage resin composition sheet F with a release film having the first and second resin composition layers formed thereon was produced. On the other hand, after etching the surface copper foil (12μm) of BT resin copper clad laminate (CCL-HL832, Mitsubishi Gas Chemical Co., Ltd.) with a thickness of 0.2mm to 3μm, a through hole with a hole diameter of 75μm was formed with a metal drill. It formed in the whole, the copper plating was made to adhere to the whole after a desmear process, and the inside of a through-hole was filled with copper plating. After polishing and smoothing the front and back of the copper clad laminate, a circuit was formed, and the surface layer circuit was subjected to black copper oxide treatment to obtain a circuit board G. A B-stage resin composition sheet F with a release film is placed on the semiconductor chip mounting surface side of the circuit board G, and a PET film on one side of the second resin composition sheet E is attached to the surface to which the solder balls on the back surface are connected. The substrate H for semiconductor chip mounting was manufactured by laminating and arranging for 3 hours under vacuum of 180 ° C., 20 kgf / cm 2 , and 10 mmHg. The substrate H was irradiated with a carbon dioxide laser one side at a time, and only a blind via hole for forming a semiconductor chip bump having a hole diameter of 80 μm was formed on the surface of the semiconductor chip mounting portion. On the opposite back side, a blind via hole having a hole diameter of 150 μm was similarly formed. After the PET film was peeled, the resin residue remaining in the blind via hole was removed with a desmear solution, and then the inside of the blind via hole was filled with copper plating and the entire substrate was plated with copper. Thereafter, the copper plating portion of the surface layer is etched in the thickness direction to expose the first resin composition layer on the front surface and the second resin composition layer on the back surface, and then a mixed solvent of methyl ethyl ketone and N, N′-dimethylformamide The first resin composition layer on the surface was dissolved and removed to protrude the tip of the copper plating filling portion on the surface, and then nickel plating and gold plating were applied to produce a printed wiring board for flip chip mounting. Thereafter, bump solder was attached to the noble metal-plated tip portion of the copper plating filling portion, and a semiconductor chip on which a circuit for connecting bumps was formed on the back surface was placed thereon, and the semiconductor chip was mounted and bonded by heating. Next, an underfill resin was filled between the semiconductor chip and the surface thermosetting resin composition layer and cured, and solder balls were bonded to the back surface to obtain a flip-chip mounted printed wiring board. The evaluation results are shown in Table 1.

実施例2
2,2-ビス(4-シアナトフェニル)プロパンモノマー 450部を、ビス(4-マレイミドフェニル)メタンモノマー 50部を 150℃で溶融させ、撹拌しながら 5時間反応させてモノマーとプレポリマーの混合物とした後、メチルエチルケトンとN,N’-ジメチルホルムアミドに溶解混合し、ワニスIとした。これにビスフェノールA型エポキシ樹脂(エピコート828) 300部、フェノールノボラック型エポキシ樹脂(DEN431) 100部、ナフタレン型エポキシ樹脂(ESN-175S、新日鐵化学<株>製) 100部、オクチル酸亜鉛 0.3部、緑色顔料 5部をメチルエチルケトンに溶解混合し、ワニスJとした。又、ポリフェニレンエーテル樹脂をトルエンに溶解した溶液を、表面をニッケル処理した厚さ 20μmの圧延銅箔(表面凹凸Max.0.9μm)の片面に塗布、乾燥して、厚さ 7μmの熱可塑性樹脂組成物層を形成した銅箔付き第1樹脂組成物シートKを作製した。次に、上記ワニスJを、厚さ 30μmのガラス織布に含浸、乾燥して、厚さ 40μmでゲル化時間 123秒の樹脂組成物シートを作製し、この表裏を厚さ 25μmの PETフィルムで覆い、70℃、5kgfの線圧でラミネート接着し、第2樹脂組成物シートLとした。このシートLの片面のPETフィルムを剥離し、これを銅箔付き第1樹脂組成物シートKの樹脂面に配置して、90℃、5kgfの線圧でラミネート接着し、第1、2樹脂組成物層の形成された銅箔付きBステージ樹脂組成物シートMを作製した。一方、厚さ 0.2mm、両面 3μm銅箔のBTレジン銅張積層板(CCL-HL830、三菱ガス化学<株>製)に金属ドリルで孔径 75μmの貫通孔を半導体チップ搭載部の外側にあけ、デスミア処理後に全体を銅メッキするとともに貫通孔内を銅メッキで充填し、表面を研磨して平滑にした後、回路を形成し、表層回路にメック社のCZ処理を施して回路基板Nとした。この回路基板Nの半導体チップ搭載面側に、上記銅箔付きBステージ樹脂組成物シートMを置き、裏面はBステージ樹脂組成物シートLの両面の離型フィルムを剥離して配置し、その外側に表面をニッケル処理した厚さ 20μmの圧延銅箔を置き、温度 190℃、20kgf/cm、10mmHg以下の真空下で2時間積層成形し、半導体チップ搭載用基板Oを得た。この基板Oの表面にレーザー孔あけエントリーシート(LSE30、三菱ガス化学<株>製)を配置し、裏面にはレーザー孔あけバックアップシート(LSB90、三菱ガス化学<株>製)を配置し、100℃、7kgf/cmの圧力でラミネート接着してから、半導体チップ搭載部の表面にUV-Vanadateレーザーを照射して孔径 40μmのブラインドビア孔及び貫通孔をあけ、表裏の孔あけ補助シートを剥離後に、裏面の銅箔上にUV-Vanadateレーザーを照射して、ハンダボール接続用孔を同様にブラインドビア孔の孔径 150μmで形成した。デスミア処理後に基板全体を銅メッキするとともにブラインドビア孔及び貫通孔内を銅メッキで充填してから、表層銅メッキ部を研磨して平滑にした後、表層の銅メッキ部分及び銅箔をエッチングして除去し、表面の第1樹脂組成物層、裏面の第2樹脂組成物層を露出させ、表面の第1樹脂組成物層をトルエンで溶解除去して、表面の銅メッキ充填部の先端部分を突出させ、ニッケルメッキ、金メッキを施しフリップチップ搭載用プリント配線板を作製した。その後、実施例1と同様にして、半導体チップを搭載接着し、アンダーフィル樹脂を充填し、硬化させ、ハンダボールを接合してフリップチップ搭載プリント配線板とした。評価結果を表1に示す。
Example 2
Mixing 450 parts of 2,2-bis (4-cyanatophenyl) propane monomer and 50 parts of bis (4-maleimidophenyl) methane monomer at 150 ° C and reacting for 5 hours with stirring to mix monomer and prepolymer Then, it was dissolved and mixed in methyl ethyl ketone and N, N′-dimethylformamide to obtain Varnish I. 300 parts of bisphenol A type epoxy resin (Epicoat 828), 100 parts of phenol novolac type epoxy resin (DEN431), 100 parts of naphthalene type epoxy resin (ESN-175S, manufactured by Nippon Steel Chemical Co., Ltd.), zinc octylate 0.3 Parts and 5 parts of a green pigment were dissolved and mixed in methyl ethyl ketone to obtain varnish J. Also, a solution of polyphenylene ether resin dissolved in toluene was applied to one side of a rolled copper foil (surface irregularity Max.0.9 μm) with a thickness of 20 μm and dried, and a thermoplastic resin composition with a thickness of 7 μm was dried. The 1st resin composition sheet K with copper foil which formed the physical layer was produced. Next, the varnish J was impregnated into a glass fabric of 30 μm thickness and dried to prepare a resin composition sheet having a gelation time of 123 seconds with a thickness of 40 μm. Covering and laminating and bonding at a linear pressure of 70 ° C. and 5 kgf, a second resin composition sheet L was obtained. The PET film on one side of this sheet L is peeled off, placed on the resin surface of the first resin composition sheet K with copper foil, and laminated and bonded at 90 ° C. and a linear pressure of 5 kgf. A B-stage resin composition sheet M with a copper foil on which a physical layer was formed was produced. On the other hand, a BT resin copper clad laminate (CCL-HL830, manufactured by Mitsubishi Gas Chemical Co., Ltd.) with a thickness of 0.2mm and double-sided 3μm copper foil was drilled with a metal drill on the outside of the semiconductor chip mounting part. After the desmear treatment, the whole is plated with copper and the inside of the through hole is filled with copper plating, the surface is polished and smoothed, a circuit is formed, and the surface layer circuit is subjected to CZ treatment of MEC to obtain a circuit board N . The B-stage resin composition sheet M with the copper foil is placed on the semiconductor chip mounting surface side of the circuit board N, and the back surface is arranged by separating the release films on both sides of the B-stage resin composition sheet L, and the outside A 20 μm-thick rolled copper foil whose surface was nickel-treated was placed on the substrate, and was laminated and formed at a temperature of 190 ° C., 20 kgf / cm 2 , and a vacuum of 10 mmHg or less for 2 hours to obtain a substrate O for mounting a semiconductor chip. A laser drilling entry sheet (LSE30, manufactured by Mitsubishi Gas Chemical Co., Ltd.) is placed on the surface of the substrate O, and a laser drilling backup sheet (LSB90, manufactured by Mitsubishi Gas Chemical Co., Ltd.) is placed on the back surface. After laminating and bonding with a pressure of 7 kgf / cm at ℃, UV-Vanadate laser is irradiated on the surface of the semiconductor chip mounting part to open blind via holes and through holes with a hole diameter of 40 μm, and after peeling the front and back drilling auxiliary sheets Then, the copper foil on the back surface was irradiated with UV-Vanadate laser, and solder ball connection holes were similarly formed with a blind via hole diameter of 150 μm. After desmearing, the entire board is plated with copper, and the blind via hole and through hole are filled with copper plating. After the surface copper plating is polished and smoothed, the copper plating on the surface layer and the copper foil are etched. The first resin composition layer on the front surface and the second resin composition layer on the back surface are exposed, the first resin composition layer on the front surface is dissolved and removed with toluene, and the tip portion of the copper plating filling portion on the surface is removed. And a nickel-plated or gold-plated printed wiring board for flip chip mounting. Thereafter, in the same manner as in Example 1, a semiconductor chip was mounted and bonded, filled with an underfill resin, cured, and solder balls were joined to form a flip chip mounted printed wiring board. The evaluation results are shown in Table 1.

実施例3
ブロム化ビスフェノールA型エポキシ樹脂(エピコート5045、ジャパンエポキシレジン<株>製) 800部、フェノールノボラック型エポキシ樹脂(DEN431)200部、緑色顔料 5部、ジシアンジアミド 35部、2-エチル-4-メチルイミダゾール 1部をメチルエチルケトンとジメチルホルムアミド混合溶剤に溶解混合し、ワニスPとした。このワニスPを、厚さ 25μmのPETフィルムの片面に塗布、乾燥して、厚さ 25μmでゲル化時間 154秒の離型フィルム付きBステージ樹脂組成物シートQを作製した。又、合成例1のポリアミド酸NMP溶液Aを 60℃に加温して粘度を下げてから、これを厚さ 12μmの電解銅箔のマット面(表面粗度Rz:3.5μm)の上に塗布し、窒素気流中にて 140℃で 30分、200℃で 30分、更に 270℃で1時間反応させて、樹脂層厚さ 4μmの銅箔付き第1樹脂組成物シートRを得た。次に、この銅箔付き第1樹脂組成物シートRの樹脂面に、上記離型フィルム付きBステージ樹脂組成物シートQの樹脂面を対向させて配置し、90℃、5kgf/cmの線圧でラミネートして接着させ、第1、2樹脂組成物層の形成された銅箔付きBステージ樹脂組成物シートSを作製した。更に厚さ 12μmの電解銅箔のマット面に、離型フィルム付きBステージ樹脂組成物シートQの樹脂面を向けて配置し、同様にラミネート接着して銅箔付きBステージ樹脂組成物シートTを作製した。銅箔付きBステージ樹脂組成物シートSを、実施例2において、銅張積層板の厚さを 0.8mmとする以外は同様に加工した回路基板Uの表面に置き、裏面には銅箔付きBステージ樹脂組成物シートTを置き、160℃、20kgf/cm、10mmHgの真空下で 30分積層成形後にプレス装置から取り出し、加熱炉で 170℃にて5時間硬化させ、半導体チップ搭載用基板Vを得た。この基板Vを用いて実施例2と同様に孔あけ加工を行い、全体を銅メッキするとともに孔内を銅メッキで充填した後、表層を研磨して平滑にし、エッチングして銅メッキ及び銅箔を除去して及び裏面の第2樹脂組成物層を露出した後、水酸化ナトリウム水溶液で表層の第1樹脂組成物層を溶解除去し、後は実施例2と同様にしてフリップチップ搭載用プリント配線板を作製し、半導体チップを搭載接続し、アンダーフィル樹脂を充填して硬化させ、ハンダボールを接合してフリップチップ搭載プリント配線板とした。評価結果を表1に示す。
Example 3
Brominated bisphenol A type epoxy resin (Epicoat 5045, manufactured by Japan Epoxy Resins Co., Ltd.) 800 parts, phenol novolac type epoxy resin (DEN431) 200 parts, green pigment 5 parts, dicyandiamide 35 parts, 2-ethyl-4-methylimidazole One part was dissolved and mixed in a mixed solvent of methyl ethyl ketone and dimethylformamide to obtain varnish P. This varnish P was applied to one side of a PET film having a thickness of 25 μm and dried to prepare a B-stage resin composition sheet Q with a release film having a thickness of 25 μm and a gel time of 154 seconds. In addition, after heating the polyamic acid NMP solution A of Synthesis Example 1 to 60 ° C. to lower the viscosity, this was applied onto the matte surface (surface roughness Rz: 3.5 μm) of 12 μm thick electrolytic copper foil. Then, the reaction was carried out in a nitrogen stream at 140 ° C. for 30 minutes, 200 ° C. for 30 minutes, and further at 270 ° C. for 1 hour to obtain a first resin composition sheet R with a copper foil having a resin layer thickness of 4 μm. Next, the resin surface of the B-stage resin composition sheet Q with a release film is placed opposite to the resin surface of the first resin composition sheet R with copper foil, and the linear pressure at 90 ° C. and 5 kgf / cm. The B-stage resin composition sheet S with copper foil on which the first and second resin composition layers were formed was prepared by laminating and bonding. Further, the B-stage resin composition sheet Q with the release foil film is placed on the matte surface of the electrolytic copper foil having a thickness of 12 μm so that the resin surface of the B-stage resin composition sheet Q with the release film is laminated and bonded in the same manner. Produced. The B-stage resin composition sheet S with copper foil is placed on the surface of the circuit board U processed in the same manner as in Example 2, except that the thickness of the copper-clad laminate is 0.8 mm, and the back surface is provided with copper foil B. Place the stage resin composition sheet T, remove it from the press machine after lamination molding for 30 minutes under a vacuum of 160 ° C, 20kgf / cm 2 , 10mmHg, and cure it at 170 ° C for 5 hours in a heating furnace. Got. Using this substrate V, drilling was performed in the same manner as in Example 2, and the entire surface was plated with copper and the inside of the hole was filled with copper plating. Then, the surface layer was polished and smoothed, and etched to obtain copper plating and copper foil. And the second resin composition layer on the back surface was exposed, the first resin composition layer on the surface layer was dissolved and removed with an aqueous sodium hydroxide solution, and the flip chip mounting print was performed in the same manner as in Example 2. A wiring board was prepared, a semiconductor chip was mounted and connected, filled with an underfill resin and cured, and solder balls were joined to form a flip chip mounted printed wiring board. The evaluation results are shown in Table 1.

比較例1
実施例1において、離型フィルム付きBステージ樹脂組成物シートF及び第2樹脂組成物シートEの代わりに、UV選択熱硬化型レジストを使用し、回路基板表面に塗布し、露光、現像し、ニッケルメッキ、金メッキを施してプリント配線板とした。このプリント配線板に半導体チップを搭載し、同様に接着し、アンダーフィル樹脂を充填し、硬化させ、ハンダボールを接合し、フリップチップ搭載プリント配線板とした。評価結果を表1に示す。
Comparative Example 1
In Example 1, instead of the B-stage resin composition sheet F with the release film and the second resin composition sheet E, a UV selective thermosetting resist was used, applied to the surface of the circuit board, exposed, developed, Nickel plating and gold plating were applied to obtain a printed wiring board. A semiconductor chip was mounted on this printed wiring board, adhered in the same manner, filled with underfill resin, cured, and solder balls were bonded to form a flip chip mounted printed wiring board. The evaluation results are shown in Table 1.

比較例2
実施例2において、銅箔付きBステージ樹脂組成物シートM、第2樹脂組成物シートLの代わりに、パターンメッキレジストを使用し、回路基板の上に回路上から厚さ 14μmとなるように塗布し、回路の上に孔径 40μmの孔を現像してあけ、この孔を銅メッキでメッキレジストと同じ高さになるように充填し、フリップチップ搭載用プリント配線板を作製した。その後、突起上にハンダを接着し、実施例2と同様にして、半導体チップを搭載接続してからアンダーフィル樹脂を流し込んで硬化し、ハンダボールを接合し、フリップチップ搭載プリント配線板とした。評価結果表1に示す。
Comparative Example 2
In Example 2, instead of the B-stage resin composition sheet M with copper foil and the second resin composition sheet L, a pattern plating resist is used and applied to a thickness of 14 μm on the circuit board from above the circuit. Then, a hole having a hole diameter of 40 μm was developed and opened on the circuit, and the hole was filled with copper plating so as to be the same height as the plating resist, thereby producing a printed wiring board for flip chip mounting. Thereafter, solder was bonded onto the protrusions, and in the same manner as in Example 2, a semiconductor chip was mounted and connected, then an underfill resin was poured and cured, solder balls were bonded, and a flip chip mounted printed wiring board was obtained. Evaluation results are shown in Table 1.

表1
実 施 例 比 較 例
項 目 1 2 3 1 2
半導体バンプ接続度
(n/500) 0/ 0/ 0/ 0/ 55/
アンダーフィル樹脂充填度
(m/100) 0/ 0/ 0/ 22/ 6/
熱硬化性樹脂層表面凹凸 <3 <3 <3 14 10
(μm)
吸湿耐熱性 異常なし 異常なし 異常なし 膨れ発生 膨れ発生
耐マイグレーション性
常態 6x1014 7X1014 6X1014 6x1014 5X1014
200hrs. 2x1011 4x1011 2x1010 3x109 8x109
500hrs. 3x1010 5x1010 <108 <108 <108
700hrs. 2x1010 5x1010 − − −
1000hrs. 2x1010 4x1010 − − −
弾性率 (kgf/mm) 2345 2413 2157 − 1950
Table 1
Example Comparison example
Item 1 2 3 1 2
Semiconductor bump connectivity
(n / 500) 0/0/0/0/55 /
Underfill resin filling degree
(m / 100) 0/0/0/22/6 /
Surface roughness of thermosetting resin layer <3 <3 <3 14 10
(Μm)
Moisture without heat resistance No change No problem swelling occurred swelling occurred migration resistance ordinary state 6x10 14 7X10 14 6X10 14 6x10 14 5X10 14
200hrs. 2x10 11 4x10 11 2x10 10 3x10 9 8x10 9
500hrs. 3x10 10 5x10 10 <10 8 <10 8 <10 8
700hrs. 2x10 10 5x10 10 − − −
1000hrs. 2x10 10 4x10 10 − − −
Elastic modulus (kgf / mm 2 ) 2345 2413 2157 − 1950

<測定方法>
1)半導体バンプ接続度:半導体チップの接続不良の有無を電気的に確認した。(分母に検査数、分子に接続不良が見られた数を示す)
2)樹脂充填度:アンダーフィル樹脂の半導体チップと基板間の充填状態を超音波探査機で確認した。(分母に検査数、分子に充填不良が見られた数を示す)
3)表面凹凸: プリント配線板の半導体チップ搭載面の表面凹凸を粗さ計で測定し、最大凹凸を示した。
4)吸湿耐熱性:ハンダボールの接合していないプリント配線板を用い、JEDEC Level IIで、鉛リフローハンダ温度 Max.260℃での外観異常の有無を観察した。
5)耐マイグレーション性:表層のバンプパッド導体間距離を 50μmとした半導体チップを搭載しないプリント配線板を用い、85℃・85%RH、100VDC 印加して回路間の絶縁抵抗値を測定した。
6)弾性率: 回路導体及び孔の形成を行わずに、同様の構成で絶縁体だけの積層板を作製し、JIS C6481のDMA法に準じて弾性率を測定し、25℃の弾性率を示した。
<Measurement method>
1) Semiconductor bump connection degree: The presence or absence of connection failure of the semiconductor chip was electrically confirmed. (Indicates the number of tests in the denominator and the number of poor connections in the numerator)
2) Resin filling degree: The filling state between the semiconductor chip and the substrate of the underfill resin was confirmed with an ultrasonic probe. (Indicates the number of inspections in the denominator and the number of poor packing in the numerator)
3) Surface unevenness: The surface unevenness of the surface of the printed wiring board on which the semiconductor chip was mounted was measured with a roughness meter to show the maximum unevenness.
4) Moisture absorption and heat resistance: Using printed wiring boards without solder balls, JEDEC Level II was used to observe the presence or absence of abnormal appearance at a lead reflow soldering temperature of Max.
5) Migration resistance: Using a printed wiring board with no semiconductor chip mounted with a distance between bump pad conductors on the surface layer of 50 μm, the insulation resistance value between circuits was measured by applying 85 ° C and 85% RH, 100VDC.
6) Modulus of elasticity: Without forming circuit conductors and holes, make a laminate with only the same structure and measure the modulus of elasticity according to the JIS C6481 DMA method. Indicated.

実施例2のフリップチップ搭載プリント配線板の製造工程図である。(1) 回路基板の上に2層の樹脂組成物層が付着した銅箔付きBステージ樹脂組成物シートを配置した図(上側のみ)(2) レーザー(f)によるブラインドビア及び貫通孔あけのイメージ図(3) 形成されたブラインドビア孔(g) 及び貫通孔(h) (4) 表面研磨した銅メッキ(i)をエッチング液(j)でエッチングするイメージ図It is a manufacturing process figure of the flip-chip mounting printed wiring board of Example 2. FIG. (1) Diagram of B-stage resin composition sheet with copper foil with two resin composition layers attached on the circuit board (upper side only) (2) Blind vias and through holes drilled by laser (f) Image (3) Formed blind via hole (g) and through hole (h) (4) Image of etching surface polished copper plating (i) with etchant (j) 実施例2のフリップチップ搭載プリント配線板の製造工程図である。(5) 薬液(m)で第1樹脂組成物層(l)を溶解するイメージ図(6) 第1樹脂組成物層が溶解され銅メッキ充填部の先端部分(n)が突出した図(7) バンプ用金属(o)が付着した図(8) 半導体チップ(p)が接続搭載された図It is a manufacturing process figure of the flip-chip mounting printed wiring board of Example 2. FIG. (5) Image of dissolving the first resin composition layer (l) with the chemical solution (m) (6) Figure (7) where the first resin composition layer is dissolved and the tip part (n) of the copper plating filling part protrudes Figure with bump metal (o) attached (8) Figure with semiconductor chip (p) connected and mounted 比較例2のプリント配線板の製造工程である。(1) パターンメッキレジストを塗布、乾燥、露光、現像した図 (2) 銅メッキで現像除去した箇所に銅メッキをパターンメッキレジストの高さまで充填した図(3) バンプ用金属が付着した図It is a manufacturing process of the printed wiring board of the comparative example 2. FIG. (1) A pattern plating resist is applied, dried, exposed, and developed (2) A copper plating is filled up to the height of the pattern plating resist at a place where copper plating is developed and removed (3) A bump metal is attached

符号の説明Explanation of symbols

a 銅箔
b 第1樹脂組成物
c 第2樹脂組成物
d 導体回路
e 積層板
f レーザービーム
g レーザーで加工されたブラインドビア孔
h 銅メッキで充填されたブラインドビア孔
i 研磨して平滑となった銅メッキ表面
j エッチング液
k 第1樹脂組成物層までエッチングされた銅メッキ
l 露出した第1樹脂組成物
m 第1樹脂組成物層溶解溶液
n 銅メッキ充填部の突出した先端部分
o バンプ用金属
p 半導体チップ
q パターンメッキレジスト
r 現像で除去した孔
s パターンメッキレジスト表面までメッキされた銅メッキの窪み
t 半導体チップのバンプ接続用回路
u レーザーで孔あけされた貫通孔
v 銅メッキで充填された貫通孔
a copper foil b first resin composition c second resin composition d conductor circuit e laminated board f laser beam g blind via hole processed by laser
h Blind via hole filled with copper plating i Polished and smooth copper plating surface j Etching solution k Copper plating etched to first resin composition layer l Exposed first resin composition m First resin composition Material layer solution n Protruding tip of copper plating filling area o Bump metal p Semiconductor chip q Pattern plating resist r Holes removed by development s Copper plating depression plated to pattern plating resist surface t Bump connection of semiconductor chip Circuit
u Through holes drilled with laser
v Through hole filled with copper plating

Claims (8)

銅箔或いは離型フィルムの片面に熱可塑性樹脂組成物からなる第1樹脂組成物層を形成し、この樹脂組成物層の上に熱硬化性樹脂組成物からなる第2樹脂組成物層を形成させた銅箔或いは離型フィルム付きBステージ樹脂組成物シート。 A first resin composition layer made of a thermoplastic resin composition is formed on one side of a copper foil or a release film, and a second resin composition layer made of a thermosetting resin composition is formed on the resin composition layer. B-stage resin composition sheet with copper foil or release film. 該第1樹脂組成物層の厚みが、1〜10μmである請求項1記載のBステージ樹脂組成物シート。 The B-stage resin composition sheet according to claim 1, wherein the thickness of the first resin composition layer is 1 to 10 µm. 該第2樹脂組成物層が、基材補強されている請求項1又は2記載のBステージ樹脂組成物シート The B-stage resin composition sheet according to claim 1 or 2, wherein the second resin composition layer is reinforced with a base material. 該第2樹脂組成物が、シアン酸エステル樹脂を必須成分とする樹脂組成物である請求項1〜3のいずれかに記載のBステージ樹脂組成物シート。 The B-stage resin composition sheet according to any one of claims 1 to 3, wherein the second resin composition is a resin composition containing a cyanate ester resin as an essential component. (1)請求項1〜4のいずれかに記載のBステージ樹脂組成物シートの第2樹脂組成物層面を、導体回路を形成した基板の少なくとも半導体チップ搭載面に対向させて配置し、加熱して硬化させて半導体チップ搭載用基板とし、
(2)半導体チップ搭載用基板の半導体チップ搭載部にブラインドビア孔及び/又は貫通孔を形成させた後、銅メッキして孔内部を銅メッキで充填させ、
(3)表層銅箔及び/又は銅メッキ部分を、第1樹脂組成物層面まで、厚さ方向に平面的にエッチングした後、
(4)第1樹脂組成物層を、銅メッキを溶解しない薬液で、第2樹脂組成物層面まで溶解除去させ、銅メッキ充填部の先端部分を第2樹脂組成物層面より突出させることを特徴とするフリップチップ搭載用プリント配線板の製造方法。
(1) The second resin composition layer surface of the B-stage resin composition sheet according to any one of claims 1 to 4 is disposed to face at least a semiconductor chip mounting surface of a substrate on which a conductor circuit is formed, and heated. And hardened to make a substrate for mounting semiconductor chips,
(2) After forming blind via holes and / or through holes in the semiconductor chip mounting portion of the semiconductor chip mounting substrate, copper plating is performed to fill the hole interior with copper plating,
(3) After etching the surface copper foil and / or the copper plating portion in the thickness direction up to the first resin composition layer surface,
(4) The first resin composition layer is dissolved and removed up to the second resin composition layer surface with a chemical solution that does not dissolve the copper plating, and the tip portion of the copper plating filling portion protrudes from the second resin composition layer surface. A manufacturing method of a printed wiring board for flip chip mounting.
該(2)の工程後に、銅メッキ表面を研磨して表面を平滑にすることを特徴とする請求項5記載のフリップチップ搭載用プリント配線板の製造方法。 6. The method for manufacturing a printed circuit board for flip chip mounting according to claim 5, wherein after the step (2), the surface of the copper plating is polished to smooth the surface. 該(4)の工程後に、(5)露出した銅メッキ充填部の先端部分を保護用金属で被覆することを特徴とする請求項5又は6記載のフリップチップ搭載用プリント配線板の製造方法。 7. The method for manufacturing a printed circuit board for flip chip mounting according to claim 5 or 6, wherein after the step (4), (5) the exposed tip portion of the copper plating filling portion is covered with a protective metal. 保護用金属で被覆された銅メッキ充填部の先端部分に、バンプ用金属を付着させることを特徴とする請求項請求項5〜7のいずれかに記載のフリップチップ搭載用プリント配線板の製造方法。
The method for producing a printed circuit board for flip chip mounting according to any one of claims 5 to 7, wherein a bump metal is attached to a tip portion of a copper plating filling portion coated with a protective metal. .
JP2003421018A 2003-12-18 2003-12-18 B stage resin composition sheet and method of manufacturing printed circuit substrate for mounting flip chip using the same Pending JP2005183599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003421018A JP2005183599A (en) 2003-12-18 2003-12-18 B stage resin composition sheet and method of manufacturing printed circuit substrate for mounting flip chip using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003421018A JP2005183599A (en) 2003-12-18 2003-12-18 B stage resin composition sheet and method of manufacturing printed circuit substrate for mounting flip chip using the same

Publications (1)

Publication Number Publication Date
JP2005183599A true JP2005183599A (en) 2005-07-07

Family

ID=34782374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003421018A Pending JP2005183599A (en) 2003-12-18 2003-12-18 B stage resin composition sheet and method of manufacturing printed circuit substrate for mounting flip chip using the same

Country Status (1)

Country Link
JP (1) JP2005183599A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059480A (en) * 2005-08-22 2007-03-08 Hitachi Chemical Dupont Microsystems Ltd Circuit connection structural body and its manufacturing method, and semiconductor substrate therefor
WO2009084533A1 (en) * 2007-12-28 2009-07-09 Mitsui Mining & Smelting Co., Ltd. Copper foil with resin and process for producing copper foil with resin
JP2009173017A (en) * 2007-12-28 2009-08-06 Mitsui Mining & Smelting Co Ltd Resin-coated copper foil and process for producing resin-coated copper foil
WO2010024370A1 (en) * 2008-08-29 2010-03-04 味の素株式会社 Film with metal film
KR101014839B1 (en) * 2008-07-01 2011-02-16 홍익대학교 산학협력단 Electrochemical polishing and plating method for manufacturing of through via and bumps in 3D SiP
JP2013135014A (en) * 2011-12-26 2013-07-08 Fujitsu Ltd Electronic component and electronic apparatus
US8975192B2 (en) 2005-08-22 2015-03-10 Hitachi Chemical Dupont Microsystems Ltd. Method for manufacturing semiconductor device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059480A (en) * 2005-08-22 2007-03-08 Hitachi Chemical Dupont Microsystems Ltd Circuit connection structural body and its manufacturing method, and semiconductor substrate therefor
JP4691417B2 (en) * 2005-08-22 2011-06-01 日立化成デュポンマイクロシステムズ株式会社 CIRCUIT CONNECTION STRUCTURE, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR SUBSTRATE FOR CIRCUIT CONNECTION STRUCTURE
US8148204B2 (en) 2005-08-22 2012-04-03 Hitachi Chemical Dupont Microsystems, Ltd. Circuit connection structure, method for producing the same and semiconductor substrate for circuit connection structure
US8975192B2 (en) 2005-08-22 2015-03-10 Hitachi Chemical Dupont Microsystems Ltd. Method for manufacturing semiconductor device
WO2009084533A1 (en) * 2007-12-28 2009-07-09 Mitsui Mining & Smelting Co., Ltd. Copper foil with resin and process for producing copper foil with resin
JP2009173017A (en) * 2007-12-28 2009-08-06 Mitsui Mining & Smelting Co Ltd Resin-coated copper foil and process for producing resin-coated copper foil
KR101014839B1 (en) * 2008-07-01 2011-02-16 홍익대학교 산학협력단 Electrochemical polishing and plating method for manufacturing of through via and bumps in 3D SiP
WO2010024370A1 (en) * 2008-08-29 2010-03-04 味の素株式会社 Film with metal film
JP5500074B2 (en) * 2008-08-29 2014-05-21 味の素株式会社 Film with metal film
TWI495561B (en) * 2008-08-29 2015-08-11 Ajinomoto Kk Film with metal film
JP2013135014A (en) * 2011-12-26 2013-07-08 Fujitsu Ltd Electronic component and electronic apparatus

Similar Documents

Publication Publication Date Title
KR100630482B1 (en) Printed wiring board for semiconductor plastic package
JP2005183599A (en) B stage resin composition sheet and method of manufacturing printed circuit substrate for mounting flip chip using the same
JP2000286362A (en) Printed wiring board for ultrathin bga-type semiconductor plastic package
JP2009119879A (en) High elastic modulus copper-clad laminate of thermosetting resin-impregnated glass fabric base material and drilling method
JP2005183792A (en) Method for manufacturing printed-wiring board for flip-chip mounting
JP4888517B2 (en) Method for manufacturing printed circuit board for extra fine wire circuit
JP2005203494A (en) Method of manufacturing printed wiring board for flip chip mounting
JP2003249764A (en) Manufacturing method for b-stage resin composition sheet containing base for additive
JP2005259734A (en) Method of manufacturing printed-wiring board for flip-chip mounting
JP2004356200A (en) Method for forming permanent protective film on printed wiring board
JP2004281872A (en) Method for forming hole by laser
JP2003246843A (en) Curable resin composition
JP2005183449A (en) Printed circuit board for installing flip chip
JP3985342B2 (en) Semiconductor plastic package
JP4022972B2 (en) Semiconductor plastic package
JP2005085783A (en) Ball-grid-array plastic semiconductor package
JP2001239386A (en) Boring method by co2 gas laser
JPH11238827A (en) Manufacture of metal core
JP3852510B2 (en) Semiconductor plastic package
JP2001135911A (en) Boring method on copper-plated board with carbon dioxide
JP2005079516A (en) Cavity type semiconductor plastic package containing metal core
JP2004273911A (en) Method for manufacturing superthin-wire circuit printed wiring board
JP2004356199A (en) Method for forming permanent protective film on surface of printed wiring board
JP2004356201A (en) Method of manufacturing very fine wire printed wiring board of high reliability
JPH11330303A (en) Semiconductor plastic package